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1. Introduction

We consider a multitype branching process whose mean matrix has the
Perron-Frobenius root 1. The purpose of this paper is to show that the nor-
malized sequence of such processes converges to some diffusion process when
the initial population size goes to infinity.

Let X(n)=(X,(n)):1z4<q be the d-type branching process and M=(m}),<, <q
its mean matrix. For later convenience we denote by uw=(u’);<,<; (resp. v=
(V4)150<4) the column vector (resp. row vector). Type b is said to be accessible
from type a if the (@, b) component of M" is positive for some #=0. This rela-
tion is written as a—b. If a—b and b—>a then a and b are said to communicate
with each other and this relation is written as a«»b. Since <> is an equivalence
relation we can decompose the set of types {1, 2, -+, d} into the equivalence clas-
ses Cy, Gy, +++, Cy. Set Mg=(m})secqpecg: Lhen we can write M=(Mp),<apsn
and, by definition, each My is irreducible.

Hereafter we shall assume the following conditions:

(A.1) Mgz,#Q for any @ and M5=0 if B<e,
and

(A.2) M3 is aperiodic and has the Perron-Frobenius root 1 for any a.

The first assumption means that if a€C,, b€ Cs and a<B then a—b but b+ a.
The second assumption means that each C, is a final class or a critical class,
where we say that C, is a final class (resp. critical class) if the generating
functions F°(s), acC,, are linear with respect to s°, a=C, (resp. otherwise).
Let €°=(8%),<s<s Where 83 is the Kronecker’s delta. The final assumption is

(A.3) E.[Xy(1)f]<oo for any a and b,

in which P, is the measure of the process X (n) starting at e’. This assumption
is needed to prove the tightness of the processes considered later.
We define a sequence of processes {X"(£)} .21 by
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(1.1) X"(t) = X (nd]) +(nt—[nt]) (X ([nd]+ 1)~ X ([nt])),

where [¢] denotes the largest integer not exceeding z. Then the following re-
sults are knowr (see. [3] and [5]):

(T.1) If X"(0) = ne, a=C, and t>0, then the distribution of (n™* X%(¢))1<esn
converges to some distribution as #n— oo,

(T.2) If C,is a final class, X"(0) = €% a=C, and >0, then the distribution of
(n'~" X%(t));<asn converges to some distribution as n—oco.

The above results suggest us that these processes converge to some process.
The meaning of convergence is as follows. Let C be the set of all continuous
functions from [0, o) to R* endowed with the topology of uniform convergence
on each finite interval. Then the sequence of processes {(X,(2), P,)} 42 is said
to be convergent to the process (X(¢), P) if Q, converges to Q weakly where
0, (resp. Q) is the probability measure on C induced from P, (resp. P) by X,
(resp. X).

For the centered process the following result is known (see. [1: p. 192]):
(T.3) If N=1,C,is acritical class, X" (0)=ne” and >0 then the distribution
of n~2 (X"(t)—(X"(¢) u) v) converges to some distribution as #—>co for some
suitably chosen vectors # and v.

Unfortunately the author could not prove the convergence of the above
process. Instead we can prove that the process So (X ([ns])—(X([ns]) w) v) ds

converges.
We shall study the combined processes {(X"(f), Y"(¢))},21 where Y"(¢)
is defined by

¥3(0) = n || (Xu(fns])—(Xol[]) ) 02) ds
(1.2) =5 (XalB)— () 57 )
+(nt—[nt]) (Xo([nt]) —(Xo([nt]) ") vs), 1=a=N,
in which #*=(4"),ec, and U,=(v,)sec, are determined by
(1.3) Miuw =u" v,M2=v, and v,u”"=v,1°=1,

where 1”=(1),ec,-
The purpose of this paper is to show the following two theorems.

Theorem A. If lim n~* X(0)=x, vy, 1=a =N, then the sequence of pro-

cesses (n™" X 5(t), n™" Y )(t))1zasy converges to some diffusion process.
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Theorem B. Let C, be a final class. If X}(0)=1, X3(0)=0, a€C,, a=+1
and lim n*~* X73(0)=x, vs, =2, then the sequence of processes (n'~* X (), n' ™" Y}

nro

(2))2<axn converges to some diffusion process.

The precise forms of these theorems are given in Theorem 2 in section 5
and Theorem 3 in section 6.

To prove our main theorems we must show the tightness and the conver-
gence of any finite dimensional distributions. In general the tightness for a
sequence of continuous processes {(X,(2), Py)} 5= follows from

(14) sup E,[X,(0Y]<oo,
and the existence of C>0 such that
(1.5) E[(Xy(t)—X4(5))']=C(t—s)* for any n.

But in our case (1.4) is trivial by the definition of our process. To show (1.5)
we shall estimate several moments of X () in section 2. Then we shall show
the tightness in section 3. To prove the convergence of finite dimensional dis-
tributions we prepare a limit theorem in section 4. Applying these results we
shall show our main theorems in sections 5 and 6. We shall give some com-
ments for the limit processes in section 7. An example is given in section 8.

The author wishes to express his thanks to Prof. N. Ikeda and Prof. T.
Watanabe who suggested him to extend the results in [5].

2. Preliminary results

In this section we shall estimate several moments for the process X(n).
Before stating our results we prepare some notations. Set

u”Qu, if B=a,
@1 Pi= 1 e
(B—a)! 1=a
where 4" @Up=(4"V3)secq secp
I—Ms+Py)y\(I—Py) if B=a,
(B—a)™ Po_, ME“(I—ME+PE)"{(I—P8) if B=a+l,
(2.3) M =I-PHYN =A"—(A) .
Then v, A*=0 and

(y MYy ) (0*Qup) if B=a+1,

2 o1={

2.4) Yi() A° =‘:'z:§’x,,(k) N (nt—[nt]) X ([nf]) A° .
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Set M*=((M"))igwpsy- By (A.1) and (A.2) we have
-0 i g<a,

(M")z = (M),

=3 3, i pzat.

k=0 @

(2.5)

By (A.2) it follows that (Mz—Pg)"=0(p") for some 0<p<<l. Then the fol-
lowing result is easily seen by the induction argument with respect to S—a
(cf. [5: section 3]).

