Kado, J. Osaka J. Math. 24 (1987), 83-94

PSEUDO-RANK FUNCTIONS ON SKEW GROUP RINGS AND ON FIXED SUBRINGS OF AUTOMORPHISMS OF UNIT-REGULAR RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

JIRO KADO

(Received October 28, 1985)

Let R be a unit-regular ring and G a finite subgroup of Aut(R) with $|G|^{-1} \in R$. This paper is concerned with relationships between the pseudo-rank functions of the skew group ring R*G and ones of the fixed subring R^c . We introduce such relationships by studying certain homomorphisms between $K_0(R*G)$ and $K_0(R^c)$.

In §1, under the assumption that R*G is a unit-regular ring and R is a finitely generated projective left R^{G} -module, we shall investigate the following two homomorphisms:

$$\overline{\mu} \colon K_0(\mathbb{R}^G) \to K_0(\mathbb{R}^*G)$$
, defined by $\overline{\mu}([M]) = [\mathbb{R}^*Ge \otimes_{\mathbb{R}^G} M]$

 $\lambda \colon K_0(R^*G) \to K_0(R^G)$, defined by $\lambda([A]) = [\operatorname{Hom}_{R^*G}(R^*Ge, A)]$,

where $e = |G|^{-1} \sum_{g \in G} g$ in R * G. Then we shall show that $\overline{\lambda} \overline{\mu}$ is the identity map and $\overline{\mu}$ is an order-embedding map.

The maps $\overline{\mu}$, $\overline{\lambda}$ induce maps μ^* , λ^* between $P(R^*G)$ and $P(R^G)$, where P(T) (resp. $\partial_e P(T)$) is the family of all pseudo-rank functions (resp. extremal pseudo-rank functions) of a regular ring T. For any $N \in P(R^*G)$ with N(e) > 0 and any $a \in \mathbb{R}^6$, we define

$$\mu^*(N)(a) = N(e)^{-1} D_N(R * Ge \otimes_{R^G} R^G a),$$

where D_N is the dimension function which corresponds to N. For any $Q \in P(\mathbb{R}^c)$ and any $x \in \mathbb{R} * G$, we define

$$\lambda^*(Q)(x) = D_Q({}_R eR)^{-1} D_Q(\operatorname{Hom}_{R*G}(R*Ge, R*Gx)),$$

where D_Q is the dimension function which corresponds to Q. Then we shall show that $\mu^*(N)$ (resp. $\lambda^*(Q)$) is a pseudo-rank function of R^G (resp. R^*G) and $\mu^*\lambda^*$ =identity and μ^* preserves extremal pseudo-rank functions.

In §2, for a directly finite, left self-injective, regular ring R and an X-

outer group G, we shall determine all extremal pseudo-rank functions of R*G from ones of R. It is shown from above results that $R*G \cong M_n(R^G)$ as rings, where n = |G|, and $R \cong R^G[G]$ as left $R^G[G]$ -modules.

In §3, assuming that R is a left and right self-injective regular ring and R is a finitely generated, projective, left R^c -module, we shall show that there exists a bijection from some subset of Max(R*G) into $Max(R^c)$. Using this result, we obtain that for any $Q \in \partial_e P(R^c)$, there exists an unique $N \in \partial_e P(R*G)$ with N(e) > 0 such that $Q(a) = N(e)^{-1}N(ae)$ for any $a \in R^c$.

1. Relations between P(R*G) and $P(R^G)$

Given regular ring T, we use FP(T) to denote the set of all finitely generated projective left T-modules. For modules A, B, $A \leq B$ means that A is isomorphic to a submodule of B and we use nA to denote the direct sum of n copies of A.

According to [1, p. 226], we mean by a pseudo-rank function on R is a map $N: R \rightarrow [0, 1]$ such that

(1) N(1)=1.

(2) $N(rs) \leq N(r)$ and $N(rs) \leq N(s)$ for all $r, s \in \mathbb{R}$.

(3) N(e+f)=N(e)+N(f) for all orthogonal idempotent $e, f \in \mathbb{R}$.

If, in addition

(4) N(r) > 0 for all non-zero $r \in \mathbb{R}$,

then N is called a rank function. We use P(R) to denote the set of all pseudo-rank functions on R

For a regular ring R, we view P(R) as a subset of the real vector space \mathbb{R}^{R} , which we equipped with the product topology [1, Ch. 16 and Appendix]. Then P(R) is a compact convex subset of \mathbb{R}^{R} by [1, Prop. 16, 17]. We use $\partial_{s}P(R)$ to denote the set of all extreme points of P(R). It is known that P(R) is equal to the closure of the convex hull of $\partial_{s}P(R)$ by Krein-Milman Theorem.

Again according to [1, p. 232], we mean by a dimension function on FP(T) is a map $D: FP(T) \rightarrow \mathbb{R}^+$ such that

- (1) D(T) = 1
- (2) If $A, B \in FP(T)$ and $A \leq B$, then $D(A) \leq D(B)$.
- (3) $D(A \oplus B) = D(A) + D(B)$ for all $A, B \in FP(T)$.

