LATTICES AND AUTOMORPHISMS OF LIE GROUPS

TAKASHI IWAMOTO

(Received September 25, 1986)

Introduction

Let G be a connected Lie group. A discrete subgroup L of G is said to be a lattice if G/L has a G-invariant measure with finite total mass.

We denote by $\operatorname{Aut}(G)$ the totality of the bi-continuous automorphisms of G. Aut(G) is endowed with a Lie group structure in the natural manner. For a lattice L of G, we define a subgroup F(L) of Aut(G) by

$$F(L) = \{ \alpha \in \operatorname{Aut}(G); \ \alpha(x) = x \text{ for every } x \in L \} .$$

Assume for a moment that G is simply connected. Let L be a lattice of G. It is known that if G is semi-simple without compact factors or nilpotent F(L) is trivial. Triviality of F(L) implies that each automorphism is determined by its values on L. However if G is a simply connected compact semisimple group and L is the trivial subgroup, L is a lattice of G and F(L)=Aut (G) is not trivial. Except for such a trivial case, even if G has no normal connected compact subgroup, or if G has no compact subgroup, F(L) is not always trivial [See Appendix (B)]. In the case where G is a simply connected Lie group without normal compact semi-simple subgroups, F(L) is a closed vector subgroup of Aut(G) consisting of inner automorphisms by elements of the center of the largest connected normal nilpotent subgroup of G [See Coro. In general, for a simply connected Lie group G and a lattice L of G, 2.6]. F(L) has only finitely many components and the identity component $(F(L))_0$ of F(L) is the direct product of a connected compact subgroup and a vector subgroup consisting of inner automorphisms [See Theorem 2.10].

If G is not simply connected, the structure of F(L) is more complicated. However, it is shown that the structure of $(F(L))_0$ is the same as in the simply connected case [See Theorem 3.1].

1. Notations

Throughout this paper we will use the following notations;

G: a connected Lie group,

Т. Іwамото

- R: the largest connected normal solvable subgroup of G,
- N: the largest connected normal nilpotent subgroup of G,
- S: a Levi subgroup of G, that is, a maximal connected semi-simple subgroup,
- Q: the product of all the noncompact factors of S,
- C: the product of all the compact factors of S,
- C_1 : the product of the factors of C which are not normal in G,
- C_2 : the product of the factors of C which are normal in G,
- G_1 : the product of C_1 , Q and R.

For a Lie group G, we denote by G_0 its connected component containing the unit element. For a subgroup H of G, Z(H) and C(H) denote the center of H and the centralizer of H, respectively. For $x \in G$, the inner automorphism by x is denoted by i_x , that is,

$$i_{\mathbf{x}}: G \ni \mathbf{y} \mapsto \mathbf{x} \mathbf{y} \mathbf{x}^{-1} \in G.$$

For a subset A of a topological space, Cl(A) denotes the topological closure of A. By **R**, **C** and **Z** we denote the real number field, the complex number field and the integer ring, respectively.

A subgroup H of G is said to be characteristic if H is invariant under the action by Aut(G).

Lemma 1.1. G_1 , C_2 , CR and C_1N are all characteristic.

Proof. Let α be in Aut(G). Since $\alpha(S)$ is a Levi subgroup, there exists $n \in N$ such that $\alpha(S) = nSn^{-1}$. Both $\alpha(C_2)$ and $nC_2n^{-1} = C_2$ coincide with the product of those compact factors of $\alpha(S) = nSn^{-1}$, which are normal in G. Thus we have that $\alpha(C_2) = C_2$. Similarly $\alpha(C_1) = nC_1n^{-1}$. This implies that $\alpha(C_1N) = nC_1n^{-1}N = C_1N$. By the same argument as above we can prove that $G_1 = C_1QR$ and CR are characteristic.

REMARK. C_2 is characterized as the largest normal connected compact semi-simple subgroup of G.

2. Structure of F(L) in the case that G is simply connected

In this section we assume that G is simply connected and let L be a lattice of G.

Since G is simply connected, G is the semi-direct product of Q and CR: $G=Q \rtimes CR$. Let $p: G \rightarrow Q$ be the projection map with respect to the semidirect product decomposition. Set M=p(L). M plays an important role in the following arguments. The next two lemmas are essentially due to H. C. Wang. For the proof the reader can refer [4, Propositions 8 and 9]. **Lemma 2.1.** $CR/(L \cap CR)$ is compact.