Lemma 2.1. Let (A.1) and (A.2) be satisfied. Then we have
(Eeo[Xo(n) x’p])aea» = (M)g AP

(2.6) _ {P:L‘-HM:—P;‘:)”V if B=ea,
T #PPEAPLOPY i B=a+d,

(B[ Xp(n) M]acca = (M")5 NP
(2.7) _ { (Mi—P)"N* if B=a,
(B—a)nP~*t QENP+O(nP~""2) if B=a+1,

and hence
n-1 — n-1 ~
(Bl 33 X(0) M]hseca = 35 (M3 32

(28) _ { Q: A'G_Q:(M:—P:)” L" zf B —a,
P QENHOPY)  if Bzatl.

Next we shall estimate the higher order moments. We define |A*|= 3}

|),al. asdu

Lemma 2.2. Let (A.1)-(A.3) be satisfied and acC,, B=a be fixed. Then
there exists C>0 satisfying the following relations for n=1 and p=2, 3, 4,

(2.9) | Eeol(Xp(m) M)?] | S Cn? @071 2P| 2

CIa*|? if B=a and p=<3,
(210)  |ESA(Xp(m)M)]|<{CnIN*|*  if B=a and p=4,
Cn?®7 NP2 if Bza+l.

If C, is a final class then we have the better estimates

(2.11) | El(Xa(m) MY SCro®- 222,
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CIa|? if B=a,

Cn|A**|? if B=a+l and p=3,
C|AM*  if B=a+land p=4,
Cn"(p‘"‘l)lh"‘[’ zf B=a+2.

(212) | Eo[(Xalm) W] <

Outline of the proof. We first consider in the case p=2. Set

B(n: N, N) = (Eeo[(X(7) N)])150s4a »
B*(AP,\) = (by?: zyD,, D, F*(1) M\ )eeca »
El B cEeC

B M) = (23 B0, M)isasn »

where D, denotes the partial differentiation with respect to s°. Then we have
B(n: A, N) = B(M"* N, M" ' N)+MB(n—1:, ),

and hence
(213)  B(n:, )= 5 M BOUN, MOA) M BO: M, ).

This means that
(E¢“[(Xﬂ(n) h"\3)2])aeC¢»

(2.14) =5 51 5 S0 B, (9 V)
+ 330y BY0: M),

Then (2.9) and (2.10) follow from Lemma 2.1. If C, is a final class then B*
(A%, A*)=0 and so (2.11) and (2.12) can be shown by the same method.
The other cases can be treated similarly. For the convenience to check the
above results we only remark the forms of moments. Set
C(n: M, M, M) = (Ea[(X(7) M) Disasa »
D(n: N N M, M) = (Ees[(X (m) h')ﬂ)léan s
C(N % M) = (3D, D, Dy F(1) M M M)isosa»

D(h, h, h, h) = (b §3Db Dc Df Dg Fa(l) 7\.” 7\,‘ Xf xg)léan .
Then we have

C(n: M A A) = z‘. M43 C (M*N, M*N, M*N)

(2.15) a1
+335 M*~*2 B(M*\, B(k: M, M))+M"C(0: A, M, M),
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D(n: 3, 2, 2, N) = 53 M*HID(MN, MN, M, MD)
+6:;;": M*=+C(M*N, MM, B(k: M, A))

(2.16) +4 5 M IB(MA, C(k: M, A, W)
+3 ,.2: M**'B(B(k: M, \), B(k: M, N))
+M"D(0: M, A, M, 0.
Next we shall estimate the moments for Y"(¢).

Lemma 2.3. Let (A.1)~(A.3) be satisfied and a=C,, B=a be fixed. Then
there exists C>0 satisfying the following relations for n=1,

Cn|N°|* if B=a,
Cr® N2 if B=za+l,
2.18)  E( bz,‘z X, () NP)] < CrfC=2+0-1| 5P |4

e BAEKMVI=|

If C, is a final class then we obtain the better estimate

anlhu[“ lf B=ua,

NS X B\
(2.19) Ee[(ngp(k)h)]é{Cn4<s-~>W|4 if B=a+l.

Proof. Since
EA( 3 Xa(t) MY
<2 51 EolXa(R) M- 5 X,()) M)

235 31 BaLX() M Xo(R) (3 MO V)

=0

L

=28 SV B0 W1 B0 (5 MY,

(2.17) follows from Lemma 2.1 and Lemma 2.2. Combining Lemma 2.2 with
n-1 n-1
E (X X(k) M)1=n® 3 Eo[(Xa(R) M)]

we obtain (2.18) for 8=a-1 and (2.19) for B=a+2. If C, is a final class then
the process (X,(n), Eo v, Pg) is a stationary Markov chain having the mixing

property and so (2.19)wholds if B=a. To show the rest cases, (2.18) for B=a
and (2.19) for B=a+1, we first expand (2.18) as follows.
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where

(2.21)

B
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E( 3 X (k) MY

=0

a-

-1 n-1 n-1

I +42 %1Iu+ i,

k=07 k=0 I=k+1

%‘
>

z_: 2 2 Iz,l,m:
k=0 I=k+1 m=1+1

I3 = E[(XR) M- (X(B) M+4 33 XD V],
I3, = EAX(H) M (X() M+ (X() M3 53 X(m) M),
I3, = EAXHR) M- XD M- XD M+2, 5 X(m) V],

It im = EJX(R)N-X()N-X(m) h-(X(m)h—FZJ:%lX(j) M.

