Kaneko, H. Osaka J. Math. 24 (1987), 307-319

A STOCHASTIC RESOLUTION OF A COMPLEX MONGE-AMPÈRE EQUATION ON A NEGATIVELY CURVED KÄHLER MANIFOLD

HIROSHI KANEKO

(Received December 4, 1985)

1. Introduction

The Dirichlet problem for the complex Monge-Ampère equation on a strongly pseudo-convex domain of C^{n} was studied and solved by Bedford-Taylor [3]. The same problem for the Monge-Ampère equation on a negative-ly curved Kähler manifold has been recently proposed and solved by T. Asaba [2]. The main purpose of this paper is to solve the equation by using a method of the stochastic control presented by B. Gaveau [6].

Let M be an *n*-dimensional simply connected Kähler manifold with metric g whose sectional curvature K satisfies

 $-b^2 \leq K \leq -a^2$

on M for some positive constants b and a. ω_0 denotes the associated Kahler form. We denote by $M(\infty)$ the Eberlein-O'Neill's ideal boundary of M and we always consider the cone topology on $\overline{M} = M \cup M(\infty)$ (see [4] for these notions). T. Asaba formulated the Monge-Ampère equation on M in the following manner:

We write PSH(D) for the family of locally bounded plurisubharmonic functions defined on a complex manifold D. When $u \in PSH(D)$, the current $(dd^e u)^n = dd^e u \wedge \cdots \wedge dd^e u$ of type-(n, n) is defined as a positive Radon measure

n-copies

on D. Therefore, for given functions $f \in C(M)$ and $\varphi \in C(M(\infty))$, the complex Monge-Ampère equation

(1)
$$\begin{cases} u \in PSH(M) \cap C(\overline{M}) \\ (dd^{c}u)^{n} = f\omega_{0}^{n}/n! \quad \text{on } M \\ u|_{M(\infty)} = \varphi \end{cases}$$

can be considered. T. Asaba found a unique solution of (1) by imposing the following condition on f: there exist two positive constants μ_0 and C_0 such that

$$(2) \qquad \qquad 0 \leq f \leq C_0 e^{-\mu_0 r}$$

Here and in the sequel r stands for the distance function from a fixed point of M. Following a similar line to the proof performed by B. Gaveau [6], in which a stochastic proof of the existence of the Monge-Ampère equation on a strongly pseudo-convex domain of C^n was presented, we will prove not only the existence of the solution of (1) but also its uniqueness (§ 3, Theorem B). Actually T. Asaba assumed condition (2) for a specific value of μ_0 . In what follows, we assume the condition (2) on f holding for some $\mu_0 > 0$ and $C_0 > 0$.

In accordance with the first part of B. Gaveau [6], a certain transience behavior of the sample path of the conformal martingales on M need to be studied. It was conjectured by H. Wu [13] that M is biholomorphic to a bounded domain of \mathbb{C}^n (cf. Y.T. Siu [11] and R.E. Greene [7]). If this would be true, then the conformal martingales of the type considered by B. Gaveau [6] must hit the boundary of M. In fact, we shall prove in Section 2 that the almost all sample paths of every non-degenerate conformal martingale converge to points of the ideal boundary $M(\infty)$. We use the method of J.J. Prat [10], in which the sample paths' property was proven for the Brownian motion on Riemannian manifolds with negative curvature bounded away from zero.

The basic estimates obtained in Section 2 will be further utilized after Section 3 in resolving the Monge-Ampère equation stochastically.

The author expresses his thanks to T. Asaba for private discussions.

2. Basic estimates for non-degenerate conformal martingales

We first define the notion of the conformal martingales on M.

DEFINITION. Let (Ω, \mathcal{F}, P) be a probability space with a filtration $(\mathcal{F}_t)_{t\geq 0}$. An *M*-valued continuous stochastic process $(Z_t)_{0\leq t<\zeta}$ defined up to a stopping time $\zeta>0$ is said to be a conformal martingale, if

(i) there exists $p \in M$ such that $Z_0 = p$ a.s.

(ii) there exists a sequence of stopping times $(T_n)_{n=1}^{\infty}$ such that $T_n < \zeta$, lim $T_n = \zeta$ and $(f(Z_{t \wedge T_n}))_{t \geq 0}$ is a *C*-valued bounded (\mathcal{F}_t) -martingale for every holomorphic function f on M (we need note that M is a Stein manifold and so M possessess enough holomorphic functions).

Noting the trivialty of the bundle of unitary frames, we choose smooth vector fields X_1, \dots, X_n of type-(1, 0) on M so that $g(X_{\alpha}, X_{\overline{\beta}}) = \delta_{\alpha,\beta}$ on M. For a smooth function f defined on M, we write Lf for the Levi-form of f. The notion of conformal martingale is related to the Levi-form in the following way:

Proposition 1. For each conformal martingale $(Z_t)_{0 \le t < \zeta}$ on M, there is a non-negative hermitian matrix valued (\mathcal{F}_t) -adapted process $(\sum_{\sigma,\bar{\rho}}(t))_{0 \le t < \zeta}$ such that

it is increasing (in the sense that $s \leq t \Rightarrow \sum_{\sigma,\overline{\beta}}(s) \leq \sum_{\sigma,\overline{\beta}}(t)$ as hermitian matrices a.s.) and that, for each real valued function $f \in C^2(M)$

$$f(Z_t)-f(Z_0)-\sum_{\alpha,\beta=1}^{n}\int_{0}^{t}Lf(X_{\alpha}, X_{\overline{\beta}})_{Z_s}d\sum_{\alpha,\overline{\beta}}(s)$$

is a local martingale.

