A STOCHASTIC RESOLUTION OF A COMPLEX MONGE-AMPÈRE EQUATION ON A NEGATIVELY CURVED KÄHLER MANIFOLD

Hiroshi KANEKO

(Received December 4, 1985)

1. Introduction

The Dirichlet problem for the complex Monge-Ampère equation on a strongly pseudo-convex domain of \boldsymbol{C}^{n} was studied and solved by BedfordTaylor [3]. The same problem for the Monge-Ampère equation on a negatively curved Kähler manifold has been recently proposed and solved by T. Asaba [2]. The main purpose of this paper is to solve the equation by using a method of the stochastic control presented by B. Gaveau [6].

Let M be an n-dimensional simply connected Kähler manifold with metric g whose sectional curvature K satisfies

$$
-b^{2} \leqq K \leqq-a^{2}
$$

on M for some positive constants b and a. ω_{0} denotes the associated Kahler form. We denote by $M(\infty)$ the Eberlein-O'Neill's ideal boundary of M and we always consider the cone topology on $\bar{M}=M \cup M(\infty)$ (see [4] for these notions). T. Asaba formulated the Monge-Ampère equation on M in the following manner:

We write $\operatorname{PSH}(D)$ for the family of locally bounded plurisubharmonic functions defined on a complex manifold D. When $u \in \operatorname{PSH}(D)$, the current $\left(d d^{c} u\right)^{n}=d d^{c} u \wedge \cdots \wedge d d^{c} u$ of type- (n, n) is defined as a positive Radon measure n-copies
on D. Therefore, for given functions $f \in C(M)$ and $\varphi \in C(M(\infty))$, the complex Monge-Ampère equation

$$
\left\{\begin{array}{l}
u \in \operatorname{PSH}(M) \cap C(\bar{M}) \tag{1}\\
\left(d d^{c} u\right)^{n}=f \omega_{0}^{n} / n!\quad \text { on } M \\
\left.u\right|_{M(\infty)}=\varphi
\end{array}\right.
$$

can be considered. T. Asaba found a unique solution of (1) by imposing the following condition on f : there exist two positive constants μ_{0} and C_{0} such that

$$
\begin{equation*}
0 \leqq f \leqq C_{0} e^{-\mu_{0} r} . \tag{2}
\end{equation*}
$$

Here and in the sequel r stands for the distance function from a fixed point of M. Following a similar line to the proof performed by B. Gaveau [6], in which a stochastic proof of the existence of the Monge-Ampère equation on a strongly pseudo-convex domain of \boldsymbol{C}^{n} was presented, we will prove not only the existence of the solution of (1) but also its uniqueness ($\S 3$, Thoerem B). Actually T. Asaba assumed condition (2) for a specific value of μ_{0}. In what follows, we assume the condition (2) on f holding for some $\mu_{0}>0$ and $C_{0}>0$.

In accordance with the first part of B. Gaveau [6], a certain transience behavior of the sample path of the conformal martingales on M need to be studied. It was conjectured by $\mathrm{H} . \mathrm{Wu}$ [13] that M is biholomorphic to a bounded domain of \boldsymbol{C}^{n} (cf. Y.T. Siu [11] and R.E. Greene [7]). If this would be true, then the conformal martingales of the type considered by B. Gaveau [6] must hit the boundary of M. In fact, we shall prove in Section 2 that the almost all sample paths of every non-degenerate conformal martingale converge to points of the ideal boundary $M(\infty)$. We use the method of J.J. Prat [10], in which the sample paths' property was proven for the Brownian motion on Riemannian manifolds with negative curvature bounded away from zero.

The basic estimates obtained in Section 2 will be further utilized after Section 3 in resolving the Monge-Ampère equation stochastically.

The author expresses his thanks to T. Asaba for private discussions.

2. Basic estimates for non-degenerate conformal martingales

We first define the notion of the conformal martingales on M.
Definition. Let (Ω, \mathscr{F}, P) be a probability space with a filtration $\left(\mathscr{F}_{t}\right)_{t \geq 0}$. An M-valued continuous stochastic process $\left(Z_{t}\right)_{0 \leq t<\zeta}$ defined up to a stopping time $\zeta>0$ is said to be a conformal martingale, if
(i) there exists $p \in M$ such that $Z_{0}=p$ a.s.
(ii) there exists a sequence of stopping times $\left(T_{n}\right)_{n=1}^{\infty}$ such that $T_{n}<\zeta$, $\lim T_{n}=\zeta$ and $\left(f\left(Z_{t \wedge T_{n}}\right)\right)_{t \geq 0}$ is a \boldsymbol{C}-valued bounded $\left(\mathscr{I}_{t}\right)$-martingale for every holomorphic function f on M (we need note that M is a Stein manifold and so M possessess enough holomorphic functions).

Noting the trivialty of the bundle of unitary frames, we choose smooth vector fields X_{1}, \cdots, X_{n} of type- $(1,0)$ on M so that $g\left(X_{\alpha}, X_{\bar{\beta}}\right)=\delta_{\alpha, \beta}$ on M. For a smooth function f defined on M, we write $L f$ for the Levi-form of f. The notion of conformal martingale is related to the Levi-form in the following way:

Proposition 1. For each conformal martingale $\left(Z_{t}\right)_{0 \leq t<\zeta}$ on M, there is a non-negative hermitian matrix valued $\left(\mathscr{F}_{t}\right)$-adapted process $\left(\sum_{\alpha, \bar{\beta}}(t)\right)_{0 \leq t<\zeta}$ such that
it is increasing (in the sense that $s \leqq t \Rightarrow \sum_{a, \overline{\bar{\beta}}}(s) \leqq \sum_{a, \bar{\beta}}(t)$ as hermitian matrices a.s.) and that, for each real valued function $f \in C^{2}(M)$

$$
f\left(Z_{t}\right)-f\left(Z_{0}\right)-\sum_{\alpha, \beta=1}^{n} \int_{0}^{t} L f\left(X_{\alpha}, X_{\bar{\beta}}\right)_{Z_{s}} d \sum_{\alpha, \bar{\beta}}(s)
$$

is a local martingale.
Proof. Take countable local complex charts $\left(U_{i} ; z_{i}^{1}, \cdots, z_{i}^{n}\right)_{i=1,2 \ldots \text { of }} M$ and closed sets $V_{i} \subset U_{i}$ such that $\left\{V_{i}\right\}_{i=1}^{\infty}$ covers M. Since M is a Stein manifold, we may assume that $z_{i}^{1}, \cdots, z_{i}^{n}$ are the restrictions to U_{i} of certain holomorphic functions on M for every $i=1,2,3, \cdots$. Define a sequence of stopping times σ_{k} and random variables i_{k} successively as follows:

$$
\begin{aligned}
& \sigma_{0}=0 \\
& i_{0}=\inf \left\{i ; Z_{0} \in V_{i}\right\} \\
& \sigma_{1}=\inf \left\{t>0 ; Z_{t} \notin U_{i_{0}}\right\} \\
& \quad \cdots \\
& \sigma_{k}=\inf \left\{t>\sigma_{k-1} ; Z_{t} \notin U_{i_{k-1}}\right\} \\
& i_{k}=\inf \left\{i ; Z_{\sigma_{k}} \in V_{i}\right\}
\end{aligned}
$$

By virtue of Ito's formula, we obtain

$$
\begin{aligned}
f\left(Z_{t \wedge \sigma_{k}}\right) & -f\left(Z_{t \wedge \sigma_{k-1}}\right)=\sum_{\beta=1}^{n} \int_{t \wedge \sigma_{k-1}}^{t \wedge \sigma_{k}} \partial f / \partial z^{\alpha}\left(Z_{s}\right) d z^{\alpha}\left(Z_{s}\right) \\
& +\sum_{\alpha=1}^{n} \int_{t \wedge \sigma_{k-1}}^{t \wedge \sigma_{k}} \partial f / \partial z^{\bar{\alpha}}\left(Z_{s}\right) d z^{\bar{\alpha}}\left(Z_{s}\right) \\
& \left.+\sum_{\alpha, \beta=1}^{n} \int_{t \wedge \sigma_{k-1}}^{t \wedge \sigma_{k}} \partial^{2} f / \partial z^{\alpha} \partial z^{\bar{\beta}}\left(Z_{s}\right) d<z^{\alpha}\left(Z_{s}\right), z^{\bar{\beta}}\left(Z_{s}\right)\right\rangle
\end{aligned}
$$

where $z^{\infty}=z_{i_{k-1}}^{\alpha}, \alpha=1,2, \cdots, n, k=1,2,3, \cdots$. Define a hermitian matrix valued process $\sigma(t)$ by $\sum_{\kappa=1}^{n} \sigma_{\kappa}^{\infty}(t)\left(\partial /\left.\partial z^{\kappa}\right|_{z_{t}}\right)=\left.X_{\infty}\right|_{z_{t}}, \alpha=1,2, \cdots, n$ and set

$$
\sum_{\alpha \bar{\beta}}(t)=\sum_{\kappa, \lambda=1}^{n} \int_{0}^{t} \sigma_{\kappa}^{\alpha}(s) \sigma_{\bar{\lambda}}^{\bar{\beta}}(s) d\left\langle z^{\kappa}\left(Z_{s}\right), z^{\bar{\lambda}}\left(Z_{s}\right)\right\rangle
$$

then this can be well defined, independently of the choice of local coordinates, and further

$$
f\left(Z_{t \wedge \sigma_{k}}\right)-f\left(Z_{t} \wedge_{\sigma_{k-1}}\right)-\sum_{\alpha, \beta=1}^{n} \int_{t \wedge \sigma_{k-1}}^{t \wedge \sigma_{k}} L f\left(X_{\alpha}, X_{\bar{\beta}}\right)_{Z_{s}} d \sum_{\alpha, \bar{\beta}}(s)
$$

is a martingale. Since $\lim _{k=\infty} \sigma_{k}=\zeta$, the proof is completed.
q.e.d.

For our investigation, it is enough to consider exclusively conformal
martingales $\left(Z_{t}\right)_{0 \leqq t<\zeta}$ for which the following stopping times $\tau_{k}(k=0,1,2,3, \cdots)$ are finite almost surely:

$$
\begin{aligned}
& \tau_{0}=0 \\
& \tau_{1}=\inf \left\{t>0 ; \operatorname{dist}\left(Z_{t}, Z_{0}\right)=1\right\} \\
& \quad \ldots \\
& \tau_{k+1}=\inf \left\{t>\tau_{k} ; \operatorname{dist}\left(Z_{t}, Z_{\tau_{k}}\right)=1\right\}
\end{aligned}
$$

We call such properiy "admissible" and in what follows τ_{k} means the above stopping time. Here, we present a basic estimate of the same type as in D. Sullivan [12].