Set M(p, n)=A+p 'ﬁ M’ N and use the Markov property, then we have

(2.22)

i = Eo[(X (k) A)*- X (k) M(4, n—R)],
Iir = Eo[X(R) M- (X (D) M- X(D) M3, n—1)],
I, = ELJ(X(R) N> X (D) M-X () M2, n—1)],
It 1= EJ[X(k) N X(I) M- X (m) M- X (m) N (2, n—m)] .

Let 8=a or B=a-+1 and set A=AP. Then it follows from Lemma 2.1
that if 8=« then

(2.23)

vua'w(.p: k) = 0’ ILH(P: k)l =C lhml,

and if B=a-1 then

(2.24)

{ IM(p, B) | SCRIMH, 0,0 M (p, k) =0,
N (p, B[ =C A .

Combining these estimates with Lemma 2.2 we obtain

(2.25)

|I7§l, |Iﬁ,1|, |IIE,1|
S{CWV if B=a,
Cn|N**|*  if C,isafinal class and B = a+1.

Hence the proof is completed if we can show

Iz,h,m

0<k<I<msn—1
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CRN i B=a,
T Crt At if C,isafinal classand 8 = a+1.
Set

A(n: M (1), (2))
= (Eo[(X(n)—e"M") M (1)- (X (n)—€"M") M(2)])1zns4
= B(n: M (1), M (2))—(e’M" N (1)-€"M" M (2))1c0ea -

Then we have

= E [X(B)MX() M- X (1) M N-X(I) M A (2, n—m)]
+E [ X (k) M X() M- X (1) A(m—1: N, M (2, n—m))]

= E[X(B) N X(I) M- X(I) M N - X (1) M~ M (2, n—m)]
+E[X(R)N-X(B) M™~' N -X (k) M'™* A(m—1: N, M (2, n—m))]
+E [ X(R)N-X(E) A(I—k: N, A(m—1: N, A (2, n—m)))]

= 3 Liam(2)-

Therefore it suffices to show that

osk<I<mn-1 I3, 1,.m(P)
(2-26) S{ Cn3lhdl4 if 18 —a ,
= Cnt A4 if C,is afinal class and B8 = a1,

holds for p=1,2,3. If p=1 then by Lemma 2.1 and Lemma 2.2 we have

I 1. w(1)
(2.27) <{ Cnp™ ! |N"|* if B=a«a,
| Cn+n? P 1b el b if C,is afinal class and 8 = a+1,

for some 0<p<1 and hence (2.26) holds. Then we shall consider the rest
cases. By (2.13) it follows that if 8=a or a1 then

| AP(m—1: N, N (2, n—m))| SC |AP|2,
|AP(I—E: N, A(m—1: N, N (2, n—m)))| SC NP3,

and if C, is a final class then

| A%(m—1: M, N (2, n—m))) | <Cn|N** |2,
|A*(I—k: N, A(m—1: N, N (2, n—m)))| SCr [N 3.

Since
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I31.m(2) = Co(k: N, M=\, M'~* A(m—1I: N, N (2, n—m))),
I51w(3) = B'(k: N, A(I—k: N, A(m—1: M, M (2, n—m))) ,

we obtain the same estimates in (2.27) by (2.13), (2.15) and the preceding esti-
mates. Thus we have completed the proof.

We sometimes assume that A* is a d-dimensional vector such that (A”)*=\"
if aC, and A*)*=0 if a £ C,,

Lemma 2.4. Let (A.1)~(A.3) be satisfied, acC,, B=a and T>0 be fixed
and p=2 or 4. Then there exists C(T)>0 such that the following relations hold
for n=1 and m=nT,

E[(X (m) (M"—I) APY]
(2.28) S{C(T)Ih“l" if B=a,
“LC(T)m I N\E 2 if Ba+1,

Ec[(X(m) & M*A%y]

(2.29) S{C(T)IVI" f B=a,
“le(T)y w1 \f2 i B>a+l.

If C, is a final class then

(2.30) Eo[(X(m) (M"—D) M) < C(T) n® " [AP|?,

(2.31) E o[(X(m) gM" AR C(T) m = |AP|2 .

Proof. Since p is even we have

Eo[(X (m) (M" D)WY = EA( 2 X(m) (M"—I)} M%)
=N 2 Ed(Xy(m) (M"— I)’ 7*'5)’]
Then (2.28) and (2.30) follow from vg(M"—1I)§ AM#=0 and the preceding lemmas.

Since the rest cases can be treated similarly we omit the proof.

We shall end this section by showing two lemmas which will be used to
prove the tightness. Let P, denote the measure of the process X(n) starting
at x.

Lemma 2.5. Let (A.1)~(A.3) be satisfied and m=1+1. Then we have
EJ(X(m)N—xM"N—X([) N+xM' N

(2.32) = 3 3 X ()] EA[X (m—D M)
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+ 330 EAXQ) (M =DW),

E[(X(m) N—xM"A—X(I) A 4-x M V)]
S3E[(X(m) N—x M"A—X(I) A +x M' )

(2.33) T2 2 33 % B X(] ES[(X (m—) V)T

+128 31 S, Bl X,(D] El(X (1) M)’
+128 33 x, B[(X(D) (M= —D) V)1

Proof. By the branching property of X (n) it follows that
EJ(X(m)A—xM"N—X ()N +xM'A)?
(2.34) = 3% %, Eul(X(m) A— M A—X () M-+e" M M)
d
= gx %, 1,
EJ(X(m)A—xM" MN—X(I) M+x M’ N4
<3E,[(X(m) A—x M" A—X(I) M-x M' M)

