PSEUDO-RANK FUNCTIONS ON SKEW GROUP RINGS AND ON FIXED SUBRINGS OF AUTOMORPHISMS OF UNIT-REGULAR RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

Jiro KADO

(Received October 28, 1985)

Let R be a unit-regular ring and G a finite subgroup of $\operatorname{Aut}(R)$ with $|G|^{-1}$ $\in R$. This paper is concerned with relationships between the pseudo-rank functions of the skew group ring $R * G$ and ones of the fixed subring R^{G}. We introduce such relationships by studying certain homomorphisms between $K_{0}(R * G)$ and $K_{0}\left(R^{G}\right)$.

In $\S 1$, under the assumption that $R * G$ is a unit-regular ring and R is a finitely generated projective left R^{G}-module, we shall investigate the following two homomorphisms:

$$
\begin{array}{lll}
\bar{\mu}: K_{0}\left(R^{G}\right) \rightarrow K_{0}(R * G), & \text { defined by } & \bar{\mu}([M])=\left[R * G e \otimes_{R^{G}} M\right] \\
\bar{\lambda}: K_{0}(R * G) \rightarrow K_{0}\left(R^{G}\right), & \text { defined by } & \bar{\lambda}([A])=\left[\operatorname{Hom}_{R * G}(R * G e, A)\right]
\end{array}
$$

where $e=|G|^{-1} \sum_{g \in G} g$ in $R * G$. Then we shall show that $\bar{\lambda} \bar{m}$ is identity map and $\bar{\mu}$ is an order-embedding map.

The maps $\bar{\mu}, \bar{\lambda}$ induce maps μ^{*}, λ^{*} between $\mathrm{P}(R * G)$ and $\mathrm{P}\left(R^{G}\right)$, where $\mathrm{P}(T)$ (resp. $\partial_{e} \mathrm{P}(T)$) is the family of all pseudo-rank functions (resp. extremal pseudo-rank functions) of a regular ring T. For any $N \in \mathrm{P}(R * G)$ with $N(e)>0$ and any $a \in R^{G}$, we define

$$
\mu^{*}(N)(a)=N(e)^{-1} D_{N}\left(R * G e \bigotimes_{R^{G}} R^{G} a\right),
$$

where D_{N} is the dimension function which corresponds to N. For any $Q \in$ $P\left(R^{G}\right)$ and any $x \in R * G$, we define

$$
\lambda^{*}(Q)(x)=D_{Q}\left({ }_{R^{G}} R\right)^{-1} D_{Q}\left(\operatorname{Hom}_{R * G}(R * G e, R * G x)\right),
$$

where D_{Q} is the dimension function which corresponds to Q. Then we shall show that $\mu^{*}(N)\left(\right.$ resp. $\left.\lambda^{*}(Q)\right)$ is a pseudo-rank function of R^{G} (resp. $R * G$) and $\mu^{*} \lambda^{*}=$ identity and μ^{*} preserves extremal pseudo-rank functions.

In $\S 2$, for a directly finite, left self-injective, regular ring R and an X -
outer group G, we shall determine all extremal pseudo-rank functions of $R * G$ from ones of R. It is shown from above results that $R * G \cong M_{n}\left(R^{G}\right)$ as rings, where $n=|G|$, and $R \cong R^{G}[G]$ as left $R^{G}[G]$-modules.

In $\S 3$, assuming that R is a left and right self-injective regular ring and R is a finitely generated, projective, left R^{G}-module, we shall show that there exists a bijection from some subset of $\operatorname{Max}(R * G)$ into $\operatorname{Max}\left(R^{G}\right)$. Using this result, we obtain that for any $Q \in \partial_{e} P\left(R^{G}\right)$, there exists an unique $N \in \partial_{e} P(R * G)$ with $N(e)>0$ such that $Q(a)=N(e)^{-1} N(a e)$ for any $a \in R^{G}$.

1. Relations between $P(\boldsymbol{R} * \boldsymbol{G})$ and $\boldsymbol{P}\left(\boldsymbol{R}^{G}\right)$

Given regular ring T, we use $\operatorname{FP}(T)$ to denote the set of all finitely generated projective left T-modules. For modules $A, B, A \leqq B$ means that A is isomorphic to a submodule of B and we use $n . A$ to denote the direct sum of n copies of A.

According to [1, p. 226], we mean by a pseudo-rank function on R is a map $N: R \rightarrow[0,1]$ such that
(1) $N(1)=1$.
(2) $N(r s) \leqq N(r)$ and $N(r s) \leqq N(s)$ for all $r, s \in R$.
(3) $N(e+f)=N(e)+N(f)$ for all orthogonal idempotent $e, f \in R$.

If, in addition
(4) $N(r)>0$ for all non-zero $r \in R$,
then N is called a rank function. We use $P(R)$ to denote the set of all pseudorank functions on R

For a regular ring R, we view $P(R)$ as a subset of the real vector space \boldsymbol{R}^{R}, which we equipped with the product topology [1, Ch. 16 and Appendix]. Then $P(R)$ is a compact convex subset of \boldsymbol{R}^{R} by [1, Prop. 16, 17]. We use $\partial_{e} P(R)$ to denote the set of all extreme points of $P(R)$. It is known that $P(R)$ is equal to the closure of the convex hull of $\partial_{e} P(R)$ by Krein-Milman Theorem.

Again according to [1, p. 232], we mean by a dimension function on $\operatorname{FP}(T)$ is a map $D: \operatorname{FP}(T) \rightarrow \boldsymbol{R}^{+}$such that
(1) $D(T)=1$
(2) If $A, B \in \mathrm{FP}(T)$ and $A \leqq B$, then $D(A) \leqq D(B)$.
(3) $D(A \oplus B)=D(A)+D(B)$ for all $A, B \in \mathrm{FP}(T)$.

