HOMOTOPY REPRESENTATION GROUPS AND SWAN SUBGROUPS

Ikumitsu NAGASAKI

(Received January 21, 1986)

0. Introduction

Let G be a finite group. A finite dimensional G - $C W$-complex X is called a homotopy representation of G if the H-fixed point set X^{H} is homotopy equivalent to a $\left(\operatorname{dim} X^{H}\right)$-dimensional sphere or the empty set for each subgroup H of G. Moreover if X is G-homotopy equivalent to a finite G - $C W$-complex, then X is called a finite homotopy representation of G and if X is G-homotopy equivalent to a unit sphere of a real representation of G, then X is called a linear homotopy representation of G. T. tom Dieck and T. Petrie defined homotopy representation groups in order to study homotopy representations. Let $V^{+}\left(G, h^{\infty}\right)$ be the set of G-homotopy types of homotopy representations. We define the addition on $V^{+}\left(G, h^{\infty}\right)$ by the join and so $V^{+}\left(G, h^{\infty}\right)$ becomes a semigroup. The Grothendieck group of $V^{+}\left(G, h^{\infty}\right)$ is denoted by $V\left(G, h^{\infty}\right)$ and called the homotopy representation group. A similar group $V(G, h)$ [resp. $V(G, l)]$ can be defined for finite [resp. linear] homotopy representations.

Let $\phi(G)$ denote the set of conjugacy classes of subgroups of G and $C(G)$ the ring of functions from $\phi(G)$ to integers. For a homotopy representation X, the dimension function $\operatorname{Dim} X$ in $C(G)$ is defined by $(\operatorname{Dim} X)(H)=\operatorname{dim} X^{H}$ +1 . (If X^{H} is empty, then we set $\operatorname{dim} X^{H}=-1$.) Then

$$
\operatorname{Dim} X * Y=\operatorname{Dim} X+\operatorname{Dim} Y
$$

for any two homotopy representations. ("*" means the join.) Hence one can define the homomorphism

$$
\operatorname{Dim}: V(G, \lambda) \rightarrow C(G) \quad\left(\lambda=h^{\infty}, h \text { or } l\right)
$$

by the natural way. The kernel of Dim is denoted by $v(G, \lambda)$. tom Dieck and Petrie proved that $v(G, \lambda)$ is the torsion group of $V(G, \lambda)$ and

$$
\begin{equation*}
v\left(G, h^{\infty}\right) \cong \operatorname{Pic} \Omega(G) \tag{0.1}
\end{equation*}
$$

where Pic $\Omega(G)$ is the Picard group of the Burnside ring $\Omega(G)$.
There are the natural homomorphisms

$$
\begin{align*}
& j_{G}: v(G, l) \rightarrow v(G, h) \tag{0.2}\\
& k_{G}: v(G, h) \rightarrow v\left(G, h^{\infty}\right) .
\end{align*}
$$

The homomorphisms j_{G} and k_{G} are injective in general and hence we often regard $v(G, l)$ and $v(G, h)$ as the subgroups of $v\left(G, h^{\infty}\right)$ via these injective homomorphisms. We prove the following result in Section 2.

Theorem A. The homomorphism k_{G} is an isomorphism if and only if the Swan subgroup $T(G)$ vanishes.

The definition and properties of the Swan subgroup are mentioned in Section 1. The finite groups with $T(G)=0$ are studied by Miyata and Endo [7]. The Swan subgroups play an important role in the computation of v (G, h). In fact, the computation of $v(G, h)$ for an abelian group G is completely reduced to the computation of the Swan subgroups. By computing the Swan subgroups of some groups, we prove the following result in Section 3.

Theorem B. Suppose that G is an abelian group. Then j_{G} is an isomorphism if and only if G is isomorphic to one of the following groups.
(i) C a cyclic group
(ii) G_{2} an abelian 2-group
(iii) G_{3} an abelian 3-group
(iv) $\boldsymbol{Z} / 2 \times G_{3}$
(v) $\boldsymbol{G}_{2} \times \boldsymbol{Z} / 3$
(vi) $(\boldsymbol{Z} / 2)^{n} \times(\boldsymbol{Z} / 3)^{m}$

In Section 4 we determine the finite groups with $v\left(G, h^{\infty}\right)=0$ by using the results in Section 2.