(2.35) p x4
-+ E %, Ea[(X(m) N—e’M™ N—X () N+e°M* A

= (D w LY+ S, 11,
First remark that

1, = Eo[((X(m) N—X () M~ A)+(X (D) h—e*M") (M»~'—I) Y]
= E[(X(m) \—X(I) M Ny
+EA(X () —e"M') (M —I) N
ST Ea(X(D) (M —I) )]

Then by the Markov property and (2.34) we obtain
I3 = BalExo[X(m—D »—X(0) M~ 2]
= 3 B[ X()] Ea[(X (m—I) A —e* M=~ AY]
< 3 BaAX ()] ES[(X(m—D) MY,
and (2.32) follows. Next we shall show (2.33).
17, = Ea[(X(m) A —X() M*~' M) +(X()—e"M') (M~ —I) )]
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< 8E[(X (m) M—X (1) M™~' N)']
+BES[(X(D)—e"M') (M™'—I) )]
<8II;+128EJ[(X(]) (M™'—I)N)1].
Then by the Markov property and (2.35) we have
I1; = Ep Ex)[(X (m—1) A—X(0) M~ N)T]
=3E|( b‘é X() Es[(X (m—1) N—e"M™~' N)])]

+E A 33 X,(0) Es[(X(m—1) A —e* M A)1]
<34 33 Eol X,(1)] E[(X (m—D) T
+16 33 Eol Xy(0] ES[(X (m—D) M),

and the proof is completed.

We can show the following lemma by the same method and the proof is
omitted.

Lemma 2.6. Let (A.1)~(A.3) be satisfied and m=I1+1. Then we have
(3 (X()) A—xM* V)]

(2.36) = 31 33w Bl X,(0)] Eal( 5 X (B) V)1

a=1 b=1

+ 31w EAXDE M,

a=1

EJ[( };’(X(k) A—xM* A
<3E,[( ':23 (X (k) A—x M* M)

(2.37) 1244 3% 3 x, B[ X0 E,_,b[(m;E:)lX(k) A

d
a=1 b=1
d

+128 3

d
a=1 b=

%, B X,(0] Eal("S] X(R)MY]
+128 31 x, Bl(X(R) 3] M* ).

a=1

3. Proof of the tightness

We shall show the tightness part in Theorem A at first. Let {x"},>, be a
sequence of nonnegative integer valued vectors satisfying

(3.1 lim 7™ x? = x,v,, ISa<N,

n-roo
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for some nonnegative numbers x;, x,, --+, xy. Let @ nad A be fixed arbitrarily.
Set

®u(t) = Exr[n™® X§(2) M°]

= n~f X" MU ([4-(nt—[nt]) (M—I)) N?,
"P’a(t) = Ex”[”_B Y'é(t) h'p]

— X (glM"-l—(nt— [ne]) M) 38 .

(3.2)

By Lemma 2.1 we have
lim ¢,(1) = 3] %4 va PEM £77,
lim (1) = 33 %0 0 Q5N 77,
uniformly on each finite interval. Set
Un(t) = 07 X§(t) N —,(2), Valt) = 07" X&) M —p(2) -
Then it suffices to show the following lemma.

Lemma 3.1. Let (A.1)-(A.3) be satisfied. Then for each fixed T>>0 there
exists C(T)>0 satisfying
(33) Eul(Uy(t)— Uy(s))+ (V)= VA C(T) (1—9,
n=1, 0=s<t<T.
Proof. Set [=[ns] and m=[nt]. Then by (2.1) and (2.4) we have
n(Un(£)—U(s))
n(t—s) (X(I+1)—x"M"*'—X(D)+x"M)N if m=1,
(X (m)—x"M"—X(I)+x"M") N°
+(nt—m) (X (m+1)—x"M"*'— X (m)+x"M"™) AP
+(ns—0) (X(I+1)—x"M"?—X(D)+x"M)N*  if m=I41,
n(Va(£)—Vl(s))
n(t—s) (X(D)—x"MYN®  if m=1,
(3.5) =1 3 (X(B)—x"M*) NP+ (nt—m) (X (m)—x"M") °
- —(ns—0) (X()—x"M")A®*  if m=1+1.
Hence it suffices to show that |
ol (Xo(m) M—x" M N—Xy(1) M4 5" M W)
<C(T) (m—Iy n*2|NP|*,

(3.4)

(3.6)
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(3.7) Eul(S (X(R) M —x"M* 3))1
SC(T) (m—1F 0,

hold for any n=1 and IH+1=<m=nT.
We shall show (3.6) only, since (3.7) is shown by the same method. Let x
=x", V=M in Lemma 2.5. Since x,=0(n"), we have

Eo[(X(m) N—x"M" NP —X (1) M2 +-x"M' AP)]
=C(T) nP(m—D*7 M2,
by (2.6), (2.9), (2.28) for I<(m—1)T and (2.32). Then (3.6) follows from (2.6),
(2.9), (2.28) for I=<(m—1)T and (2.33).

We can show the tightness part in Theorem B by the same method and the
proof is omitted.

4. An auxiliary limit theorem

In this section we shall show a theorem which will be used to prove the
convergence of finite dimensional distributions.