Let $D(T)$ denote the set of all dimension functions on $\operatorname{FP}(T)$. There is a bijection $\Gamma_{T}: P(T) \rightarrow D(T)$ such that $\Gamma_{T}(P)(T t)=P(t)$ for all $P \in P(T)$ and $t \in T$ by [1, Prop. 16.8]. For $P \in P(T)$, we use D_{P} to denote the dimension function $\Gamma_{T}(P)$.

Let T be a ring with identity element 1 and let G be a finite group of automorphisms of T with $|G|^{-1} \in T$. The skew group ring, $T * G$, is defined to be a free left T-module with basis $\{g: g \in G\}$ and multiplication given as follows: if $r, s \in T$ and $g, h \in G$, then $(r g)(s h)=r s^{g^{-1}} g h([9])$.

Throughout this paper, put $e=|G|^{-1} \sum_{g \in G} g$ and denote by θ the map $e(T * G) e \rightarrow T^{G}$ which is given by $\theta\left[e\left(\sum_{g \in G} r_{g} g\right) e\right]=\sum_{g \in G} t\left(r_{g}\right)$, where $t(r)=$ $|G|^{-1} \sum_{g \in G} r^{g}$ for $r \in T$. Then e is an idempotent and θ is an isomorphism by [9, Lemma 0.1].

Let R be a unit-regular ring and G a finite subgroup of $A u t(R)$ with $|G|^{-1}$ $\in R$. In [8], we have studied relationships between $P(R * G)$ and $P(R)$ (resp. $\partial_{e} P(R * G)$ and $\left.\partial_{e} P(R)\right)$. Especially we have shown that all G-invariant $P \in P(R)$ can be extended to pseudo-rank functions of $R * G$. In this paper, we shall study the relation between $P(R * G)$ and $P\left(R^{G}\right)$ (resp. $\partial_{e} P(R * G)$ and $\partial_{e} P\left(R^{G}\right)$). If $R * G$ and R^{G} are Morita equivalent, then K.R. Goodearl has shown under a general situation that there is a bijection between $P(R * G)$ and $P\left(R^{G}\right)$ in [1, Cor. 16.9]. We shall define maps between $P(R * G)$ and $P\left(R^{G}\right)$, which are more concrete than the Goodearl's bijection, without the assumption of Morita Equivalence.

A partially ordered abelian group is an abelian group K equipped with a partial order \leqq which is translation invariant ([1, p. 202]). The positive cone of K is the set $K^{+}=\{x \in K ; x \geqq 0\}$. If the partial order on K is directed (upward or downward), then K is called a directed abelian group. An order unit in K is an element $u>0$ such that for any $x \in K$, there exists a positive integer n for which $x \leqq n u$. We denote by a pair (G, u) a partially ordered abelian group with order-unit u.

For a unit-regular ring T, the Grothendieck group $K_{0}(T)$ is an abelian group with generators $[A]$, where $[A]$ is the isomorphism class for $A \in \mathrm{FP}(T)$ and with relation $[A \oplus B]=[A]+[B]([1, \S 15])$. Every element of $K_{0}(T)$ has the form $[A]-[B]$ for some $A, B \in \mathrm{FP}(T) . \quad K_{0}(T)$ is a partially ordered abelian group with order-unit [T] and positive cone $K_{0}(T)^{+}$coincides with $\{[A]: A \in$ $\mathrm{FP}(T)\}$ by [1, Prop. 15.2].

Let R be a unit-regular ring and let G be a finite subgroup of $\operatorname{Aut}(R)$ with $|G|^{-1} \in R$. The skew group ring $R * G$ is a regular ring by [5]. Unfortunately we don't know whether $R * G$ is unit-regular or not. Therefore, from now on, we assume that $R * G$ is unit-regular in many cases. We regard $R * G e$ as a (left $R * G$, right R^{G})-bimodule, where $e=|G|^{-1} \sum_{g \in G} g$.

There exists a natural functor $\mu ; \operatorname{FP}\left(R^{G}\right) \rightarrow \mathrm{FP}(R * G)$ given by the rule $\mu(M)=R * G e \otimes_{R^{G}} M$. Then we have a positive homomorphism $\bar{\mu}: K_{0}\left(R^{G}\right) \rightarrow$ $K_{0}(R * G)$, defined by $\bar{\mu}([M])=[\mu(M)]$. Set $F=\{N \in P(R * G): \quad N(e)=0\}$. Then μ also induces a map $\mu^{*}: P(R * G) \backslash F \rightarrow P\left(R^{G}\right)$ given by the rule $\mu^{*}(N)(a)=N(e)^{-1} D_{N}\left(\mu\left(R^{G} a\right)\right)$ for any $N \in P(R * G) \backslash F$ and any $a \in R^{G}$, where D_{N} is the dimension function which corresponds to N. In fact, since $\mu\left(R^{G} a\right)=R * G e$ $\otimes R^{G} a \cong R * G e a$, we have $D_{N}\left(\mu\left(R^{G} a\right)\right)=N(e a)$. Then $\mu^{*}(N)(a)=N(e)^{-1} N(e a)$ for all $a \in R^{G}$. Thus $\mu^{*}(N)$ is a pseudo-rank function by the isomorphism $\theta: e R * G e \rightarrow R^{G}$ and [1, Lemma 16.2].

Proposition 1. Let $\mu^{*}: P(R * G) \backslash F \rightarrow P\left(R^{G}\right)$ be the map given above. If $N \in P(R * G) \backslash F$ is extremal in $P(R * G)$, then $\mu^{*}(N)$ is also extremal.