Theorem C. The group $v\left(G, h^{\infty}\right)$ vanishes if and only if G is isomorphic to one of the groups:

$$
\boldsymbol{Z} / n(n=1,2,3,4 \text { or } 6), D(2 n)(n=2,3,4 \text { or } 6), A_{4}, S_{4} .
$$

Here $D(2 n)$ denotes the dihedral group of order $2 n$ and $S_{n}\left[A_{n}\right]$ denotes the symmetric [alternating] group on n symbols.

1. The Swan subgroup

In this Section, we shall summarize the well-known results on the Swan subgroup. Let Σ_{G} be the sum of elements of G in the integral group ring $\boldsymbol{Z} G$ and $\left[r, \sum_{G}\right]$ be the left ideal generated by r and Σ_{G}, where $r \in \boldsymbol{Z}$ is prime to the order $|G|$ of G. The ideal $\left[r, \Sigma_{G}\right]$ is projective as a $\boldsymbol{Z} G$-module. Hence $\left[r, \Sigma_{G}\right]$ decides the element of the reduced projective class group $\widetilde{\boldsymbol{K}}_{0}(\boldsymbol{Z} G)$. From [9], a homomorphism

$$
\tilde{S}_{G}: Z /|G|^{*} \rightarrow \tilde{K}_{0}(Z G)
$$

is defined by $\tilde{S}_{G}(r)=\left(\left[r, \Sigma_{G}\right]\right)$, where $\boldsymbol{Z} \|\left. G\right|^{*}$ is the unit group of $\boldsymbol{Z} \| G \mid$. We put $u(G)=\left(\left.\boldsymbol{Z}| | G\right|^{*}\right) / \pm 1$. Since $\tilde{S}_{G}(\pm 1)=0, \tilde{S}_{G}$ induces

$$
S_{G}: u(G) \rightarrow \tilde{K}_{0}(Z G),
$$

which is called the Swan homomorphism. The image of S_{G} is called the Swan subgroup of G and denoted by $T(G)$.

The following results are well-known.
Theorem 1.1 ([9]). If G is a cyclic group, then $T(G)=0$.
Theorem 1.2 ([11]).
(i) $T(G)$ is a quotient group of $u(G)$.
(ii) If $f: G \rightarrow G^{\prime}$ is a surjective homomorphism, then the natural map $\tilde{K}_{0}(\boldsymbol{Z} G)$ $\rightarrow \tilde{K}_{0}\left(\boldsymbol{Z} G^{\prime}\right)$ sends $\left(\left[r, \Sigma_{G}\right]\right)$ to $\left(\left[r, \Sigma_{G^{\prime}}\right]\right)$, hence $T(G)$ onto $T\left(G^{\prime}\right)$.
(iii) The restriction map $\tilde{K}_{0}(\boldsymbol{Z} G) \rightarrow \tilde{K}_{0}(\boldsymbol{Z} H)$ sends $\left(\left[r, \Sigma_{G}\right]\right)$ to $\left(\left[r, \Sigma_{H}\right]\right)$, hence $T(G)$ onto $T(H)$.
(iv) The exponent of $T(G)$ divides the Artin exponent $A(G)$. (For the Artin exponent, see [6].)
(v) $T\left(D\left(2^{n}\right)\right)=0(n \geq 2), T\left(Q\left(2^{n}\right)\right)=\boldsymbol{Z} / 2(n \geq 3)$ and $T\left(S D\left(2^{n}\right)\right)=\boldsymbol{Z} / 2(n \geq 4)$, where $D\left(2^{n}\right)$ rresp. $\left.Q\left(2^{n}\right), S D\left(2^{n}\right)\right]$ is the dihedral [resp. quaternion, semi-dihedral] group of order 2^{n}. These groups are called the exceptional groups.