Let D(T) denote the set of all dimension functions on FP(T). There is a bijection $\Gamma_T: P(T) \rightarrow D(T)$ such that $\Gamma_T(P)(Tt) = P(t)$ for all $P \in P(T)$ and $t \in T$ by [1, Prop. 16.8]. For $P \in P(T)$, we use D_P to denote the dimension function $\Gamma_T(P)$.

Let T be a ring with identity element 1 and let G be a finite group of automorphisms of T with $|G|^{-1} \in T$. The skew group ring, T*G, is defined to be a free left T-module with basis $\{g: g \in G\}$ and multiplication given as follows: if r, $s \in T$ and g, $h \in G$, then $(rg)(sh) = rs^{g^{-1}}gh$ ([9]).

Throughout this paper, put $e = |G|^{-1} \sum_{g \in G} g$ and denote by θ the map $e(T*G)e \to T^G$ which is given by $\theta[e(\sum_{g \in G} r_g g) e] = \sum_{g \in G} t(r_g)$, where $t(r) = |G|^{-1} \sum_{g \in G} r^g$ for $r \in T$. Then e is an idempotent and θ is an isomorphism by [9, Lemma 0.1].

Let R be a unit-regular ring and G a finite subgroup of Aut(R) with $|G|^{-1} \in R$. In [8], we have studied relationships between P(R*G) and P(R) (resp. $\partial_e P(R*G)$ and $\partial_e P(R)$). Especially we have shown that all G-invariant $P \in P(R)$ can be extended to pseudo-rank functions of R*G. In this paper, we shall study the relation between P(R*G) and $P(R^c)$ (resp. $\partial_e P(R*G)$ and $\partial_e P(R^c)$). If R*G and R^c are Morita equivalent, then K.R. Goodearl has shown under a general situation that there is a bijection between P(R*G) and $P(R^c)$, which are more concrete than the Goodearl's bijection, without the assumption of Morita Equivalence.

A partially ordered abelian group is an abelian group K equipped with a partial order \leq which is translation invariant ([1, p. 202]). The positive cone of K is the set $K^+ = \{x \in K; x \geq 0\}$. If the partial order on K is directed (upward or downward), then K is called a directed abelian group. An order unit in K is an element u > 0 such that for any $x \in K$, there exists a positive integer n for which $x \leq nu$. We denote by a pair (G, u) a partially ordered abelian group with order-unit u.

For a unit-regular ring T, the Grothendieck group $K_0(T)$ is an abelian group with generators [A], where [A] is the isomorphism class for $A \in FP(T)$ and with relation $[A \oplus B] = [A] + [B]$ ([1, §15]). Every element of $K_0(T)$ has the form [A] - [B] for some $A, B \in FP(T)$. $K_0(T)$ is a partially ordered abelian group with order-unit [T] and positive cone $K_0(T)^+$ coincides with $\{[A]: A \in FP(T)\}$ by [1, Prop. 15.2].

Let R be a unit-regular ring and let G be a finite subgroup of Aut(R) with $|G|^{-1} \in R$. The skew group ring R * G is a regular ring by [5]. Unfortunately we don't know whether R * G is unit-regular or not. Therefore, from now on, we assume that R * G is unit-regular in many cases. We regard R * Ge as a (left R * G, right R^c)-bimodule, where $e = |G|^{-1} \sum_{g \in G} g$.

There exists a natural functor μ ; $\operatorname{FP}(R^c) \to \operatorname{FP}(R*G)$ given by the rule $\mu(M) = R*Ge \otimes_{R^G} M$. Then we have a positive homomorphism $\overline{\mu} \colon K_0(R^c) \to K_0(R*G)$, defined by $\overline{\mu}([M]) = [\mu(M)]$. Set $F = \{N \in P(R*G) \colon N(e) = 0\}$. Then μ also induces a map $\mu^* \colon P(R*G) \setminus F \to P(R^c)$ given by the rule $\mu^*(N)(a) = N(e)^{-1}D_N(\mu(R^ca))$ for any $N \in P(R*G) \setminus F$ and any $a \in R^c$, where D_N is the dimension function which corresponds to N. In fact, since $\mu(R^ca) = R*Ge \otimes R^ca \cong R*Gea$, we have $D_N(\mu(R^ca)) = N(ea)$. Then $\mu^*(N)(a) = N(e)^{-1} N(ea)$ for all $a \in R^c$. Thus $\mu^*(N)$ is a pseudo-rank function by the isomorphism $\theta \colon eR*Ge \to R^G$ and [1, Lemma 16.2].

Proposition 1. Let μ^* : $P(R*G)\setminus F \to P(R^G)$ be the map given above. If $N \in P(R*G)\setminus F$ is extremal in P(R*G), then $\mu^*(N)$ is also extremal.