Proof. It is sufficient to prove that

$$
\mu^{*}(N)(a) \wedge \mu^{*}(N)(b)=\sup \left\{\mu^{*}(N)(a r b): r \in R^{G}\right\}
$$

for all $a, b \in R^{G}$ by [1, Prop. 19.16]. We compute as follows;

$$
\begin{aligned}
\sup \left\{\mu^{*}(N)(a r b): r \in R^{G}\right\} & =\sup \{N(\text { earb }) . \\
& =\sup \left\{N(e)^{-1}: r \in R^{G}\right\} \\
& \text { ear.eb } \left.): r \in R^{G}\right\} . N(e)^{-1} .
\end{aligned}
$$

If r runs over all element of R^{G}, ea.er eb runs over all generators of $a e R * G b e$ by θ. Then, since N is extremal, we have

$$
\sup \left\{N(e a . e r . e b) ; r \in R^{G}\right\}=N(e a) \wedge N(e b)
$$

by [1, Th. 19.16]. Consequently we see that

$$
\sup \left\{\mu^{*}(N)(a r b): r \in R^{G}\right\}=\mu^{*}(N)(a) \wedge \mu^{*}(N)(b)
$$

In general, there may not exist any map from $P\left(R^{G}\right) \rightarrow P(R * G)$. Under the assumption that R is a finitely generated, projective, left R^{G}-module, there exists such a map ([8]). For the sake of completeness, we shall again define it. We assume that R is a finitely generated, projective, left R^{G}-module. For any $A \in \mathrm{FP}(R * G)$, define $\lambda(A)=\operatorname{Hom}_{R * G}(R * G e, A)$. Since $\operatorname{Hom}_{R * G}(R * G e$, $R * G) \cong e R * G \cong R$ as left R^{G}-modules, $\lambda(A)$ is a finitely generated, projective, left R^{G}-module. The functor λ induces a positive homomorphism

$$
\bar{\lambda}: K_{0}(R * G) \rightarrow K_{0}\left(R^{G}\right) \quad \text { defined by the rule; } \quad \bar{\lambda}([A])=[\lambda(A)]
$$

Since $\operatorname{Hom}_{R * G}(R * G e, R * G) \cong e R * G \cong R$ as left R^{G}-modules, we have $\bar{\lambda}([R * G])=$ $\left[{ }_{R^{G}} R\right]$. We define

$$
\lambda^{*}(Q)(x)=D_{Q}(R)^{-1} D_{Q}(\lambda(R * G x))
$$

for any $Q \in P\left(R^{G}\right)$ and for all $x \in R * G$, where D_{Q} is the dimension function which corresponds to Q. By [8, §3], $\lambda^{*}(Q)$ is a pseudo-rank function on $R * G$.

Remark 1. Since $\lambda(R * G e) \cong e R * G e \cong R^{G}$, we have the relation that $\lambda^{*}(Q)(e)=D_{Q}\left(R_{R^{G}} R\right)^{-1}$ for all $Q \in P\left(R^{G}\right)$.

Now we shall determine pseudo-rank functions on R^{G} from ones on $R * G$.
Theorem 2. Let R be a unit-regular ring, G a finite subgroup of $A u t(R)$ with $|G|^{-1} \in R$ and $R * G$ a skew group ring of G over R. Put $e=|G|^{-1} \sum_{g \in G} g$ and set $F=\{N \in P(R * G): N(e)=0\}$. We assume that $R * G$ is a unit-regular
ring and that R is a finitely generated, projective, left R^{G}-module. Then the following hold;
(1) $\bar{\mu}: K_{0}\left(R^{G}\right) \rightarrow K_{0}(R * G)$ is an order-embedding map and $\bar{\lambda} \bar{\mu}=$ identity.
(2) For any $Q \in P\left(R^{G}\right)$, there exists some $N \in P(R * G) \backslash F$ such that $Q(a)$ $=N(e)^{-1} N(a e)$ for any $a \in R^{G}$.

Proof. (1) First we shall show that for any idempotent $a \in R^{G}, \lambda \mu\left(R^{G} a\right)$ $\cong R^{G} a$. In fact, we see that

$$
\begin{aligned}
\lambda \mu\left(R^{G} a\right) & =\operatorname{Hom}_{R * G}\left(R * G e, R * G e \otimes_{R^{G}} R^{G} a\right) \\
& \cong \operatorname{Hom}_{R * G}(R * G e, R * G e a) \\
& \simeq e R * G e a \\
& \simeq R^{G} a,
\end{aligned}
$$

using the isomorphism $e R * G e \rightarrow R^{G}$.
Since $K_{0}\left(R^{G}\right)\left(\right.$ resp. $\left.K_{0}(R * G)\right)$ is generated by the set $\{[I]: I$ is a principal left ideal\} by [1, Prop. 2.6], we see that $\bar{\lambda}=$ identity. For any $M, M^{\prime} \in \mathrm{FP}\left(R^{G}\right)$, we assume that $\bar{\mu}([M]) \leqq \bar{\mu}\left(\left[M^{\prime}\right]\right)$. By definitions and [1, Prop. 15.2], we see that $\mu(M) \leq \mu\left(M^{\prime}\right)$ and $M \cong \lambda \mu(M) \leq \lambda \mu\left(M^{\prime}\right) \cong M^{\prime}$. Hence we conclude that $[M] \leqq\left[M^{\prime}\right]$.
(2) For maps $\mu^{*}: P(R * G) \backslash F \rightarrow P\left(R^{G}\right)$ and $\lambda^{*}: P\left(R^{G}\right) \rightarrow P(R * G) \backslash F$, we may show that $\mu^{*} \lambda^{*}=$ identity. For any $Q \in P\left(R^{G}\right)$ and any $a \in R^{G}$,

$$
\begin{aligned}
\mu^{*} \lambda^{*}(Q)(a) & =\lambda^{*}(Q)(e)^{-1} \cdot D_{\lambda^{*}(Q)}\left(\lambda\left(R^{G} a\right)\right) \\
& =D_{Q}(R) \cdot D_{Q}(R)^{-1} D_{Q}\left(\mu \lambda\left(R^{G} a\right)\right) \\
& =D_{Q}\left(R^{G} a\right) \\
& =Q(a) .
\end{aligned}
$$