Lemma 2.2. M is a lattice of Q.

In order to prove Lemma 2.2, we must note only that Q/M is homeomorphic to G/(LCR) as G-spaces.

Lemma 2.3. Let r be a continuous representation of G on a finite dimensional **R**-vector space V and f a continuous map of G to V such that for $x, y \in G$,

(2.1)
$$f(xy) = f(x) + r(x)f(y)$$
.

Assume that f(L)=0. Then we have that;

- (1) f(G) is compact and,
- (2) there exists $u \in V$ such that for every $x \in G$, f(x) = u r(x) u.

Proof. By Lemma 2.1, there exists a compact set $K \subset CR$ such that $CR = K(L \cap CR)$. Since f(L)=0, by Lemma 1.1 and (2.1)

$$f(LCR) = f(CRL) = f(CR) = f(K(L \cap CR)) = f(K).$$

Since $M = p(L) \subset LCR$, we have that

$$(2.2) f(MCR) = f(K).$$

We define a new representation r' of G on $V \oplus \mathbf{R}$ by

$$r'(x) (v \oplus t) = (r(x) v + tf(x)) \oplus t$$

where $x \in G$, $v \in V$, and $t \in \mathbb{R}$. That r' is a representation follows by the condition (2.1). Note that for any subset $A \subset G$

(2.3)
$$r'(A)(f(e)\oplus 1) = f(A)\oplus 1$$

where e denotes the unit element of G, since r(G)f(e)=0 by (2.1). $f(K)\oplus 1$ is r'(MCR)-invariant because we have that, by (2.2) and (2.3),

$$r'(MCR) (f(K) \oplus 1) = r'(MCR) r'(K) (f(e) \oplus 1)$$
$$= r'(MCR) (f(e) \oplus 1)$$
$$= f(MCR) \oplus 1 = f(K) \oplus 1.$$

Let W be the vector subspace of $V \oplus \mathbf{R}$ spanned by all the elements of $f(K) \oplus 1$. W is r'(MCR)-invariant and especially r'(M)-invariant. Thus, by Lemma 2.2 and [1, Coro. 4.5], W is r'(Q)-invariant and r'(G) = r'(QCR)-invariant.

Let W_c be the complexification of W. We consider GL(W) as a subset of $GL(W_c)$ in the natural manner. For a subset $B \subset GL(W)$, we denote by B^{\ddagger} the intersection of GL(W) and the Zariski-closure of B in $GL(W_c)$. By Lem-

ma 2.2 and [5, 5.16], $(r'(Q)|W)^{\sharp} = (r'(M)|W)^{\sharp}$, where r'(Q)|W and r'(M)|W denote the restrictions of r'(Q) and r'(M) to W, respectively.

Since $f(K) \oplus 1$ is compact and invariant under r'(MCR), r'(MCR) | W has the compact closure in GL(W). Thus, by Chevalley's theory on compact Lie groups [2, Chap. 6],

$$Cl(r'(MCR) | W) = (r'(MCR) | W)^{\sharp}$$

Consequently, we have that

$$r'(G) | W = (r'(Q) | W) (r'(MCR) | W)$$

$$\subset (r'(Q) | W)^{\sharp} (r'(MCR) | W)^{\sharp}$$

$$= (r'(M) | W)^{\sharp} (r'(MCR) | W)^{\sharp}$$

$$= (r'(MCR) | W)^{\sharp} = Cl(r'(MCR) | W)$$

and, using (2.2) and (2.3),

$$f(G) \oplus 1 = (r'(G) | W) (f(e) \oplus 1)$$

$$\subset Cl(r'(MCR) | W) (f(e) \oplus 1)$$

$$\subset Cl(f(MCR) \oplus 1)$$

$$= f(K) \oplus 1$$

Thus, f(G) = f(K). The proof of (1) is completed.