Proposition 2. For any $\mu \in(0, a)$, there exists a constant $C_{1} \in(0,1)$ such that

$$
E\left[\exp \left(-\mu r\left(Z_{\tau_{k+1}}\right)\right)\right] \leqq C_{1} E\left[\exp \left(-\mu r\left(Z_{\tau_{k}}\right)\right], \quad k=0,1,2,3, \cdots\right.
$$

for every admissible conformal martingale $\left(Z_{t}\right)_{0 \leq t<\zeta}$.
Proof. A Jacobi field estimate-the Hessian comparison theorem presented in [8; Theorem A] implies

$$
L \exp (-\mu r) \leqq(\mu(\mu-a) / 2) \exp (\mu r) g \quad \text { in the sense [8] }
$$

By applying Proposition 1 to the function $\exp (-\mu r)$, we then have

$$
\begin{aligned}
& E\left[\exp \left(-\mu r\left(Z_{\tau_{k+1}}\right)\right)\right]=E\left[\exp \left(-\mu r\left(Z_{\tau_{k}}\right)\right)\right] \\
& \quad+E\left[\sum_{\alpha, \beta=1}^{n} \int_{\tau_{k}}^{\tau_{k+1}} L \exp (-\mu r)\left(X_{\alpha}, X_{\bar{\beta}}\right)_{Z_{s}} d \sum_{\alpha, \bar{\beta}}(s)\right] \\
& \quad \leqq E\left[\exp \left(-\mu r\left(Z_{\tau_{k}}\right)\right)\right] \\
& \quad+(\mu(\mu-a) / 2) E\left[\int_{\tau_{k}}^{\tau_{k+1}} \exp \left(-\mu r\left(Z_{s}\right)\right) d\left(\text { trace } \sum_{\alpha, \overline{\bar{\beta}}}(s)\right)\right] \\
& \quad k=0,1,2, \cdots .
\end{aligned}
$$

While, taking conditional expectation, we have

$$
\begin{aligned}
& E\left[\int_{\tau_{k}}^{\tau_{k+1}} \exp \left(-\mu r\left(Z_{s}\right)\right) d\left(\operatorname{trace} \sum_{\alpha, \bar{\beta}}(s)\right)\right] \\
& \quad=\int_{M} P\left(Z_{\tau_{k}} \in d \eta\right) E\left[\int_{\tau_{k}}^{\tau_{k+1}} \exp \left(-\mu r\left(Z_{s}\right)\right) d\left(\operatorname{trace} \sum_{\alpha \overline{\bar{\beta}}}(s)\right) \mid Z_{\tau_{k}}=\eta\right] \\
& \quad \geqq \int_{M} P\left(Z_{\tau_{k}} \in d \eta\right) \exp (-\mu(r(\eta)+1)) E\left[\int_{\tau_{k}}^{\tau_{k+1}} d\left(\operatorname{trace} \sum_{\alpha, \bar{\beta}}(s)\right) \mid Z_{\tau_{k}}=\eta\right]
\end{aligned}
$$

which is not less than $\exp (-\mu) C_{2}^{-1} E\left[\exp \left(-\mu r\left(Z_{\tau_{k}}\right)\right]\right.$ by virtue of Lemma 1 stated below. Hence we arrive at the desired estimate with $C_{1}=1+((\mu(\mu-a))$ 2)) $C_{2}^{-1} \exp (-\mu)$.

In the above proof, we have used the next lemma, which also will be utilized in § 4 .

Lemma 1. There exists a positive constant C_{2} depending only on a and b such that

$$
C_{2}^{-1} \leqq E\left[\int_{\tau_{k}}^{\tau_{k+1}} d\left(\text { trace } \sum_{\alpha, \bar{\beta}}(s)\right) \mid Z_{\tau_{k}}=\eta\right] \leqq C_{2}
$$

holds $P\left(Z_{\tau_{k}} \in d \eta\right)$-a.s. $k=0,1,2,3, \cdots$, for every admissible conformal martingale Z_{t}.
Proof. For $f \in C_{b}^{2}(M)$, we know from Proposition 1 that

$$
\begin{gathered}
E\left[f\left(Z_{\tau_{k+1}}\right)-f\left(Z_{\tau_{k}}\right)-\sum_{\alpha, \beta=1}^{n} \int_{\tau_{k}}^{\tau_{k+1}} L f\left(X_{\alpha}, X_{\bar{\beta}}\right)_{Z_{s}} d \sum_{\alpha, \bar{\beta}}(s) \mid Z_{\tau_{k}}=\eta\right]=0 \\
P\left(Z_{\tau_{k}} \in d \eta\right) \text {-a.s., } k=0,1,2,3, \cdots
\end{gathered}
$$

Taking a countably dense subset of $C_{b}^{2}(M)$ and by the approximation procedure we know that the exceptional η-set in the above statement can be taken independently of $f \in C_{b}^{2}(M)$. Choose $f=f^{(\eta)}(p) \in C_{b}^{2}(M)$ which coincides with $\operatorname{dist}(p, \eta)^{2}$ on a neighborhood of $\{p ; \operatorname{dist}(p, \eta) \leqq 1\}$. Then it turns out that

$$
1=E\left[\sum_{\alpha, \beta=1}^{n} \int_{\tau_{k}}^{\tau_{k+1}} L f\left(X_{\alpha}, X_{\bar{\beta}}\right)_{Z_{s}} d \sum_{\alpha, \bar{\beta}}(s) \mid Z_{\tau_{k}}=\eta\right] \quad P\left(Z_{\tau_{k}} \in d \eta\right) \text {-a.s. }
$$

Again by the Hessian comparison theorem, we find that there exists a constant C_{2} depending only on the curvature bounds a and b such that

$$
C_{2} g \leqq L f^{(n)} \leqq C_{2}^{-1} g \quad \text { on }\{p ; \operatorname{dist}(p, \eta)\} \leqq 1,
$$

so we have

$$
\begin{gathered}
C_{2}^{-1} \leqq E\left[\int_{\tau_{k}}^{\tau_{k+1}} d\left(\operatorname{trace} \sum_{\alpha, \bar{\beta}}(s)\right) \mid Z_{\tau_{k}}=\eta\right] \leqq C_{2} \\
P\left(Z_{\tau_{k}} \in d \eta\right) \text {-a.s. }
\end{gathered}
$$

The next theorem is an immediate consequence of Proposition 2 combined with the geometrical method employed by D. Sullivan [12] and J.J. Prat [10].