Proof. Take countable local complex charts $(U_i; z_i^1, \dots, z_i^n)_{i=1,2\dots}$ of M and closed sets $V_i \subset U_i$ such that $\{V_i\}_{i=1}^{\infty}$ covers M. Since M is a Stein manifold, we may assume that z_i^1, \dots, z_i^n are the restrictions to U_i of certain holomorphic functions on M for every $i=1, 2, 3, \dots$. Define a sequence of stopping times σ_k and random variables i_k successively as follows:

$$\sigma_{0} = 0$$

$$i_{0} = \inf \{i; Z_{0} \in V_{i}\}$$

$$\sigma_{1} = \inf \{t > 0; Z_{t} \notin U_{i_{0}}\}$$

...

$$\sigma_{k} = \inf \{t > \sigma_{k-1}; Z_{t} \notin U_{i_{k-1}}\}$$

$$i_{k} = \inf \{i; Z_{\sigma_{k}} \in V_{i}\}$$

...

By virtue of Ito's formula, we obtain

$$\begin{split} f(Z_{t\wedge\sigma_{k}})-f(Z_{t\wedge\sigma_{k-1}}) &= \sum_{\beta=1}^{n} \int_{t\wedge\sigma_{k-1}}^{t\wedge\sigma_{k}} \partial f/\partial z^{a}(Z_{s}) dz^{a}(Z_{s}) \\ &+ \sum_{\alpha=1}^{n} \int_{t\wedge\sigma_{k-1}}^{t\wedge\sigma_{k}} \partial f/\partial z^{\bar{a}}(Z_{s}) dz^{\bar{a}}(Z_{s}) \\ &+ \sum_{\alpha,\beta=1}^{n} \int_{t\wedge\sigma_{k-1}}^{t\wedge\sigma_{k}} \partial^{2}f/\partial z^{a}\partial z^{\bar{\beta}}(Z_{s}) d\langle z^{a}(Z_{s}), z^{\bar{\beta}}(Z_{s}) \rangle \end{split}$$

where $z^{\omega} = z^{\omega}_{i_{k-1}}$, $\alpha = 1, 2, ..., n, k = 1, 2, 3, ...$ Define a hermitian matrix valued process $\sigma(t)$ by $\sum_{k=1}^{n} \sigma^{\omega}_{k}(t)(\partial/\partial z^{\kappa}|_{z_{i}}) = X_{\omega}|_{z_{i}}, \alpha = 1, 2, ..., n$ and set

$$\sum_{\alpha \bar{\beta}}(t) = \sum_{\kappa,\lambda=1}^{n} \int_{0}^{t} \sigma_{\kappa}^{\alpha}(s) \sigma_{\bar{\lambda}}^{\bar{\beta}}(s) d\langle z^{\kappa}(Z_{s}), z^{\bar{\lambda}}(Z_{s}) \rangle,$$

then this can be well defined, independently of the choice of local coordinates, and further

$$f(Z_{t\wedge\sigma_k})-f(Z_{t\wedge\sigma_{k-1}})-\sum_{\alpha,\beta=1}^n\int_{t\wedge\sigma_{k-1}}^{t\wedge\sigma_k}Lf(X_{\alpha}, X_{\bar{\beta}})_{Z_s}d\sum_{\alpha,\bar{\beta}}(s)$$

is a martingale. Since $\lim_{k=\infty} \sigma_k = \zeta$, the proof is completed. q.e.d.

For our investigation, it is enough to consider exclusively conformal

H. KANEKO

martingales $(Z_t)_{0 \le t < \zeta}$ for which the following stopping times τ_k $(k=0, 1, 2, 3, \cdots)$ are finite almost surely:

$$\begin{aligned} \tau_0 &= 0 \\ \tau_1 &= \inf \{t > 0; \, \operatorname{dist}(Z_t, Z_0) = 1\} \\ \dots \\ \tau_{k+1} &= \inf \{t > \tau_k; \, \operatorname{dist}(Z_t, Z_{\tau_k}) = 1\} \end{aligned}$$

We call such property "admissible" and in what follows τ_k means the above stopping time. Here, we present a basic estimate of the same type as in D. Sullivan [12].

Proposition 2. For any $\mu \in (0, a)$, there exists a constant $C_1 \in (0, 1)$ such that

$$E[\exp(-\mu r(Z_{\tau_{k+1}}))] \leq C_1 E[\exp(-\mu r(Z_{\tau_k})], \quad k = 0, 1, 2, 3, \cdots,$$

for every admissible conformal martingale $(Z_i)_{0 \le i < \zeta}$.

