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LIMIT PROCESSES FOR THE BRANCHING PROCESSES
W I T H THE PERRON-FROBENIUS ROOT I
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1. Introduction

We consider a multitype branching process whose mean matrix has the
Perron-Frobenius root 1. The purpose of this paper is to show that the nor-
malized sequence of such processes converges to some diffusion process when
the initial population size goes to infinity.

Let X(ή)=(Xa(ή))1^a^d be the d-type branching process and M=(m?)1^βfί^ ί/

its mean matrix. For later convenience we denote by M=(wβ)1^α^ (resp. v=
(va)i£a£d) the column vector (resp. row vector). Type b is said to be accessible
from type a if the (a, b) component of Mn is positive for some τzΞ>0. This rela-
tion is written as a->b. If a-*b and b->a then a and b are said to communicate
with each other and this relation is written as a*->b. Since <-» is an equivalence
relation we can decompose the set of types {1,2, •••, d} into the equivalence clas-
ses Cly C2, •••, CN. Set M%=(ma

b)aeCa,becβ Then we can write M={Mβ

and, by definition, each M% is irreducible.
Hereafter we shall assume the following conditions:

(A.I) M2+ 1ΦQ for any a and M% = O if β<a ,

and

(A.2) Ma is aperiodic and has the Perron-Frobenius root 1 for any a.

The first assumption means that if αGCΛ, b^Cβ and a<β then a-*b but
The second assumption means that each CΛ is a final class or a critical class,
where we say that Ca is a final class (resp. critical class) if the generating
functions Fa(s), a^Cai are linear with respect to / , a^CΛ (resp. otherwise).
Let ea=(hb)izb£d where 8a

b is the Kronecker's delta. The final assumption is

(A.3) Eea[Xb(l)A]<oo for any a and b,

in which Pe<* is the measure of the process X(n) starting at ea. This assumption
is needed to prove the tightness of the processes considered later.

We define a sequence of processes {X"(i)}n^ι by
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(1.1) X\t) = X{[nt])+(nt-[n

where [t] denotes the largest integer not exceeding t. Then the following re-
sults are knowr (see. [3] and [5]):

(T.I) If X\0) = ne\ α (Ξ Q and ί>0, then the distribution of {n~*
converges to some distribution as #->oo.

(T.2) If Cj is a final class, Xn(0) = e\ a^Cx and *>0, then the distribution of
(ft1*"* Xn

Λ(t))^Λ^N converges to some distribution as ft->oo.

The above results suggest us that these processes converge to some process.
The meaning of convergence is as follows. Let C be the set of all continuous
functions from [0, ©o) to Rd endowed with the topology of uniform convergence
on each finite interval. Then the sequence of processes {{Xn{t)y Pn)}n>ι is said
to be convergent to the process (X(t), P) if Qn converges to Q weakly where
Qn (resp. Q) is the probability measure on C induced from Pn (resp. P) by Xn

(resp. X).

For the centered process the following result is known (see. [1: p. 192]):

(T.3) If N = 1, Cλ is a critical class, X" (0)=nea and t>0 then the distribution
of n'1/2(Xn(t)—(Xn(i)u)v) converges to some distribution as n-*oo for some
suitably chosen vectors u and v.

Unfortunately the author could not prove the convergence of the above

process. Instead we can prove that the process \ (X([ns])—(X([ns]) u) v) ds
converges.

We shall study the combined processes {(JΓΛ(0, Y"(ή)}ni>i where Yn(t)
is defined by

Yl(t) = n^ (XΛ([ns])-(XΛ([ns]) u*) vΛ) ds

(1.2) = lΊΪ\xJ!t)-{XJk) u*) vΛ)

+(nt-[nt]) {XΛ{[ni\)-{XΛ{[nt\) u*) vΛ), l^a^N,

in which t?={u*)aEic<» and vΛ=(va)aξΞCΛ are determined by

(1.3) M"Λu* = u*,vaM«a = vΛ and vΛu* = vΛ 1* = 1,

where l*=(l) β € Ξ C α r

The purpose of this paper is to show the following two theorems.

Theorem A. If lim n~* X£(0)=#Λ vΛ, 1 ̂ a^N, then the sequence of pro-

cesses (n~* XnJit)> n~* ̂ Ufί)\^Λ^N converges to some diffusion process.
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Theorem B. Let Cx be a final class. If X?(0)=1, Xn

a(0)=0, a e Cl9 a Φ 1

and lim nι~* Xl(0)=xΛ vΛ9 a^2> then the sequence of processes On1"" X^it), nι~* Yn

Λ

converges to some diffusion process.

The precise forms of these theorems are given in Theorem 2 in section 5
and Theorem 3 in section 6.

To prove our main theorems we must show the tightness and the conver-
gence of any finite dimensional distributions. In general the tightness for a
sequence of continuous processes \(Xn(t), Pn)}n>ι follows from

(1.4)

and the existence of 0 0 such that

(1.5) En[(Xn(t)-Xn(s)y]^C(t-sγ for any n.

But in our case (1.4) is trivial by the definition of our process. To show (1.5)
we shall estimate several moments of X(n) in section 2. Then we shall show
the tightness in section 3. To prove the convergence of finite dimensional dis-
tributions we prepare a limit theorem in section 4. Applying these results we
shall show our main theorems in sections 5 and 6. We shall give some com-
ments for the limit processes in section 7. An example is given in section 8.