Since f(L)=0, f induces a continuous map \dot{f} of G/L to V. Let μ be a Ginvariant measure on G/L with total mass $\mu(G/L)=1$. Since $\dot{f}(G/L)=f(G)$ is
compact, \dot{f} is a μ -integral map with values in V. Set $u=\int_{G/L} \dot{f}(\dot{x}) d\mu(\dot{x})$, where \dot{x} denotes an element of G/L. For every $y \in G$, by (2.1),

$$u - r(y) u = \int_{G/L} (\dot{f}(\mathbf{x}) - r(y) f(\mathbf{x})) d\mu(\mathbf{x})$$

= $\int_{G/L} (\dot{f}(\mathbf{x}) - (\dot{f}(y\mathbf{x}) - f(y))) d\mu(\mathbf{x})$
= $f(y)$.

The proof of (2) is completed.

REMARK. In Lemma 2.3, the assumption of simply connectedness for G is not essential. We can easily reduce the proof for non simply connected groups to the one for simply connected groups.

Since G is simply connected, by Lemma 1.1, G has Aut(G)-stable direct product decomposition $G=G_1 \times C_2$. We denote by id_1 and id_2 the identity maps of G_1 and C_2 , respectively. Set

LATTICES AND AUTOMORPHISMS OF LIE GROUPS

$$\operatorname{Aut}(G_1) = \{ \alpha \in \operatorname{Aut}(G); \alpha \mid C_2 = id_2 \}$$

and

$$\operatorname{Aut}(C_2) = \{ \alpha \in \operatorname{Aut}(G); \alpha \mid G_1 = id_1 \}$$

where $\alpha | G_1$ and $\alpha | C_2$ denote the restriction of α to G_1 and C_2 , respectively. Lemma 1.1 implies that Aut(G) is the direct product of Aut(G_1) and Aut(C_2).

Lemma 2.4. F(L) is the direct product of $F(L) \cap \operatorname{Aut}(G_1)$ and $F(L) \cap \operatorname{Aut}(C_2)$.

Proof. In order to prove the lemma, it is sufficient to show that for any $\alpha \in F(L)$ there exist $\alpha_1 \in F(L) \cap \operatorname{Aut}(G_1)$ and $\alpha_2 \in F(L) \cap \operatorname{Aut}(G_2)$ such that $\alpha = \alpha_1 \cdot \alpha_2$. Set

$$lpha_1 = \left\{egin{matrix} lpha & ext{on} & G_1 \ id_2 & ext{on} & C_2 \,. \end{array}
ight.$$

Note that $\alpha_1 \in \operatorname{Aut}(G_1)$. For any $x \in L$, there exist uniquely $x_1 \in G_1$ and $x_2 \in C_2$ such that $x = x_1 \cdot x_2$. Since G_1 and C_2 are characteristic and the decomposition $x = x_1 \cdot x_2$ is unique, $x_1 \cdot x_2 = x = \alpha(x) = \alpha(x_1) \cdot \alpha(x_2)$ implies that $x_1 = \alpha(x_1)$ and $x_2 = \alpha(x_2)$. Thus $\alpha_1(x) = \alpha_1(x_1) \cdot \alpha_1(x_2) = \alpha(x_1) \cdot x_2 = x_1 \cdot x_2 = x$. This shows that $\alpha_1 \in F(L) \cap \operatorname{Aut}(G_1)$. Set $\alpha_2 = (\alpha_1)^{-1} \cdot \alpha$. By the definition $\alpha_2 \in F(L) \cap \operatorname{Aut}(C_2)$. q.e.d.

The following proposition makes clear the structure of $F(L) \cap \operatorname{Aut}(G_1)$.

Proposition 2.5. $F(L) \cap \operatorname{Aut}(G_1)$ is a closed vector subgroup and consists of inner automorphisms by elements of Z(N).

Corollary 2.6. Let G be a simply connected Lie group without connected normal compact semi-simple subgroups and L a lattice of G. Then F(L) is a closed vector subgroup consisting of inner automorphisms by elements of Z(N).

In fact even if G is a simply connected Lie group without normal compact subgroups, or even if G has no compact subgroup, F(L) is not always trivial, see Appendix (B). In order to prove Proposition 2.5, we need the following three lemmas.

Lemma 2.7. Let α be in F(L). Then α acts on N trivially and $\{\alpha(x) \ x^{-1}; x \in G\} \subset C(N)$.