Proof. A Jacobi field estimate—the Hessian comparison theorem presented in [8; Theorem A] implies

$$L \exp(-\mu r) \leq (\mu(\mu-a)/2) \exp(\mu r)g$$
 in the sense [8].

By applying Proposition 1 to the function $\exp(-\mu r)$, we then have

$$E[\exp\left(-\mu r(Z_{\tau_{k+1}})\right)] = E[\exp\left(-\mu r(Z_{\tau_k})\right)]$$

+
$$E\left[\sum_{\alpha,\beta=1}^{n} \int_{\tau_k}^{\tau_{k+1}} L \exp\left(-\mu r(X_{\alpha}, X_{\overline{\beta}})_{Z_s} d\sum_{\alpha,\overline{\beta}}(s)\right]\right]$$

$$\leq E[\exp\left(-\mu r(Z_{\tau_k})\right)]$$

+
$$\left(\mu(\mu-\alpha)/2\right)E\left[\int_{\tau_k}^{\tau_{k+1}} \exp\left(-\mu r(Z_s)\right) d(\operatorname{trace}\sum_{\alpha,\overline{\beta}}(s))\right],$$

$$k = 0, 1, 2, \cdots.$$

While, taking conditional expectation, we have

$$E\left[\int_{\tau_{k}}^{\tau_{k+1}} \exp\left(-\mu r(Z_{s})\right) d\left(\operatorname{trace} \sum_{\boldsymbol{\alpha}, \bar{\boldsymbol{\beta}}}(s)\right)\right]$$

= $\int_{M} P(Z_{\tau_{k}} \in d\eta) E\left[\int_{\tau_{k}}^{\tau_{k+1}} \exp\left(-\mu r(Z_{s})\right) d\left(\operatorname{trace} \sum_{\boldsymbol{\alpha}, \bar{\boldsymbol{\beta}}}(s)\right) | Z_{\tau_{k}} = \eta\right]$
\ge $\int_{M} P(Z_{\tau_{k}} \in d\eta) \exp\left(-\mu (r(\eta)+1)\right) E\left[\int_{\tau_{k}}^{\tau_{k+1}} d\left(\operatorname{trace} \sum_{\boldsymbol{\alpha}, \bar{\boldsymbol{\beta}}}(s)\right) | Z_{\tau_{k}} = \eta\right],$

which is not less than $\exp(-\mu)C_2^{-1}E[\exp(-\mu r(Z_{\tau_k})]]$ by virtue of Lemma 1 stated below. Hence we arrive at the desired estimate with $C_1=1+((\mu(\mu-a)/2))C_2^{-1}\exp(-\mu).$ q.e.d.

In the above proof, we have used the next lemma, which also will be utilized in § 4.

Lemma 1. There exists a positive constant C_2 depending only on a and b such that

$$C_{2}^{-1} \leq E \left[\int_{\tau_{k}}^{\tau_{k+1}} d(\operatorname{trace} \sum_{\alpha, \overline{\beta}}(s)) | Z_{\tau_{k}} = \eta \right] \leq C_{2}$$

holds $P(Z_{\tau_k} \in d\eta)$ -a.s. $k=0, 1, 2, 3, \cdots$, for every admissible conformal martingale Z_t .

Proof. For $f \in C^2_b(M)$, we know from Proposition 1 that

$$E[f(Z_{\tau_{k+1}})-f(Z_{\tau_k})-\sum_{\alpha,\beta=1}^n\int_{\tau_k}^{\tau_{k+1}}Lf(X_{\alpha}, X_{\overline{\beta}})_{Z_s}d\sum_{\alpha,\overline{\beta}}(s)|Z_{\tau_k}=\eta]=0$$
$$P(Z_{\tau_k}\in d\eta)\text{-a.s.}, \ k=0,\ 1,\ 2,\ 3,\ \cdots.$$

Taking a countably dense subset of $C_b^2(M)$ and by the approximation procedure we know that the exceptional η -set in the above statement can be taken independently of $f \in C_b^2(M)$. Choose $f = f^{(\eta)}(p) \in C_b^2(M)$ which coincides with $\operatorname{dist}(p, \eta)^2$ on a neighborhood of $\{p; \operatorname{dist}(p, \eta) \leq 1\}$. Then it turns out that

$$1 = E\left[\sum_{\alpha,\beta=1}^{n} \int_{\tau_{k}}^{\tau_{k+1}} Lf(X_{\alpha}, X_{\overline{\beta}})_{Z_{s}} d\sum_{\alpha,\overline{\beta}}(s) | Z_{\tau_{k}} = \eta\right] \qquad P(Z_{\tau_{k}} \in d\eta) \text{-a.s.}$$

Again by the Hessian comparison theorem, we find that there exists a constant C_2 depending only on the curvature bounds a and b such that

$$C_2g \leq Lf^{(\eta)} \leq C_2^{-1}g$$
 on $\{p; \operatorname{dist}(p, \eta)\} \leq 1$,

so we have

$$C_{2}^{-1} \leq E\left[\int_{\tau_{k}}^{\tau_{k+1}} d(\operatorname{trace} \sum_{\boldsymbol{\alpha}, \bar{\beta}}(s)) | Z_{\tau_{k}} = \eta\right] \leq C_{2}$$
$$P(Z_{\tau_{k}} \in d\eta) \text{-a.s.} \qquad \text{q.e.d.}$$

The next theorem is an immediate consequence of Proposition 2 combined with the geometrical method employed by D. Sullivan [12] and J.J. Prat [10].