Theorem A. For every admissible conformal martingale $\left(Z_{t}\right)_{0 \leqq t<\zeta}$, the following are true:
(i) The limit $\lim _{t \uparrow \zeta} Z_{t}$ exists in $M(\infty)$ a.s.
(ii) F any $\xi \in M(\infty), \varepsilon>0$ and neighborhood $V \subset M(\infty)$ of ξ, there exists a neighborhood $U \subset \bar{M}$ of ξ relative to the cone topology such that

$$
P\left(\lim _{t \uparrow \zeta} Z_{t} \in V\right) \geqq 1-\varepsilon
$$

whenever Z_{t} strats from a point of $U . \quad U$ does not depend on the choice of $\left(Z_{t}\right)_{0 \leq t<\zeta}$.

3. The stochastic solution of the Monge-Ampère equation-the statement of the main theorem

Let K_{p} be the family of all admissible conformal martingales $Z=\left(Z_{t}\right)_{0 \leq t<\zeta(z)}$ on M such that Z starts from $p \in M$ and the associate process $\left(\sum_{\omega, \bar{\beta}}(t)\right)_{0 \leqq t<\zeta(z)}$ in Proposition 1 possesses a density $\left(A_{\alpha, \bar{\beta}}(t)\right)_{0 \leqq i<\zeta(z)}$ with respect to the Lebesgue measure $d t$ with $\operatorname{det} A_{a, \bar{\beta}}(t) \geqq 1$ for $t \geqq 0$ a.s. For $Z \in K_{p}$, set

$$
w(p, Z)=E\left[-C(n) \int_{0}^{\zeta(Z)} f^{1 / n}\left(Z_{t}\right) d t+\varphi\left(Z_{\zeta(z)}\right)\right],
$$

where $C(n)=n / 8(n!)^{1 / n}$. By virtue of Lemma 2 in the next section, we know that, if $Z=\left(Z_{t}\right)$ is the conformal diffusion generated by the Kahler mertic g on M, then $w(p, Z)$ is exactly the solution of the Dirichlet problem with boundary condition on the sphere at infinity:

$$
\left\{\begin{array}{l}
\Delta_{g} u / 2=C(n) f^{1 / n} \\
\left.u\right|_{M(\infty)}=\varphi
\end{array}\right.
$$

for the Laplace-Beltrami operator Δ_{g} related to g. Now, we can describe the solution of the Monge-Ampère equation (1), using the above stochastic notations.

Theorem B. The function

$$
\begin{equation*}
u(p)=\inf _{z \in K_{p}} w(p, Z), \quad p \in M \tag{3}
\end{equation*}
$$

is the unique solution of the Monge-Ampère equation (1).
In the following sections, we shall prove this theorem. The proof will be performed by the stochastic control method due to B. Gaveau [6].

4. Continuity of the stochastic solution

In this section, we shall prove the continuity of the function u defined by (3).

Proposition 3. u can be extended to a continuous function on \bar{M} and $\left.u\right|_{M^{(\infty)}}=\varphi$.

We have to prepare several lemmas for the proof.
Lemma 2. For each $Z \in K_{p}$, there exist positive constants ν and C_{3} depending only on the constants μ_{0}, C_{0} in (2) and the curvature bounds such that

$$
E\left[\int_{0}^{\zeta(Z)} f\left(Z_{t}\right)^{1 / n} d t\right] \leqq C_{2} \exp (-\nu r(p)) .
$$

Proof. By the assumption (2) imposed on f, for $\nu \leqq \mu_{0}$, we know

$$
\begin{aligned}
E & {\left[\int_{0}^{\zeta(Z)} f\left(Z_{t}\right)^{1 / n} d t\right] } \\
& \leqq C_{0} E\left[\int_{0}^{\zeta(Z)} \exp \left(-\nu r\left(Z_{t}\right) / n\right) d t\right] \\
& \leqq C_{0} \sum_{k=0}^{\infty} E\left[\int_{\tau_{k}}^{\tau_{k+1}} \exp \left(-\nu r\left(Z_{t}\right) / n\right) d t\right]
\end{aligned}
$$

where $\tau_{0}=0, \tau_{1}=\inf \left\{t>0 ; \operatorname{dist}\left(Z_{t}, Z_{0}\right)=1\right\}, \cdots, \tau_{k+1}=\inf \left\{t>\tau_{k} ; \operatorname{dist}\left(Z_{t}, Z_{\tau_{k}}\right)=\right.$ $1\}, \cdots$. We may assume that ν is so small that ν / n is less than a. Because $E\left[\int_{\tau_{k}}^{\tau_{k+1}} \exp \left(-\nu r\left(Z_{t}\right) / n\right) d t\right] \leqq E\left[\int_{\tau_{k}}^{\tau_{k+1}} \exp \left(-\nu r\left(Z_{t}\right) / n\right) d\left(\right.\right.$ trace $\left.\left.\sum_{\alpha, \bar{\beta}}(t)\right)\right]$, we have $E\left[\int_{\tau_{k}}^{\tau_{k+1}} \exp \left(-\nu r\left(Z_{t}\right) / n\right) d t\right] \leqq \exp (a) C_{2} E\left[\exp \left(-\nu r\left(Z_{\tau_{k}}\right) / n\right)\right]$, in view of the proof of Proposition 2. Further by virtue of the basic estimate (Proposition 2) we know

$$
\sum_{k=0}^{\infty} E\left[\exp \left(-\nu r\left(Z_{\tau_{k}}\right) / n\right] \leqq\left(1-C_{1}\right)^{-1} \exp (-\nu r(p) / n)\right.
$$

The desired inequality holds for $C_{3}=\exp (a) C_{0} C_{2}\left(1-C_{1}\right)$. q.e.d.