Remark 2. By Proposition 1, the restriction map of μ^{*} on $\partial_{e} P(R * G) \backslash F$ is a map into $\partial_{e} P\left(R^{G}\right)$. Unfortunately we can't prove that it is also an epimorphism. We shall prove in $\S 3$ that it is an epimorphism for self-injective regular rings.

Next we shall determine a condition that $R * G$ and R^{G} are Morita equivalent.

Proposition 3. Let R be a unit-regular ring and let G be a finite subgroup of $\operatorname{Aut}(R)$ with $|G|^{-1} \in R$. We assume that $R * G$ is also a unit-regular ring. The following conditions are equivalent.
(1) $R * G e(r e s p . e R * G)$ is a generator as a $R * G$-module.
(2) $N(e)>0$ for all $N \in \partial_{e} P(R * G)$.

Proof. (1) $\Rightarrow(2)$. By the assumption of (1), there exists some natural number k such that $R * G \leqq k \cdot(R * G e)$. Then, for any $N \in P(R * G)$, we have
$k N(e) \geqq 1$ and so $N(e)>0$.
$(2) \Rightarrow(1)$. We shall show that $R * G e R * G=R * G$. Put $H=R * G e R * G$. Assume that $H \neq R * G$. Let $f ; R * G \rightarrow R * G / H$ be a natural epimorphism. Since $R * G / H$ is also unit-regular, we have that $P(R * G / H)$ is not empty by [1, Cor 18.5]. By [1, Th. A.6], there exist $N^{\prime} \in \partial_{e} P(R * G / H)$. We consider the function $N^{\prime} f$. Then $N=N^{\prime} f$ is an extreme pseudo-rank function on $R * G$ by [1, Prop. 16.19]. Since $H \subset k e r(N), N(e)=0$. This is a contradiction. Hence $R * G e R * G=R * G$ and we see that $R * G e$ is a generator.

Remark 3. In above case, since $\operatorname{End}_{R * G}(R * G e) \cong R^{G}, R * G$ and R^{G} are Morita equivalent. So, $\lambda^{*} \mu^{*}=$ identity and hence μ^{*} induces a bijection from $\partial_{e} P(R * G)$ into $\partial_{e} P\left(R^{G}\right)$.

2. \boldsymbol{X}-outer automorphisms

In this section, let R be a directly finite, left self-injective, regular ring and G a finite group of automorphisms of R with $|G|^{-1} \in R$. It is known that both $R * G$ and R^{G} are directly finite, left self-injective, regular rings ([12]) and that such rings are unit-regular rings ([1, Th. 9.17]). K.R. Goodearl has shown that there exists a bijection $\partial_{e} P(R) \rightarrow \operatorname{Max}(R)$ which is defined by the rule; $P \rightarrow \operatorname{ker}(P)$ and that $R / \operatorname{ker}(P)$ is a simple self-injective regular ring with the unique rank function [4, II. 14.5]. We use repeatedly that fact.

An automorphism g of R is called an X-inner if there exists a non-zero element $x \in R$ such that $r x=x r^{g}$ for all $r \in R$ ([10]). If g is not X-inner, we call $g X$-outer. For a subgroup G of $A u t(R)$, we call $G X$-outer if all $g \neq 1 \in G$ are X-outer. Let $Z(R)$ be the center of R.

First we shall determine the structure of $\operatorname{Max}(R * G)$ for an X-outer group G. The following Lemma has been essentially proved in [5], but we shall prove it in this note for the sake of completeness. We denote the set of all central idempotents of a ring T by $B(T)$.

Lemma 4. Let R be a directly finite, left self-injective, regular ring and G a finite group of automorphisms of R with $|G|^{-1} \in R$. We assume that G is X-outer. Then $\operatorname{Max}(R * G)=\left\{\left(\cap_{g \in G} M^{g}\right) * G: M \in \operatorname{Max}(R)\right\}$.

Proof. Since G is X-outer, $Z(R * G)$ is contained in $Z(R) \cap R^{G}$. Hence $B(R * G) \subset B(R) \cap R^{G}$. First we choose any $P \in \operatorname{Max}(R * G)$. Put $m=P \cap B(R * G)$, then $m \in \operatorname{Max}(B(R * G))$ and P is the unique maximal ideal containing m by [1, Th. 8.25]. Let m_{0} be a maximal ideal of $B(R)$ containing m. Then there exists a unique maximal ideal M of R containing m_{0} by [1, Th. 8.25]. Put $\bar{M}=\cap_{g \in G} M^{g}$. We note that $m \subset \bar{M}$. By [11, Lemma 4.1], $\bar{M} * G$ is a finite intersection of maximal ideals of $R * G$ and P is the unique maximal ideal of
$R * G$ containing m by [1, Th. 8.25]. Therefore we have $P=\bar{M} * G$. Conversely for any $M \in \operatorname{Max}(R)$, put $m=M \cap B(R * G)$. Then we see that $m \in \operatorname{Max}(B(R * G))$. Since $\left(\cap_{g \in G} M^{g}\right) * G$ is a finite intersection of maximal ideals of $R * G$ by [11, Lemma 4.1] and containing m, it is a maximal ideal by [1, Th. 8.25].

In [8], we have studied the relation between $P(R * G)$ and $P(R)$. Especially we can extend a G-invariant pseudo-rank function P on R to one, P^{G}, on $R * G$ defined by the rule; $P^{G}(x)=|G|^{-1} D_{P}\left({ }_{R}(R * G x)\right)$ for all $x \in R * G$ ([8, Cor. 4]). If P is not G-invariant, then we consider the trace $t(P)=|G|^{-1} \sum_{g \in G} P^{g}$, where $P^{g}(r)=P\left(r^{g^{-1}}\right)$. Now we shall determine all elements in $\partial_{e} P(R * G)$, using Lemma 4 and [8, Cor. 4].

Proposition 5. Let R be a directly finite, left self-injective, regular ring and G a finite group of automorphisms of R with $|G|^{-1} \in R$. We assume that G is X-outer. Then $\partial_{e} P(R * G)=\left\{t(Q)^{G}: Q \in \partial_{e} P(R)\right\}$.

Proof. For any $N \in \partial_{e} P(R * G)$, we see that $\operatorname{ker}(N) \in \operatorname{Max}(R * G)$ by [4, II. 14.5]. By Lemma 4, we have that $\operatorname{ker}(N)=\left(\cap_{g \in G} M^{g}\right) * G$, where $M \in \operatorname{Max}(R)$. We choose $Q \in \partial_{e} P(R)$ such that $\operatorname{ker}(Q)=M$. Since ker $t(Q)=$ $\cap_{g \in G} M^{g} / \operatorname{ker} t(Q)^{G} \supset\left(\cap_{g \in G} M^{g}\right) * G$. Hence we have ker $\left(t(Q)^{G}\right)=\operatorname{ker}(N)$ and hence $t(Q)^{G}=N$. Conversely for any $Q \in \partial_{e} P(R)$, we proved above that $\operatorname{ker}\left(t(Q)^{G}\right)$ is a maximal ideal of $R * G$. Thus $t(Q)^{G}$ is extremal by [4. II. 14.5].

Lemma 6. Let R be a directly finite, left self-injective, regular ring and G a finite group of automorphisms of R with $|G|^{-1} \in R$. We assume that G is X-outer. Then the following hold:
(1) $N(e)=n^{-1}$ for all $N \in \partial_{e} P(R * G)$, where $n=|G|$.
(2) $R * G \cong M_{n}\left(R^{G}\right)$.

Proof. By Proposition 5, we have $N=t(Q)^{G}$ for some $Q \in \partial_{e} P(R)$. Since $R * G e \cong R$ as a left R-module, $N(e)=t(Q)^{G}(e)=n^{-1}$ by [8, Corollary 4]. Consequently we have $R * G \cong n(R * G e)$ as a left $R * G$-module by [2, Cor. 2.7]. Hence $R * G \cong M_{n}\left(R^{G}\right)$, because $e R * R e \cong G^{G}$.

Now, using Lemma 6, we shall prove an interesting result concerning with "a normal basis" of R over R^{G}.

Proposition 7. Let R be a directly finite, left self-injective, regular ring and G a finite group of automorphisms of R with $|G|^{-1} \in R$. We assume that G is X-outer. Then $R \cong R^{G}[G]$ as $R^{G}[G]$-modules.

Proof. We can easily see that $R * G e R * G=R * G$ by Lemma 4. Then $R * G e$ is a generator as a $R * G$-module and R is a finitely generated, projective, left R^{G}-module. We know that there exist maps $\mu^{*}: P(R * G) \rightarrow P\left(R^{G}\right)$ and
$\lambda^{*}: P\left(R^{G}\right) \rightarrow P(R * G)$ such that $\lambda^{*} \mu^{*}=$ identity, $\mu^{*} \lambda^{*}=$ identity and both maps are also bijection on the extremal boundary by §1. Especially we have an important relation that $\lambda^{*}(Q)(e)=D_{Q}(R)^{-1}$ for all $Q \in P\left(R^{G}\right)$. Therefore any $Q \in \partial_{e} P\left(R^{G}\right)$, we have $\lambda^{*}(Q) \in \partial_{e} P(R * G)$ and $\lambda^{*}(Q)(e)=D_{Q}(R)^{-1}$ by the above remark. Put $n=|G|$. By Lemma 6, we have $D_{Q}(R)=n$ for all $Q \in \partial_{e} P\left(R^{G}\right)$. Then by [2, Cor. 2.7], we see that $R^{G} R \cong n . R^{G}$.

Next, we consider R as a left $R * G$-module by the rule: $\left(\sum_{g \in G} r_{g} g\right) r=$ $\sum_{g \in G} r_{g} r^{g}$. Since it is known that $R \cong R * G e$ as $R * G$-modules, we have that $R * G$ $\cong n . R$ as $R * G$-modules by Lemma 6 . Let $S=R^{G}[G]$ be an ordinary group ring of G over R^{G}, which is a left self-injective, regular, subring of $R * G$. Since $R \cong n . R^{G}$ as left R^{G}-modules, we have that $R * G \cong n . S$ as left S-modules. On the other hand, since $R * G \cong n . R$ as left $R * G$-modules, we have that $n . R \cong n . S$ as left S-modules. By [1, Th. 10.34], we can conclude that $R \cong S$ as left S modules.

3. N^{*}-metric

K.R. Goodearl and D. Handelman have introduced the N^{*}-metric which is induced by $P(R)$ for a regular ring R. In this section, we shall study the bijectiveness of the map $\mu^{*}: \partial_{e} P(R * G) \rightarrow \partial_{e} P\left(R^{G}\right)$ for a self-injective regular ring R, using the N^{*}-metrics of $R * G, R$ and R^{G}.

Let T be a unit-regular ring. We assume that for a given non-zero $x \in T$, there exists $P \in P(T)$ such that $P(x)>0$. For each $x \in T$, according to [7], we define

$$
N_{T}^{*}(x)=\sup \{P(x): \quad P \in P(T)\}
$$

Thus $N_{F}^{*}(x)$ is a real number, and $0 \leqq N_{T}^{*}(x) \leqq 1$. N_{T}^{*} induces a metric d^{*} on T given by the rule $d^{*}(x, y)=N_{T}^{*}(x-y)$, which we call the N_{T}^{*}-metric and T becomes a topological ring with respect to N_{T}^{*}-metric. If T is complete with respect to N_{T}^{*}-metric, T is called N_{T}^{*}-complete. It is known that regular rings with bounded index of nilpotence and $\boldsymbol{\aleph}_{10}$-continuous regular rings are N_{T}^{*} complete [3, Th. 1.3 and Th. 1.8]. We define $\operatorname{ker}(P(T))=\bigcap_{P \in P(T)} \operatorname{ker}(P)$.

Lemma 8. Let R be a unit-regular ring with $\operatorname{ker}(P(R))=0$ and G a finite subgroup of $A u t(R)$ with $|G|^{-1} \in R$ and let $R * G$ be a skew group ring of G over R. We assume that $R * G$ is a unit-regular ring and R is a finitely generated projective left R^{G}-module. Then the following hold.
(1) $\operatorname{ker}(P(R * G))=0$ and

$$
N_{R * G}^{*}(r) \leqq N_{R}^{*}(r) \leqq|G| N_{R * G}^{*}(r)
$$

for all $r \in R$.
(2) There exists a natural number t such that

$$
N_{R}^{*}(a) \leqq N_{R}^{*} \sigma(a) \leqq t N_{R}^{*}(a)
$$

for all $a \in R^{G}$. Consequently, the topology defined by $N_{R^{*} \theta-m e t r i c ~ a r e ~ c o i n c i d e ~}^{*}$ the topology induced by N_{R}^{*}-metric on R^{G}.

Proof. (1) For any $P \in P(R)$, let $t(P)=|G|^{-1} \sum_{g \in G} P^{g}$, which is a G invariant pseudo-rank function. By [8, Cor. 4], the extension $t(P)^{G}$ is a pseudorank function on $R * G$ and $\left.t(P)^{G}\right|_{R}=t(P)$. For $x \in \operatorname{ker}(P(R * G))$, we assume that $R * G x \cong \oplus_{i} R r_{i}$ as R-modules. Then $t(P)^{G}(x)=|G|^{-1} \sum_{i} t(P)\left(r_{i}\right)$ by [8, Cor. 4] and so $t(P)\left(r_{i}\right)=0$ for all i. Since $P\left(r_{i}\right) \leqq|G| t(P)\left(r_{i}\right)$ by definition, we see that $P\left(r_{i}\right)=0$ for all i and so that $r_{i}=0$ for all i by assumption. Next, for any $r \in R$, we see that

$$
P(r) \leqq|G| t(P)(r)=|G| t(P)^{G}(r) \leqq|G| N_{R * G}^{*}(r)
$$

for any $r \in R$. Therefore $N_{R}^{*}(r) \leqq|G| N_{R * G}^{*}(r)$.
(2) Since R is also a finitely generated, projective, left R^{G}-module by assumption, let $R \leqq t$. $\left(R^{G}\right)$ for some $t>0$. Then $D_{Q}(R) \leqq t$ for all $Q \in P\left(R^{G}\right)$. Using Theorem 2, we see that for $Q \in P\left(R^{G}\right)$ and any $a \in R^{G}$,

$$
\begin{aligned}
Q(a) & =\mu^{*}\left(\lambda^{*}(Q)\right)(a) \\
& =\lambda^{*}(Q)(e)^{-1} \cdot \lambda^{*}(Q)(e a) \\
& \leqq D_{Q}(R) \cdot \lambda^{*}(Q)(a) \\
& \leqq t N_{R}^{*}(a) .
\end{aligned}
$$

Thus we see that $N_{R}^{*} \sigma(a) \leqq t N_{R}^{*}(a)$ for all $a \in R^{G}$.
Let $T * G$ be a skew group ring of a finite group G over a ring T such that $|G|^{-1} \in T$ and put $e=|G|^{-1} \sum_{g \in G} g$. M. Lorenz and D.S. Passmann [11] and S. Montgomery [9] have studied the relation between prime ideals of $T * G$, T and T^{G}. Now we shall study maximal ideals of $T * G$ and T^{G}, using the manners of [9].

We denote by $\operatorname{Spec}_{e}(T * G)$ the set of all prime ideals of $T * G$ not containing e and let $\mathrm{I}_{e}(T * G)=$ the set of all ideals of $T * G$ not containing e. There exists a natural map $\phi: \mathrm{I}_{e}(T * G) \rightarrow$ the set of all ideals of T^{G}, defined by the rule $\phi(M)=\theta(e M e)$, where $\theta: e T * G e \rightarrow T^{G}$ is the isomorphism introduced in §1. In [9], it is shown that ϕ induces a bijection from $\operatorname{Spec}_{e}(T * G)$ to $\operatorname{Spec}\left(T^{G}\right)$. Therefore ϕ also induces a bijection $\phi^{\prime}: \overline{\operatorname{Spec}}_{e}(T * G) \rightarrow \operatorname{Max}\left(T^{G}\right)$, where $\overline{\operatorname{Spec}}_{e}(T * G)$ is the set of $\left\{M \in \operatorname{Spec}_{e}(T * G): M\right.$ is maximum in $\left.\operatorname{Spec}_{e}(T * G)\right\}$. The following lemma is needed in later propositions.

Lemma 9. Let T be a ring and G a finite subgroup of $A u t(T)$ with $|G|^{-1}$ $\in T$. The following conditions are equivalent.
(1) All $\mathfrak{p} \in \overline{\operatorname{Spec}}_{e}(T * G)$ are maximal ideals.
(2) For any $m \in \operatorname{Max}\left(T^{G}\right)$, there exists some $M \in \operatorname{Max}(T)$ such that $M \cap T^{G}$ $\subset m$.

Proof. (1) $\Rightarrow(2)$. For any $m \in \operatorname{Max}\left(T^{G}\right)$, we choose $\mathfrak{p} \in \overline{\operatorname{Spec}}_{e}(T * G)$ such that $\phi^{\prime}(\mathfrak{p})=m$. By the assumption of (1) and [11, Lemma 4.2], $\mathfrak{p} \cap T=\cap_{g \in G} M^{g}$ for some $M \in \operatorname{Max}(T)$. Since $\left(\cap_{g \in G} M^{g}\right) * G \subset \mathfrak{p}$, we see that $M \cap T^{G}=$ $\phi^{\prime}\left(\left(\cap_{g \in G} M^{g}\right) * G\right) \subset \phi^{\prime}(\mathfrak{p})=m$.
(2) $\Rightarrow(1)$. For any $\mathfrak{p} \in \overline{\operatorname{Spec}}_{e}(T * G)$, put $m=\phi^{\prime}(\mathfrak{p})$ and choose $M \in \operatorname{Max}(T)$ such that $M \cap T^{G} \subset m$. Since $\bar{M}=\cap_{g \in G} M^{g}$ is G-invariant, we see that $\bar{M} * G$ $=\cap_{i} \mathrm{~g}_{i}$ for some maximal ideals $\mathrm{g}_{i}(i=1, \cdots, t)$ of $T * G$ by [11, Lemma 4.1]. Let $\mathrm{g}_{i}(i=1, \cdots, s)$ be the set of all primes in $\left\{\mathrm{g}_{i}(i=1, \cdots, t)\right\}$ not containing e.

Since $\phi\left(\cap_{1}^{S} \mathfrak{g}_{i}\right)=\phi(\bar{M} * G)=M \cap T^{G} \subset m=\phi^{\prime}(\mathfrak{p})$, we see that $\cap_{1}^{S} \mathfrak{g}_{i} \subset \mathfrak{p}$ by [9, (3) of Lemma 0.2]. By primeness of $\mathfrak{p}, \mathfrak{g}_{i} \subset \mathfrak{p}$ for some i and so $\mathfrak{g}_{i}=\mathfrak{p}$ by the maximality of \mathfrak{g}_{i}.

Next, for a self-injective regular ring R, we shall consider a condition satisfying (2) of Lemma 9. We note that $R * G$ and R^{G} are also self-injective regular rings by [12].

Proposition 10. Let R be a left and right self-injective, regular ring and G a finite subgroup of $A u t(R)$ with $|G|^{-1} \in R$. If R is a finitely generated projective left R^{G}-module, then, for any $m \in \operatorname{Max}\left(R^{G}\right)$, there exists $M \in \operatorname{Max}(R)$ such that $M \cap R^{G} \subset m$.

Proof. By [5, §II], there exist subgroups H_{1}, \cdots, H_{s} of G and orthogonal central idempotents e_{1}, \cdots, e_{s} of R such that
(1) for any $f \in B(R)$ such that $f e_{i}=f$, the stabilizer of f is equal to H_{i} and the distinct conjugates of f are mutually orthogonal,
(2) $e_{1}^{G}+\cdots+e_{s}^{G}=1$, where e_{i}^{G} is the sum of all distinct conjugates of e_{i},
(3) $\left(R e_{i}\right)^{H} i=\left(R e_{i}^{G}\right)^{G}$.

It follows from the assumption that the pair (R, R^{G}) satisfies (2) of Lemma 8. Then each $\left(R e_{i},\left(R e_{i}\right)^{H}\right)$ also satisfies the same one. Therefore it needs only to prove the assertion in the case that any $f \in B(R)$ is G-invariant.

First we consider the topology τ_{1}, induced by N_{R}^{*}-metric on R^{G} as a subspace. Put $X=\partial_{e} P(R)$.
(1) \mathfrak{a} is dense in $\cap_{P \in X}\left(\mathfrak{a}+\left(\operatorname{ker}(P) \cap R^{G}\right)\right)$ with respect to τ_{1} for any proper ideal \mathfrak{a}.

In fact, for $a \in R$, we define a function $\pi(a): X \rightarrow[0,1]$ by the rule: $\pi(a)(N)=N(a)$. Then $\pi(a)$ is a continuous map by the definitions on the topology of X (See, [7]). We choose any $x \in \cap_{P \in X}\left(\mathfrak{a}+\left(\operatorname{ker}(P) \cap R^{G}\right)\right)$ and for each $P \in X$, we put $x=a_{P}+y_{P}$, where $a_{P} \in \mathfrak{a}$ and $y_{P} \in \operatorname{ker}(P) \cap R^{G}$. For any real number $\varepsilon>0, U\left(y_{P}\right)=\pi\left(y_{P}\right)^{-1}\left(\left[0, \varepsilon \cdot 2^{-1}\right]\right)$ is a open set for each y_{P} and it contains P. Then we have

$$
X=\cup_{P \in X} U\left(y_{P}\right)
$$

We note that X is Boolean space by [1]. By compactness and the partition property, there exist finitely many $U\left(y_{P_{i}}\right) i=1, \cdots, t$ corresponding to $y_{P_{i}}$ and mutually disjoint clopon sets $W_{i} \subset U\left(y_{P_{i}}\right)$ such that $X=\cup_{1}^{t} W_{i}$. For the set $\left\{W_{i}: i=1, \cdots, t\right\}$, there exists mutually orthogonal central idempotents $\left\{e_{i}\right.$: $i=1, \cdots, t\}$ of R such that $W_{i}=\left\{N \in X: N\left(e_{i}\right)=1\right\}$ by [1]. Since $e_{i} \in R^{G}(i=1$, $\cdots, t), a=\sum_{i} e_{i} \cdot a_{P_{i}}$ is contained in \mathfrak{a}. For any $P \in X$, there exists only one W_{i} such that $P \in W_{i}$. Then we see that $P\left(e_{i}\right)=1$ and $P\left(e_{j}\right)=0$, for all $j \neq i$ and so we see that

$$
\begin{aligned}
P(a-x) & =\left(\sum_{j \neq i} P\left(e_{j} a_{P_{j}}\right)\right)+P\left(\left(e_{i}-1\right) a_{P_{i}}\right)+P\left(y_{P_{i}}\right) \\
& <P\left(y_{P_{i}}\right) \\
& <\varepsilon \cdot 2^{-1}
\end{aligned}
$$

As a result, $N_{R}^{*}(a-x)<\varepsilon 2^{-1}<\varepsilon$.
(2) For any $m \in \operatorname{Max}\left(R^{G}\right), m=\cap_{P \in X}\left(m+\left(k e r P \cap R^{G}\right)\right)$.

In fact, since R^{G} is complete with respect to the topology τ_{2} defined by $N_{R}^{*} \sigma$-metric by [3, Th. 1.8], m is closed with respect to τ_{2} by [3, Th. 1.13 and Cor. 1.14]. Since $\tau_{1}=\tau_{2}$ by Lemma 8, m is closed with respect to τ_{1}. Then we can conclude that $m=\cap_{P \in X}\left(m+\left(k e r(P) \cap R^{G}\right)\right)$ by (1).
(3) For any $m \in \operatorname{Max}\left(R^{G}\right)$, there exists some $P \in X$ such that $m+\left(k e r(P) \cap R^{G}\right) \neq R^{G}$ by (2) and so $m=m+\left(\operatorname{ker}(P) \cap R^{G}\right) \supset k e r(P) \cap R^{G}$. By [4, II. 14.5], $\operatorname{ker}(P)$ is a maximal ideal of R.

Theorem 11. Let R be a left and right self-injective regular ring and G a finite subgroup of $\operatorname{Aut}(R)$ with $|G|^{-1} \in R$. Assume that R is a finitely generated projective left R^{G}-module. Let μ^{*}, λ^{*} be the maps defined in $\S 1$. Then $\mu^{*}: \partial_{e} P(R * G) \backslash F \rightarrow \partial_{e} P\left(R^{G}\right)$ is a bijection and $\left(\mu^{*}\right)^{-1}=\lambda^{*}$.

Proof. We shall consider the following diagram:

where $\pi_{i}(i=1,2)$ is the map defined by $\pi_{i}(N)=k e r(N)$. By Lemma 9 and Proposition 10, any $\mathfrak{p} \in \overline{\operatorname{Spec}}_{e}(R * G)$ is a maximal ideal and so $\pi_{i}(i=1,2)$ is a bijection by [4, II. 14.5]. It is easy to prove that the above diagram is commutative. Then we have that μ^{*} is a bijection and $\left(\mu^{*}\right)^{-1}=\lambda^{*}$.

References

[1] K.R. Goodearl: Von Neumann regular rings, Pitman, 1979.
[2] K.R. Goodearl: Directly finite \aleph_{0}-continuous regular rings, Pacific J. Math. 100 (1982), 105-122.
[3] K.R. Goodearl: Metrically complete regular rings, Trans. Amer. Math. Soc. 272 (1982), 275-310.
[4] K.R. Goodearl, D.E. Handelman and J.W. Lawrence: Affine representations of Grothendieck groups and applications to Rickart $C *$-algebras and $\boldsymbol{\aleph}_{0}$-continuous regular rings, Memoirs Amer. Math. Soc. 234.
[5] J.M. Goursaud, J. Osterburg, J.L. Pascaud and J. Valette: Points fixes des anneaux reguliers auto-injectifs a gauche, Comm. Algebra 9 (1981), 1343-1394.
[6] D. Handelman and G. Renault: Actions on finite groups on self-injective rings, Pacific J. Math. 89 (1980), 69-80.
[7] D. Handelman: Representing rank complete continuous rings, Canad. J. Math. 28 (1976), 1320-1331.
[8] J. Kado: Pseudo-rank functions on crossed products of finite groups over regular rings, Osaka J. Math. 22 (1985), 821-833.
[9] S. Montgomery: Prime ideals in fixed rings, Comm. Algebra 9 (1981), 423-449.
[10] S. Montgomery: Fixed rings of finite automorphism groups of associative rings, Lecture Note in Math. 818, Springer-Verlag.
[11] M. Lorenz and D.S. Passman: Prime ideals in crossed products of finite groups, Israel J. Math. 33 (1979), 89-132.
[12] A. Page: Actions de groupes, Seminarie d'algebre Paul Dubreil 1977-78, Lecture Note in Math. 740, Springer-Verlag.

Department of Mathematics Osaka City University
Osaka 558, Japan