Proof. By Lemma 1.1 and Lemma 2.1, $\{\alpha(x) x^{-1}; x \in CR\}$ is compact. In particular $\{\alpha(x) x^{-1}; x \in N\}$ has the compact closure. Thus by [7, lemme 2] α acts on N trivially. For $x \in G$ and $y \in N$, $x^{-1}yx = \alpha(x^{-1}yx) = \alpha(x)^{-1}y\alpha(x)$.

Hence $\alpha(x) x^{-1}$ centralizes N.

Lemma 2.8.
$$Z(N) = (C(N) \cap R)_0$$
.

Lemma 2.9.
$$Z(N) = (C(N) \cap C_1 N)_0$$
.

Though it is not difficult to prove Lemmas 2.8 and 2.9, for completeness we shall prove them in Appendix (A).

Proof of Proposition 2.5. Let $\alpha \in F(L) \cap \operatorname{Aut}(G_1)$. The assumption on α implies that α acts trivially on LC_2 . $\{\alpha(x) \ x^{-1}; \ x \in C_1\}$ is connected and, by Lemma 1.1, contained in C_1N . Thus Lemmas 2.7 and 2.9 imply that

$$\{\alpha(x) \ x^{-1}; \ x \in C_1\} \subset Z(N) \ .$$

Similarly by Lemmas 2.7 and 2.8 we obtain

$$(2.5) \qquad \qquad \{\alpha(x) \ x^{-1}; \ x \in R\} \subset Z(N) \ .$$

Let x be in $LCR = RC_1C_2L$, cf. Lemma 1.1. There exist $r \in R$, $y \in C_1$ and $z \in C_2L$ such that x = ryz. Then $\alpha(x) x^{-1} = \alpha(r) \alpha(y) \alpha(z) z^{-1} y^{-1} r^{-1} = (\alpha(r) r^{-1}) r(\alpha(y) y^{-1}) r^{-1}$, because α acts trivially on C_2L . Since Z(N) is characteristic, by (2.4) and (2.5), both $\alpha(r) r^{-1}$ and $r(\alpha(y) y^{-1}) r^{-1}$ are contained in Z(N). Consequently we have that

$$(2.6) \qquad \qquad \{\alpha(x) \ x^{-1}; \ x \in LCR\} \subset Z(N) \ .$$

Set G' = G/Z(N). By Ad we denote the adjoint representation of G' on its Lie algebra \hat{G} . Let $\pi: G \to G'$ be the canonical projection and α' the automorphism of G' induced by α . Note that by (2.6) α' acts trivially on $\pi(LCR)$. Since $M = p(L) \subset LCR$, for $x \in \pi(M) \alpha'(x) = x$. It follows that for $x \in \pi(M)$,

$$d\alpha' \circ Ad(x) = Ad(x) \circ d\alpha'$$

where $d\alpha$ denotes the automorphism of \hat{G}' corresponding with α' . Since π maps Q onto $\pi(Q)$ isomorphically, by Lemma 2.2 and [1, Coro. 4.5], for $x \in \pi(Q)$

$$d\alpha' \circ Ad(x) = Ad(x) \circ d\alpha$$

It follows that

(2.7)
$$\{\alpha'(x) \ x^{-1}; \ x \in \pi(Q)\} \subset Z(G') .$$

Define the map q of $\pi(Q)$ to Z(G') by

$$q: \pi(Q) \ni x \mapsto \alpha'(x) x^{-1} \in Z(G')$$
.

Since by (2.7) q is a homomorphism of a semi-simple group $\pi(Q)$ to an abelian group Z(G'), q maps $\pi(Q)$ to the unit element of G'. Thus α' acts trivially

238

q.e.d.

on G'. Consequently we have that

$$\{\alpha(x) | x^{-1}; x \in G\} \subset Z(N)$$
.

Since Z(N) is a vector group, we denote the multiplication in Z(N) by x+y. Let r be a representation of G on the vector group Z(N) defined by

$$r(x)v = xvx^{-1}$$

where $x \in G$ and $v \in Z(N)$. Define a map f of G to Z(N) by

$$f: G \ni x \mapsto \alpha(x) x^{-1} \in Z(N)$$

Since they satisfy the condition (2.1) in Lemma 2.3 and f(L)=0, by Lemma 2.3 there exists $u \in Z(N)$ such that for $x \in G$

$$f(x) = u - r(x) u \, .$$

It follows that $\alpha(x) x^{-1} = u(xux^{-1})^{-1} = uxu^{-1}x^{-1}$. Consequently, we have that $F(L) \cap \operatorname{Aut}(G_1) \subset \{i_u; u \in Z(N)\}$.