The author wishes to express his thanks to Prof. N. Ikeda and Prof. T.
Watanabe who suggested him to extend the results in [5].

2. Preliminary results

In this section we shall estimate several moments for the process X(ή).
Before stating our results we prepare some notations. Set

'u*®vΛ if /? = ,

(2.1) P J = i

where u"®vβ=(uavb)aςΞCa,b<=cβy

(2.2) Q% = I ( 0 _ α ) - i p.^ M

β

β-χi-Mβ

β+Pβyχi-Pβ

β) if

(2.3) λ* = (I-Pa

a) λ* = \*-(va λ*) u« .

Then ΌΛ λ*=0 and

(2.4) Yi{t) λ* ^ Σ 1



582 S. SUGITANI

Set Mn=

(2.5)

. By (A.1) and (A.2) we have

O if β«x,

n-1

k=0

By (A.2) it follows that (M^-Pζ)n=O(pn) for some 0 < p < l . Then the fol-
lowing result is easily seen by the induction argument with respect to β—cc
(cf. [5: section 3]).

Lemma 2.1. Let (A.I) and (A.2) be satisfied. Then we have

(2.6)

(

(2.7)

and hence

= \{β-a)

» - l

A = 0

nβ-*~ι

,(k)\β]

3+O(t

if ,
Q»βλ

β

if

if

+O(nβ-*-*)

n-1

k=0
M*)t

β>

if

(2.8)

= W-* Qitf+Oitf-*-1) if

Next we shall estimate the higher order moments. We define | λ* | = Σ

Lemma 2.2. Let (A.1)-(A.3) be satisfied and a(=CΛS β^a be fixed. Then
there exists 0 0 satisfying the following relations for n^ί and p=2, 3, 4,

(2.9)

(2.10) \L

C\\*\* if β = a and p^3 ,

Cn\X*\4 if β = a and p = 49

// CΛ iί a final class then τΰe have the better estimates

(2.11) IE.[(Xβ(n) \βY]I ^CnKβ-*>|λβ\"
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(2.12)

* if β = a,

Cn\\*+1\p if β = a+landp^3,

C«2 |λ + I | 4 if β = α + 1 and p = 4 ,

Outline of the proof. We first consider in the case p=2. Set

B(n: λ, λ) = (E+[(X(n) XffosβSd »

= (Σ ΣAA^β

where Z)α denotes the partial differentiation with respect to sa. Then we have

B(n: λ, λ) = B{M»~ι λ, M""1 λ ) + M % - l : λ, λ ) ,

and hence

(2.13) B(n: λ, λ) =

This means that

(2.14)

: λ, λ).

Σ Σ Σ Σ
*=0 γ=α> δ=γ ε=γ

(

Then (2.9) and (2.10) follow from Lemma 2.1. If Ca is a final class then B*
(λ*, λ*)=0 and so (2.11) and (2.12) can be shown by the same method.

The other cases can be treated similarly. For the convenience to check the
above results we only remark the forms of moments. Set

C(n: λ, λ, λ) = (

D(n: λ, λ, λ, λ) = (Ee°[(X(n) X)%άcSi ,

C(λ, λ, λ) = ( Σ A D. Όf F\l) X" V X'
*>,c,f

D(\, \, λ, λ) = ( Σ A D. Df Dg F°(l) X" Xc λ ' λ

Then we have

(2.15)
C{n: λ, λ, λ) =

+3Σ-
* = 0

'- 1 C(Mk\, M% M"\)

., B(k: \, λ))+M"C(0: λ, λ, λ),
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D(n: λ, λ, λ, λ) = Σ M"-k-ιD(Mk\, M% M*λ, M"λ)

+ 6 Σ M'-k+1C(M% M"λ, B(k: λ, λ))

(2.16) + 4 Σ M'-^BiMX C(k: λ, λ, λ))

+ 3 Σ M -'-'S(5(ί: λ, λ), Λ(ft: λ, λ))

+M"D{0: λ, λ, λ, λ).

Next we shall estimate the moments for Y"(t).

Lemma 2.3. Let (A.1)-(A.3) be satisfied and α e C 4 ) β^a be fixed. Then
there exists C > 0 satisfying the following relations for ra^l,

(2.17)

(2.18) ί>[( Σ ^ ( ^ ) λ?)4] ^ at*-**1*-1 \\β\4.

If Ca is a final class then we obtain the better estimate

if β = a,

Proof. Since

n-1 β

= 2Σ Σi
A=0 γ=αί

^2 Σ Σ

(2.17) follows from Lemma 2.1 and Lemma 2.2. Combining Lemma 2.2 with

n-1 n - 1

we obtain (2.18) for β^a+1 and (2.19) for β^a+2. If CΛ is a final class then
the process (Xa(ή)> 2 «̂ ^e") ίs a stationary Markov chain having the mixing

property and so (2.19) holds if β=a. To show the rest cases, (2.18) for β=a
and (2.19) for β=a+l9 we first expand (2.18) as follows.
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(2.20)

where

n-l n-l » - l

Σ / 4
n-l n-l

Σ Σ
k 0 l k

(2.21)

n-l n-l n-l

+12 Σ Σ Σ /S.ι.-.
* = 0 l = k + l m = l+l

λ+4 Σ

? {X(1)\+3J1+X(m)\)],

(/) λ {X(l) λ+2 Σ X(m) λ)],

)λ+2 ΣX(i)λ)].