Theorem 1.3 ([10]).
(i) If G is a non-cyclic p-group (p : an odd prime), then $T(G)$ is the cyclic group of order $|G| / p$.
(ii) If G is a non-cyclic and non-exceptional 2-group, then $T(G)$ is the cyclic group of order $|G| / 4$.

Let G_{p} denote a p-Sylow subgroup of G.
Corollary 1.4. If $T(G)$ vanishes, then G_{p} is cyclic when p is odd and G_{2} is cyclic or dihedral.

2. The inclusion $\boldsymbol{k}_{\boldsymbol{G}}$

tom Dieck and Petrie defined the finiteness obstraction map

$$
\begin{equation*}
\rho: v\left(G, h^{\infty}\right) \rightarrow \underset{(H)}{\oplus} \tilde{K}_{0}(Z W H), \tag{2.1}
\end{equation*}
$$

where $W H=N H / H$ and $N H$ is the normalizer of H in G. They proved that the following sequence is exact.

$$
\begin{equation*}
0 \rightarrow v(G, h) \xrightarrow{k_{G}} v\left(G, h^{\infty}\right) \xrightarrow{\rho} \underset{(\boldsymbol{B})}{\oplus} \tilde{K}_{0}(\boldsymbol{Z} W H) \tag{2.2}
\end{equation*}
$$

We recall the map ρ. (For details, see [3].) For any element x of $v(G$, h^{∞}), there exist homotpoy representations X, Y and a G-map $f: X \rightarrow Y$ such that $x=X-Y$ in $v\left(G, h^{\infty}\right)$ and $\operatorname{deg} f^{H}$ is prime to $|G|$ for each subgroup H of G. A function $d \in C(G)$ is defined by $d(H)=\operatorname{deg} f^{H}$ for any (H) and called the invertible degree function of x. Conversely, any $d \in C(G)$ with $(d(H),|G|)$ $=1$ for any (H) is the invertible degree function of some x in $v\left(G, h^{\infty}\right)$. The finiteness obstraction map ρ is described as follows. The (H)-component $\rho_{H}(x)$ $\in \tilde{K}_{0}(\boldsymbol{Z} W H)$ of $\rho(x)$ is equal to

$$
\begin{equation*}
S_{W H}(d(H))-\sum_{\substack{1 \neq K \subseteq W B \\ I \leq, N K}} a_{K, L} \operatorname{ind}_{L}^{W H} \operatorname{res}_{L}^{N K} S_{N K}(d(\tilde{K})), \tag{2.3}
\end{equation*}
$$

where \tilde{K} is the subgroup of G such that $\tilde{K} / H=K$ and $a_{K, L}$ are certain integers and d is the invertible degree function of x.

Proof of Theorem A. For any r which is prime to $|G|$, we take the function $d \in C(G)$ such that $d(1)=r$ and $d(H)=1$ for $(H) \neq(1)$. By (2.3), we have $\rho_{1}(x)=S_{G}(r)$ and $\rho_{H}(x)=0$ for $(H) \neq(1)$, where x denotes the element of $v(G$, h^{∞}) represented by d. Hence $T(G)=0$ if $\rho=0$. Conversely if $T(G)$ vanishes, then $S_{K}=0$ for any subquotient group K of G by Theorem 1.2. Hence $\rho=0$ and so k_{G} is an isomorphism.

Corollary 2.4. Let G be $D\left(2^{n}\right), Q\left(2^{n}\right)$ or $S D\left(2^{n}\right)$. Then $v(G, h)=v(G, l)$.
Proof. In the case of $D\left(2^{n}\right)$, we have proved it in [8]. In the cases of $Q\left(2^{n}\right)$ and $S D\left(2^{n}\right), v(G, l)$ is the subgroup of index 2 of $v\left(G, h^{\infty}\right)$ ([8]). On the other hand $v(G, h)$ is a proper subgroup of $v\left(G, h^{\infty}\right)$ since $T(G)=\boldsymbol{Z} / 2$. Hence $v(G, h)=v(G, l)$.

Remark 2.5. If G is nilpotent, then $\operatorname{Dim} V(G, l)=\operatorname{Dim} V\left(G, h^{\infty}\right)$ ([3]) and hence $V(G, h)=V(G, l)$ for the above groups.