Combining this with the result on the weak convergence of the hitting distribution in Theorem A (ii), we know that for arbitrary $\xi \in M(\infty)$ and any $\varepsilon>0$, there exists a neighborhood U of ξ such that

$$
\begin{equation*}
p \in U \Rightarrow|w(p, Z)-\varphi(\xi)|<\varepsilon, \tag{4}
\end{equation*}
$$

when $Z \in K_{p}$. Furthermore, we can show the following lemma.
Lemma 3. For any $\varepsilon>0$, there exist a positive large constant R and a small constant γ_{0} such that, if

$$
p \notin D_{R}=\{\eta \in M ; r(\eta)<R\}
$$

and $\operatorname{dist}(p, q)<\gamma_{0}$, then

$$
\left|w(p, Z)-w\left(q, Z^{\prime}\right)\right|<\varepsilon
$$

for any $Z \in K_{p}$ and $Z^{\prime} \in K_{q}$.
Proof. For any $\varepsilon>0$, there exist some points $\xi_{1}, \cdots, \xi_{n} \in M(\infty)$ and open sets $U_{i} \ni \xi_{i}$ such that

$$
\begin{aligned}
p & \in U_{i} \text { and } Z \in K_{p} \\
& \Rightarrow\left|w(p, Z)-\varphi\left(\xi_{i}\right)\right|<\varepsilon / 2
\end{aligned}
$$

for all $i=1,2, \cdots, n$ and $M(\infty) \subset \bigcup_{i=1}^{n} U_{i}$. Take a closed neighborhood $U_{i}^{\prime} \subset U_{i}$ of ξ_{i} so that $M(\infty) \subset \bigcup_{i=1}^{n} U_{i}^{\prime}$. Then, there exists $R>0$ satisfying $M \backslash D_{R} \subset \bigcup_{i=1}^{n} U_{i}^{\prime}$. Therefore for sufficiently small, γ_{0} we know that

$$
\begin{aligned}
& \operatorname{dist}(p, q)<\gamma_{0}, p \notin D_{R} \\
& \quad \Rightarrow\left|w(p, Z)-w\left(q, Z^{\prime}\right)\right| \\
& \quad \leqq\left|w(p, Z)-\varphi\left(\xi_{i}\right)\right|+\left|\varphi\left(\xi_{i}\right)-w\left(q, Z^{\prime}\right)\right| \\
& \quad<\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

whenever $Z \in K_{p}$ and $Z^{\prime} \in K_{q}$, by choosing i so that $p \in U_{i}^{\prime}$. q.e.d.

Because the holomorphic tangent bundle is holomorphically trivial, there exists a frame of holomorphic vector fields Y_{1}, \cdots, Y_{n}. Let $\Phi_{2}(p)=$ $\operatorname{Exp}\left(\operatorname{Re} \sum_{i=1}^{n} z^{i} Y_{i}\right)(p)$, for $p \in M$ and $z=\left(z^{1}, \cdots, z^{n}\right)$ in \boldsymbol{C}^{n}. This transformation on M was considered in T. Asaba [2] and proven to enjoy the next property:

For any $R>0$, there exists $\Delta_{\delta}=\left\{z \in C^{n} ; \sum_{i=1}^{n}\left|z^{i}\right|^{2}<\delta\right\}$ such that $\Phi_{z}(p)$ is a smooth mapping from $\Delta_{\delta} \times D_{R}$ to M satisfying the following properties (i), (ii) and (iii).
(i) For each $z \in \Delta_{\delta}, \Phi_{z}$ gives a biholomorphic mapping from the domain D_{R} to $\Phi_{z}\left(D_{R}\right)$.
(ii) Φ_{0} is the identity transformation on D_{R}.
(iii) For $p \in D_{R}, \Phi .(p)$ defines a diffeomorphism from Δ_{δ} to some neighborhood of p.

Using this transformation Φ, we can prove the continuity of the stochastic solution u.

Lemma 4. For any $\varepsilon>0$ and $R>0$, there exists $\gamma>0$ such that for each $Z \in K_{p}$ and q enjoying $p \in D_{R}$ and $\operatorname{dist}(p, q)<\gamma$, we can always find $Z^{\prime} \in K_{q}$ so that

$$
\left|w(p, Z)-w\left(q, Z^{\prime}\right)\right|<\varepsilon .
$$

Proof. To begin, replace R by a sufficiently large one and choose γ_{0} so that the implication in Lemma 3 holds for $\varepsilon / 2$ instead of ε. Fix $Z \in K_{p}$. We then consider the holomorphic local transformation Φ and the Kähler diffusion $B_{t}(\eta)$ on M starting from $\eta \in M$, independent of Z and measurable in t, z and ω. Let

$$
Z_{t}^{\Phi_{z}(p)}= \begin{cases}\Phi_{z}\left(Z_{t}\right), & t \leqq \tau \tag{5}\\ B_{t-\tau}\left(\Phi_{z}\left(Z_{\tau}\right)\right), & t>\tau\end{cases}
$$

where $\tau=\inf \left\{t>0 ; Z_{t} \notin D_{R}\right\}$.
We next perform the time change by letting $\hat{Z}_{t}^{\Phi_{z}(p)}=Z_{\tau_{t}}^{\Phi_{2}(p)}$, up to the explosion time of $\hat{Z}^{\Phi_{z}(p)}=\left(\hat{Z}_{t}^{\Phi_{z}(p)}\right)_{t \geq 0}$, where $\tau_{t}=\inf \left\{s>0 ; \int_{0}^{s}\left(\operatorname{det} A_{\alpha, \bar{\beta}}(u)\right)^{1 / n} d u \geqq t\right\}$, $\left(A_{\alpha, \overline{\bar{\beta}}}(t)\right)_{t \geq 0}$ being the density of the increasing process associated with $Z^{\Phi_{z}(p)}=$ $\left(Z_{t}^{\Phi_{z}(p)}\right)_{t \geq 0}$ according to Proposition 1.