TT» Ί?

Set λ(/v, w)=λ-f-ρ Σ M ; λ and use the Markov property, then we have

/ Γk = Eea[(X(k) λ)3-X(k) λ(4, n-k)],

Ink,ι = Eea[X{k) λ (X(l) λ)2 X(/) λ(3, n-l)],

1 //?,/ = Eea[(X(k) \)2 X(l) \ X(l) λ(2, n-l)],

> /ίf/t = Eea[X(k)λ-X(l)\ X(m)λ X(nι)λ(2y n-m)].

Let β=a or /3=α+l and set λ=λ β . Then it follows from Lemma 2.1
that if β=a then

(2.23) vΛλ
-(p, A) = 0, \λ*(p, k)I ̂ C |λ I,

and if / 3 = α + l then

,k) = 0,(2.24) I

Combining these estimates with Lemma 2.2 we obtain

(2.25)
* if β=a,

I C M | \ * + 1 | 4 if CΛ is a final class and β = α + 1

Hence the proof is completed if we can show

Σ Il.».m
0£*</<ι»S -l
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lCn*\\a\* if β = cc,
= {Cn4\X*+1\i if Ca is a final class and β = a+1

Set

= {Ee*[(X(n)-e°M") X (1) {X{n)-e"Mn) X (2)])1S.»

= B(n:X(ί),X(2))-(e°M"X(l)>e°M"X(2))ieae<l.

Then we have

T"

lk,l,m

= Eea[X{k)\ X(l)\>X{t) Mm-ι\-X{ΐ) Mm-'λ(2, n—m)]

+Ee*[X(k) λ X(l)\'X(l)A(m-l: X,\(2, n-tn))]

= Ej\X(k) X X{ϊ) \-X{ϊ) Mm-'X-X(l) Mm-'X(2, n-m))

+Ee*[X(k) X X(k) Mm~' X X(k) Af'"* A(«-/: λ, X(2, n-tn))]

+Ee*[X(k)X-X(k) A(l-k: X, A(m-l: X,X(2,n-tn)))]

= Σ ihΛP)

Therefore it suffices to show that

Σ IhΛP)
(2.26) ΓC/23|λ*|4 if β = a,

I Crΐ\λ"+1\4 if CΛ is a final class and β =

holds for />=1, 2, 3. If />=1 then by Lemma 2.1 and Lemma 2.2 we have

(2.27) ίCnpO - ' l λ Ί 4 if )S = α ,
= 1 C(ra+«2 p"-') |λ*+ 1 | 4 if Cα is a final class and £ = a+1,

for some 0 < p < l and hence (2.26) holds. Then we shall consider the rest
cases. By (2.13) it follows that if β=a or cc+l then

\Aβ(m-l:X,X(2,n-m))\^C\Xβ\*,

\A\l-k: X, A(m~l: X, X(2, n-m)))\^C\Xβ\3,

and if Ca is a final class then
a

I A*(tn-l: X, X(2, n-m))) \^Cn\X*+1\2,

\A*(l-k: X, A(m-l: X, λ(2, n-m))) | ^

Since
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./..(2) = Ca(k: λ, M'-" λ, M1-* -A(m—/: λ, λ(2, n-m))),

ϊ./..(3) = B\k: λ, il(/-A: λ, Λ(m-l: λ, λ(2, «-«))),

we obtain the same estimates in (2.27) by (2.13), (2.15) and the preceding esti-
mates. Thus we have completed the proof.

We sometimes assume that λ* is a ^-dimensional vector such that (λ*)β=XΛ

if aϊΞCΛ and (λ-) = 0 if «

Lemma 2.4. Let (A.1)-(A.3) be satisfied, a(=CΛί β^a and Γ > 0 be fixed
and p=2 or 4. Then there exists C(T)>0 such that the following relations hold
for ri*L 1 and mfΞLnTy

(2.28) ΓC(Γ) |λT if β = a,

~\c{T)np#-*+v-1\\ίi\p if β^a+ί,

(2.29) r C ( Γ ) | λ T if β = cc,
= lC(Γ)M« p - β + 1 ) - 1 |λ p | # if β>ct+l.

If Cais a final class then

(2.30) Ee.[(X(m) (M"-I) \β)p]^C(T) n*»^ \λβ | * ,

Proof. Since p is even we have

Σ= EA( Σ Xy(m) {AT-I)} \β

V=a

Then (2.28) and (2.30) follow from vβ(Mn—I)β

β \β=0 and the preceding lemmas.
Since the rest cases can be treated similarly we omit the proof.

We shall end this section by showing two lemmas which will be used to
prove the tightness. Let Px denote the measure of the process X(n) starting
atx.