Corollary 2.6. If $v\left(G, h^{\infty}\right)$ vanishes, then $T(G)$ also vanishes.

3. The inclusion $\boldsymbol{j}_{\boldsymbol{G}}$

Let G be an abelian group. Then $v(G, l)$ and $v\left(G, h^{\infty}\right)$ were computed by Kawakubo [5] and tom Dieck-Petrie [3] respectively and it is known that the following diagram is commutative.

Here $u(G / H)=\left(\boldsymbol{Z} /|G / H|^{*}\right) / \pm 1$.
Furthermore, tom Dieck and Petrie showed the following commutative diagram.

$$
\begin{equation*}
\prod_{H}^{v\left(G, h^{\infty}\right)} \underset{\alpha \downarrow}{\sim} \xlongequal{\rho} \underset{\prod_{H} S_{G / H}}{\oplus_{H}} \tilde{K}_{0}(Z[G / H]) \tag{3.2}
\end{equation*}
$$

Hence we obtain
Proposition 3.3. Let G be an abelian group. Then
(i) $v(G, h) \cong v(G, l) \times N(G)$,
where $N(G)=\prod_{H}$ Ker $S_{G / H}$. (If G is cyclic, then we put $N(G)=1$.)
G/H; non-cyclic
(ii) $v\left(G, h^{\infty}\right) / v(G, h) \cong \underset{H}{\oplus} T(G / H)$.

Proof. These are obtained from the exactness of the sequence (2.2) and the fact that $T(G / H)=0$ if G / H is cyclic.

Corollary 3.4. Let G be an abelian group. Then

$$
V(G, h) \cong V(G, l) \times N(G) .
$$

Remark 3.5. For any finite group, one can show that

$$
\left|v\left(G, h^{\infty}\right) / v(G, h)\right| \geq\left|\oplus_{(\mathbb{B})} T(W H)\right|
$$

From now we shall prove Theorem B. Theorem B is proved by the following lemmas.

Lemma 3.6. If $N(G)=1$ for a non-cyclic abelian group G, then $|G|=2^{n} \cdot 3^{m}$ ($n, m \geq 0$).

Proof. If a p-Sylow subgroup $G_{p}(p \geq 5)$ is non-cyclic, then there exists a subgroup L such that G / L is isomorphic to $\boldsymbol{Z} / p \times \boldsymbol{Z} / p$. Since Ker $S_{G / L}$ is non-trivial by Theorem 1.3, G_{p} must be cyclic. We may put $G=G_{2} \times G_{3} \times C$, where C is a cyclic group with $(|C|, 6)=1$. We prove that C is trivial. Assume that C is non-trivial. Since G is non-cyclic, there exists a subgroup K such that G / K is isomorphic to $\boldsymbol{Z} / q \times \boldsymbol{Z} / q \times \boldsymbol{Z} / p$ ($q=2$ or $3, p \geq 5$). The Artin exponent $A(G / K)$ is equal to q and so $T(G / K)$ is a q-group by Theorem 1.2. On the other hand, it is easily checked that the exponent of $u(G / K)$ is not equal to q. Hence Ker $S_{G / K} \neq 1$ and so $N(G) \neq 1$. This is a contradiction. Therefore C is trivial.

Lemma 3.7. Put $G=\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 3^{m}(m \geq 1)$. Then $\operatorname{Ker} S_{G} \neq 1$ if $m \geq 2$ and $\operatorname{Ker} S_{G}=1$ if $m=1$.

Proof. Since the Artin exponent $A(G)=2$ and $|u(G)|=2 \cdot 3^{m-1}$, the Swan subgroup $T(G)$ is isomorphic to 1 or $\boldsymbol{Z} / 2$. Moreover $T(\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 3)=\boldsymbol{Z} / 2$ ([4], [7]). Hence $T(G)=\boldsymbol{Z} / 2$. Thus the desired result holds.