Theorem A. For every admissible conformal martingale $(Z_t)_{0 \le t < \zeta}$, the following are true :

(i) The limit $\lim_{t \to \infty} Z_t$ exists in $M(\infty)$ a.s.

(ii) F any $\xi \in M(\infty)$, $\varepsilon > 0$ and neighborhood $V \subset M(\infty)$ of ξ , there exists a neighborhood $U \subset \overline{M}$ of ξ relative to the cone topology such that

$$P(\lim_{t^{\dagger\zeta}} Z_t \in V) \geq 1 - \varepsilon ,$$

whenever Z_t strats from a point of U. U does not depend on the choice of $(Z_t)_{0 \le t < \zeta}$.

3. The stochastic solution of the Monge-Ampère equation—the statement of the main theorem

Let K_p be the family of all admissible conformal martingales $Z=(Z_i)_{0\leq i<\zeta(Z)}$ on M such that Z starts from $p\in M$ and the associate process $(\sum_{\sigma,\bar{\beta}}(t))_{0\leq i<\zeta(Z)}$ in Proposition 1 possesses a density $(A_{\sigma,\bar{\beta}}(t))_{0\leq i<\zeta(Z)}$ with respect to the Lebesgue measure dt with det $A_{\sigma,\bar{\beta}}(t)\geq 1$ for $t\geq 0$ a.s. For $Z\in K_p$, set

$$w(p, Z) = E[-C(n) \int_0^{\zeta(Z)} f^{1/n}(Z_t) dt + \varphi(Z_{\zeta(Z)})],$$

where $C(n) = n/8(n!)^{1/n}$. By virtue of Lemma 2 in the next section, we know that, if $Z=(Z_t)$ is the conformal diffusion generated by the Kahler mertic g on M, then w(p, Z) is exactly the solution of the Dirichlet problem with boundary condition on the sphere at infinity:

$$\begin{cases} \Delta_g u/2 = C(n)f^{1/n} \\ u|_{M(\infty)} = \varphi \end{cases}$$

for the Laplace-Beltrami operator Δ_g related to g. Now, we can describe the solution of the Monge-Ampère equation (1), using the above stochastic notations.

Theorem B. The function

(3)
$$u(p) = \inf_{Z \in K_p} w(p, Z), \quad p \in M$$

is the unique solution of the Monge-Ampère equation (1).

In the following sections, we shall prove this theorem. The proof will be performed by the stochastic control method due to B. Gaveau [6].

4. Continuity of the stochastic solution

In this section, we shall prove the continuity of the function u defined by (3).

Proposition 3. u can be extended to a continuous function on \overline{M} and $u|_{M^{(\infty)}} = \varphi$.

We have to prepare several lemmas for the proof.

Lemma 2. For each $Z \in K_p$, there exist positive constants ν and C_3 depending only on the constants μ_0 , C_0 in (2) and the curvature bounds such that

$$E\left[\int_0^{\zeta(z)} f(Z_t)^{1/n} dt\right] \leq C_2 \exp\left(-\nu r(p)\right).$$

Proof. By the assumption (2) imposed on f, for $\nu \leq \mu_0$, we know

$$E\left[\int_{0}^{\zeta(Z)} f(Z_{t})^{1/n} dt\right]$$

$$\leq C_{0} E\left[\int_{0}^{\zeta(Z)} \exp\left(-\nu r(Z_{t})/n\right) dt\right]$$

$$\leq C_{0} \sum_{k=0}^{\infty} E\left[\int_{\tau_{k}}^{\tau_{k+1}} \exp\left(-\nu r(Z_{t})/n\right) dt\right],$$

where $\tau_0=0$, $\tau_1=\inf\{t>0; \dim(Z_t, Z_0)=1\}, \dots, \tau_{k+1}=\inf\{t>\tau_k; \dim(Z_t, Z_{\tau_k})=1\},\dots$. We may assume that ν is so small that ν/n is less than a. Because $E[\int_{\tau_k}^{\tau_{k+1}} \exp(-\nu r(Z_t)/n) dt] \leq E[\int_{\tau_k}^{\tau_{k+1}} \exp(-\nu r(Z_t)/n) d(\operatorname{trace} \sum_{a,\bar{\beta}}(t))]$, we have $E[\int_{\tau_k}^{\tau_{k+1}} \exp(-\nu r(Z_t)/n) dt] \leq \exp(a)C_2 E[\exp(-\nu r(Z_{\tau_k})/n)]$, in view of the proof of Proposition 2. Further by virtue of the basic estimate (Proposition 2) we know

$$\sum_{k=0}^{\infty} E[\exp(-\nu r(Z_{\tau_k})/n] \leq (1-C_1)^{-1} \exp(-\nu r(p)/n).$$

The desired inequality holds for $C_3 = \exp(a)C_0C_2(1-C_1)$.