Lemma 2.5. Let (A.1)-(A.3) be satisfied and m^l+1. Then we have

Ex[(X(m) \-xMm λ-X(l) λ+jeM' λ)2]
(2.32) d 4
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+ ΣxβEe*[(X(l)(M»-ι-I)λ)*\,
d

Σ
β = l

Ex[(X(m) λ-xM" \-X(ί) λ+xM' λ)4]

^3Ex[(X(m) λ—xM" \—X(Γ) \+xMι λ)2]2

(2.33) +2MήgX E^

+ 128 Σ *ΣxaEe<.[Xb(Γ)]Ee>[(X(m-l

+ 128 Σ xa Eea[(X{ΐ) (Mn-'-I) λ ) 4 ].

Proof. By the branching property of X(n) it follows that

Ex[(X(m) λ - i r λ-X(l) λ+xM' λ)2]

(2.34) = Σ Xa Es[(X{m) λ-e'Mm \-X(l) λ+e'M' λ)2]

' λ)4]

) λ-xMm λ-X(l) λ+xM' λ)2]2

+ΣxaEea[(X(m)\-eaMm\-X(Γ)λ+e"M'λ)4]
(2.35) d

' +ΣxE[(X(m)\eaMm\X(Γ)λ+e"M'λ)4

= 3(Σ*./.) + Σ *.

First remark that

7Λ = Ee*[((X(m) \-X(ΐ) M"-' λ)+(x(!) λ-β'M') (M'-'-I) λ)2]

'-' λ)2]

0 (M--'-i) λ)2]

- '-J) λ)2].

Then by the Markov property and (2.34) we obtain

I1. = Ee.[Exω[(X(m-l) λ-X(0) Mm~' λ)2]]

= Σ Eea[Xh{T)] Ee>[(X(m-l) λ-ebMm~' λ)2]

^ Σ £>LJΓ,(/)] ^ [ ( X ( » - / ) λ) 2 ] ,

and (2.32) follows. Next we shall show (2.33).

Πt = Ee.[((X(m) λ-X(l) M"-' λ)+(X(l)-e"M') (Mm~'-I) λ)4]
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-X(l) Mm~' λ)4]

' - 7 ) λ)4]

Then by the Markov property and (2.35) we have

III = Ee*[EXO)[{X{m-ΐ) λ-X(O) Mm~' λ)4]]

=S3£>[( Σ Xb(I) Ee>[(X(m-l) \-ehM"~l λ)2])2]
b =

d

Ee>[(X(m-l) \-ebMm-' λ)4]]

Ee>[{X{m-l) Xff

+ 16 Σ Ee<.[Xbφj\ Ee>[(X(m-l
6 = 1

and the proof is completed.

We can show the following lemma by the same method and the proof is
omitted.

Lemma 2.6. Let (A.1)-(A.3) be satisfied and m^zl+l. Then we have

(2.36) ^ Σ Σ xa
σ = l ί = lσ = l ί = l

Σ (X(k) \-xMk λ))2]2

(2.37) +24i Σ Σ *.
a=l 6=1

+128 Σ Σ *. e4^(0] M Σ
β = l 6 = 1 Λr=O

+ 128 Σ *. ^[(JΓ(Λ)"Σ'M* λ)4] .
β = l Λ=0

3. Proof of the tightness

We shall show the tightness part in Theorem A at first. Let (xn}n>i be a
sequence of nonnegative integer valued vectors satisfying

(3.1) lim n~* xl = xΛva9 ί^a^N,
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for some nonnegative numbers xlt x2, ••-, xN. Let β nad \β be fixed arbitrarily.
Set

(3.2)

f φ,(ί) = EJtΓ* J

= n~β x"W"\I+{nt-[ni\) (M-I)) \β ,

.(ί) = Ex.[n~β

lntl-1lntl1 _

= n~B xn( Σ M*+(nt-[nt]) Λ/f'J) \β .

By Lemma 2.1 we have

β

uniformly on each finite interval. Set

Un(t) = n-p IΓJl(ί) λβ-φn(t), Vn(t) = n ^ Γ5(ί) λ β - ψ Λ ( ί ) .

Then it suffices to show the following lemma.

Lemma 3.1. Let (A.1)-(A.3) be satisfied. Then far each fixed Γ > 0 there
exists C(T)>0 satisfying

EA(Un(t)-Un(s)Y+(Vn(t)-Vn(s)f]^C(T) (t-sf,

(3.4) =

(3.3)

Proof. Set l=[ns] and m=[nt\. Then by (2.1) and (2.4) we have

n*(Un(t)-Un(s))

n(t-s)(X(l+l)-x"Mι+ι-X(l)+x"M')\β if m = l,

(X{m)-xnMa-X(ΐ)+xnMι) \β

+(nt-m) (X(m+l)-xnMm+1-X(m)+xnMm) λ"

+(ns-l)(X{l+l)-x"M'+1-X(Γ)+xnM')-Kβ if m^

AVu(t)-V.(s))

r«(i-i)(X(/)-x"M')Xp if m = l,

(3.5) = J 2(JΓ(ft)-*"M*) λβ+(«ί-m) (JT(JM)-*"ΛΓ) λβ

( -(m-/)(JΓ(/)-χ"M')λ p if m^l+ί.