Lemma 3.8. Put $\boldsymbol{G}=\boldsymbol{Z} / 2^{n} \times \boldsymbol{Z} / 3 \times \boldsymbol{Z} / 3(n \geq 1)$. Then $\operatorname{Ker} S_{G} \neq 1$ if $n \geq 2$ and $\operatorname{Ker} S_{G}=1$ if $n=1$.

Proof. The proof is similar to the proof of Lemma 3.7. The details are omitted.

Lemma 3.9. Let G_{2} be a non-cyclic abelian group of order 2^{n}. We put $\boldsymbol{G}=G_{2} \times \boldsymbol{Z} / 3$. Then $\operatorname{Ker} S_{G_{2}}=1$ and $\operatorname{Ker} S_{G}=1$.

Proof. By Theorem 1.3, it is clear that $\operatorname{Ker} S_{G_{2}}=1$. We consider the restriction map

$$
R=\left(\operatorname{res}_{G_{2}}, \operatorname{res}_{K}\right): T(G) \rightarrow T\left(G_{2}\right) \oplus T(K)
$$

where K is a subgroup which is isomorphic to $\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 3$. We show that R is surjective. Take any element (a, b) in $T\left(G_{2}\right) \oplus T(K)$. Then there exists $r \in Z$ with $(r,|G|)=1$ such that $\operatorname{res}_{G_{2}} S_{G}(r)=S_{G_{2}}(r)=a$. Put $c=\operatorname{res}_{K} S_{G}(r)=S_{K}(r)$. If $c \neq b$, then take $\left(2^{n}-1\right) r$ [resp. $\left(2^{n}+1\right) r$] instead of r when n is odd [resp. even]. Then

$$
\operatorname{res}_{G_{2}} S_{G}\left(\left(2^{n} \pm 1\right) r\right)=S_{G_{2}}(r)=a
$$

and

$$
\operatorname{res}_{K} S_{G}\left(\left(2^{n} \pm 1\right) r\right)=\left\{\begin{array}{ll}
S_{K}(5)+S_{K}(r) & \text { if } n \text { is even } \\
S_{K}(7)+S_{K}(r) & \text { if } n \text { is odd }
\end{array}\right\}=b
$$

The last equality follows from the facts that $T(K)=\boldsymbol{Z} / 2, S_{K}(5) \neq 0$ and $S_{K}(7)$ $\neq 0$. Hence R is surjective.

The orders of $T\left(G_{2}\right)$ and $T(K)$ are 2^{n-2} and 2 respectively. Since $|u(G)|$ $=2^{n-1},|u(G)|=|T(G)|$. Hence Ker $S_{G}=1$.

Lemma 3.10. Let G_{3} be a non-cyclic abelian group of order 3^{m}. We put $\boldsymbol{G}=\boldsymbol{Z} / 2 \times \boldsymbol{G}_{3} . \quad$ Then $\operatorname{Ker} S_{G_{3}}=1$ and $\operatorname{Ker} S_{G}=1$.

Proof. This follows from the comparison between the orders of $u(G)$ and $T(G)$.

Lemma 3.11. We put $G=G_{2} \times G_{3}$ for the above G_{2} and G_{3}. Then $\operatorname{Ker} S_{G}$ $=1$.

Proof. The restriction maps $T(G) \rightarrow T\left(G_{2} \times \boldsymbol{Z} / 3\right)$ and $T(G) \rightarrow T\left(G_{3}\right)$ are surjective. Since $\left|T\left(G_{2} \times \boldsymbol{Z} / 3\right)\right|=2^{n-1}$ by Lemma 3.9 and $\left|T\left(G_{3}\right)\right|=3^{m-1}$ by Theorem 1.3, we have $|T(G)| \geq 2^{n-1} \cdot 3^{m-1}$. Hence Ker $S_{G}=1$.