Combining this with the result on the weak convergence of the hitting distribution in Theorem A (ii), we know that for arbitrary $\xi \in M(\infty)$ and any $\varepsilon > 0$, there exists a neighborhood U of ξ such that

$$(4) p \in U \Rightarrow |w(p, Z) - \varphi(\xi)| < \varepsilon,$$

when $Z \in K_p$. Furthermore, we can show the following lemma.

Lemma 3. For any $\varepsilon > 0$, there exist a positive large constant R and a small constant γ_0 such that, if

$$p \oplus D_R = \{\eta \in M; r(\eta) < R\}$$

and dist $(p, q) < \gamma_0$, then

$$|w(p, Z) - w(q, Z')| < \varepsilon$$
,

for any $Z \in K_p$ and $Z' \in K_q$.

Proof. For any $\varepsilon > 0$, there exist some points $\xi_1, \dots, \xi_n \in M(\infty)$ and open sets $U_i \ni \xi_i$ such that

$$p \in U_i \text{ and } Z \in K_p$$

 $\Rightarrow |w(p, Z) - \varphi(\xi_i)| < \varepsilon/2$

q.e.d.

H. KANEKO

for all i=1, 2, ..., n and $M(\infty) \subset \bigcup_{i=1}^{n} U_i$. Take a closed neighborhood $U'_i \subset U_i$ of ξ_i so that $M(\infty) \subset \bigcup_{i=1}^{n} U'_i$. Then, there exists R>0 satisfying $M \setminus D_R \subset \bigcup_{i=1}^{n} U'_i$. Therefore for sufficiently small, γ_0 we know that

$$\begin{aligned} \operatorname{dist}(p, q) &< \gamma_0, p \notin D_R \\ \Rightarrow &|w(p, Z) - w(q, Z')| \\ \leq &|w(p, Z) - \varphi(\xi_i)| + |\varphi(\xi_i) - w(q, Z')| \\ &< \varepsilon/2 + \varepsilon/2 = \varepsilon , \end{aligned}$$

whenever $Z \in K_p$ and $Z' \in K_q$, by choosing *i* so that $p \in U'_i$. q.e.d.

Because the holomorphic tangent bundle is holomorphically trivial, there exists a frame of holomorphic vector fields Y_1, \dots, Y_n . Let $\Phi_z(p) =$ $\exp(\operatorname{Re} \sum_{i=1}^n z^i Y_i)(p)$, for $p \in M$ and $z = (z^1, \dots, z^n)$ in \mathbb{C}^n . This transformation on M was considered in T. Asaba [2] and proven to enjoy the next property:

For any R>0, there exists $\Delta_{\delta} = \{z \in C^n; \sum_{i=1}^{n} |z^i|^2 < \delta\}$ such that $\Phi_z(p)$ is a smooth mapping from $\Delta_{\delta} \times D_R$ to M satisfying the following properties (i), (ii) and (iii).

(i) For each $z \in \Delta_{\delta}$, Φ_z gives a biholomorphic mapping from the domain D_R to $\Phi_z(D_R)$.

(ii) Φ_0 is the identity transformation on D_R .

(iii) For $p \in D_R$, $\Phi_{\bullet}(p)$ defines a diffeomorphism from Δ_{δ} to some neighborhood of p.

Using this transformation Φ , we can prove the continuity of the stochastic solution u.

Lemma 4. For any $\varepsilon > 0$ and R > 0, there exists $\gamma > 0$ such that for each $Z \in K_p$ and q enjoying $p \in D_R$ and dist $(p, q) < \gamma$, we can always find $Z' \in K_q$ so that

$$|w(p, Z) - w(q, Z')| < \varepsilon$$
.

Proof. To begin, replace R by a sufficiently large one and choose γ_0 so that the implication in Lemma 3 holds for $\mathcal{E}/2$ instead of \mathcal{E} . Fix $Z \in K_p$. We then consider the holomorphic local transformation Φ and the Kähler diffusion $B_t(\eta)$ on M starting from $\eta \in M$, independent of Z and measurable in t, z and ω . Let

(5)
$$Z_t^{\Phi_z(p)} = \begin{cases} \Phi_z(Z_t), & t \leq \tau \\ B_{t-\tau}(\Phi_z(Z_\tau)), & t > \tau, \end{cases}$$

where $\tau = \inf\{t > 0; Z_t \oplus D_R\}$.

We next perform the time change by letting $\hat{Z}_{t}^{\Phi_{z}(p)} = Z_{\tau_{t}}^{\Phi_{z}(p)}$, up to the explosion time of $\hat{Z}^{\Phi_{z}(p)} = (\hat{Z}_{t}^{\Phi_{z}(p)})_{t\geq 0}$, where $\tau_{t} = \inf\{s > 0; \int_{0}^{s} (\det A_{\alpha,\bar{\beta}}(u))^{1/n} du \geq t\}$, $(A_{\alpha,\bar{\beta}}(t))_{t\geq 0}$ being the density of the increasing process associated with $Z^{\Phi_{z}(p)} = (Z_{t}^{\Phi_{z}(p)})_{t\geq 0}$ according to Proposition 1.