Theorem 1. Let (\A.1)-(A.3) be satisfied, oo and t>0 be fixed. Then we
have
lim =+ (Bofexp (332" (QX30) M+ Y5(8) #)]— Dacca

{"”a(t:h, pu+iQue i B=a,

D Tl engmer f gzatl,

where \Yrg(t)=rq(t: N, #) is the solution of

"I"a(o) Wy N ’
i

= 5 5 0 Bl Xu(0) M2) () °-+i03 )]
+i 31 (B—a) ®. PEN+0, 0F ) P77
Especially if C, is a final class then

(4.3) (M 1)
— L Dm0 01 ) i B e PN 0F ) £
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Proof. Let a=<g, b=y and >0 be fixed and set
N
Un(t) = 2 n* IO M Y3 )

Then

Uﬂ([ﬂﬂ) — yf} n*= VY Xy([nt]) N+ [;V;l'kv(k) 7).

n

By Lemma 2.2 and Lemma 2.3 we obtain
| Eafexp (i U([ﬁl) )1 —Eeb[iU”<M)] |
n n

(44) SACACH

2N 3177 Eal(Xy[mt) MY+ 2 Xo(R) 2]
= O(n~2E-71)

Hence (4.1) in the csae B=a+-1 follows from Lemma 2.1 and (4.4). Set
(4.5) G’(n: N, #£) = Ea[exp (1 X (n) M1 kE:E) X (k) p)],

(4.6) I(A) = (85 exp (A")isa b -
Then G(n: N, #£) = (G*(n: N, #)),<,<q satisfies

4 {G(O:x, g = IA+#)1,
) Gn:\, ) = 1(¢) F(G(n—1:\, 1)) n=1,

where F'(s) is the vector of generating functions of X(1). To treat this excur-
sion formula we expand the generating functions as follows,

4.8) F(s)—1= bz" mg(sb—1)+%bi;p,, D, F(s4+8,(1—s)) (s'—1) (*—1),
0<f,<1.

Set

d
(4.9) B(s:M,0) = (31 D, D, F(s+0,(1—8)) M Nyzoss -
Then (4.8) becomes

(4.10) F(s)—1= M(s—l)—}—% B(s:s—1,5—1).
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Combining this with (4.7) we obtain

G(n: A, p)—1
= M(G(n—1:N, g)—1)+()—1) F(G(n—1: M, r))

(+11) +% B(G(n—1:\, #): G(n—1: 7, #)—1, G(n—1: A, £)—1),
and hence
G(n: N, #)—1
= M'(IQ+2)—1) 1+ 5 M I(#)—I) F(G(k: M, )
(+12) +% ,,E M**1B(G(k: N, £): G(k: N, £)—1, G(k: N, #£)—1).
Set
(4.13) A= (0P N igpsn

(4.14) B (s: M A) = (>} 32Dy D, F(s+0,(1—8)) A> A)sece -
bECB cECy
Then we have
3 - wep-1xnf 18]y v [E] 1Y ey
(Belexp (i 33w+ x3(P) w2 py(PED) st —1).cc,
= G*([nt]: \,, 2,)—1"
— 3 (Mg (1t 2)—1) 1°

(4.15) LIS Sy (M2 (18(3,)—I) FYG(R: Ny )

k=0 p=uo
_§_l[%—1 i 2 (M[nt]—k—-l)wBB (G(k‘l )7 ) Gy(k'h p)
2 =0 652 v5e B v,8 c¥ny in)- cVny &n
—17, G3(k: A\, 2,)—1%).
We shall estimate the last three terms. We remark at first
Ig(h'n_*_pn)_l = in”-p_l(ag(xa"‘_-p'n))a,bqu—“O(nz(a_ﬂ-l)) ’
I§(#,)—1 = in"P(&3 /_I'b)a,becﬂ—%”2(“_B—l)(sg(l_l’b)z)a,bec,g

+O(me=F-D) .

(4.16)

Then the first term is
N
in~! ﬁg} P AP 2= 4-o(n™")

by Lemma 2.1. By (4.4) and Lemma 2.1 we have
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(4.17) G*k: M\, B,) = 1°P4+-O(n"*"Y) k<mnt,
and hence
(4.18) FYG(k: M\, &,)) = 1°+0(n"*") k=nt.

Then by (4.16) we obtain

bl

pE(Mk)p(Is(ﬂu) —1I) F¥G([nt]—k—1:M,, 7,))
2 G P to(n™).

=0

By (4.10) and (4.17) we have
F*(G(k: N, 2,) = 1"+ M7(1°—G*(k: M, B,))+o(n7?).
Hence by (4.16) and Lemma 2.1 we obtain

Z‘. (M")a(l (.u,.) 1) F* (G([nt] —k—1:N,, 7))
nt 2 (Y311 peca 1

— S O seca 1
+ ,23, (MMaT5( ) —T) Mo(G*([nt] —k—1: My, ,) —17)
+o(n?)
=™ Q5 ¢° n'l ¢ 2 'v,,(— )? u”®
+°83 PAIE) —I) MG (k: My, B)—1)+o(a™) .
Then the second term in (4.15) is
—% w7t 3 o) i g 02 1 -
+ E P a(la(B)—1) MG (k: N, 2,)—1%)+0(n?) .

By (4.17) and Lemma 2.1 the last term in (4.15) is

%[’g—." P“ B: a(l G“(k Lm”n) 1* G”(k L,,, ;l,,)——lw)—I—O(ﬂ_l)

Hence it follows that

(4.19)  n(G*([nt]: My ) —1°)
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N
=i S PV o=t S o

[ntl1-1
k

+ i P:(I:(F_‘a)—l) M:'n(G’(k: Ay f_‘n)_lw)

[nt]1-1

o ,,2=0 P; B} (1:n(G*(k: N, 2,)—1%), n(G*(k: M, &,)—1"))
+o(1).
Set

(420)  ult) = n0u(G([rt]: My ) 1)
+n(nt—[nt]) v,(G*([nt]+1: N, 2,)—G*([nt]: M, B,)) -

Then by (2.1), (2.2) and (4.19) we obtain
(4.21) (G ([nt]: Ny By)—17) = \p([ﬁnﬂ) U0t +o(1) .
But by (4.4), (4.11) and (4.13) we have

(+22) (D) e (2 = 0

n

Hence {yr,(¢)},>; is equicontinuous on each finite interval. Let yr(f) be any
limit of {yry(#)},21- Then by (4.19) and (4.21) y» must satisfy

W) =i BoPIV+05 ) o~ L 53 oy
t a
(4.23) i 0u(85 )seca MEH() w03 1) ds
1

| va Bl () P HIQE £, 40) wP-HiQS £8) s

Then it suffices to show the equivalence of (4.2) and (4.23). Since Yr(0)=
(P2 M +0Q3 £”)=1v, A* we have only to show that +» satisfies the differential
equation in (4.2). Remark that

(4.24) a(8% 7')a,0eca = (Va B )acca -
By (2.2) and P, Q2=0 it follows that

(4.25) M, Qu = Qu—I+Pq,
(4.26) M2 031 = Q2 1P —2F .