Proof of Theorem B. Assume that j_{G} is an isomorphism (i.e. $N(G)=1$). By Lemma 3.6, $G=G_{2} \times G_{3}$. If both G_{2} and G_{3} are cyclic, then G is cyclic. If G_{2} is cyclic and G_{3} is non-cyclic, then $G_{2}=1$ or $\boldsymbol{Z} / 2$ by Lemma 3.8. If G_{2} is non-cyclic and G_{3} cyclic, then $G_{3}=1$ or $\boldsymbol{Z} / 3$ by Lemma 3.7. If both G_{2} and G_{3} are non-cyclic, then $G=(\boldsymbol{Z} / 2)^{n} \times(\boldsymbol{Z} / 3)^{m}$ by Lemmas 3.7 and 3.8. Conversely, if G is one of the groups (i)-(vi), then $N(G)=1$ by Lemmas 3.7-3.11.

4. The finite groups \boldsymbol{G} with $\boldsymbol{v}\left(\boldsymbol{G}, \boldsymbol{h}^{\infty}\right)=0$

In this Section we determine the finite groups with $v\left(G, h^{\infty}\right)=0$. We first show the following result.

Proposition 4.1. Let C be a cyclic subgroup of G. Then the restriction map

$$
\text { res: } v\left(G, h^{\infty}\right) \rightarrow v\left(C, h^{\infty}\right)
$$

is surjective.
Proof. Let $d \in C(C)$ be an invertible degree function representing $x \in$ $v\left(C, h^{\infty}\right)$. We can choose an integer a_{K} such that $d(K)+a_{K}|C|$ is prime to $|G|$ for any subgroup K of C. Then $d^{\prime}(K)=d(K)+a_{K}|C|$ is also an invertible degree function representing x. (See [3].) We define $e \in C(G)$ by

$$
e(H)=\left\{\begin{array}{cl}
d^{\prime}\left(g H g^{-1}\right) & \text { if }(H) \subseteq \phi(G) \text { with } g H g^{-1} \subseteq C \\
1 & \text { otherwise }
\end{array}\right.
$$

This is well-defined since C is cyclic. Let $y \in v\left(G, h^{\infty}\right)$ be the element represented by e. Then res $y=x$ since d is an invertible degree function of res y.

In the abelian case, we have
Lemma 4.2. Let G be an abelian group. Then $v\left(G, h^{\infty}\right)=0$. If and only if G is isomorphic to $1, \boldsymbol{Z} / 2, \boldsymbol{Z} / 3, \boldsymbol{Z} / 4, \boldsymbol{Z} / 6$ or $D(4)(=\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2)$.

Proof. Using the isomorphism $v\left(G, h^{\infty}\right) \cong \prod_{H} u(G / H)$, one can easily see it.
By Lemmas 4.1 and 4.2, we have
Lemma 4.3. If $v\left(G, h^{\infty}\right)$ vanishes, then any cyclic subgroup C of G is isomorphic to $1, \boldsymbol{Z} / 2, \boldsymbol{Z} / 3, \boldsymbol{Z} / 4$ or $\boldsymbol{Z} / 6$.

On the other hand, if $v\left(G, h^{\infty}\right)$ vanishes, then the Swan subgroup $T(G)$
also vanishes (Corollary 2.6) and hence we have the following conclusion by Lemma 4.3 and Corollary 1.4.

Lemma 4.4. If $v\left(G, h^{\infty}\right)$ vanishes, then a 2 -Sylow subgroup G_{2} is isomorphic to $1, \boldsymbol{Z} / 2, \boldsymbol{Z} / 4, D(4)$ or $D(8)$ and a 3 -Sylow subgroup G_{3} is isomorphic to 1 , or $\boldsymbol{Z} / 3$ and a p-Sylow subgroup $G_{p}(p \geq 5)$ is trivial.