Hence it suffices to show that

Exn[{Xβ(m) \β-x"Mm λβ-Xβ(Γ) Xβ+x"M' \β)*]
(3.6)
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(3.7) Exn[Cil(Mk)^-xn.

hold for any n^\ and
We shall show (3.6) only, since (3.7) is shown by the same method. Let JC

=JCΛ, λ = λ β in Lemma 2.5. Since x%=O(n*), we have

) λβ-xnMm λβ-X(l) λ*+xnMι λβ)2]

by (2.6), (2.9), (2.28) for l£(m—l)T and (2.32). Then (3.6) follows from (2.6),
(2.9), (2.28) for l^(m-ί)T and (2.33).

We can show the tightness part in Theorem B by the same method and the
proof is omitted.

4. An auxiliary limit theorem

In this section we shall show a theorem which will be used to prove the
convergence of finite dimensional distributions.

Theorem 1. Let (.A.1)-(A.3) be satisfied, a and t>0 be fixed. Then we
have

lim rf" +\Eea[exp (i ]ΓJ n ~Ί~\X

ί
ψΛ(t: λ, μ) u*+iQ% μ* if β = a ,

ίΣ(P?λ γ +ρ?^)^- p if β^c
Ύ-P

where •φ"a(t)= ψ Λ(t: λ, μ) is the solution of

(4.2)
dt

= ~ Σ va £>[((Jrβ(l)-JΓΛ(0) M%) (ψa(t) u*+iQ«a μ*)Y\

+i Σ + i (β-a) (»« Pβ λp+»« Qt V?) ίβ"*"1

Especially if Ca is a final class then

(4.3) ψa(t:\,μ)

•ί Σ vΛ(Pβ \β+Qt μβ) tβ~*.
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Proof. Let a^β,b^Cβ and t>0 be fixed and set

Un(t) = Σ » H "

Then

ϋβ^) = Σ n--̂ (2̂ [n
\ n / Y=1

By Lemma 2.2 and Lemma 2.3 we obtain

(4.4)

Hence (4.1) in the csae / 3 ^ α + l follows from Lemma 2.1 and (4.4). Set

(4.5) G\n: λ, /«) = ^[exp(ίlΓ(π) λ + *

(4.6) /(λ) = (δίexp(»λ ))is..»

Then G(n:\,μ) = {G\n: λ, i")) i a β S < ί satisfies

1 * ;

where i^(s) is the vector of generating functions of -3Γ(1). To treat this excur-
sion formula we expand the generating functions as follows,

(4.8) ί » - l = Σ mί(ί»-l)+4- Σ Dt De F\s+θa(l-s)) (s>-l) (/-I),
6 = 1 £ bc = l

Set

(4.9) B(s: λ, λ) = ( Σ A A .F

Then (4.8) becomes

(4.10) F(s)-1 = M ( β - l ) + — .B(s: β - 1 , β - 1 ) .
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Combining this with (4.7) we obtain

G(n:\,μ)-1

+

and hence

β(n:\,μ)-l

= M"(I(λ+μ)-I) 1+ Σ M»-»-χi{μ)-I) F(G(k: λ, μ))

* °* °(4.12) i -i n_k_

2 *=<>

Set

(4.13)

(4.14) B% y(β: λβ, λγ) = ( Σ Σ A A ^ f l(s+<9e(l-s)) λ* λc)

Then we have

i 2-1 n V ̂ -βl

β=i \ n

(4.15)

IT

β=a

i_ s " Σ Σ (M1^-*-1)? «?.δ(G(A: λ,, P.): G\k: λ,,
2 *=° β=α} v.δ=β

We shall estimate the last three terms. We remark at first

ί
(4 16) {

Then the first term is

by Lemma 2.1. By (4.4) and Lemma 2.1 we have
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(4.17) G\k: λΛ, μn) =

and hence

(4.18) Fβ(G(k: λny βn)) =

Then by (4.16) we obtain

Σ (MW(?,)-/)Fp(G([nt]-k-l:\n,'Σ ' Σ

By (4.10) and (4.17) we have

F*(G(k: λm μn)) = 1*+M*a(l"-G*(k: \n,

Hence by (4.16) and Lemma 2.1 we obtain

tι ί l - 1

Σ (MX(I*a(μn)-I) F*(G([nt]-k-U λn>k = 0

2 *=

= in'1 Ql μ*-j- n-1 ί j vfiff u«

+tH!ΣP*a{I"«{P«)-I) M*JG*(k: λΛ,
k=0

Then the second term in (4.15) is

)-I) M*a(G*(k: λn, μj-

By (4.17) and Lemma 2.1 the last term in (4.15) is

y Ί ' P: Λi.(l: G*{k: \., μn)-l*, G*(k: λΛ,

Hence it follows that

(4.19) n(G*(lnt]:K,fi»)-l')
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I] (

" ) - I ) M»Λ.n(G*(k: λ H , fln)

^ ^ UX: n(G*(k: X., ?»)-lβ), n(G'(k: X.,

Set

(4.20) *,(*) = vvJG*{[ni\: X., K)-l')

+n(nt-[nt\) va(G«([nt]+l: \a, pa)-G*([nt]:\n, p.)).

Then by (2.1), (2.2) and (4.19) we obtain

(4.21) n(G»([nt]: X., js.)-l-) = ψn(W) u*+iQ« f+0(l).