On the other hand, taking conditional expectation, we have

$$w(p, Z) = W[-C(n) \int_{\eta}^{\pi} f^{1/n}(Z_t) dt] + \int_{\partial D_R} E[C(n) \int_{\tau}^{\zeta(Z)} f^{1/n}(Z_t) dt + \varphi(Z_{\zeta(Z)}) | Z_{\tau} = \eta] P(Z_{\tau} \in d\eta).$$

If we set $W_t = Z_{t+\tau}$ and let

$$w(\eta, W) = E\left[-C(n)\int_0^{\zeta(Z)-\tau} f^{1/n}(W_t)dt + \varphi(Z_{\zeta(Z)})|Z_{\tau}=\eta\right]$$

for $W = (W_t)_{0 \le t < \zeta(Z) - \tau}$, then

$$w(p, W) = E[-C(n)\int_0^\tau f^{1/n}(Z_t)dt] + \int_{\partial D_R} w(\eta, W)P(Z_\tau \in d\eta).$$

Similarly, letting σ be the first exit time from $\Phi_z(D_R)$ of $\hat{Z}^{\Phi_z(p)}$, we set $W_t^{\Phi_z(p)} = \hat{Z}_{t+\sigma}^{\Phi_z}$, $0 \leq t < \zeta(\hat{Z}^{\Phi_z(p)}) - \sigma$ and then, for $W^{\Phi_z(p)} = (W_t^{\Phi_z(p)})_{t \geq 0}$,

$$\begin{split} w(\eta, W^{\Phi_{z}(p)}) &= E[-C(n) \int_{0}^{\zeta(W^{\Phi_{z}(p)})} f^{1'n}(W_{i}^{\Phi_{z}(p)}) dt \\ &+ \varphi(W^{\Phi_{z}(p)}_{\zeta(W^{\Phi_{z}(p)})}) |\hat{Z}_{\sigma^{z}}^{\Phi_{z}(p)} = \eta] \,. \end{split}$$

Then

$$w(\Phi_{z}(p), \hat{Z}^{\Phi_{z}(p)}) = E\left[-C(n) \int_{0}^{\sigma} f^{1/n}(\hat{Z}^{\Phi_{z}(p)}_{t})dt\right] \\ + \int_{\partial \Phi_{z}(D_{B})} w(\eta', W^{\Phi_{z}(p)}) P(\hat{Z}^{\Phi_{z}(p)}_{\sigma} \in d\eta')$$

Therefore, after all we have that

$$w(p, Z) - w(\Phi_{z}(p), Z^{\Phi_{z}(p)}) = E[-C(n)(\int_{0}^{\tau} f^{1/n}(Z_{t}) dt - \int_{0}^{\sigma} f^{1/n}(\hat{Z}_{t}^{\Phi_{z}(p)}) dt)] \\ + \int_{\partial D_{R}} \{w(\eta, W) - w(\Phi_{z}(\eta), W^{\Phi_{z}(p)})\} P(Z_{\tau} \in d\eta).$$

From Lemma 2, there exists $\delta > 0$ such that the absolute value of the second term of the right hand side is less than $\mathcal{E}/2$ for every $z \in \Delta_{\delta}$. While the continuity of $f^{1/n}$ shows that the first term of the right hand side is less than $\mathcal{E}/2$ in

the abo absolute value, whenever $z \in \Delta_{\delta}$.

Because, for sufficiently small γ , the γ -neighborhood of each $p \in D_R$ is contained in the image of Δ_{δ} by the mapping $\Phi_{\bullet}(p)$, for $q = \Phi_z(p)$, $Z' = \hat{Z}^{\Phi_z(p)}$ is the required conformal martingale in our lemma. q.e.d.

Proof of Proposition 3. The last inequality in Lemma 4 implies $w(p, Z) \ge u(q) - \varepsilon$. Taking the infimum over $Z \in K_p$, we can conclude that $u(p) \ge u(q) - \varepsilon$, whenever $p, q \in D_R$ and dist $(p, q) < \gamma$. Exchanging the role of p and q, we see that u is a continuous function on M. Recalling the estimate (4) noted after Lemma 2, we know that $\lim_{p \to \xi} u(p) = \varphi(\xi)$ for each $\xi \in M(\infty)$. This completes the proof.

5. The Bellman principle

The purpose of this section is to establish the Bellman principle in order to localize the stochastic expression of the function u defined by (3).

Proposition 4. For every bounded domain D of M and $p \in D$, we obtain

$$u(p) = \inf_{Z \in K_p} E[-C(n) \int_0^{\tau_D(Z)} f^{1/n}(Z_t) dt + u(Z_{\tau_D(Z)})]$$

where $\tau_D(Z) = \inf\{t > 0; Z_t \oplus D\}$.