On the other hand, taking conditional expectation, we have

$$
\begin{aligned}
& w(p, Z)=W\left[-C(n) \int_{0}^{\tau} f^{1 / n}\left(Z_{t}\right) d t\right] \\
& \quad+\int_{\partial D_{R}} E\left[C(n) \int_{\tau}^{\zeta(Z)} f^{1 / n}\left(Z_{t}\right) d t+\varphi\left(Z_{\zeta(z)}\right) \mid Z_{\tau}=\eta\right] P\left(Z_{\tau} \in d \eta\right) .
\end{aligned}
$$

If we set $W_{t}=Z_{t+\tau}$ and let

$$
w(\eta, W)=E\left[-C(n) \int_{0}^{\zeta(z)-\tau} f^{1 / n}\left(W_{t}\right) d t+\varphi\left(Z_{\zeta(z)}\right) \mid Z_{\tau}=\eta\right]
$$

for $W=\left(W_{t}\right)_{0 \leqq t<\zeta(z)-\tau}$, then

$$
w(p, W)=E\left[-C(n) \int_{0}^{\tau} f^{1 / n}\left(Z_{t}\right) d t\right]+\int_{\partial D_{R}} w(\eta, W) P\left(Z_{\tau} \in d \eta\right) .
$$

Similarly, letting σ be the first exit time from $\Phi_{z}\left(D_{R}\right)$ of $\hat{Z}^{\Phi_{z}(p)}$, we set $W_{t}^{\Phi_{2}(p)}=$ $\hat{Z}_{t+\sigma}^{\Phi_{z}}, 0 \leqq t<\zeta\left(\hat{Z}^{\Phi_{z}(p)}\right)-\sigma$ and then, for $W^{\Phi_{z}(p)}=\left(W_{t}^{\Phi_{z}(p)}\right)_{t \geq 0}$,

$$
\begin{aligned}
w\left(\eta, W^{\Phi_{2}(p)}\right)= & E\left[-C(n) \int_{0}^{\zeta\left(W^{\left.\Phi_{z}(p)\right)}\right.} f^{1^{\prime} n}\left(W_{i}^{\Phi_{z}(p)}\right) d t\right. \\
& \left.+\varphi\left(W_{\zeta\left(W^{\left.\Phi_{z}(p)\right)}\right.}^{\Phi_{\Phi^{2}}(p)}\right) \mid \hat{Z}_{\sigma_{z}}^{\Phi^{(p)}}=\eta\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
w\left(\Phi_{z}(p), \hat{Z}^{\Phi_{z}(p)}\right) & =E\left[-C(n) \int_{0}^{\sigma} f^{1 / n}\left(\hat{Z}_{t}^{\Phi_{e}(p)}\right) d t\right] \\
& +\int_{\partial \Phi_{z}\left(D_{R}\right)} w\left(\eta^{\prime}, W^{\Phi_{\varepsilon}(p)}\right) P\left(\hat{Z}_{\sigma}^{\Phi_{z}(p)} \in d \eta^{\prime}\right)
\end{aligned}
$$

Therefore, after all we have that

$$
\begin{array}{r}
w(p, Z)-w\left(\Phi_{z}(p), Z^{\Phi_{z}(p)}\right)=E\left[-C(n)\left(\int_{0}^{\tau} f^{1 / n}\left(Z_{t}\right) d t-\int_{0}^{\sigma} f^{1 / n}\left(\hat{Z}_{t}^{\Phi_{e}(p)}\right) d t\right)\right] \\
+\int_{\partial D_{R}}\left\{w(\eta, W)-w\left(\Phi_{z}(\eta), W^{\Phi_{z}(p)}\right)\right\} P\left(Z_{\tau} \in d \eta\right) .
\end{array}
$$

From Lemma 2, there exists $\delta>0$ such that the absolute value of the second term of the right hand side is less than $\varepsilon / 2$ for every $z \in \Delta_{\delta}$. While the continuity of $f^{1 / n}$ shows that the first term of the right hand side is less than $\varepsilon / 2$ in
the abo absolute value, whenever $z \in \Delta_{\delta}$.
Because, for sufficiently small γ, the γ-neighborhood of each $p \in D_{R}$ is contained in the image of Δ_{δ} by the mapping $\Phi .(p)$, for $q=\Phi_{z}(p), Z^{\prime}=\hat{Z}^{\Phi_{z}(p)}$ is the required conformal martingale in our lemma.
q.e.d.

Proof of Proposition 3. The last inequality in Lemma 4 implies $w(p, Z) \geqq$ $u(q)-\varepsilon$. Taking the infimum over $Z \in K_{p}$, we can conclude that $u(p) \geqq u(q)-\varepsilon$, whenever $p, q \in D_{R}$ and $\operatorname{dist}(p, q)<\gamma$. Exchanging the role of p and q, we see that u is a continuous function on M. Recalling the estimate (4) noted after Lemma 2, we know that $\lim _{p \rightarrow \xi} u(p)=\varphi(\xi)$ for each $\xi \in M(\infty)$. This completes the proof.

5. The Bellman principle

The purpose of this section is to establish the Bellman principle in order to localize the stochastic expression of the function u defined by (3).

Proposition 4. For every bounded domain D of M and $p \in D$, we obtain

$$
u(p)=\inf _{Z \in K_{p}} E\left[-C(n) \int_{0}^{\tau_{D}(Z)} f^{1 / n}\left(Z_{t}\right) d t+u\left(Z_{\tau_{D}(z)}\right)\right]
$$

where $\tau_{D}(Z)=\inf \left\{t>0 ; Z_{i} \notin D\right\}$.
Proof. Fix $\varepsilon>0$ and take R so that $D_{R} \supset \bar{D}$. For each $q \in \partial D$ there exist $\delta>0$ and $Z \in K_{q}$ such that, for $z \in \Delta_{\delta}$,

$$
\left|w\left(\Phi_{z}(q), \hat{Z}_{z}^{\Phi_{z}(q)}\right)-u(q)\right|>\varepsilon,
$$