But by (4.4), (4.11) and (4.13) we have

(4.22) I ψβ4±±) -ψ/ISfl) I = 0 ( 0 .

Hence {ψrt(ί)}»^i is equicontinuous on each finite interval. Let ψ(t) be any
limit of iψniή}^. Then by (4.19) and (4.21) ψ must satisfy

Ψ(t) = ί ΣJ vΛ(p \

(4.23)

+M' va BZJ).: ψ{s) u'+tQt if, ψ(s) u*+iQ°a ft) ds .
Z Jo

Then it suffices to show the equivalence of (4.2) and (4.23). Since -ψ»(0)=
iv*(PZX*-\~Q1 /**)=ivΛ ̂ * w e have only to show that -ψ* satisfies the differential
equation in (4.2). Remark that

(4.24) vΛ(8i μb)a^C (v aU

By (2.2) and P*Λ Q%=O it follows that

(4.25)

(4.26)

For any a we have
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= Σ Σ v. Ee*[Xb{\) (XJtl)-8l)] λ* λ

(4.27) «^GΛ a<=CΛ

Hence -ψ satisfies

at

= Σ ^ £ ( ( ( (

+ έ *os-α)(P?λfl+ρ?/<p)ί|ϊ- -1-4- Σ
β = Λ + l 2 e e c r a5

(4.28) +»(«;. ηzaUCa M«a(ψ(ί) « β + ί ρ : /*β)

By (4.26) and Ml u*=u* we have

h = i Σ valz
auaψ(t)-

6

Then it is easy to see that Σ Λ = 0 and we have shown the equivalence of (4.2)

and (4.23). *= 3

5. Proof of Theorem A

Before proceeding to the proof we state Theorem A more precisely.

Theorem 2. Let (A.1)-(A.3) be satisfied, x=(xΛ)i^a^N be a nonnegative

vector and y be a d-dimensional vector. Assume that {xn} n^λ is a sequence of non-

negative integer valued vectors satisfying lim n~*Xa=xΛvΛ, l^a^N. Then the

sequence of processes {((w~* Xn

a(t), y*+n~* Γ ^ * ) ) ^ ^ , Px»)}n>ι converges to some

diffusion process ((2ζ,(ί), TΛ(t))^Λ^N9 P(x,y)) and
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(5.1) EίXiV)[exp(i Σ (XJt) λ β + Ya{t) μ*))]

= exp (i Σ U» S+XiΨiit: λ, μ)+i Σ Σ *. *.(P? λ β +0£ /0 *β"*)
αί = i α=2 β = Λ

Proof. First remark that (5.1) is clear if t=0 and if t>0 then (5.1) follows
from Theorem 1 and the branching property. If we can show the convergence
of any finite dimensional distributions then it is easy to see that the limit process
is a diffusion process by (5.1) (cf. section 7). Hence it suffices to show that for
any^)^2 and 0 < ^ < < ^ .

(5.2) ^ [ e x p (ί Σ Σ n-"(Xa([ntq]) \*(q)+ Σ XΛ(k) μ*(q)))]
g l Oύ l k 0

converges to a continuous function of (λ( l ) , •••, λ(^>), i"(l), •••,
Set

i ( # ( ) ( )

( 5 < 3 ) = Ee*[exp (i Σ Σ n-«{Xa(\ntq}) \*(q)+ ' Σ *".(*) ?"(?)))] .
ί = l α> = l k = 0

Then, by the branching property, (5.2) becomes

jr

(5.4) πΛ=l

Hence it suffices to show that there exists a vector of continuous functions (ψ"{tι,
-, tp: λ(l), ..., μ(p)))1£asiN such that

lim n (GUtu - ,
(5.5) »-» ~

= ψa

p(tu -, tt:

But by Markov property and the branching property we have

(5.6) GlP(tu-,tf:λ(ί),-,μ(p))

in which

(5.7) + « Λ log £«.[exp(t Σ »-
β-1

Σ

Combining this with Theorem 1, (5.5) is easily seen by the induction argument
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with respect to p.

6. Proof of Theorem B

We state Theorem B more precisely.

Theorem 3. Let (A.1)-(A.3) be satisfied, Cλ be a final class, X={XO^2^Λ^N be
a nonnegatίve vector and y^y^^Λ^N be a real vector. Assume that {xn}n^ι is a
sequence of nonnegative integer valued vectors satisfying x"= 1, x"=0 for aξΞCl9 a^l
and lim n1"* Xa—xΛ va for α ^ 2 . Then the sequence of processes {((w1"* Xn

Λ{t)> V*
Jrn1~*Ya(t))2geύgN, Pχn)}n^i converges to some diffusion processes ((Xα(ί), YΛ(\

β(χ,v)) ^d

A M ^ ^
a=2

= exp(i Σ V« fJt<ΛjrVιM\ M2Γ ̂ 2(s: λ, μ) ds+it vx M\ Ql μ2)

ir IT

* λ μ)-\-i 5^ 5^ x v (PΛ λ^-j-OΛ tfP) ft~Λ>\
ΰt = $ β=06

Proof. As the proof of Theorem 2 it suffices to show (6.1) and the con-
vergence of finite dimensional distributions. To show the second part we
proceed as follows, hotp^l and 0<^ 1 < <ί i > be fixed arbitrarily. Then it
suffices to show that

(6.2) £x»[exp(i Σ Σ nι-»{XΛ{[ntt]) λ*(q)+ Σ XJk) β*(q)))]
Q=zl Ot=2 jfe = θ

converges to a continuous function of (λ( l ) , •••, μ(p)). Set

( 6 " 3 ) = £e.[exp (ί Σ Σ ffl--(X#([fiif]) λ*(q)+ Σ XJk) μ*(q)))] .