For any o we have
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v, BY (1: A%, A7)
= 3 33 o EalXy(1) (X(1)—3H] M2
= 3 v, Bf(X)AY]— 3 00
=3} v B (Xa(1)—X,(0) M2) A7)

+ aezo} v,(e” My Ny — ag]} 7,(\%)%.

(4.27)

Hence +J» satisfies
iy
(0
= 37 v, E{(Xa(1) — Xa(0) M2) (3 (1) w+i 0% )Y
+,33 i(6—a) (PEN+Q5 #9) 7~ 53 (i)
(4.28) +1(vy B )acca Ma(¥r(2) w4105 ££)
o 33 vlet M () 03 )
— 2 Dol @ u QL )Y

1.

1

k
By (4.26) and M u”=u" we have
Li=i 3 o, gu'y(t)— 2 v pw'(e" Qu )+ 3 va(@m’),
Il = i 3 0BV O+ 3 00 04— (i)

Then it is easy to see that Ej I,=0 and we have shown the equivalence of (4.2)
and (4.23). =

5. Proof of Theorem A

Before proceeding to the proof we state Theorem A more precisely.

Theorem 2. Let (A.1)-(A.3) be satisfied, x=(xy),<acy be a nonnegative
vector and y be a d-dimensional vector. Assume that {x"} ,>, is a sequence of non-
negative integer valued vectors satisfying lim n™* x=ux,V,, 1<a<N. Then the

n-ro

sequence of processes {(n™" X%(2), Yut+-n"" Y(t)icasn Pur)t nz1 converges to some
diffusion process (Xy(t), Yu())i<a<ns Pix,p) and
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N
(1) Ewulexp(i 23 (Xa(t) A7+ Ya(2) £7))]
N N N
= exp (¢ wz=1 Yo 5+xn(t: N, ) +i w2=2 ﬁga %y U(PENPH-QF 1) £2°%) .
Proof. First remark that (5.1) is clear if =0 and if >0 then (5.1) follows
from Theorem 1 and the branching property. If we can show the convergence
of any finite dimensional distributions then it is easy to see that the limit process
is a diffusion process by (5.1) (cf. section 7). Hence it suffices to show that for
any p=2 and 0<t,<<---<1,.
[7t41

(52)  Belep( 3 3 n X W@+ T Xulk) 2()]

¢=1 @=1

converges to a continuous function of (A (1), -+, M(p), £#(1), *-+, £()).
Set

G:,q(tl’ tny Byt 7"(1): Tt #(P)) o3

5.3 » N
4 = Eelexp(i 23 3 = (Xa[n2]) M(9)+ 2 Xa(k) #(9))] -

Then, by the branching property, (5.2) becomes

(54) I I Gratt -+ M, - (2%

@=1 a

Hence it suffices to show that there exists a vector of continuous functions (yr3(#,,
ey e h’(l)> *+y #(P)))1sw<n such that

(5 5) !‘li_)l?g nw(G::p(tl’ ) tﬁ: h(l)’ % p(.p))——l)aECd
= "I’:(tly Yy tp: h(l)! "t F(P))’ léaéN.
But by Markov property and the branching property we have
(5'6) G:,P(tl’ sy Byt R'(1)! ) #(P))
= Gip-1(tyy o+ tpt M (1), oo, M(P—2), Ny(p—1), £(1), -+, 22(p—1)),

in which
A(p—1)
=M(p—1) ;
(5.7) +n%log Eelexp (i P n~P(Xp([nt,]—[nt,-1]) MP(p)

[qtl,l—[atp_ll

+ 2 XKE P, ecC,.

Combining this with Theorem 1, (5.5) is easily seen by the induction argument
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with respect to p.

6. Proof of Theorem B

We state Theorem B more precisely.

Theorem 3. Let (A.1)~(A.3) be satisfied, C, be a final class, x=(%y);<a<n be
a nonnegative vector and Y= (Y,)r<a<y be a real vector. Assume that {x"},>, is a
sequence of nonnegative integer valued vectors satisfying xi=1, x;=0 for ac Cy, a1

and lim n'~" x}=x, v, for a=2. Then the sequence of processes {(n*" Xi(t), Y

+1"*Y 5(#))agasn> Pxr)} xz1 cOnverges to some diffusion processes ((]2,,,(1,‘), ?u(t))zsas N
(x,u)) and

Eelexp 33 (Ru) N+ Folt) )]

N ¢
61) = exp(i 3 b £°+0, M} u=So Ars(s: M, ) ds—tit v, M3 O3 £2)

+exp (3 Yalt: My )i 3] é w0 (P2 NP OF 1) 9%

Proof. As the proof of Theorem 2 it suffices to show (6.1) and the con-
vergence of finite dimensional distributions. To show the second part we
proceed as follows. Let p=1 and 0<t,<<-:-<?, be fixed arbitrarily. Then it
suffices to show that

[ntg]

N
(6.2) Eolexp(d Zp‘_; 27 X[ ) V() + 2 Xu(R) 2(9))]
converges to a continuous function of (A (1), -, ££(p)). Set

H:,p(tl» °*%y tp: h'(1)» e} ”(P))

N [ntg]

= Eelexp(i i} 27 X[ ) M)+ X2 Xu(R) 2(g)))] -

=2

(6.3)

Then by the branching property (6.2) becomes
& N n
(6.4) H, oty =5t M(1), oo, 24(P)) ‘!-;[2 ag Hi o8, o5 2 M (1), oo, (P))

In section 5 we have already shown that the second term converges to a con-
tinuous function. Transform the first term as in (5.6). Then applying the
following lemma the convergence of the first term is easily seen by the induc-
tion argument with respect to p. Also (6.1) follows from this lemma and The-
orem 1 applied to (6.4).