Define a continuous homomorphism $\Phi: Z(N) \rightarrow Aut(G)$ by

$$\Phi: Z(N) \ni u \mapsto i_u \in \operatorname{Aut}(G) \,.$$

Set $T=\Phi^{-1}(F(L)\cap \operatorname{Aut}(G_1))$. We have already shown that $\Phi(T)=F(L)\cap \operatorname{Aut}(G_1)$. Note that $u\in Z(N)$ is contained in T if and only if $xux^{-1}=u$ for every $x\in L$. Let $u\in T$ and let X be an element of the Lie algebra of Z(N) such that $\exp X=u$. Since the exponential map of Z(N) is bijective and Z(N) is normal, for every $x\in L$, Ad(x) X=X, where Ad denotes the adjoint representation of G. For an arbitrary $s\in \mathbf{R}$ and $x\in L$, $x(\exp s X) x^{-1}=\exp s Ad(x) X=\exp s X$. Thus $\exp s X \in T$. It follows that T is connected. Similar arguments show that ker Φ is connected and contained in T.

Since $F(L) \cap \operatorname{Aut}(G_1)$ is closed in $\operatorname{Aut}(G)$, $F(L) \cap \operatorname{Aut}(G_1)$ is locally compact. Z(N) is locally compact and σ -compact. Thus $F(L) \cap \operatorname{Aut}(G_1)$ is isomorphic to $T/\ker \Phi$ and is a connected and simply connected abelian Lie group, i.e, a vector group. Proof of Proposition 2.5 is completed.

On the other hand, $F(L) \cap \operatorname{Aut}(C_2)$ is a closed subgroup of the automorphism group of the compact semi-simple group C_2 . Thus $F(L) \cap \operatorname{Aut}(C_2)$ is compact and $(F(L) \cap \operatorname{Aut}(C_2))_0$ consists of inner automorphisms by elements of C_2 .

From the above results we obtain the following theorem.

Theorem 2.10. Let G be a connected and simply connected Lie group and L a lattice of G. Then

- (1) $F(L) = (F(L) \cap \operatorname{Aut}(G_1)) \cdot (F(L) \cap \operatorname{Aut}(C_2)),$
- (2) $F(L) \cap \operatorname{Aut}(G_1)$ is a closed vector subgroup consisting of inner automor-

phisms by elements of Z(N),

(3) $F(L) \cap \operatorname{Aut}(C_2)$ is a compact subgroup and $(F(L) \cap \operatorname{Aut}(C_2))_0$ consists of inner automorphisms by elements of C_2 ,

(4) $(F(L))_0$ consists of inner automorphisms and $F(L)/(F(L))_0$ is a finite group.

Proof. (1), (2) and (3) have been already proved. Since the decomposition in (1) is topological direct product, $(F(L))_0 = [(F(L) \cap \operatorname{Aut}(G_1)) \cdot (F(L) \cap \operatorname{Aut}(C_2))]_0 = (F(L) \cap \operatorname{Aut}(G_1)) \cdot (F(L) \cap \operatorname{Aut}(C_2))_0$. Thus $F(L)/(F(L))_0$ is isomorphic to $(F(L) \cap \operatorname{Aut}(C_2))/(F(L) \cap \operatorname{Aut}(C_2))_0$. Since $F(L) \cap \operatorname{Aut}(C_2)$ is a compact Lie group, $(F(L) \cap \operatorname{Aut}(C_2))/(F(L) \cap \operatorname{Aut}(C_2))_0$ is a finte group. Proof of (4) is completed.

Cororally 2.11. F(L) and $(F(L))_0$ are real algebraic groups (as subgroups of the automorphism group of the Lie algebra of G).

Proof. By (2) of Theorem 2.10, $F(L) \cap \operatorname{Aut}(G_1)$ consists of unipotent endomorphisms on the Lie algebra of G. Thus $F(L) \cap \operatorname{Aut}(G_1)$ is an algebraic group. $F(L) \cap \operatorname{Aut}(C_2)$ is also an algebraic group, because it is compact. Thus $F(L)=(F(L) \cap \operatorname{Aut}(G_1)) \cdot (F(L) \cap \operatorname{Aut}(C_2))$ is an algebraic group. Similarly, $(F(L))_0=(F(L) \cap \operatorname{Aut}(G_1)) \cdot (F(L) \cap \operatorname{Aut}(C_2))_0$ is also an algebraic group. q.e.d.

3. Structure of F(L) in general cases

Let G be a connected Lie group and L a lattice of G. Let (G', π) be the universal covering group of G and D the kernel of π . We can identify G with G'/D. Under this identification Aut(G) may be considered as the subgroup of Aut(G') determined by

$$\operatorname{Aut}(G) = \{ \alpha \in \operatorname{Aut}(G'); \alpha(D) = D \}$$
.

Set $L' = \pi^{-1}(L)$. Note that L' is a lattice of G' and that $D \subset L'$. If $\alpha \in F(L')$, for $d \in D \ \alpha(d) = d$. Thus $F(L') \subset \operatorname{Aut}(G)$ and $F(L') \subset F(L)$. We have that $(F(L'))_0 \subset (F(L))_0$. Conversely, if $\alpha \in (F(L))_0$, $\alpha(L') = L'$, because α commutes with π . Since L' is discrete and $(F(L))_0$ is connected, α fixes L' pointwise. Thus $(F(L))_0 \subset F(L')$. Consequently, we have that $(F(L))_0 = (F(L'))_0$. From Theorem 2.10, we obtain the following theorem.

Theorem 3.1. Let G be a connected Lie group and L a lattice of G. Then, $(F(L))_0$ is the product of a vector subgroup and a connected compact subgroup and consists of inner automorphisms.

Corollary 3.2. $(F(L))_0$ is a real algebraic group.

REMARK. In general $F(L)/(F(L))_0$ is not a finite group. Let G be a torus $\mathbf{R}^n/\mathbf{Z}^n$ and L the trivial subgroup consisting of only the unit element. L is a

lattice of G. In this case $F(L) = \operatorname{Aut}(G)$ is isomorphic to the discrete infinite group $SL(n, \mathbb{Z})$. Thus $F(L)/(F(L))_0 = SL(n, \mathbb{Z})$ is not a finite group.

Appendix (A)

Let \hat{C} , \hat{Z} , \hat{N} and \hat{R} be the Lie algebras of C(N), Z(N), N and R, respectively.

Proof of Lemma 2.8. Since Z(N) is connected, Z(N) is contained in $(C(N) \cap R)_0$. If $Y \in \hat{C} \cap \hat{R}$, each eigen value of the adjoint representation of Y on \hat{R} equals 0. Thus $Y \in \hat{N}$. It follows that $\hat{C} \cap \hat{R} \subset \hat{N} \subset \hat{C} = \hat{Z}$. Consequently, $(C(N) \cap R)_0 \subset Z(N)$.

In order to prove Lemma 2.9, we use a well known result;

Sublemma. Let \hat{R} be a solvable Lie algebra and \hat{N} its largest nilpotent ideal. Assume that α is contained in $(\operatorname{Aut}(\hat{R}))_0$. Then for $X \in \hat{R}$, $\alpha(X) \equiv X \pmod{\hat{N}}$.

Proof. The Lie algebra of $\operatorname{Aut}(\hat{R})$ consists of all the derivations on \hat{R} . The derivation of \hat{R} sends every element of \hat{R} into \hat{N} [3, p. 51]. Thus we have Sublemma.

Proof of Lemma 2.9. Since Z(N) is connected and contained in $C(N) \cap C_1N$, $Z(N) \subset (C(N) \cap C_1N)_0$.