Then by the branching property (6.2) becomes

(6.4) HΪJh, •", tp: λ(l), - , μ(p)) Π Π m,p{tly .-, tp: λ(l), - , μ{p))4 .
06=2 a&C

In section 5 we have already shown that the second term converges to a con-
tinuous function. Transform the first term as in (5.6). Then applying the
following lemma the convergence of the first term is easily seen by the induc-
tion argument with respect to p. Also (6.1) follows from this lemma and The-
orem 1 applied to (6.4).

Lemma 6.1. Let (A.1)-(A.3) be satisfied, Cx be a final class and t>0 be
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fixed. Then for any αeC, we have

lim Ee*[exp(i Σ τ^-"(Xl(t) \*+ Y»a(

= exp(itv,Ml Ql/ί+ΌiM\ «*(' φ2(s:λ,μ)ds).
Jo

Proof. We define G(n: λ, μ) by (4.9). Let V=tf=0 and set

(6-6) λ ^ ^ -

Then it is necessary to estimate G\[nt\: λΛ, βn). To this end we expand the
generating functions as follows.

Set s[2fiV]=(«oί)2^βj^iV1. Since Cλ is a final class we have

(6.7) Fx{s) = M\(sV>Ni) s i

for some Ml(s^N^=(ma

b(s^N^)a>ίeCl. Since ma

b=ma

b(l) we obtain

(6.8) tna

b(sV'»

where

(6.9) lΐ(sv »i) = Σ J AΣ

Set Ll(st2'^)=(/f(st2 ΛΓ3))(>fleCl. Then we have

(6.10) MKsP ^J) =

and hence

G\n: λ, μ) = Mί(ί?C2 ̂ ( « - 1 : λ, A*)) ^ ( M - 1: λ, /«), « ^ 1.

Combining this with (6.10) we obtain

(6.12) G\n:\,μ) - M\ G1(n-l:λ,μ)+L\(Gί2 N\n-U\,μ))G1(n-l . K,μ)

and it follows that

(6.13) G\n: \, μ) = 1>+ ± (Ml)-*'1 L\{GV »\k: \, μ)) G\k: λ, μ).

Since (M\)n—P\=O(P

n) for some 0 < p < l , by (6.6), (6.13) and Theorem 1 we
have

(6.14) G\[nt]: λ,, βn) = (^ ̂ ([wί]: λ,, /*„))
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Hence it is sufficient to estimate vx G\[nt\: λn, μn). Set

(6.15) ψn(t)

= v, G\[nt]:λn, μB)+(nt-[nt]) Vl{G\[nt\+\: \n, βn)

-G\[nt]:λn,μn)).

Then, by (6.12) and Theorem 1, it follows that

(6.16)
ΐl

and {-ψ nW}n^i *s equicontinuous on each finite interval. Let ψ(t) be any limit.
Then by Theorem 1 and (6.14) we have

(6.17) lim nL\(GV-»\[nt]: λn, βn)) G\[nt]: λB)

= ( Σ Σ £>c «ί(l) (^2(ί: λ, Λ) « c+ί

Remark that Σ Dc m
a

b(l)=Dr Fa(l)=tna

c. Then by (6.13) ψ satisfies

(6.18) ψ(t) = j ^ ^ MKΨ2( :̂ λ, i") tt2+/ρl /̂ ) ̂ ) d s + ι ,

i.e., -ψ»(ί) is given by (6.5).

7. Some remarks

Set

(7.1) XJt) = XJt) u«, ±Λ{t) = Xm(t) u* .

Then by the preceding three theorems it is easy to see that

(7.2) Pix>y){Xa{t) = Xm(t) va, ί^O) = Pix,,)(XJt) = XJt) va> ί^O) = 1 .

SetX(t)=(Xa(t))l£a&N,X(t)=(±Jt))2£a£N and B*=(Bl<,)a^Caυi()) be the sym-

metric and non-negative definite matrix defined by

(7.3) ^ g Σ {o}«.» λβ λ* = J ^ £eα[((XΛ(l)-XΛ(0) Ml

Set λ"=X" u* for 1 ̂ α^N. Then by (7.2) we have

« = 1 <Λ = 1

Then (5.1) becomes

(7.4) £(*.*>[«? (ί Σ ( ^ ( 0 λ Λ + Γ^ί) i"Λ
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= exρ(ι Σ yΛ μo6+x1 ψ^t: λ, μ)

*=2 β=a

By (4.2) we obtain

d
dt

logZW»P(* Σ (XJt) X*+ T

1 Σ Bl,. μ*+ Σ Bi.» MΛ μb)

i Σ χβ

Then ((X(t)y Y(t))> P(Xty)) is a diίFusion process on the state space [0, oo)^
Rd and the generator is given by

Af(x,y)

(7.5) = 1 ^(fij.0 2)^+2 Σ 5j,a Z) Σ Bi.» Z),.