Proof. Fix $\varepsilon > 0$ and take R so that $D_R \supset \overline{D}$. For each $q \in \partial D$ there exist $\delta > 0$ and $Z \in K_q$ such that, for $z \in \Delta_{\delta}$,

$$|w(\Phi_z(q), \hat{Z}^{\Phi_z(q)}) - u(q)| > \varepsilon$$
,

where $Z^{\Phi_{z}(q)}$ is the conformal martingale defined by (5). Therefore, we can select several points $q_{1}, \dots, q_{n} \in \partial D$ and their neighborhoods $\Delta(q_{1}), \dots, \Delta(q_{n})$ so that $\partial D \subset \bigcup_{i=1}^{n} \Delta(q_{i})$ (disjoint union), the image of $\Phi_{\cdot}(q_{i})$ contains $\Delta(q_{i})$ and

$$|w(\Phi_{z}(q_{i}), \hat{Z}^{\Phi_{z}(q_{i})}) - u(q_{i})| < \varepsilon$$
,

whenever $Z^{\Phi_z(q_i)}$ is in $\Delta(q_i)$, $i=1, 2, \dots, n$.

For each $Z \in K_p$, we set

$$Z_i^* = \begin{cases} Z_i, & \text{if } t \leq \tau_D(Z) \\ \hat{Z}_{t-\tau_D(Z)}^{\Phi_z(q_i)} & \text{if } t > \tau_D(Z), Z_{\tau_D(Z)} \in \Delta(q_i) \text{ and} \\ \Phi_z(q_i) = Z_{\tau_D(Z)}, i = 1, 2, \cdots, n \end{cases}$$

where we take $Z^{\Phi_z(q_i)}$ and Z to be independent. Then $Z^* = (Z_i^*) \in K_p$. By the same method of B. Gaveau [6; pp. 400-403], we can prove that

$$u(p) - \varepsilon \leq E[-C(n) \int_0^{\tau_D} f^{1/n}(Z_t) dt + u(Z_{\tau_D})]$$

$$\leq E[-C(n) \int_0^{\zeta(Z)} f^{1/n}(Z_t) dt + \varphi(Z_{\zeta(Z)})].$$

Since $\varepsilon > 0$ is arbitrary, the proof is completed.

6. Proof of the main theorem

Finaly, we shall finish the proof of the main theorem by showing the next two propositions.

Proposition 5. *u* is a plurisubharmonic function and $(dd^c u)^n = f \omega_0^n / n!$ on M.

Proposition 6. If u_0 is a solution of (1), then

$$u_0(p) = \inf_{Z \in \mathcal{K}_p} E\left[-C(n) \int_0^{\zeta} f^{1/n}(Z_t) dt + \varphi(Z_{\zeta})\right].$$

In particular, (1) has a unique solution.

Proof of Proposition 5. Let p be an arbitrary point of M. Choose a complex local coordinate system (D, z^1, \dots, z^n) around p such that $\psi = (z^1, \dots, z^n)$ defines a biholomorphic mapping from D to the complex unit ball $B = \{(z^1, \dots, z^n) \in \mathbb{C}^n; \sum_{i=1}^n |z^i|^2 < 1\}$. For the push forward function $U(z) = (\psi_* u)(z) = u(\psi^{-1}(z)),$ $U(z) = \inf_{z \in K_z} E[-C(n) \int_0^{\tau_B(z)} (\psi_*(f \det(g)))_{ij} I^{n}(Z_i) dt + U(Z_{\tau_B(z)})],$

where $g_{i\overline{j}} = g(\partial/\partial z^i, \partial/\partial z^j)$ and K_z is the family of all C^n -valued conformal martingales Z which start from $z \in B$ such that $a_{i\overline{j}}(t) = d\langle z^i(Z_i), z^{\overline{j}}(Z_i) \rangle/dt$ satisfy $\det(a_{i\overline{j}}(t)) \ge 1$, $t \ge 0$ a.s.

Consider the following Monge-Ampère equation

(6)
$$\begin{cases} v \in PSH(B) \cap C(B) \\ (dd^{c}v)^{n} = \psi_{*}(f \det(g_{i\overline{j}}))dV \\ v|_{\partial B} = U|_{\partial B}, \end{cases}$$

where dV stands for the Lebesgue measure on C^n . Because of the strongly pseudo-convexity of B, we see that Theorem 4 and Remark of B. Gaveau [6; pp. 402-403] ensure the following stochastic description of the solution v_0 of (6):

$$v_0(z) = \inf_{z \in \mathbb{K}_z} E\left[-C(n) \int_0^{\tau_B(z)} (\psi_*(f \det(g_{i\bar{j}})))^{1} (Z_i) dt + U(Z_{\tau_B(z)})\right], \quad z \in B.$$

q.e.d.

Hence, we know that $v_0 = U$ on B and $u(p) = \psi_* v_0(p) \in PSH(D)$ and that $(dd^c u)^n = f \omega_0^n / n!$ on D.

