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Introduction

Let G be a connected Lie group. A discrete subgroup L of G is said to be
a lattice if G/L has a G-invariant measure with finite total mass.

We denote by Aut(G) the totality of the bi-continuous automorphisms of G.
Aut(G) is endowed with a Lie group structure in the natural manner. For a
lattice L of G, we define a subgroup F(L) of Aut(G) by

F(L) = {a€Aut(G); a(x) = x for every x&L} .

Assume for a moment that G is simply connected. Let L be a lattice of
G. It is known that if G is semi-simple without compact factors or nilpotent
F(L) is trivial. Triviality of F(L) implies that each automorphism is deter-
mined by its values on L. However if G is a simply connected compact semi-
simple group and L is the trivial subgroup, L is a lattice of G and F(L)=Aut
(G) is not trivial. Except for such a trivial case, even if G has no normal con-
nected compact subgroup, or if G has no compact subgroup, F(L) is not always
trivial [See Appendix (B)]. In the case where G is a simply connected Lie
group without normal compact semi-simple subgroups, F(L) is a closed vector
subgroup of Aut(G) consisting of inner automorphisms by elements of the
center of the largest connected normal nilpotent subgroup of G [See Coro.
2.6]. In general, for a simply connected Lie group G and a lattice L of G,
F(L) has only finitely many components and the identity component (F(L)),
of F(L) is the direct product of a connected compact subgroup and a vector
subgroup consisting of inner automorphisms [See Theorem 2.10].

If G is not simply connected, the structure of F(L) is more complicated.
However, it is shown that the structure of (F(L)), is the same as in the simply
connected case [See Theorem 3.1].

1. Notations

Throughout this paper we will use the following notations;

G : a connected Lie group,
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the largest connected normal solvable subgroup of G,

the largest connected normal nilpotent subgroup of G,

a Levi subgroup of G, that is, a maximal connected semi-simple
subgroup,

the product of all the noncompact factors of S,

the product of all the compact factors of S,

the product of the factors of C which are not normal in G,

the product of the factors of C which are normal in G,

the product of C;, O and R.
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For a Lie group G, we denote by G, its connected component containing
the unit element. For a subgroup H of G, Z(H) and C(H) denote the center
of H and the centralizer of H, respectively. For x&G, the inner automorphism
by «x is denoted by z,, that is,

i,: Gy xyxleG.

For a subset A4 of a topological space, CI(A4) denotes the topological closure of
A. By R, C and Z we denote the real number field, the complex number
field and the integer ring, respectively.

A subgroup H of G is said to be characteristic if H is invariant under the
action by Aut(G).

Lemma 1.1. G,, C,, CR and C,N are all characteristic.

Proof. Let « be in Aut(G). Since «(S) is a Levi subgroup, there exists
neN such that a(S)=nSn"'. Both «(C,) and nCun~'=C, coincide with the
product of those compact factors of a(S)=nSn"?, which are normal in G. Thus
we have that a(C,)=C,. Similarly a(C,)=nCn~*. 'This implies that a(C,N)=
nCmn'N=C,N. By the same argument as above we can prove that G;=C,QOR
and CR are characteristic. q.e.d.

ReMARK. C, is characterized as the largest normal connected compact
semi-simple subgroup of G.

2. Structure of F(L) in the case that G is simply connected

In this section we assume that G is simply connected and let L be a lattice
of G.

Since G is simply connected, G is the semi-direct product of Q and CR:
G=0X CR. Let p: G—=Q be the projection map with respect to the semi-
direct product decomposition. Set M=p(L). M plays an important role in
the following arguments. The next two lemmas are essentially due to H. C.
Wang. For the proof the reader can refer [4, Propositions 8 and 9].
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Lemma 2.1. CR/(LN CR) is compact.
Lemma 2.2. M is a lattice of Q.

In order to prove Lemma 2.2, we must note only that Q/M is homeomorphic
to G/(LCR) as G-spaces.

Lemma 2.3. Let r be a continuous representation of G on a finite dimen-
sional R-vector space V and f a continuous map of G to V such that for x,yEG,

(2.1) f(xy) = f(@)+r(x) () -

Assume that f(L)=0. Then we have that;
(1) f(G) is compact and,
(2) there exists uEV such that for every x=G, f(x)=u—r(x) u.

Proof. By Lemma 2.1, there exists a compact set KC CR such that CR=
K(LNCR). Since f(L)=0, by Lemma 1.1 and (2.1)

F(LCR) = f(CRL) = f(CR) = f(K(LN CR)) = f(K) .
Since M=p(L)c LCR, we have that
(2.2) f(MCR) = f(K) .
We define a new representation 7’ of G on VDR by
r'(x) (vD2) = (r(x) v+f (x))Dt

where x&G, veV, and teR. That 7' is a representation follows by the condi-
tion (2.1). Note that for any subset ACG

(2.3) 7'(4) (f(9B1) = f(A)D1

where e denotes the unit element of G, since 7(G) f(e)=0 by (2.1). f(K)P1
is 7'(MCR)-invariant because we have that, by (2.2) and (2.3),

r'(MCR) (f(K)®1) = r'(MCR) ' (K) (f(e)®1)
= 1'(MCR) (f(e)®1)
= f(MCR)®1 = f(K)®1.

Let W be the vector subspace of VDR spanned by all the elements of f(K)P1.
W is r'(MCR)-invariant and especially 7'(M)-invariant. Thus, by Lemma 2.2
and [1, Coro. 4.5], W is r'(Q)-invariant and r'(G)=r'(QCR)-invariant.

Let W, be the complexification of W. We consider GL(W) as a subset of
GL(W;) in the natural manner. For a subset BCGL(W), we denote by B
the intersection of GL(W) and the Zariski-closure of B in GL(W¢). By Lem-
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ma 2.2 and [5, 5.16], (»'(Q)|W)t=(r'(M)| W)}, where #'(Q)|W and r'(M)|W
denote the restrictions of 7'(Q) and 7'(M) to W, respectively.

Since f(K)®1 is compact and invariant under 7'(MCR), r'(MCR)| W has
the compact closure in GL(W). Thus, by Chevalley’s theory on compact Lie
groups [2, Chap. 6],

Cl(r'(MCR)|W) = (r'(MCR)| W)}
Consequently, we have that
r'(G)W = (r'(Q)|W) (r'(MCR)| W)
CE' QW) (' (MCR)| W)
= (r'(M)| W) (r'(MCR) | W)*
= (r'(MCR)| W)t = Cl(r'(MCR) | W)
and, using (2.2) and (2.3),

(@81 = (r'()IW)(f(e)D1)
CCl(r(MCR) | W) (f(9)@1)
CcCI(f(MCR)®1)
=f(K)®1
Thus, f(G)=f(K). The proof of (1) is completed.
Since f(L)=0, f induces a continuous map f of G/[Lto V. Let pbeaG-
invariant measure on G/L with total mass u(G/L)=1. Since f(G/L):f(G) is

compact, f is a p-integral map with values in V. Set u=$ F(#) du(%), where
G/L
% denotes an element of G/L. For every yeG, by (2.1),

u—r(y)u= gG/L (f(.ﬂ’:)-—r(y)f('i)) du(#)
- S o FO—( D) —f(9)) du(#)
=f(9).
The proof of (2) is completed.

ReMARK. In Lemma 2.3, the assumption of simply connectedness for G
is not essential. We can easily reduce the proof for non simply connected
groups to the one for simply connected groups.

Since G is simply connected, by Lemma 1.1, G has Aut(G)-stable direct
product decomposition G=G,XC,. We denote by id, and id, the identity
maps of G, and C,, respectively. Set
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Aut(G)) = {a€Aut(G); a|C, = id}
and
Aut(C,) = {acAut(G); a|G, = id}

where a|G, and a|C, denote the restriction of a to G, and C,, respectively.
Lemma 1.1 implies that Aut(G) is the direct product of Aut(G,) and Aut(C,).

Lemma 2.4. F(L) is the direct product of F(L)N Aut(G,) and F(L)N Aut
(Co).

Proof. In order to prove the lemma, it is sufficient to show that for any
aEF(L) there exist oy €F(L) N Aut(G,) and o, F(L) N Aut(G,) such that a=
dl'dz. Set

{ a on G
=3,
id, on C,.

Note that o, €Aut(G,). For any x L, there exist uniquely x,€G, and x,=C,
such that x=x,-x,. Since G, and C, are characteristic and the decomposition
xX=1x, * X, is unique, x, +¥,=x=a(x)=a(x,)a(x,) implies that x,=a(x,) and x,=
a(x,). Thus o (x)=a,(x;)- oy (x,)=a(x,)x,=x,-x,=x. This shows that o, &
F(L)NAut(G,). Set a,=(a;)™'+a. By the definition @, F(L) N Aut(C,).
q.e.d.

The following proposition makes clear the structure of F(L) N Aut(G)).

Proposition 2.5. F(L)NAut(G,) is a closed vector subgroup and consists of
inner automorphisms by elements of Z(N).

Corollary 2.6. Let G be a simply connected Lie group without connected
normal compact semi-simple subgroups and L a lattice of G. Then F(L) is a closed
vector subgroup consisting of inner automorphisms by elements of Z(IN).

In fact even if G is a simply connected Lie group without normal compact sub-
groups, or even if G has no compact subgroup, F(L) is not always trivial, see
Appendix (B). In order to prove Proposition 2.5, we need the following three
lemmas.

Lemma 2.7. Let a be in F(L). Then a acts on N trivially and
{a(x) x™!; x€G} CcC(N).

Proof. By Lemma 1.1 and Lemma 2.1, {a(x) x!; x& CR} is compact. In
particular {a(x) x™!; x& N} has the compact closure. Thus by [7, lemme 2]
acts on N trivially. For x€G and yeN, ¥ yx=a(x™! yx)=a(x)"! ya ().
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Hence a(x) x™! centralizes N. q.e.d.

Lemma 2.8. Z(N)=(C(N)NR),.
Lemma 2.9. Z(N)=(C(N)N C,N),.

Though it is not difficult to prove Lemmas 2.8 and 2.9, for completeness we
shall prove them in Appendix (A).

Proof of Proposition 2.5. Let a=F(L)NAut(G,). The assumption on o
implies that « acts trivially on LC,. {a(x)x"'; x&C}} is connected and, by
Lemma 1.1, contained in C;N. Thus Lemmas 2.7 and 2.9 imply that

(2.4) {a(x) x™!; x=Cy} CZ(N).
Similarly by Lemmas 2.7 and 2.8 we obtain
(2.5) {a(x)x™'; xR} CcZ(N).

Let x be in LCR=RC,C,L, cf. Lemma 1.1. There exist reR, y=C, and z&€
C,L such that x=ryz. Then a(x)x'=a(r) a(y) a(z) 27y ri=(a(r)r)r(a
(»)y~Y) r7Y, because a acts trivially on C,L. Since Z(N) is characteristic, by
(2.4) and (2.5), both a(r)7™! and r(a(y)y™')r™! are contained in Z(N). Con-
sequently we have that

(2.6) {a(x)x~'; x€ LCR} CcZ(N) .

Set G'=G|Z(N). By Ad we denote the adjoint representation of G’ on its
Lie algebra G. Let z: G—G’ be the canonical projection and a’ the automor-
phism of G’ induced by a. Note that by (2.6) @’ acts trivially on z(LCR).
Since M=p(L)C LCR, for x&z(M) a'(x)=x. It follows that for x&z(M),

da'oAd(x) = Ad(x)eda’

where da denotes the automorphism of G’ corresponding with ’.  Since 7 maps
O onto 7(Q) isomorphically, by Lemma 2.2 and [1, Coro. 4.5], for x&=(Q)

dot’o Ad(x) = Ad(x)odat’
It follows that
2.7) {a'(x) 7 x€7(Q)} CZ(G) .
Define the map ¢ of z(Q) to Z(G’) by
q: 7(Q)Dx - a'(x) x'€Z(G') .

Since by (2.7) ¢ is a homomorphism of a semi-simple group #z(Q) to an abelian
group Z(G'), ¢ maps z(Q) to the unit element of G’. Thus &' acts tiivially
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on G’'. Consequently we have that
{a(x) x~'; x€G} CZ(N) .

Since Z(N) is a vector group, we denote the multiplication in Z(N) by
x+y. Let r be a representation of G on the vector group Z(/N) defined by

r(x) v = xvx™!

where x&G and vEZ(N). Define a map f of G to Z(IN) by
f:Gax— a(x)x'eZ(N).

Since they satisfy the condition (2.1) in Lemma 2.3 and f(L)=0, by Lemma 2.3
there exists uZ(IN) such that for x&€G

f@)=u—rx)u.

It follows that a(x)x '=wu(wux~?)"'=uxu~'x"'. Consequently, we have that
F(L)N Aut(G))C {i,; uZ(N)}.
Define a continuous homomorphism @®: Z(N)—Aut(G) by

®: Z(N)suri,cAut(G).

Set T=® YF(L)NAut(G,)). We have already shown that &(T)=F(L)N
Aut(G,). Note that uZ(N) is contained in 7' if and only if xux~'=u for every
xeL. LetueT and let X be an element of the Lie algebra of Z(IN) such that
exp X=u. Since the exponential map of Z(IV) is bijective and Z(IV) is normal,
for every x& L, Ad(x) X=X, where Ad denotes the adjoint representation of G.
For an arbitrary s&e R and x& L, x(exp s X) ¥ '=exp s Ad(x) X=exp s X. Thus
exp s X&T. It follows that T is connected. Similar arguments show that ker @
is connected and contained in 7.

Since F(L) N Aut(G),) is closed in Aut(G), F(L) N Aut(G,) is locally compact.
Z(N) is locally compact and o-compact. Thus F(L) N Aut(G,) is isomorphic to
T/ker ® and is a connected and simply connected abelian Lie group, i.e, a vector
group. Proof of Proposition 2.5 is completed.

On the other hand, F(L) N Aut(C,) is a closed subgroup of the automorphism
group of the compact semi-simple group C,. Thus F(L)N Aut(C,) is compact
and (F(L)N Aut(C,)), consists of inner automorphisms by elements of C,.

From the above results we obtain the following theorem.

Theorem 2.10. Let G be a connected and simply connected Lie group and L
a lattice of G. Then

(1) F(L)=(F(L) N Aut(Gy) - (F(L) N Aut(C,)),

(2) F(L)NAut(G,) s a closed vector subgroup consisting of inner automor-
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Dhisms by elements of Z(N),

(3) F(L)NAut(C,) is a compact subgroup and (F(L)N Aut(C,)), consists of
inner automorphisms by elements of C,,

(4) (F(L)), consists of inner automorphisms and F(L)|(F(L)), is a finite group.

Proof. (1), (2) and (3) have been already proved. Since the decomposi-
tion in (1) is topological direct product, (F(L)),=[(F (L) N Aut(G,))+(F(L) N Aut
(CHle=F(L)NAut(Gy))-(F(L)NAut(C,)),. Thus F(L)/(F(L)), is isomorphic
to (F(L)NAut(C,))/(F(L)NAut(C,)),. Since F(L)N Aut(C,) is a compact Lie
group, (F(L) N Aut(C,))/(F(L)N Aut(C,)), is a finte group. Proof of (4) is com-
pleted.

Cororally 2.11. F(L) and (F(L)), are real algebraic groups (as subgroups of
the automorphism group of the Lie algebra of G).

Proof. By (2) of Theorem 2.10, F(L)N Aut(G,) consists of unipotent en-
domorphisms on the Lie algebra of G. Thus F(L)N Aut(G,) is an algebraic
group. F(L)NAut(C,) is also an algebraic group, because it is compact. Thus
F(L)=(F(L)NAut(G,))+(F(L)N Aut(C,)) is an algebraic group. Similarly, (F
(L))o=(F (L) N Aut(Gy)) - (F (L) N Aut(C,)), is also an algebraic group. q.e.d.

3. Structure of F(L) in general cases

Let G be a connected Lie group and L a lattice of G. Let (G’, =) be the
universal covering group of G and D the kernel of z. We can identify G with
G'[D. TUnder this identification Aut(G) may be considered as the subgroup
of Aut(G"’) determined by

Aut(G) = {a=Aut(G’); a(D) = D} .

Set L'=z"Y(L). Note that L’ is a lattice of G’ and that DCL’. If ae
F(L'), for deD a(d)=d. Thus F(L')CAut(G) and F(L')cF(L). We have
that (F(L')),C(F(L)),. Conversely, if a=(F(L)),, a(L")=L’, because o com-
mutes with z. Since L’ is discrete and (F(L)), is connected, « fixes L’ point-
wise. Thus (F(L)),cF(L’). Consequently, we have that (F(L)),=(F(L")),-
From Theorem 2.10, we obtain the following theorem.