Assume that $x \in C_1$, $y \in N$ and $xy \in C(N)$. By Ad we denote the adjoint representation of G. The restriction $Ad(xy) | \hat{N}$ of Ad(xy) to \hat{N} is the identity map of \hat{N} , because $xy \in C(N)$. Thus $Ad(x) | \hat{N} = Ad(y^{-1}) | \hat{N}$. Since $Ad(x) | \hat{N}$ is an element of the compact linear group $Ad(C_1) | \hat{N}$ and $Ad(y^{-1}) | \hat{N}$ is a unipotent element, both $Ad(x) | \hat{N}$ and $Ad(y^{-1}) | \hat{N}$ coincide with the identity map of \hat{N} . Thus $y \in Z(N)$ and Ad(x) acts trivially on \hat{N} . We shall show that Ad(x) acts trivially on \hat{R} . Since $Ad(C_1) | \hat{R}$ is compact, \hat{R} has an $Ad(C_1)$ -invariant inner product. Let \hat{N}^{\perp} be the orthogonal complement of \hat{N} with respect to the invariant inner product. Since $Ad(C_1)$ is connected, by Sublemma, we have that for $X \in \hat{R} Ad(x) X \equiv X \pmod{\hat{N}}$. Thus Ad(x) acts trivially on \hat{N}^{\perp} , because \hat{N}^{\perp} is $Ad(C_1)$ -invariant. Consequently, Ad(x) acts trivially on $\hat{R} = \hat{N} + \hat{N}^{\perp}$. Consider a homomorphism $h: C_1 \equiv z \mapsto Ad(z) | \hat{R} \in GL(\hat{R})$. The definition of C_1 implies that the kernel D of h is discrete. Hence we have that $C(N) \cap C_1N$ is contained in $Z(N) \cdot D$ and $(C(N) \cap C_1N)_0$ is contained in Z(N).

Appendix (B)

For a connected and simply connected Lie group G and a lattice L of G, F(L) is not alwyas trivial if G has no normal compact subgroup or even if G does not have any compact subgroup. Typical examples are the followings.

Т. Іwамото

(1) Let *n* be an integer ≥ 3 . Let π : $Spin(n) \rightarrow SO(n)$ be the universal covering group of SO(n). Since SO(n) acts naturally on \mathbb{R}^n , Spin(n) acts on \mathbb{R}^n via π . By this action we construct the semi-direct product $G = Spin(n) \rtimes \mathbb{R}^n$. G is a connected simply connected Lie group with no normal connected compact subgroup. Let L be $\mathbb{Z}^n \subset \mathbb{R}^n$. L is a lattice of G. A calculation shows that

$$F(L) = \{i_x; x \in \mathbb{R}^n\},\$$

which is isomorphic to \mathbf{R}^{n} .

(2) Define an action of \mathbf{R} on \mathbf{R}^2 by

$$\mathbf{R} \times \mathbf{R}^2 \ni (t, (x, y))$$

$$\rightarrow (x \cdot \cos t - y \cdot \sin t, x \cdot \sin t + y \cdot \cos t) \in \mathbf{R}^2.$$

By this action we construct the semi-direct product $G = \mathbf{R} \times |\mathbf{R}^2$. G is a simply connected solvable Lie group with no compact subgroup. Set

$$L = \{(\pi l, (m, n)) \in \mathbf{R} \times \mathbf{R}^2; l \in \mathbf{Z}, (m, n) \in \mathbf{Z}^2\}.$$

L is a lattice of G. In this case

$$F(L) = \{i_x; x \in \mathbb{R}^2\}$$
,

which is isomorphic to R^2 .

References

- [1] A. Borel: Density properties for certain subgroups of semi-simple groups without compact component, Ann. of Math. 72 (1960), 179–188.
- [2] C. Chevalley: Theory of Lie groups, Princeton Math. Series, Princeton Univ. Press, 1946.
- [3] N. Jacobson: Lie algebras, Tract in Math. 10, Interscience, New York, 1962.
- [4] H. Garland and M. Goto: Lattices and the adjoint group of a Lie group, Trans. Amer. Math. Soc. 124 (1966), 450-460.
- [5] M. Raghunathan: Discrete subgroup of Lie groups, Springer-Verlag, 1972.
- [6] M. Saito: Sur certains groupes de Lie resolubles 2, Sci. Papers College Gen. Ed. Univ. Tokyo 2 (1957), 157-168.
- [7] J. Tits: Automorphismes à deplacement borné des groupes de Lie, Topology 31 (1964), 97-107.
- [8] H.C. Wang: On the deformation of lattices in a Lie group, Amer. J. Math. 85 (1963), 189-212.

Department of Mathematics Kyushu University 33 Fukuoka 812, Japan