Proof of Proposition 6. To begin, take the countable family of charts $(U_i; z_i^1, \dots, z_i^n)_{i=1}^{\infty}$ appeared in the proof of Proposition 1, we may assume that each $\psi_i = (z_i^1, \dots, z_i^n)$ gives a biholomorphic mapping between U_i and the unit ball $B \subset C^n$. By virtue of Theorem 4 of B. Gaveau [6], for any $\varepsilon > 0$, there exists a $Z^{(1)} \in K_p$ such that

$$E[-C(n)\int_{0}^{\sigma_{1}}f^{1/n}(Z_{t})dt+u_{0}(Z_{\sigma_{1}}^{(1)})] \leq u_{0}(p)+\varepsilon/2,$$

where σ_1 is the stopping time for $Z^{(1)}$ defined in the proof of Proposition 1. For each $q \in \partial U_i$ there exists $\delta > 0$ and $Z \in K_q$ such that

$$w(\Phi_{z}(q), Z^{\Phi_{z}(q)}) < u_{0}(q) + \varepsilon/2^{2},$$

whenever $z \in \Delta_{\delta}$. Using the same argument as in the proof of Proposition 4, we can construct $Z^{(2)} \in K_p$ which satisfies

$$Z^{(1)}_{t\wedge\sigma_1} = Z^{(2)}_{t\wedge\sigma_1}$$

and

$$E[-C(n)\int_{0}^{\sigma_{2}}f^{1/n}(Z_{t}^{(2)})dt+u_{0}(Z_{\sigma_{2}}^{(2)})] \leq u_{0}(p)+\varepsilon/2+\varepsilon/2^{2},$$

where σ_2 is defined for $Z^{(2)}$ in the same way as above. Repeating this procedure, we obtain a sequence $(Z^{(k)})_{k=1}^{\infty} \subset K_p$ so that $Z_{t \wedge \sigma_{k-1}}^{(k-1)} = Z_{t \wedge \sigma_{k-1}}^{(k)}, t \ge 0$. a.s. and that

$$E[-C(n)\int_{0}^{\sigma_{k}}f^{1/n}(Z_{t}^{(k)})dt+u_{0}(Z_{\sigma_{k}}^{(k)})] \leq u_{0}(p)+\sum_{i=1}^{k}\varepsilon/2^{i},$$

where σ_k is defined for $Z^{(k)}$ as above.

Define $Z_t = Z_t^{(k)}$, if $t < \sigma_k$. Then we can easily check that $Z = (Z_t) \in K_p$ and that $\lim_{t \to 0} \sigma_k = \zeta(Z)$. Hence, we know

$$E[-C(n)\int_0^{\zeta} f^{1/n}(Z_t)dt + \varphi(Z_{\zeta})] \leq u_0(p) + \varepsilon.$$

Letting $\mathcal{E} \rightarrow 0$, we can conclude that

$$u_0(p) \geq \inf_{Z \in \mathcal{K}_p} E\left[-C(n) \int_0^{\zeta} f^{1/n}(Z_i) dt + \varphi(Z_{\zeta})\right].$$

On the other hand, we can inductively obtain, for each $Z \in K_{p}$,

$$u_0(p) \leq E[-C(n) \int_0^{\sigma_k} f^{1/n}(Z_t) dt + u_0(Z_{\sigma_k})], \qquad k = 1, 2, 3, \cdots,$$

q.e.d.

and so we have the opposite inequality, by letting $k \rightarrow \infty$.

References

- M.T. Anderson: The Dirichlet problem at infinity for negatively curved manifolds, J. Differential Geom. 18 (1983), 701-722.
- T. Asaba: Asymptotic Dirichlet problem for a complex Monge-Ampère operator, Osaka J. Math. 23 (1986), 815-821.
- [3] E. Bedford and B.A. Taylor: The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44.
- [4] P. Eberlein and B. O'Neill: Visibility manifolds, Pacific J. Math. 46 (1973), 45-109.
- [5] M. Fukushima: A stochastic approach to the minimum principle for the complex Monge-Ampère operator, Proc. of Symp. on Stochastic processes and its applications at Nagoya, Lecture Notes in Math., Springer.
- [6] B. Gaveau: Méthodes de controle optimal en analyse complex 1. Résolution d'equation de Monge-Ampère, J. Funct. Anal. 25 (1977), 391-411.
- [7] R.E. Greene: Function theory of noncompact Kähler manifolds of nonpositive curvature, Seminar on Differential Geometry, ed. by S.T. Yau, Ann. of Math. Studies 102, Princeton Univ. Press, 1982.
- [8] R. Greene and H. Wu: Function theory on manifolds which possesses a pole, Lecture Notes in Math. No. 699, Springer.
- [9] M. Okada: Espace de Dirichlet generaux en analyse complexe, J. Funct. Anal. 46 (1982), 395-410.
- [10] J.J. Prat: Etude asymptotique et convergence angulaire du mouvement brownien sur une variete a curbure negative, C.R. Acad. Sci. Paris 280, Ser. A (1975), 1539–1542.
- [11] Y.T. Siu: Pseudoconvexity and the problem of Levi, Bull. Amer. Math. Soc. 84 (1978), 481-512.
- [12] D. Sullivan: The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom. 18 (1983), 701-722.
- [13] H. Wu: Normal families of holomorphic mappings, Acta Math. 119 (1967), 193– 233.

Department of Mathematical Science College of Engineering University of Osaka Prefecture Mozu-umemachi, Sakai-city Osaka 591, Japan