where $Z^{\Phi_{z}(q)}$ is the conformal martingale defined by (5). Therefore, we can select several points $q_{1}, \cdots, q_{n} \in \partial D$ and their neighborhoods $\Delta\left(q_{1}\right), \cdots, \Delta\left(q_{n}\right)$ so that $\partial D \subset \bigcup_{i=1}^{n} \Delta\left(q_{i}\right)$ (disjoint union), the image of $\Phi .\left(q_{i}\right)$ contains $\Delta\left(q_{i}\right)$ and

$$
\left|w\left(\Phi_{z}\left(q_{i}\right), \hat{Z}^{\Phi_{z}\left(q_{i}\right)}\right)-u\left(q_{i}\right)\right|<\varepsilon,
$$

whenever $Z^{\Phi_{z}\left(q_{i}\right)}$ is in $\Delta\left(q_{i}\right), i=1,2, \cdots, n$.
For each $Z \in K_{p}$, we set

$$
Z_{t}^{*}= \begin{cases}Z_{t}, & \text { if } t \leqq \tau_{D}(Z) \\ \hat{Z}_{t-\tau_{\boldsymbol{D}}}^{\Phi_{2}\left(q_{i}\right)} & \text { if } t>\boldsymbol{\tau}_{\boldsymbol{D}}(Z), Z_{\tau_{\boldsymbol{p}}(z)} \in \Delta\left(q_{i}\right) \text { and } \\ & \Phi_{z}\left(q_{i}\right)=Z_{\tau_{D}(z)}, i=1,2, \cdots, n,\end{cases}
$$

where we take $Z^{\Phi_{z}\left(q_{i}\right)}$ and Z to be independent. Then $Z^{*}=\left(Z_{i}^{*}\right) \in K_{p}$. By the same method of B. Gaveau [6; pp. 400-403], we can prove that

$$
\begin{aligned}
u(p)-\varepsilon & \leqq E\left[-C(n) \int_{0}^{\tau_{D}} f^{1 / n}\left(Z_{t}\right) d t+u\left(Z_{\tau_{D}}\right)\right] \\
& \leqq E\left[-C(n) \int_{0}^{\zeta(Z)} f^{1 / n}\left(Z_{t}\right) d t+\varphi\left(Z_{\zeta(z)}\right)\right] .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, the proof is completed.
q.e.d.

6. Proof of the main theorem

Finaly, we shall finish the proof of the main theorem by showing the next two propositions.

Proposition 5. u is a plurisubharmonic function and $\left(d d^{c} u\right)^{n}=f \omega_{0}^{n} / n$! on M.
Proposition 6. If u_{0} is a solution of (1), then

$$
u_{0}(p)=\inf _{Z \in K_{p}} E\left[-C(n) \int_{0}^{\zeta} f^{1 / n}\left(Z_{t}\right) d t+\varphi\left(Z_{\zeta}\right)\right] .
$$

In particular, (1) has a unique solution.
Proof of Proposition 5. Let p be an arbitrary point of M. Choose a complex local coordinate system $\left(D, z^{1}, \cdots, z^{n}\right)$ around p such that $\psi=\left(z^{1}, \cdots, z^{n}\right)$ defines a biholomorphic mapping from D to the complex unit ball $B=\left\{\left(z^{1}, \cdots, z^{n}\right) \in \boldsymbol{C}^{n}\right.$; $\left.\sum_{i=1}^{n}\left|z^{i}\right|^{2}<1\right\}$. For the push forward function $U(z)=\left(\psi_{*} u\right)(z)=u\left(\psi^{-1}(z)\right)$,

$$
U(z)=\inf _{z \in K_{z}} E\left[-C(n) \int_{0}^{\tau_{B}(z)}\left(\psi_{*}(f \operatorname{det}(g))\right)_{i \bar{j}}^{1 / n}\left(Z_{i}\right) d t+U\left(Z_{\tau_{B}(z)}\right)\right]
$$

where $g_{\bar{i}}=g\left(\partial / \partial z^{i}, \partial / \partial z^{j}\right)$) and K_{z} is the family of all \boldsymbol{C}^{n}-valued conformal martingales Z which start from $z \in B$ such that $a_{i \bar{j}}(t)=d\left\langle z^{i}\left(Z_{t}\right), z^{j}\left(Z_{t}\right)\right\rangle / d t$ satisfy $\operatorname{det}\left(a_{i \bar{j}}(t)\right) \geqq 1, t \geqq 0$ a.s.

Consider the following Monge-Ampère equation

$$
\left\{\begin{array}{l}
v \in P S H(B) \cap C(\bar{B}) \tag{6}\\
\left(d d^{c} v\right)^{n}=\psi_{*}\left(f \operatorname{det}\left(g_{i \bar{j}}\right)\right) d V \\
\left.v\right|_{\partial B}=\left.U\right|_{\partial B}
\end{array}\right.
$$

where $d V$ stands for the Lebesgue measure on \boldsymbol{C}^{n}. Because of the strongly pseudo-convexity of B, we see that Theorem 4 and Remark of B. Gaveau [6; pp. 402-403] ensure the following stochastic description of the solution v_{0} of (6):

$$
\begin{aligned}
v_{0}(z)=\inf _{z \in K_{z}} E\left[-C(n) \int_{0}^{\tau_{B}(z)}\left(\psi_{*}\left(f \operatorname{det}\left(g_{i \bar{j}}\right)\right)\right)^{1 n}\left(Z_{t}\right) d t\right. \\
\left.+U\left(Z_{\tau_{B}(z)}\right)\right], \quad z \in B .
\end{aligned}
$$

Hence, we know that $v_{0}=U$ on B and $u(p)=\psi_{*} v_{0}(p) \in P S H(D)$ and that $\left(d d^{c} u\right)^{n}=f \omega_{0}^{n} / n!$ on D.
q.e.d.