Lemma 6.1. Let (A.1)~(A.3) be satisfied, C, be a final class and t>0 be
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fixed. Then for any a<C, we have

65 lim Eefexp(i 3 nt~(X3(0) A+ Y2(0) )]

= exp (it v, M} Q3 ¢+, M} u’S: ba(s: N, ) ds) .
Proof. We define G(n: M, #) by (4.9). Let M=#'=0 and set
(6.6) M= (7" M)igazy -

Then it is necessary to estimate G*([nf]: M,, &,). To this end we expand the
generating functions as follows.
Set s#¥1=(8"),c,<x- Since C; is a final class we have

(6.7 F\(s8) = Mj(st*") s

for some Mi(s¥1)=(m§(8™M)), sec,. Since m§=mj(1) we obtain

(6.8) mi(st>N1) = mf{-I5(st>71)
where
(69)  BE) = 31 3 Dmi(s 6, (1) (1),

0<0,,<1.
Set Li(s®¥)=(l5(s"")),sec,, Then we have
(6.10) Mi(s¥1) = M} Li(s™»M)
and hence

6.1 {G‘(0= N o) =18,
(6.11) G'(n: M, ) = MG (n—1: A, #)) G (n—1: N, ), n=1.

Combining this with (6.10) we obtain

(6.12) G'(n: M\, #) = Mi G*(n—1: N, p)+Li(G»¥(n—1: N, g)) G'(n—1: N, pr)
and it follows that

(6.13)  G'(n: M, p) =11 :g: (M3)*~* L(G™¥Yk: N, £2)) GM(k: N, &) .

Since (M})"—Pi=0(p") for some 0<p<1, by (6.6), (6.13) and Theorem 1 we
have

(6.14) G ([nt]: My, B,) = (v, G¥([nt]: N, B,)) 1'4+O(n7Y) .
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Hence it is sufficient to estimate v; G'([nt]: M, Z,). Set

(6.15)  n(®)
= v, GY([nt]: M, 8,)+ (nt—[nt]) v,(G*([nt]+1: N, B,)
—G([nt]: My, 7)) -

Then, by (6.12) and Theorem 1, it follows that

(6.16) l«m([—”—tH—l)—«lrn <[”—’f])l =0(n™),

n

and {yr,(?)} 421 is equicontinuous on each finite interval. Let yr(¢) be any limit.
Then by Theorem 1 and (6.14) we have

617)  lim aLY(G=NY[nt]: My, 7)) G([nt]: Ny, 5,
= (2 23D, mi(1) (Yro(t: N, £2) u'+7(03 £2)°))aec, ¥(2) -

cE0, be0,

Remark thatbzo D, mj(1)=D, F°(1)=m:. Then by (6.13) 4 satisfies
€0

618) w0 = [ o M b, ) 2403 ) (5 ds 1,
i.e., Yr(t) is given by (6.5).
7. Some remarks
Set
(7.1) X,(t) = X, () u®, Ro(t) = X(t) 0" .
Then by the preceding three theorems it is easy to see that

(72) P(x,y)(xw(t) = Xw(t) Lo th) = p(:,y)(ﬁa(t) = Xm(t) Uy, t= 0) =1.

Set X ()= (Xa(t))1zasn> b ¢ (t)Z(Xu(t))zsagzv and B*=(B{ )4 secqui0 be the sym-
metric and non-negative definite matrix defined by

(7.3) ) OEU ( )B‘;’,b AN = 20 0, Eea[((XL(1)—X,(0) M7) (A u®+ 03 M%) .
4,660, U {q L=
Set A*=A"u” for ISa<N. Then by (7.2) we have
N N
2 Xu(®) AT =3 X, ()27
Then (5.1) becomes

(7:4) Eealexp(i 3 (Xul) M+ Y,(0) %]
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5
= exp(i :A:l‘_l Yo 52 (2: M, )

N

N
+i 2 2% v, Pruito, 0549) £17%).
=2 a

By (4.2) we obtain

4 1og Belexp(i 33 (Xul) N+ Xa(0) #)]1-o

= — 2 n(BhOY 2N 3 Bho w5 Bl u” i)
aE0;

abely

N
i 3 2 0, P w4y, O #7Y).

Then ((X(2), Y (2)), Px,y) is a diffusion process on the state space [0, o) X
R? and the generator is given by

Af(x, v)
(75) = > w(BheDit2 3 B D, D, + 3, Bra Dy, Dy) f(x,1)

N-1
+ m2=1 xo(vu P:+1 u¢+1 Dx“+1+ae(,'2 (U“ Z+1)a Dya)f<x’ y)

@+1
where D, denotes the partial differentiation with respect to x.