We consider a non-abelian group G. Suppose that $v\left(G, h^{\infty}\right)$ vanishes. Then $|G|=6,8,12$ or 24 by Lemma 4.4. If $|G|=6$, then G is isomorphic to $D(6)$. If $|G|=8$, then G is isomorphic to $D(8)$ by Lemma 4.4. If $|G|$ $=12$, then G is isomorphic to $A_{4}, D(12)$ or $Q(12)$. In the case $|G|=24, G_{2}$ is isomorphic to $D(8)$ by Lemma 4.4. From Burnside's book ([1] Chap. 9, 126.), G is isomorphic to one of the groups: $D(24), D(8) \times \boldsymbol{Z} / 3, S_{4}$ and $K=\langle a, b, c| a^{4}$ $\left.=b^{2}=c^{3}=1, b c=c b, b^{-1} a b=a^{-1}, a^{-1} c a=c^{-1}\right\rangle$. However $D(24)$ and $D(8) \times \boldsymbol{Z} / 3$ are omitted by Lemma 4.3. Since K has a subgroup which is isomorphic to $\boldsymbol{Z} / 2 \times \boldsymbol{Z} / 2 \times \boldsymbol{Z} / 3$, the Swan subgroup $T(K)$ is non-trivial and K is also omitted by Corollary 2.6. Therefore, in the non-abelian case, if $v\left(G, h^{\infty}\right)$ vanishes, then G is isomorphic to one of the groups: $D(6), D(8), D(12), Q(12), A_{4}$ and S_{4}. We proved the following formula in [8]. (See also [2].)

Proposition 4.4. For any finite group,

$$
\begin{equation*}
\left|v\left(G, h^{\infty}\right)\right|=2^{-n}\left|\Omega(G)^{*}\right| \prod_{(H)} \varphi(|W H|), \tag{4.5}
\end{equation*}
$$

where φ is the Euler function and n is the number of conjugacy classes of subgroups of G.

By computing $\left|v\left(G, h^{\infty}\right)\right|$ as in [8], one can see that $\left|v\left(G, h^{\infty}\right)\right|=1$ for G $=D(6), D(8), D(12), A_{4}$ or S_{4} and $\left|v\left(G, h^{\infty}\right)\right|=2$ for $G=Q(12)$. Therefore we have

Theorem 4.6. $v\left(G, h^{\infty}\right)$ vanishes if and only if G is one of the following groups: $\quad \boldsymbol{Z} / n(n=1,2,3,4,6), D(2 n)(n=2,3,4,6), A_{4}$ and S_{4}.

As a remark, there exist infinitely many groups with $v(G, \lambda)=0(\lambda=h$ or l). Indeed we have

Proposition 4.7. Let G be an abelian group. Then $v(G, l)$ vanishes if and only if $G=(\boldsymbol{Z} / 2)^{n} \times(\boldsymbol{Z} / 4)^{m}$ or $(\boldsymbol{Z} / 2)^{n} \times(\boldsymbol{Z} / 3)^{m}(n, m \geq 0)$.

Proof. One can see it by using the isomorphism $v(G, l) \cong \prod_{B} u(G / H)$. G/H:cyclic
By Proposition 4.7 and Theorem B, we have
Corollary 4.8. Let G be an abelian group. Then $v(G, h)$ vanishes if and
only if $v(G, l)$ vanishes.

References

[1] W. Burnside: Theory of groups of finite order, Cambridge University Press, Cambridge, 1911.
[2] T. tom Dieck: The Picard group of the Burnside ring, Crelles J. Reine Angew. Math. 361 (1985), 174-200.
[3] T. tom Dieck and T. Petrie: Homotopy representations of finite groups, Inst. Hautes Etudes Sci. Publ. Math. 56 (1982), 129-169.
[4] S. Endo and Y. Hironaka: Finite groups with trivial class groups, J. Math. Soc. Japan 31 (1979), 161-174.
[5] K. Kawakubo: Equivariant homotopy equivalence of group representations, J. Math. Soc. Japan 32 (1980), 105-118.
[6] T.Y. Lam: Artin exponents of finite groups, J. Algebra 9 (1968), 94-119.
[7] T. Miyata and S. Endo: The Swan subgroup of the class group of a finite group, to appear
[8] I. Nagasaki: Homotopy representations and spheres of representations, Osaka J. Math. 22 (1985), 895-905.
[9] R.G. Swan: Periodic resolutions for finite groups, Ann. of Math. 72 (1960), 267291.
[10] M.J. Taylor: Locally free class groups of groups of prime power order, J. Algebra 50 (1978), 463-487.
[11] S.T. Ullom: Nontrivial lower bounds for class groups of integral group rings, Illinois J. Math. 20 (1975), 311-330.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan

