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Introduction

In [5], the author showed the existence of infinitely many pure number
fields of any given odd degree n(^Z} whose ideal class groups have 2-rank at
least 3Δn, where Δn is the number of divisors of n which are smaller than n.
This result was approached via Diophantine equations of the type Y2=Xn-\-D>

which was also applied to the research on "n-rank" of the ideal class groups of
quadratic fields (Yamamoto [9], Craig [1], [2]). Particularly, in case n=3,
Craig gave one of the ways to generate the elliptic curves given by Y2=4X3+D
possessing suitably many integral points, and utilized it to obtain a precise result
on 3-rank of the ideal class groups of quadratic fields.

The aim of the present paper is to apply Craig's elliptic curves to the proof
of a 2-rank theorem on pure cubic fields. We shall namely show the following

Theorem. There exist infinitely many pure cubic fields whose ideal class
groups have 2-rank at least 6.

This theorem is stronger than the above result of [5] in case τz=3, because
Δ3=l. The proof is given by the method largely due to Craig [2]. To check
some results of Craig and to calculate the various numerical values, one can
make effective use of an electric computer. In particular, the computer algebra
system REDUCE was suited to our purpose (cf. [3]). REDUCE has been
implemented on the M680H computer at the Computer Centre University of
Tokyo, and able to be utilized at the Gakushuin University Computer Centre

(GUCC), by way of the computer network Nl. The calculations in Section 3
were carried out by FORTRAN on the COSMO800 III computer at GUCC.
The author would like to thank the staff of GUCC for their assistance given
to him during the work for the paper. Thanks are also due to Professor H.

Wada who kindly supplied valuable information about calculations of larger
numbers.
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1. Craig's elliptic curves

In this section, we summerize Craig's result on the integer solutions of
Y2=4X3+D. For details, refer to [2].

We start with the symmetric polynomial in X, Y, Z\

D(X, Y, Z) - (X2+Y2+Z2)-2(XY+YZ+ZX)

= (-x+ γ+zγ-4Yz = (x- γ+zγ-4zx=(x+ γ-zγ-
From these three expressions, we obtain the three points

(yz, —aHy+s3), (xx, y?— y+*3), (xy, χ?+y3—z3)

on the curve Y2=4 X3+D(x?y j3, £3) over Q(x, y, z). In order to find curves
of this type having many integral points, Craig studied the simultaneous equa-
tions

f v v v «y V3 ^ , 3 1 ^ 3 /„ 3 Λ.3_L,-3\
I #0*0 — #1*1 > #o—.yoτ~*o — —(Xi—yi^-Zi) >

\ / I ^ 1 ? ^ / ί I ? ?\
I V ΛJ V Λ) V —1— Ά > 9* —— I v —4—1J 9* 1^ ΛQ Vn — 2_X2 > 0 I -Xθ ~0 — \l/^'2 I _ / 2 ~2/ >

which yield immediately

£>(*o3, Jo, = D(xl, yl *») = D(x3

2, yl, 4) .

He gave the solution as follows For a, β, γ such that

let

( 2 )

( 3 )
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γ — a
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"l+3αφ q

1 +

.1 +

3βφ ,

3γφ <j

λ= —I

μ/K = (N+ Uγ+ W(M- V)

v = L2(N+U)-KW(M-V)

a = -LW(L-W)(N-U)

Kb = -\(ZφK-LU)-μKN

cIL = 3φ(-\IW)+U(-a/LW)

\ = 3φ\a—Lμb

Ί = W\a—Kμbι.
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Then

x

\a μb vc

\c μbλ va

_\b μa vcλ

gives a solution of the equations (1).
In particular, putting [α, /?, 7]=[0, T, — J1], we may consider that the

parameters appearing above and Λ?O, •••, %2 are rational functions in one variable
T. In fact, we can write them down by a tedious calculation or an electric com-
puter (see Appendix A). Let D(T)=D(xl, yl, *o) and At(T), Bt(T) (l^ι^6)
be as in the table below.

=

1

2

3

4

5

6

For l^ί^ό, ^(Γ) and B;(T) are all polynomials in Z[Γ]. Thus we obtain
the family of the elliptic curves;

for

having the six integral points Pi=(Ai(t), Bf(t)) (l^i^G).
In Craig [2], the last two points P5, P6 are not used, since the classes of

ideals of a quadratic field corresponding to three points, for example, Ply P4,
P5 satisfy an identical relation (see [1] pp. 451). However, in the proof of our
theorem, we can take full advantage of these six points.

We now state, as lemmas, a few properties of the polynomials Af(T), B{(T)
and D(T) required later. The first lemma is shown by patient modular cal-
culations.

Lemma 1. For any rational integer ty u,e have

( 5 ) fi,(f)Ξt=0 (mod 3) (l^/^6) ,

( 6 ) Z)(/) = l(mod4),

(7) u4,(f)ΞΞθ(mod4) (l^ί^ό), if *=0(mod4).

Lemma 2. At(T) and B^T) are relatively prime in Q[T], for l
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Proof. For l^S/^4, the assertions are shown in [2] pp. 391-396. The
others can be verified from them without difficulty.

Lemma 3. D(T) has at least one root zΰhose multiplicity is prime to 3.

Proof. Since D(T)=ί-\ ----- 22372Γ141 (see [2] pp. 390), it is easy to see

that D(T) cannot be equal to rE(T)3 for any r<=Q3 and E(T)&Q[T]. The
lemma follows from this obviously. (In fact, it has been proved in [2] that
there are at least three simple roots of D(T)< which shall not be required in our
article.)

REMARK. Lemmas 2 and 3 are immediate consequences of the irreducib-
ility of D(T) which can be shown by a computer calculation. Indeed, the
factorizer of REDUCE reveals the fact that D(T) modulo 79 is irreducible in

(Z/79Z) [T].

2. Unramified extensions

We now consider the pure cubic fields

Kt = Q(θ(t)) where 4θ(t)3 = D(t) ,

for t^Z. Note that Kt is actually pure cubic because D(t)l4 is not a cube
by (6). Let

L, =

Then we have

Lemma 4. Suppose, for lfgz<^6, A{(t) and B^t) are relatively prime in

the ring Z\2~~1} and t = 0 (mod 4). Then Lt/Kt is unramified at all primes of Kt.

Proof. We write simply Af instead of Afa), and so on. It suffices to prove
that the quadratic extension Kt(\/~0^A^)IKt is unramified for each i. First,
since θ3+A3

i=(Bil2)2>0 and consequently Θ+A{ is totally positive, all infinite
primes of Kt are unramified. Next, let p be any prime ideal of Kt prime to 2.

$ is unramified for Kt(\/Θ^A^) if it does not divide Θ+A{. Assume that 0+^Jf

is divisible by p. Then we have

(5,./2)2 = Θ*+A] = (θ+A^-ΘAt+A^Q (mod fr) .

If θ2-ΘAi+A2

i = 0 (modp), then Bi = 3Ai = 0 (modp) which contradicts (5) or
the assumption of the lemma. Therefore

ordp(<?+A ) = ordp((93+^f) = ord .̂/Z)2) =0 (mod 2) .

This implies that £ is unramified for Kt(\/^\^A^. Lastly, as ord2(Z)/4)=:— 2
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by (6), there is a unique prime ideal q of Kt lying above 2 which is totally ramified
We have

ordq(2<9) - ordq(2)+ordq(<9) = 3-2 = 1 .

Thus, by (6), (7) and the assumption t = 0 (mod 4), we have

(20)2(0+,4f)==403 = D== I (mod 4) .

Hence q is unramified for Kt(\/(2θ)\θ+Ai))=Kt(\/θ-^Ai) This completes
the proof.

3. A specific example

After Craig [2], we will give a specific numerical example and utilize it to
infer the existence of infinitely many fields mentioned in the theorem.

We will examine the case f= —1, that is, fα, β, γ] = [0, —1, 1], By (2)-(4),
we obtain the following values;

-L ιη r 1 9
M V = -8 6

ΛΓ W J L 10 12

j£=7

λ=-1608=-23 3 67

μ/K = 193 (prime)

v= 1195-5-239

a= 132-22 3 11

Kb= -7738--2-53-73

μbλ = —41687 (prime)

(Kpcί= —2255263 (prime).

With the same procedure as in [2] pp. 383-386, we can show that A^— 1) and
Bi(— 1) are relatively prime for all l5^'<^6 (cf. Appendix B). Let Rt be the
resultant of Af(T) and B^T) (l^/^6). By Lemma 2, Rέ is a non-zero rational

6

integer. Lte M1 be the product of all odd prime factors of Π -̂ ί

Lemma 5. If t= — 1 (mod Mx), then A{(t) and B^t) are relatively prime
in Z[2~l]for l<Li^6.

Proof. If an odd prime / divides both of Aέ(t) and B^i). then we have
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Λt.=0 (mod /) thus Mλ=0 (mod /). Therefore, if t= — 1 (mod Mλ\ then At(— 1)

=Bf(— 1) = 0 (mod /) which is a contradiction.

Next we are concerned with the independency of θ(t)-\-Ai(t) (l^z'^6) in
K*/K*2. Let p be a prime for which D(— 1)/4 is a cubic residue modulo
We define c^p^ZβZ as

where r^Z^—1)/4 (mod^>) and (—) is the quadratic residue symbol. It
should be noted that c^p) is dependent on the choice of r. We will fix r
suitably for each p. A computer search gives the following table;

P

17

19

23

31

37

41

Z>/4

10

12

4

1

1

16

r

3

10

3

25

1

10

q c, r3 c4 c5 c,

1

0

0

1

0

0

0

1

1

0

1

0

1

1

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

1

1

0

0

1

1

The second and third columns are given modulo^). Let [ply •• ,pβl=[i7, 19, 23,

31, 37, 41] and M2=f[pr We need the fact that det (<;,(£,)) Φθ in ZβZ,

which is easily verified.

Lemma 6. // t = — 1 (mod M2), then Θ(f)+Al(t), •-•, θ(t)+AQ(t) are in-
dependent in Kf I 'Kϊ2.

Proof. Suppose t= — 1 (mod M2). It is not difficult to show that there
exist a prime ideal py of Kt such that

Assume

lθ(t)+Aί(t}\ = (_
\ > /

Π

for some a^ZβZ. Considering this modulo py, we have

6

ί = l
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As det (£,-(£,•)) =t=0, we see αf =0 for all l^z'^6. This proves the lemma.

REMARK. For ίeZ, let Et be the elliptic curve defined by Y2=4X3+D(t),
and Et(Q) be the set of Q-rational points of Et. Then there is an injective
homomorphism

Et(Q)l2Et(Q) -» Kϊ/Kϊ2

given by

(*, y) -> θ(t)+x .

(See [7] Chap. X.) Therefore the above lemma implies that, for infinitely
many rational integers /, the six points (Afa), B^t)) (I<^zfj6) are independent
in Et(Q)l2Et(Q), and consequently,

ra

On the other hand, Kihara [4] showed a result of this type using the duplica-
tion formula on elliptic curves, for the case [a, β, y]=[— t, £, 0]. Kihara's
argument can be applied to the proof of the independency of Θty+A^t) (lίg

4. Proof of Theorem

We are now ready to prove the theorem. Let t be a rational integer such
that

ΞΞO (mod 4),

*=-! (modM0),

where M0 is the least common multiple of Mλ and M2. Then, by Lemmas 4,

5 and 6, Lt is an unramified abelian extension of Kt with Galois group isomorphic
to the elementary 2-abelian group of rank 6. Hence Kt is a pure cubic field
whose ideal class group has 2-rank at least 6.

Lastly, we must make sure of existence of infinitely many such fields.
From Lemma 3, we can take a root τ of D(T) with multiplicity m prime to 3.

Write

D(T) = (T-r)mDQ(T) .

It is well known that there exist infinitely many prime ideals of Q(τ) of degree
1 which are unramified for Q(τ)/Q. We choose a prime ideal $ of this kind

such that

ordp(6M0) = ordp(τ) = ordp(D0(τ)) = 0 .

Then it is possible to find a rational integer t satisfying in addition to (8) also
the congruence;
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t=τ+p (mod}?2),

where p is the rational prime contained in \>. Since

ordp(ί-τ) = ordp(/>) = 1 and ordp(Z>0(f)) = ordp(£>0(τ)) = 0 ,

we have

ordt(D(t)) = mίO (mod 3).

Hence p is ramified for Kt. The various choices of p prove our assertion.

Appendix

A. The following explicit expressions in the case [a, β, <y]=[0, T, — T]
are obtained, in an instant, by means of REDUCE.

'L U'

M V

N W

1 9T*

1+9Γ3 3Γ+9T4

.1-9Γ3 -3Γ+9Γ4.

K= l+3T+9T*+9T3+9T4,

λ = 6Γ+9Γ2+27Γ3-18T4-54Γ5-243716+81Γ8+729Γ9-729T12,

μ\K= 1-3T+9Γ2-18Γ3+81Γ6-81Γ7,

v = 1+3T-9Γ3-27T4+81Γ6+81T7-486Γ9+729Γ12,

α = 3Γ+9Γ2-36T4-162Γ5-81Γ6+81T7+648T8+486Γ9-7297111

-729Γ12,

^ = -1-3Γ-18Γ2-72Γ3-288Γ4-675Γ5-1215Γ6-567Γ7+1701T8

+7047Γ9+9477Γ10+80197Λ11-3645Γ12-13122Γ13-196837Λ14

-13122Γ15-6561Γ16,

ί = 18Γ2+27Γ3+90Γ4+27Γ5-81Γ6-567T7-405T8-243T9+729T10

+729Γ"+729Γ12,

/ίέj = yl (see below),

^TI/C! = Kzt (see below).

The following expressions are given with coefficients which are factorized into
prime factors

x0 = 2 32Γ2+34Γ3+2 34Γ4-33r5-22 34 5Tβ-35 17Γ7-22 34 19Γ8

+35 31Γ9+38 5Γ10+36 97Γ11+3β 13Γ12-37 53Γ13-22 38 13Γ14

29T16+39 43 T17+2 310 5 T18—2 310T19—2 IPT™
3 I gizy2*
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yQ = -l-2.32T2-33Γ3-22.32 5jΓ4-33 5T5-34 7Γ6+34 52Γ7

+2 35 7Γ8+35 59Γ9-36 5Γ10-2 36 13Γ11-36 5 31T12

-2 37 11T13+22 38Γ14+38 5.13Γ15+22 38 11T16+39 7Γ17

_ 310.13 JΊ8 _ 310. Jl JΊ9 _ 312J-20 I 312^21 I 312J-22 I 312J.23

^0-2.32T2+34Γ3+32 19Γ4+33.5Γ5-36Γ6-34.29T7-34 41T8+37Γ9

+36 23T10+36 31jΓn— 2 36Γ12— 37 43Γ13— 24 38T14— 39Γ15

+38 5 11Γ16+39 17T17+311Γ28— 22 3nΓ19— S

xl = 22 33T3+22 34T4+33 47Γ5+34 17T6+36Γ7— 2 34 67Γ8— 35 89Γ9

-23 36 7Γ10+22 36.5Γn+2.36 61Γ12+23 38 5Γ13+38 19Γ14

— 39 ST15— 38 113T16— 22 39 7Γ17— 22 310Γ18+310 17Γ19+311 5Γ20

-4-22 311T121 _ 312^22 _ 312^23 _ 3122^24

yl= 1+2.32Γ2+22 32Γ3+2 32.19Γ4+2.33 19Γ5+34 29T6+2 34.5Γ7

_22.37y8— 35 53r9— y βiTv+y.nTu+y s WT*
+2 37 5 13Γ13+22 38 5Γ14— 39 13Γ15— 2 38 61Γ16— 22 39 7Γ17

I jnyis I 2 312Γ19+311 5 J120 _ 3i2y22 _ 312^23

Zl = 3Γ+2 32Γ2+33T3-32.7Γ4-24.33T5-2.34.SΓ6+34 5Γ7+34.53Γ8

+2 35 17Γ9-2 367110-23 36 5Γ11-36 61Γ12+2 37Γ13+38-23T14

+23 39Γ15-38Γ16-39 52Γ17-310.7T18+2 310 7T20+22 311Γ21

_ 312^23 _ 312^24

Kx2= -2.3Γ-33Γ2-2 34Γ3-32.73Γ4-2.34.17Γ5-34.97T6-25 34.7T7

-35.79Γ8+22 35 17Γ9+36 229Γ10+38 59T111+2 36 373T12

-37 17Γ13-39 73Γ14-2 39 7 13Γ15-2.39.5.17Γ16+39.5T17

_l_3ιι. 47Γi8 _|_24 310 13Γ19+23 311 7Γ20—2 312 5Γ21—312 31jΓ22

— 23 312 5Γ23— 2 312 7T24+314Γ25+315T26+2 314Γ27+314Γ28,

yJ^=3Γ-32Γ4-23.33Γ5+34Γ6-35Γ7+2 34.19T8-36 52Γn-36Γ12

+22 37Γ13+23 38Γ14— 2 39Γ16— 310Γ17+310Γ19,

KzΛ= -1-3Γ-33Γ2-32 17Γ3-25.33Γ4-24.33 7T5-22.37Γ6-23.34 23T7

-22 34 41T8+37.17Γ9+22.37 17T10+39 17Γ11+37.149Γ12

— 2 37 11Γ13— 38 11 17Γ14— 2 39 59Γ15— 2 38 211T16— 39 5T17

+310 71Γ18+310 7 23Γ19+310 5 29T20+311 11Γ21— 22 312 5T22

— 312 31Γ23— 23 313Γ24+2 314Γ26+2 314T27+314Γ28.

B. To check quickly that (Aέ(— 1), £,-(— 1))— 1 (l^z'^6), one can use the
Euclidian algorithm, directly for A^— 1) and Bt(— 1), which is carried out on an
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electric computer. Another method is to factorize them into primes. Our
assertion is verified by the following complete factorizations;

A,= -25 35 5 11 41-67-239 ^-401-1229-2153-5311935749

A2= -22 3 11 193-2255263 B2 = -750719-7518218706311

AB = 23-34-41-67-41687 B3 = -11-23304629-22017793601

^4=26-32-ll-53.67-73-193 B, = -5-61-18542335623945929

A5= -2 33 5 41 53 73 193 239 B5 = -29-34701175163759747

A6= -22-3-5.11.239-41687 B6 = 139-40605300259955467

Lastly, we append the factorization of D=D(— 1);

D = 185478257-171752102638681035930180903617.

These factorizations were performed in consulting of Riesel [6] or Wada [8].

References

[1] M. Craig: A type of class group for imaginary quadratic fields f Acta Arith. 22 (1973),
449-459.

[2] M. Craig: A construction for irregular discriminants, Osaka J. Math. 14 (1977),
365-402.

[3] A.C. Hearn: REDUCE user's manual, Version3.0, The Rand Corporation, Santa
Monica, 1983.

[4] S. Kihara: On elliptic curves of the form y2=xz-}-k with rank at least 6 over Q,
(preprint).

[5] S. Nakano: On the construction of pure number fields of odd degrees with large 2-
class groups, Proc. Japan Acad. 62A (1986), 61-64.

[6] H. Riesel: Prime numbers and computer methods for factorization, Progress in
Math. 57, Birkhauser, Boston, 1985.

[7] J.H. Silverman: The arithmetic of elliptic curves, Graduate Texts in Math. 106,
Springer-Verlag, New York, 1986.

[8] H. Wada: High-precision multiplication and testing for primarity (in Japanese),
Sophia Kokyuroku in Math. 15, Sophia Univ., Tokyo, 1983.

[9] Y. Yamamoto: On unramified Galois extensions of quadratic number fields, Osaka
J. Math. 7 (1970), 57-76.

Department of Mathematics
Faculty of Science
Gakushuin University
Mejiro, Toshima-ku, Tokyo 171
Japan