Proof. It is sufficient to prove that

$$\mu^{*}(N)(a) \wedge \mu^{*}(N)(b) = \sup \{\mu^{*}(N)(arb): r \in \mathbb{R}^{G}\}$$

for all $a, b \in \mathbb{R}^{G}$ by [1, Prop. 19.16]. We compute as follows;

$$\sup \{\mu^{*}(N) (arb): r \in \mathbb{R}^{G}\} = \sup \{N(earb). N(e)^{-1}: r \in \mathbb{R}^{G}\}$$
$$= \sup \{N(ea.er.eb): r \in \mathbb{R}^{G}\}. N(e)^{-1}.$$

If r runs over all element of R^{G} , ea.er.eb runs over all generators of aeR*Gbe by θ . Then, since N is extremal, we have

$$\sup \{N(ea.er.eb); r \in \mathbb{R}^{c}\} = N(ea) \wedge N(eb)$$

by [1, Th. 19.16]. Consequently we see that

$$\sup \{\mu^{*}(N) (arb): r \in \mathbb{R}^{c}\} = \mu^{*}(N) (a) \wedge \mu^{*}(N) (b).$$

In general, there may not exist any map from $P(R^c) \rightarrow P(R^*G)$. Under the assumption that R is a finitely generated, projective, left R^c -module, there exists such a map ([8]). For the sake of completeness, we shall again define it. We assume that R is a finitely generated, projective, left R^c -module. For any $A \in FP(R^*G)$, define $\lambda(A) = \operatorname{Hom}_{R^*G}(R^*Ge, A)$. Since $\operatorname{Hom}_{R^*G}(R^*Ge,$ $R^*G) \cong eR^*G \cong R$ as left R^c -modules, $\lambda(A)$ is a finitely generated, projective, left R^c -module. The functor λ induces a positive homomorphism

$$\overline{\lambda} \colon K_0(R^*G) \to K_0(R^c)$$
 defined by the rule; $\overline{\lambda}([A]) = [\lambda(A)]$.

Since $\operatorname{Hom}_{R*G}(R*Ge, R*G) \cong eR*G \cong R$ as left R^{G} -modules, we have $\overline{\lambda}([R*G]) = [R^{G}R]$. We define

$$\lambda^*(Q)(x) = D_Q(R)^{-1} D_Q(\lambda(R*Gx))$$

for any $Q \in P(\mathbb{R}^{G})$ and for all $x \in \mathbb{R} * G$, where D_{Q} is the dimension function which corresponds to Q. By [8, §3], $\lambda^{*}(Q)$ is a pseudo-rank function on $\mathbb{R} * G$.

REMARK 1. Since $\lambda(R*Ge) \cong eR*Ge \cong R^G$, we have the relation that $\lambda^*(Q)(e) = D_Q(R^G R)^{-1}$ for all $Q \in P(R^G)$.

Now we shall determine pseudo-rank functions on R^{G} from ones on R*G.

Theorem 2. Let R be a unit-regular ring, G a finite subgroup of Aut(R)with $|G|^{-1} \in R$ and R * G a skew group ring of G over R. Put $e = |G|^{-1} \sum_{g \in G} g$ and set $F = \{N \in P(R * G): N(e) = 0\}$. We assume that R * G is a unit-regular

ring and that R is a finitely generated, projective, left R^{G} -module. Then the following hold;

(1) $\overline{\mu}: K_0(\mathbb{R}^c) \to K_0(\mathbb{R}^*G)$ is an order-embedding map and $\overline{\lambda} \ \overline{\mu} = identity$.

(2) For any $Q \in P(\mathbb{R}^{G})$, there exists some $N \in P(\mathbb{R}^{*}G) \setminus F$ such that $Q(a) = N(e)^{-1} N(ae)$ for any $a \in \mathbb{R}^{G}$.

Proof. (1) First we shall show that for any idempotent $a \in \mathbb{R}^{G}$, $\lambda \mu(\mathbb{R}^{G}a) \cong \mathbb{R}^{G}a$. In fact, we see that

$$\lambda \ \mu(R^{G}a) = \operatorname{Hom}_{R*G}(R*Ge, R*Ge \otimes_{R^{G}} R^{G}a)$$

$$\approx \operatorname{Hom}_{R*G}(R*Ge, R*Gea)$$

$$\approx eR*Gea$$

$$\approx R^{G}a,$$

using the isomorphism $eR * Ge \rightarrow R^G$.

Since $K_0(\mathbb{R}^c)$ (resp. $K_0(\mathbb{R}^*G)$) is generated by the set $\{[I]: I \text{ is a principal left ideal}\}$ by [1, Prop. 2.6], we see that $\overline{\lambda} \ \overline{\mu} = \text{identity.}$ For any $M, M' \in \text{FP}(\mathbb{R}^G)$, we assume that $\overline{\mu}([M]) \leq \overline{\mu}([M'])$. By definitions and [1, Prop. 15.2], we see that $\mu(M) \leq \mu(M')$ and $M \cong \lambda \ \mu(M) \leq \lambda \ \mu(M') \cong M'$. Hence we conclude that $[M] \leq [M']$.