Theorem 3.1. Let G be a connected Lie group and L a lattice of G. Then,
(F(L)), s the product of a vector subgroup and a connected compact subgroup and
consists of inner automorphisms.

Corollary 3.2. (F(L)), is a real algebraic group.

Remark. In general F(L)/(F (L)), is not a finite group. Let G be a torus
R"|Z" and L the trivial subgroup consisting of only the unit element. L is a
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lattice of G. In this case F(L)=Aut(G) is isomorphic to the discrete infinite
group SL(n, Z). 'Thus F(L)/(F(L))y=SL(n, Z) is not a finite group.

Appendix (A)

Let C, Z, N and R be the Lie algebras of C(N), Z(N), N and R, respec-
tively.

Proof of Lemma 2.8. Since Z(INV) is connected, Z(NN) is contained in (C(NV)
NR),. If YelnR, each eigen value of the adjoint representation of Y on
R equals 0. Thus YeN. It follows that éﬂIAECNCCA:Z. Consequently,
(C(N)NR),CZ(N). q.e.d.

In order to prove Lemma 2.9, we use a well known result;

Sublemma. Let R be a solvable Lie algebra and N its largest nilpotent ideal.
Assume that « is contained in (Aut(]é))o. Then for XeR, a(X)=X (mod. N).

Proof. The Lie algebra of Aut(lé) consists of all the derivations on K.
The derivation of R sends every element of R into N [3, p. 51]. Thus we have
Sublemma.

Proof of Lemma 2.9. Since Z(NNV) is connected and contained in C(N)N
C.N, ZIN)S(C(N) N C,N),.

Assume that x&C}, yeN and xyeC(N). By Ad we denote the adjoint
representation of G. 'The restriction Ad(xy)]N of Ad(xy) to N is the identity
map of N, because xyeC(N). Thus Ad(x)| N=A4d{y™")|N,. Since Ad(x)|N
is an element of the compact linear group Ad(C,)| N and Ad(y~*)| N is a unipotert
element, both Ad(x)| N and Ad(y™")|N coincide with the identity map of N.
Thus yeZ(N) and Ad(x) acts trivially on N. We shall show that Ad(x) acts
trivially on R. Since Ad(C)| R is compact, R has an Ad(C))-invariant inner
product. Let N* be the orthogonal complement of N with respect to the in-
variant inner product. Since Ad(C)) is connected, by Sublemma, we have that
for X& R Ad(x) X=X (mod. N). Thus Ad(x)acts trivially on N*, because N*
is Ad(C))-invariant. Consequently, Ad(x) acts trivially on R=N+N+*. Con-
sider a homomorphism #4: CIBzHAd(z)II%E GL(IAQ). The definition of C; im-
plies that the kernel D of % is discrete. Hence we have that C(IN)NC\N is
contained in Z(N)-D and (C(N) N C,N), is contained in Z(N). q.e.d.

Appendix (B)

For a connected and simply connected Lie group G and a lattice L of G,
F(L) is not alwyas trivial if G has no normal compact subgroup or even if G
does not have any compact subgroup. Typical examples are the followings.
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(1) Let n be an integer=3. Let z: Spin(n)—SO(n) be the universal

covering group of SO(n). Since SO(n) acts naturally on R", Spin(n) acts on R"
via z. By this action we construct the semi-direct product G=Spin(n) <X|R". G
is a connected simply connected Lie group with no normal connected compact
subgroup. Let L be Z"CR". L is a lattice of G. A calculation shows that

which is isomorphic to R".

(2) Define an action of R on R’ by

RXR*>(t, (%, 9))
— (x-cos t—y- sin ¢, x+ sin t-+y-cos t)ER*.

By this action we construct the semi-direct product G=RX|R’. G is a simply
connected solvable Lie group with no compact subgroup. Set

L = {(zl,(m,n))ERXR*;|€Z, (m,n)EZ?} .

L is a lattice of G. In this case

F(L) = {i,; xR},

which is isomorphic to R?.
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