Proof of Proposition 6. To begin, take the countable family of charts $\left(U_{i} ; z_{i}^{1}, \cdots, z_{i}^{n}\right)_{i=1}^{\infty}$ appeared in the proof of Proposition 1, we may assume that each $\psi_{i}=\left(z_{i}^{1}, \cdots, z_{i}^{n}\right)$ gives a biholomorphic mapping between U_{i} and the unit ball $B \subset C^{n}$. By virtue of Theorem 4 of B . Gaveau [6], for any $\varepsilon>0$, there exisis a $Z^{(1)} \in K_{p}$ such that

$$
E\left[-C(n) \int_{0}^{\sigma_{1}} f^{1 / n}\left(Z_{t}\right) d t+u_{0}\left(Z_{\sigma_{1}}^{(1)}\right)\right] \leqq u_{0}(p)+\varepsilon / 2
$$

where σ_{1} is the stopping time for $Z^{(1)}$ defined in the proof of Proposition 1. For each $q \in \partial U_{i}$ there exists $\delta>0$ and $Z \in K_{q}$ such that

$$
w\left(\Phi_{z}(q), \hat{Z}^{\Phi_{z}(q)}\right)<u_{0}(q)+\varepsilon / 2^{2},
$$

whenever $z \in \Delta_{\delta}$. Using the same argument as in the proof of Proposition 4, we can construct $Z^{(2)} \in K_{p}$ which satisfies

$$
Z_{t \wedge \sigma_{1}}^{(1)}=Z_{t \wedge \sigma_{1}}^{(2)}
$$

and

$$
E\left[-C(n) \int_{0}^{\sigma_{2}} f^{1 / n}\left(Z_{t}^{(2)}\right) d t+u_{0}\left(Z_{\sigma_{2}}^{(2)}\right)\right] \leqq u_{0}(p)+\varepsilon / 2+\varepsilon / 2^{2}
$$

where σ_{2} is defined for $Z^{(2)}$ in the same way as above. Repeating this procedure, we obtain a sequence $\left(Z^{(k)}\right)_{k=1}^{\infty} \subset K_{p}$ so that $Z_{t \wedge \sigma_{k-1}}^{(k-1)}=Z_{t \wedge \sigma_{k-1}}^{(k)}, t \geqq 0$. a.s. and that

$$
E\left[-C(n) \int_{0}^{\sigma_{k}} f^{1 / n}\left(Z_{i^{(k)}}^{(k)}\right) d t+u_{0}\left(Z_{\sigma_{k}}^{(k)}\right)\right] \leqq u_{0}(p)+\sum_{i=1}^{k} \varepsilon / 2^{i}
$$

where σ_{k} is defined for $Z^{(k)}$ as above.
Define $Z_{t}=Z_{t}^{(k)}$, if $t<\sigma_{k}$. Then we can easily check that $Z=\left(Z_{t}\right) \in K_{p}$ and that $\lim _{k \rightarrow \infty} \sigma_{k}=\zeta(Z)$. Hence, we know

$$
E\left[-C(n) \int_{0}^{\zeta} f^{1 / n}\left(Z_{t}\right) d t+\varphi\left(Z_{\zeta}\right)\right] \leqq u_{0}(p)+\varepsilon
$$

Letting $\varepsilon \rightarrow 0$, we can conclude that

$$
u_{0}(p) \geqq \inf _{Z \in K_{p}} E\left[-C(n) \int_{0}^{\zeta} f^{1 / n}\left(Z_{t}\right) d t+\varphi\left(Z_{\zeta}\right)\right]
$$

On the other hand, we can inductively obtain, for each $Z \in K_{p}$,

$$
u_{0}(p) \leqq E\left[-C(n) \int_{0}^{\sigma_{k}} f^{1 / n}\left(Z_{t}\right) d t+u_{0}\left(Z_{\sigma_{k}}\right)\right], \quad k=1,2,3, \cdots
$$

and so we have the opposite inequality, by letting $k \rightarrow \infty$.
q.e.d.

References

[1] M.T. Anderson: The Dirichlet problem at infinity for negatively curved manifolds, J. Differential Geom. 18 (1983), 701-722.
[2] T. Asaba: Asymptotic Dirichlet problem for a complex Monge-Ampère operator, Osaka J. Math. 23 (1986), 815-821.
[3] E. Bedford and B.A. Taylor: The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44.
[4] P. Eberlein and B. O'Neill: Visibility manifolds, Pacific J. Math. 46 (1973), 45-109.
[5] M. Fukushima: A stochastic approach to the minimum principle for the complex Monge-Ampère operator, Proc. of Symp. on Stochastic processes and its applications at Nagoya, Lecture Notes in Math., Springer.
[6] B. Gaveau: Méthodes de controle optimal en analyse complex 1. Résolution d'equation de Monge-Ampère, J. Funct. Anal. 25 (1977), 391-411.
[7] R.E. Greene: Function theory of noncompact Kähler manifolds of nonpositive curvature, Seminar on Differential Geometry, ed. by S.T. Yau, Ann. of Math. Studies 102, Princeton Univ. Press, 1982.
[8] R. Greene and H. Wu: Function theory on manifolds which possesses a pole, Lecture Notes in Math. No. 699, Springer.
[9] M. Okada: Espace de Dirichlet generaux en analyse complexe, J. Funct. Anal. 46 (1982), 395-410.
[10] J.J. Prat: Etude asymptotique et convergence angulaire du mouvement brownien sur une variete a curbure negative, C.R. Acad. Sci. Paris 280, Ser. A (1975), 1539-1542.
[11] Y.T. Siu: Pseudoconvexity and the problem of Levi, Bull. Amer. Math. Soc. 84 (1978), 481-512.
[12] D. Sullivan: The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom. 18 (1983), 701-722.
[13] H. Wu: Normal families of holomorphic mappings, Acta Math. 119 (1967), 193233.

Department of Mathematical Science College of Engineering University of Osaka Prefecture Mozu-umemachi, Sakai-city
Osaka 591, Japan