(2) For maps $\mu^*: P(R^*G) \setminus F \to P(R^c)$ and $\lambda^*: P(R^c) \to P(R^*G) \setminus F$, we may show that $\mu^* \lambda^* =$ identity. For any $Q \in P(R^c)$ and any $a \in R^c$,

$$\mu^* \lambda^*(Q) (a) = \lambda^*(Q) (e)^{-1} \cdot D_{\lambda^*(Q)} (\lambda (R^c a))$$

= $D_Q(R) \cdot D_Q(R)^{-1} D_Q(\mu \lambda (R^c a))$
= $D_Q(R^c a)$
= $Q(a)$.

REMARK 2. By Proposition 1, the restriction map of μ^* on $\partial_e P(R^*G) \setminus F$ is a map into $\partial_e P(R^c)$. Unfortunately we can't prove that it is also an epimorphism. We shall prove in §3 that it is an epimorphism for self-injective regular rings.

Next we shall determine a condition that R*G and R^G are Morita equivalent.

Proposition 3. Let R be a unit-regular ring and let G be a finite subgroup of Aut(R) with $|G|^{-1} \in R$. We assume that R*G is also a unit-regular ring. The following conditions are equivalent.

- (1) R*Ge (resp. eR*G) is a generator as a R*G-module.
- (2) N(e) > 0 for all $N \in \partial_e P(R * G)$.

Proof. (1) \Rightarrow (2). By the assumption of (1), there exists some natural number k such that $R*G \leq k \cdot (R*Ge)$. Then, for any $N \in P(R*G)$, we have

 $kN(e) \ge 1$ and so N(e) > 0.

(2) \Rightarrow (1). We shall show that R*GeR*G=R*G. Put H=R*GeR*G. Assume that $H \neq R*G$. Let f; $R*G \rightarrow R*G/H$ be a natural epimorphism. Since R*G/H is also unit-regular, we have that P(R*G/H) is not empty by [1, Cor 18.5]. By [1, Th. A.6], there exist $N' \in \partial_e P(R*G/H)$. We consider the function N'f. Then N=N'f is an extreme pseudo-rank function on R*G by [1, Prop. 16.19]. Since $H \subset ker(N)$, N(e)=0. This is a contradiction. Hence R*GeR*G=R*G and we see that R*Ge is a generator.

REMARK 3. In above case, since $\operatorname{End}_{R*G}(R*Ge) \cong R^G$, R*G and R^G are Morita equivalent. So, $\lambda^* \mu^* =$ identity and hence μ^* induces a bijection from $\partial_e P(R*G)$ into $\partial_e P(R^G)$.

2. X-outer automorphisms

In this section, let R be a directly finite, left self-injective, regular ring and G a finite group of automorphisms of R with $|G|^{-1} \in R$. It is known that both R*G and R^{G} are directly finite, left self-injective, regular rings ([12]) and that such rings are unit-regular rings ([1, Th. 9.17]). K.R. Goodearl has shown that there exists a bijection $\partial_e P(R) \rightarrow Max(R)$ which is defined by the rule; $P \rightarrow ker(P)$ and that R/ker(P) is a simple self-injective regular ring with the unique rank function [4, II. 14.5]. We use repeatedly that fact.

An automorphism g of R is called an X-inner if there exists a non-zero element $x \in R$ such that $rx = xr^g$ for all $r \in R$ ([10]). If g is not X-inner, we call g X-outer. For a subgroup G of Aut(R), we call G X-outer if all $g \neq 1 \in G$ are X-outer. Let Z(R) be the center of R.

First we shall determine the structure of Max(R*G) for an X-outer group G. The following Lemma has been essentially proved in [5], but we shall prove it in this note for the sake of completeness. We denote the set of all central idempotents of a ring T by B(T).

Lemma 4. Let R be a directly finite, left self-injective, regular ring and G a finite group of automorphisms of R with $|G|^{-1} \in R$. We assume that G is X-outer. Then $\operatorname{Max}(R*G) = \{(\bigcap_{g \in G} M^g) * G \colon M \in \operatorname{Max}(R)\}.$

Proof. Since G is X-outer, Z(R*G) is contained in $Z(R) \cap R^G$. Hence $B(R*G) \subset B(R) \cap R^G$. First we choose any $P \in Max(R*G)$. Put $m = P \cap B(R*G)$, then $m \in Max(B(R*G))$ and P is the unique maximal ideal containing m by [1, Th. 8.25]. Let m_0 be a maximal ideal of B(R) containing m. Then there exists a unique maximal ideal M of R containing m_0 by [1, Th. 8.25]. Put $\overline{M} = \bigcap_{g \in G} M^g$. We note that $m \subset \overline{M}$. By [11, Lemma 4.1], $\overline{M}*G$ is a finite intersection of maximal ideals of R*G and P is the unique maximal ideal of

R*G containing m by [1, Th. 8.25]. Therefore we have $P=\overline{M}*G$. Conversely for any $M \in Max(R)$, put $m=M \cap B(R*G)$. Then we see that $m \in Max(B(R*G))$. Since $(\bigcap_{g \in G} M^g)*G$ is a finite intersection of maximal ideals of R*G by [11, Lemma 4.1] and containing m, it is a maximal ideal by [1, Th. 8.25].

In [8], we have studied the relation between P(R*G) and P(R). Especially we can extend a *G*-invariant pseudo-rank function *P* on *R* to one, P^{C} , on R*G defined by the rule; $P^{G}(x) = |G|^{-1}D_{P}(_{R}(R*Gx))$ for all $x \in R*G$ ([8, Cor. 4]). If *P* is not *G*-invariant, then we consider the trace $t(P) = |G|^{-1} \sum_{g \in G} P^{g}$, where $P^{g}(r) = P(r^{g^{-1}})$. Now we shall determine all elements in $\partial_{e}P(R*G)$, using Lemma 4 and [8, Cor. 4].

Proposition 5. Let R be a directly finite, left self-injective, regular ring and G a finite group of automorphisms of R with $|G|^{-1} \in \mathbb{R}$. We assume that G is X-outer. Then $\partial_e P(R*G) = \{t(Q)^c : Q \in \partial_e P(R)\}$.

Proof. For any $N \in \partial_{e}P(R*G)$, we see that $ker(N) \in Max(R*G)$ by [4, II. 14.5]. By Lemma 4, we have that $ker(N) = (\bigcap_{g \in G} M^{g})*G$, where $M \in Max(R)$. We choose $Q \in \partial_{e}P(R)$ such that ker(Q) = M. Since $ker \ t(Q) = \bigcap_{g \in G} M^{g}/ker \ t(Q)^{c} \supset (\bigcap_{g \in G} M^{g})*G$. Hence we have ker $(t(Q)^{c}) = ker \ (N)$ and hence $t(Q)^{c} = N$. Conversely for any $Q \in \partial_{e}P(R)$, we proved above that $ker \ (t(Q)^{c})$ is a maximal ideal of R*G. Thus $t(Q)^{c}$ is extremal by [4. II. 14.5].

Lemma 6. Let R be a directly finite, left self-injective, regular ring and G a finite group of automorphisms of R with $|G|^{-1} \in \mathbb{R}$. We assume that G is X-outer. Then the following hold:

- (1) $N(e) = n^{-1}$ for all $N \in \partial_e P(R * G)$, where n = |G|.
- (2) $R * G \simeq M_n(R^G)$.

Proof. By Proposition 5, we have $N=t(Q)^{c}$ for some $Q \in \partial_{e}P(R)$. Since $R*Ge \simeq R$ as a left *R*-module, $N(e)=t(Q)^{c}(e)=n^{-1}$ by [8, Corollary 4]. Consequently we have $R*G \simeq n(R*Ge)$ as a left R*G-module by [2, Cor. 2.7]. Hence $R*G \simeq M_{n}(R^{c})$, because $eR*Re \simeq G^{c}$.

Now, using Lemma 6, we shall prove an interesting result concerning with "a normal basis" of R over R^{c} .

Proposition 7. Let R be a directly finite, left self-injective, regular ring and G a finite group of automorphisms of R with $|G|^{-1} \in \mathbb{R}$. We assume that G is X-outer. Then $R \cong R^{c}[G]$ as $R^{c}[G]$ -modules.

Proof. We can easily see that R*GeR*G=R*G by Lemma 4. Then R*Ge is a generator as a R*G-module and R is a finitely generated, projective, left R^{G} -module. We know that there exist maps $\mu^{*}: P(R*G) \rightarrow P(R^{G})$ and

 $\lambda^*: P(R^c) \to P(R^*G)$ such that $\lambda^* \mu^* = \text{identity}, \mu^* \lambda^* = \text{identity}$ and both maps are also bijection on the extremal boundary by §1. Especially we have an important relation that $\lambda^*(Q)(e) = D_Q(R)^{-1}$ for all $Q \in P(R^c)$. Therefore any $Q \in \partial_e P(R^c)$, we have $\lambda^*(Q) \in \partial_e P(R^*G)$ and $\lambda^*(Q)(e) = D_Q(R)^{-1}$ by the above remark. Put n = |G|. By Lemma 6, we have $D_Q(R) = n$ for all $Q \in \partial_e P(R^c)$. Then by [2, Cor. 2.7], we see that ${}_{R^c} R \cong n.R^c$.

Next, we consider R as a left R*G-module by the rule: $(\sum_{g \in G} r_g g) r = \sum_{g \in G} r_g r^g$. Since it is known that $R \cong R*Ge$ as R*G-modules, we have that $R*G \cong n.R$ as R*G-modules by Lemma 6. Let $S = R^G[G]$ be an ordinary group ring of G over R^G , which is a left self-injective, regular, subring of R*G. Since $R \cong n.R^G$ as left R^G -modules, we have that $R*G \cong n.S$ as left S-modules. On the other hand, since $R*G \cong n.R$ as left R*G-modules, we have that $R*G \cong n.S$ as left S-modules. By [1, Th. 10.34], we can conclude that $R \cong S$ as left S-modules.

3. N^* -metric

K.R. Goodearl and D. Handelman have introduced the N*-metric which is induced by P(R) for a regular ring R. In this section, we shall study the bijectiveness of the map $\mu^*: \partial_e P(R^*G) \rightarrow \partial_e P(R^c)$ for a self-injective regular ring R, using the N*-metrics of R^*G , R and R^c .

Let T be a unit-regular ring. We assume that for a given non-zero $x \in T$, there exists $P \in P(T)$ such that P(x) > 0. For each $x \in T$, according to [7], we define

$$N_T^*(x) = \sup \{P(x): P \in P(T)\}.$$

Thus $N_{T}^{*}(x)$ is a real number, and $0 \leq N_{T}^{*}(x) \leq 1$. N_{T}^{*} induces a metric d^{*} on T given by the rule $d^{*}(x, y) = N_{T}^{*}(x-y)$, which we call the N_{T}^{*} -metric and T becomes a topological ring with respect to N_{T}^{*} -metric. If T is complete with respect to N_{T}^{*} -metric, T is called N_{T}^{*} -complete. It is known that regular rings with bounded index of nilpotence and \aleph_{0} -continuous regular rings are N_{T}^{*} -complete [3, Th. 1.3 and Th. 1.8]. We define ker $(P(T)) = \bigcap_{P \in P(T)} ker(P)$.

Lemma 8. Let R be a unit-regular ring with ker (P(R))=0 and G a finite subgroup of Aut(R) with $|G|^{-1} \in R$ and let R*G be a skew group ring of G over R. We assume that R*G is a unit-regular ring and R is a finitely generated projective left R^{c} -module. Then the following hold.

(1) ker (P(R*G))=0 and

$$N_{R_{*}G}^{*}(r) \leq N_{R}^{*}(r) \leq |G| N_{R_{*}G}^{*}(r)$$

for all $r \in R$.

(2) There exists a natural number t such that

$$N_R^*(a) \leq N_R^*\sigma(a) \leq t N_R^*(a)$$

for all $a \in \mathbb{R}^{G}$. Consequently, the topology defined by $N_{\mathbb{R}}^{*}$ -metric are coincide the topology induced by $N_{\mathbb{R}}^{*}$ -metric on \mathbb{R}^{G} .

Proof. (1) For any $P \in P(R)$, let $t(P) = |G|^{-1} \sum_{g \in G} P^g$, which is a *G*-invariant pseudo-rank function. By [8, Cor. 4], the extension $t(P)^G$ is a pseudo-rank function on R*G and $t(P)^G|_R = t(P)$. For $x \in ker(P(R*G))$, we assume that $R*Gx \cong \bigoplus_i Rr_i$ as *R*-modules. Then $t(P)^G(x) = |G|^{-1} \sum_i t(P)(r_i)$ by [8, Cor. 4] and so $t(P)(r_i) = 0$ for all *i*. Since $P(r_i) \leq |G|t(P)(r_i)$ by definition, we see that $P(r_i) = 0$ for all *i* and so that $r_i = 0$ for all *i* by assumption. Next, for any $r \in R$, we see that

$$P(r) \leq |G| t(P)(r) = |G| t(P)^{c}(r) \leq |G| N^{*}_{R*G}(r)$$

for any $r \in R$. Therefore $N_R^*(r) \leq |G| N_{R*G}^*(r)$.

(2) Since R is also a finitely generated, projective, left R^{G} -module by assumption, let $R \leq t.(R^{G})$ for some t > 0. Then $D_{Q}(R) \leq t$ for all $Q \in P(R^{G})$. Using Theorem 2, we see that for $Q \in P(R^{G})$ and any $a \in R^{G}$,

$$Q(a) = \mu^*(\lambda^*(Q)) (a)$$

= $\lambda^*(Q) (e)^{-1} \cdot \lambda^*(Q) (ea)$
 $\leq D_Q(R) \cdot \lambda^*(Q) (a)$
 $\leq t N^*_R(a) .$

Thus we see that $N_R^*(a) \leq t N_R^*(a)$ for all $a \in \mathbb{R}^G$.

Let T*G be a skew group ring of a finite group G over a ring T such that $|G|^{-1} \in T$ and put $e = |G|^{-1} \sum_{g \in G} g$. M. Lorenz and D.S. Passmann [11] and S. Montgomery [9] have studied the relation between prime ideals of T*G, T and T^c . Now we shall study maximal ideals of T*G and T^c , using the manners of [9].

We denote by $\operatorname{Spec}_{e}(T*G)$ the set of all prime ideals of T*G not containing e and let $\operatorname{I}_{e}(T*G)$ =the set of all ideals of T*G not containing e. There exists a natural map $\phi: \operatorname{I}_{e}(T*G) \rightarrow$ the set of all ideals of T^{c} , defined by the rule $\phi(M) = \theta(eMe)$, where $\theta: eT*Ge \rightarrow T^{c}$ is the isomorphism introduced in §1. In [9], it is shown that ϕ induces a bijection from $\operatorname{Spec}_{e}(T*G)$ to $\operatorname{Spec}(T^{c})$. Therefore ϕ also induces a bijection $\phi': \overline{\operatorname{Spec}}_{e}(T*G) \rightarrow \operatorname{Max}(T^{c})$, where $\overline{\operatorname{Spec}}_{e}(T*G)$ is the set of $\{M \in \operatorname{Spec}_{e}(T*G): M \text{ is maximum in } \operatorname{Spec}_{e}(T*G)\}$. The following lemma is needed in later propositions.

Lemma 9. Let T be a ring and G a finite subgroup of Aut(T) with $|G|^{-1} \in T$. The following conditions are equivalent.

(1) All $\mathfrak{p} \in \operatorname{Spec}_{\mathfrak{e}}(T \ast G)$ are maximal ideals.

J. KADO

(2) For any $m \in Max(T^{c})$, there exists some $M \in Max(T)$ such that $M \cap T^{c} \subset m$.

Proof. (1) \Rightarrow (2). For any $m \in Max(T^G)$, we choose $\mathfrak{p} \in \overline{\operatorname{Spec}}_{\mathfrak{e}}(T*G)$ such that $\phi'(\mathfrak{p}) = m$. By the assumption of (1) and [11, Lemma 4.2], $\mathfrak{p} \cap T = \bigcap_{g \in G} M^g$ for some $M \in Max(T)$. Since $(\bigcap_{g \in G} M^g) * G \subset \mathfrak{p}$, we see that $M \cap T^G = \phi'((\bigcap_{g \in G} M^g) * G) \subset \phi'(\mathfrak{p}) = m$.

(2) \Rightarrow (1). For any $\mathfrak{p}\in \overline{\operatorname{Spec}}_{\mathfrak{e}}(T*G)$, put $m=\phi'(\mathfrak{p})$ and choose $M\in\operatorname{Max}(T)$ such that $M\cap T^{c}\subset m$. Since $\overline{M}=\bigcap_{g\in G} M^{g}$ is G-invariant, we see that $\overline{M}*G$ $=\bigcap_{i}\mathfrak{g}_{i}$ for some maximal ideals $\mathfrak{g}_{i}(i=1, \dots, t)$ of T*G by [11, Lemma 4.1]. Let $\mathfrak{g}_{i}(i=1, \dots, s)$ be the set of all primes in $\{\mathfrak{g}_{i}(i=1, \dots, t)\}$ not containing e.

Since $\phi(\bigcap_{1}^{s} \mathfrak{g}_{i}) = \phi(\overline{M} * G) = M \cap T^{c} \subset m = \phi'(\mathfrak{p})$, we see that $\bigcap_{1}^{s} \mathfrak{g}_{i} \subset \mathfrak{p}$ by [9, (3) of Lemma 0.2]. By primeness of \mathfrak{p} , $\mathfrak{g}_{i} \subset \mathfrak{p}$ for some *i* and so $\mathfrak{g}_{i} = \mathfrak{p}$ by the maximality of \mathfrak{g}_{i} .

Next, for a self-injective regular ring R, we shall consider a condition satisfying (2) of Lemma 9. We note that R*G and R^{G} are also self-injective regular rings by [12].

Proposition 10. Let R be a left and right self-injective, regular ring and G a finite subgroup of Aut(R) with $|G|^{-1} \in R$. If R is a finitely generated projective left R^{c} -module, then, for any $m \in Max(R^{c})$, there exists $M \in Max(R)$ such that $M \cap R^{c} \subset m$.

Proof. By [5, §II], there exist subgroups H_1, \dots, H_s of G and orthogonal central idempotents e_1, \dots, e_s of R such that

(1) for any $f \in B(R)$ such that $fe_i = f$, the stabilizer of f is equal to H_i and the distinct conjugates of f are mutually orthogonal,

(2) $e_1^G + \dots + e_s^G = 1$, where e_i^G is the sum of all distinct conjugates of e_i , (3) $(Re_i)^H i = (Re_i^G)^G$.

It follows from the assumption that the pair (R, R^c) satisfies (2) of Lemma 8. Then each $(Re_i, (Re_i)^H i)$ also satisfies the same one. Therefore it needs only to prove the assertion in the case that any $f \in B(R)$ is G-invariant.

First we consider the topology τ_1 , induced by N_R^* -metric on R^G as a subspace. Put $X=\partial_e P(R)$.

(1) a is dense in $\bigcap_{P \in X} (a + (ker(P) \cap R^{c}))$ with respect to τ_{1} for any proper ideal a.

In fact, for $a \in R$, we define a function $\pi(a): X \to [0, 1]$ by the rule: $\pi(a)(N) = N(a)$. Then $\pi(a)$ is a continuous map by the definitions on the topology of X (See, [7]). We choose any $x \in \bigcap_{P \in X} (\mathfrak{a} + (ker(P) \cap R^c))$ and for each $P \in X$, we put $x = a_P + y_P$, where $a_P \in \mathfrak{a}$ and $y_P \in ker(P) \cap R^c$. For any real number $\varepsilon > 0$, $U(y_P) = \pi(y_P)^{-1}([0, \varepsilon \cdot 2^{-1}])$ is a open set for each y_P and it contains P. Then we have