JT-1

where Dx denotes the partial differentiation with respect to x.

By the same method it follows that ((JΓ(ί), Y(t)), P(x,v)) is a diffusion
process on the state space [0, oo)N"1χRd^di {dλ is the number of elements in C2)
and the generator is given by

(7.6)
D

X2

Dyb)f(χ,y)

Σ*^-

U 2

α5+i

8. An example

Let ^>>0, 0 < 9 ^ 1 be fixed and set tn=[p]-\-l. In this section we study

the 4-type branching process (X(rϊ)) whose generating functions are given by

(8.1)

I z^β) = i 4 .
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Then the mean matrix is

(8.2)

lip 0 0,
0 1 1 2

2\0 2q 2-2q 0
^ 0 0 2-

Hence CΊ={1}, C2={2, 3}, C3={4>. Remark that Cx and C3 are final classes.
By elementary calculations we have

(2q 1\ n 2 = 2
V / ' y 2

1 — 1 \

2g V '
(8.4)

Since

(8.5)

the bilinear form (7.3) is

(8.6)

= ί ( l - ? ) ( λ 2 - λ 3 ) 2 ,

- ^ ( θ ) Λfl) (λ° tf+ρi λ2))2]

where

_ 2?

°)ί+2JB1(?) λ ίλ - λ j + ^ ί ) (λ2-λ3)2,

2g(l-2g) B ( ) _ 2g(3+2g+4g

2-8g3)

By (4.2) τfo=ψ2(tι λ, μ) is the solution of

(8.8)

dt Ύί 2

Let #o^O, χ4^0,yz,y% be fixed arbitrarily and set x2=—"— x0, *3=
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=(x2, xz), U2={y2>y^- Then by Theorem 2, the sequence of processes

{((/Γ1 JΓS(ί), n-*X»4(t), y2+n-> Y»2(t)\ PCoMi»«ii.Us4j>)},*i

converges to a diffusion process ((X2(t)y X4(t)9 Y2{t))> p(s0.χA.ri) a n c i

( 8 9 ) E(X5tX4tff2)[oxp(i(X2(t) 7ί2+X4(t) λ 4 + Γ2(0 /#))]

= exp (ίy2 A^+^O ψ2(ί: λ, / )+£*4 λ 4 ) .

By Theorem 3 the sequence of processes

{((«-* JTS(ί), n-2 X2(0, yi+w-1 ϊl(ί)), Pα.DM

converges to a diffusion process ((JΓ2(ί), Λ4(f)> Y2(t)), P(x0tx4,y2)) and

We shall clarify these limit processes applying the remarks in section 7. Set

X(t)=X2(t)u2=X2(t)+X3(t). Then X2{t)=-^L (2?, 1). By (8.8) and (8.9) it
2g+l

follows that F 2 (ί)+y 3 (ί)=j 2 +^3. Hence Γ2(ί) is determined by Y(t)=Y2(t)
and y3. For the convenience we ste Z(t)=X4(t), x=x0, z=xA. Let P(Xfy,g) be
the probability measure induced from P(XfZtyt0) by the diffusion process (X(t),
Y(t), Z(ή). Then by (8.9) it follows that ' ' '

(8.11) £(^)[exp(*(X(*) λ + Y(t) μ+Z(t) p)
= Qxρ(iyμ+xφ(t: λ, μ, v)-\-izv),

where φ=φ(t: λ, μ, v) is the soluiion of

By the same method we can define the process (lt(i), Y(t), Z(t)) and let P(x,ytZ)
be the measure induced from P(XtZtyt0) by this process. Then by (8.10) we have

ίt(XιXtZ)[exρ(i(£(t) X+Ϋ(t) μ+Z(t) v)]

(8.13) = ftvn^ff>4.Λf' ψ(s: λ > μ^ ^ ds+xφ(t: λ, μ, v)+ 2ipt μ+izv) .

Hence the generator A of the first process is
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Af(x,y, *) = \ x(B0(q) m+WJά) DxDy+B2(q) B*)f(x,y, *)

(8.14) 0

H—=2-«D,/(*,y,»
2q+l

and the generator .4 of the second process is

(8.15) Λ/(*,y, *) = Af(x,y, z)+pDxf(x,y, z)+-J£_DJ(x,y, z).

We shall end this section by giving the forms of characteristic functions for

Y(t) and Ϋ(t) in some special cases. (The forms of Laplace transforms for

X(t), X(t), Z(t) and Z(t) are given in [5]). If q=l then φ(t: 0, μ, 0)= ~lf •
Hence we have 9(27+*^)

(8.16) £(,,o.o>[exP(iY(t) μ)] = exp

(8-17)

If q=— then φ(ί: 0, μ, 0)=—-^ tanhΓ-^-Λ Hence we ha have

(8.18) £M,0)[exp(zF(i) p)] = exp ( — | /. tanh ( | - ί)) ,

(8.19) ^,o,0 )[exp(^(0 μ)] = (cosh(|Lφ-^ e x p ( — | ^ tanh(^ t)+j-
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