By the same method it follows that ((JL/> (®), f'(t)), IA’(,,,,,)) is a diffusion
process on the state space [0, c0)¥ !X R?"% (d, is the number of elements in Cy)
and the generator is given by

Af(x, y) = v, M} w D, f(x, y)
+l x,(B3 o D;,+-2 2 B} . D,,D, + X} B, D, D,)f(x,v)
(7.6) 2 &0, 0550,
N-1
+ 23 %a(Ve Pons u™ Diyirt 23 (Vs Qara)a Dy,) f(x, 1) -

8. An example

Let p>>0,0<¢=1 be fixed and set m=[p]+1. In this section we study
the 4-type branching process (X (n)) whose generating functions are given by

Fie) = L dn—pp()"),

(8.1) Fi(s) = — (S 1),

F¥(s) = ¢s*+(1—q) &,
Fi(s) =s*.
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Then the mean matrix is

22 00
1{o1 12
M=21
(82) 2(02q2-—2q 0)
00 02

Hence C,={1}, C,={2, 3}, C;={4}. Remark that C, and C; are final classes.
By elementary calculations we have

1
(83) o=l @l w=(]),
2 1 2¢ 1 2 2 1 —1
P2—24+1 (Zq 1> Qi = (2q—|—1)’( —2q 2q>’
1 Zp .
(84) Pr=3 +1(2q, 1), Qi = ety &Y

—Zq—l—l( ) 0= ( ). Pi= 2+1,Q3_0

Since
1
2 2 1 2__ 2 g 2\2] — 2 3\2 s
8.5) E2[(X,(1) M—X;(0) M2 M) 4(7~+7~)
Es[(X5(1) M—X,(0) MENY] = q(1—q) W —2\%)?,

the bilinear form (7.3) is

(8.6) % Vg Bea[((X(1)— X(0) M3) (N u*+ 07 M?))]
= By(q) (\')*+2B,(g) MN(NM—A)+By(g) V-,

where
_2q 29(1—29) _ 29(3+2q+4¢—8¢)

6 Bl = 520 Blo = 2L H, Byg) = HOEFTH,

By (4.2) \r;=+Jry(2: N, £) is the solution of
9 Yo (0: M, o) = 2 _|_1
ot = 5 (B W 2B () Y Bla) (W) B N

Let x,=0, x,=0, ,, v, be fixed arbitrarily and set x,= 2 Koy X,

q 1
xO) xs—
29+1 2q+1
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=(y, %3), ¥;=(¥2, ¥s)- 'Then by Theorem 2, the sequence of processes
{((n™* X5(2), n72X3(2), yot-n" Y3(2)), PooInegl Inssd,[22,D)} w21
converges to a diffusion process ((X,(2), X(t), Y;(2)), Ptsy,s,.4y) 2and

By, 0 [6%P (1 (Xo() M+ X,(£) M+ Y(2) )]

(8.9) - . . .y
= exp (1, £+ xo Yro(t: N, £8)-Fix, \Y) .

By Theorem 3 the sequence of processes

{((n™ X5(2), n72 XU(2), Y17 Y5(2)), Pt LnsglInzl [n’5,D)} w21
converges to a diffusion process ((I/fz(t), X0, l/f\’z(t)), p(,,o,“,,,z)) and
By o [exp ((Xoft) Nt R, (8) M+ Yoft) £))]

(8.10) = exp (i, #2—|—1>S: (52 N, £2) ds—+xo Ury(t: N, £2)
_Ziﬁt__ 2__ 3 . )\’4 .
+(2q_|_ iy (' — 1)1y Nf)

We shall clarify these limit processes applying the remarks in section 7. Set
X(H)=X,(t) w'=X,()+ X,(z). Then ng):% (2¢,1). By (8.8) and (8.9) it
q

follows that Y,(t)+4 Y,(2)=y,+y,. Hence Y,(¢) is determined by Y(#)=Y,(¢#)
and y,. For the convenience we ste Z(t)=X,(t), x=x,, 2=x,. Let P, be
the probability measure induced from P, ,,q by the diffusion process (X(2),
Y(t), Z(t)). Then by (8.9) it follows that

(8.11) Bs,y0lexp (X () A+ Y (2) u+-Z(2) )]
= exp (typ+xd(t: N, p, v)-+izv),
where p=¢(2: A, p, v) is the solution of
o (0:, p,v) =1iN,

‘flit’ (N pyv) = % (Bo(g) $*+2iBy(q) ndp—By(q) 1*)+ —zziqr v

By the same method we can define the process (X ®), Y(t), Z(#)) and let 15(,,,_,)
be the measure induced from 13(,,,, y,0 by this process. Then by (8.10) we have

B, . olexp (i(X(t)tx—i— V(2) p+2(t) v)]
= exp(z'y,u,—l—pso b(s: N, p, v)ds+xdp(t: N, p, )+

(8.12)

(8.13) 2ipt

gy “ T

Hence the generator A of the first process is
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Af(x, v, %) = % %(Bo(g) Di4-2B\(q) DD+ By(q) D3) f(%, 3, 2)

(8.14) 2
q
—|—2q i xD, f(x,y, 2),

A .
and the generator A of the second process is

i X = X X ZP X
(8.15)  Af(x,y,2) = Af(x,y, 8)+pD. f(x, 9, z)+(2q+1)2sz( )5 %) -

We shall end this section by giving the forms of characteristic functions for
Y(t) and Y(t) in some special cases. (The forms of Laplace transforms for

5 % . . ——t,u,2
X(t), X(?), Z(t) and Z(¢t) are given in [5]). If g=1 then ¢(¢: 0, p,0)=——"""-—.
Hence we have 9(27+-itp)

(8.16) Eteoolexp@Y (2) )] = exp

—xtu?
9(274itu)/’

. -3p . 2
8.17 Yty )] = (1422 Loptp— )
617) Bonole (@) m) = (1455 ) exp( g piu—gitte )
If q=% then ¢(2: 0, p, O):—% tanh(% t). Hence we ha have
(8.18) E¢ o00[exp(tY (t) p)] = exp (—% u tanh <% t)) ,

(8.19) Breoolexp T (#) u)] = (cosh (% ) exp(—% u tanh(% t)+%' pm) .
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