PSEUDO-RANK FUNCTIONS

$$X = \bigcup_{P \in X} U(y_P).$$

We note that X is Boolean space by [1]. By compactness and the partition property, there exist finitely many $U(y_{P_i}) i=1, \dots, t$ corresponding to y_{P_i} and mutually disjoint clopon sets $W_i \subset U(y_{P_i})$ such that $X = \bigcup_i^t W_i$. For the set $\{W_i: i=1, \dots, t\}$, there exists mutually orthogonal central idempotents $\{e_i:$ $i=1, \dots, t\}$ of R such that $W_i = \{N \in X: N(e_i)=1\}$ by [1]. Since $e_i \in R^c$ (i=1, $\dots, t)$, $a = \sum_i e_i \cdot a_{P_i}$ is contained in a. For any $P \in X$, there exists only one W_i such that $P \in W_i$. Then we see that $P(e_i)=1$ and $P(e_j)=0$, for all $j \neq i$ and so we see that

$$egin{aligned} P(a\!-\!x) &= (\sum_{j \neq i} P(e_j \, a_{P_j})) + P((e_i\!-\!1) \, a_{P_i}) + P(y_{P_i}) \ &< P(y_{P_i}) \ &< \mathcal{E} \cdot 2^{-1} \,. \end{aligned}$$

As a result, $N_R^*(a-x) < \varepsilon 2^{-1} < \varepsilon$.

(2) For any $m \in Max(\mathbb{R}^{G})$, $m = \bigcap_{P \in X} (m + (kerP \cap \mathbb{R}^{G}))$.

In fact, since R^G is complete with respect to the topology τ_2 defined by $N_{R^G}^*$ -metric by [3, Th. 1.8], *m* is closed with respect to τ_2 by [3, Th. 1.13 and Cor. 1.14]. Since $\tau_1 = \tau_2$ by Lemma 8, *m* is closed with respect to τ_1 . Then we can conclude that $m = \bigcap_{P \in X} (m + (ker(P) \cap R^G))$ by (1).

(3) For any $m \in Max(R^G)$, there exists some $P \in X$ such that $m+(ker(P) \cap R^G) \neq R^G$ by (2) and so $m=m+(ker(P) \cap R^G) \supset ker(P) \cap R^G$. By [4, II. 14.5], ker(P) is a maximal ideal of R.

Theorem 11. Let R be a left and right self-injective regular ring and G a finite subgroup of Aut(R) with $|G|^{-1} \in R$. Assume that R is a finitely generated projective left R^{c} -module. Let μ^{*} , λ^{*} be the maps defined in §1. Then $\mu^{*}: \partial_{e}P(R^{*}G) \setminus F \rightarrow \partial_{e}P(R^{c})$ is a bijection and $(\mu^{*})^{-1} = \lambda^{*}$.

Proof. We shall consider the following diagram:

where $\pi_i(i=1, 2)$ is the map defined by $\pi_i(N) = ker(N)$. By Lemma 9 and Proposition 10, any $\mathfrak{p} \in \overline{\operatorname{Spec}}_{\mathfrak{s}}(R*G)$ is a maximal ideal and so π_i (i=1, 2) is a bijection by [4, II. 14.5]. It is easy to prove that the above diagram is commutative. Then we have that μ^* is a bijection and $(\mu^*)^{-1} = \lambda^*$.

J. Kado

References

- [1] K.R. Goodearl: Von Neumann regular rings, Pitman, 1979.
- [2] K.R. Goodearl: Directly finite ℵ₀-continuous regular rings, Pacific J. Math. 100 (1982), 105-122.
- [3] K.R. Goodearl: Metrically complete regular rings, Trans. Amer. Math. Soc. 272 (1982), 275-310.
- [4] K.R. Goodearl, D.E. Handelman and J.W. Lawrence: Affine representations of Grothendieck groups and applications to Rickart C*-algebras and ℵ₀-continuous regular rings, Memoirs Amer. Math. Soc. 234.
- [5] J.M. Goursaud, J. Osterburg, J.L. Pascaud and J. Valette: Points fixes des anneaux reguliers auto-injectifs a gauche, Comm. Algebra 9 (1981), 1343-1394.
- [6] D. Handelman and G. Renault: Actions on finite groups on self-injective rings, Pacific J. Math. 89 (1980), 69-80.
- [7] D. Handelman: Representing rank complete continuous rings, Canad. J. Math. 28 (1976), 1320-1331.
- [8] J. Kado: Pseudo-rank functions on crossed products of finite groups over regular rings, Osaka J. Math. 22 (1985), 821–833.
- [9] S. Montgomery: Prime ideals in fixed rings, Comm. Algebra 9 (1981), 423-449.
- [10] S. Montgomery: Fixed rings of finite automorphism groups of associative rings, Lecture Note in Math. 818, Springer-Verlag.
- [11] M. Lorenz and D.S. Passman: Prime ideals in crossed products of finite groups, Israel J. Math. 33 (1979), 89-132.
- [12] A. Page: Actions de groupes, Seminarie d'algebre Paul Dubreil 1977-78, Lecture Note in Math. 740, Springer-Verlag.

Department of Mathematics Osaka City University Osaka 558, Japan