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1. Introduction

The Ott-Schaeffer planes {O-S) are translation planes of even order <f
with kernel K^GF(q) which admit a collineation group Q isomorphic to SL(2, q)
where the involutions are Baer. Furthermore, if S2 is a Sylow 2-subgrouρ of
Q then no two nontrivial elements of Q fix the same Baer subplane pointwise.

The OS planes are also derivable and a plane may be defined for each
automorphism a of GF(q), q=22r+1 which has fixed field equal to GF(2). Hence,
the number of such translation planes of each order is Φ(2r+1) (the number
of integers Φ l relatively prime to 2r+l) .

Further, the 0-5 planes may be defined by the tensor product of SL(2, q)
by a twisted version of the same (by an automorphism αBFix a=GF(2)).

Note that GL(2, q)=SL(2, q) X Z(GL(2, q)) (center) when q is even so as the
kernel is GF(q)y the OS planes also admit GL(2, q).

Conversely, in [7], for arbitrary kernel we have

Theorem (Johnson [7]). Let π be a translation plane of even order q2>\6
that admits GL(2, q) as a collineation group in the translation complement where
the 2-groups are Baer and no two nontrivial elements fix the same Baer subplane
pointwise. Then π is an Ott-Schaeffer plane.

DEFINITION 1.1. Tensor Product Plane.
A translation plane π of order q2, q even or odd, kernel K^GF(q) that

admits the collineation group

T =
" - - '~_o l

where π={(x1,x2,yuy2)\xijyieK9 ί=l,2}, x=(xux2), y=(yi,y2) and Λ?=0,

ŷ—0, y~x are components in this representation is called a tensor product plane.

DEFINITION 1.2. Generalized Ott-Schaeffer Plane.
A translation plane π of order <f, q even or odd, q~pr for p a prime, kernel



442 N.L. JOHNSON

), that admits a />-group <B of order q in the translation complement
such that each element of IB is Baer and no two nontrivial subgroups of 3}
can fix the same Baer subplane pointwise is called a generalized Ott-Schaeffer plane.

In section 2, we consider the basic structure of tensor product planes and
of generalized Ott-Schaeffer planes. In section 3, we consider translation
planes (T-P and 0-5) which admit groups of order q(q— 1) in the translation
complement.

Our main results completely classify both tensor product planes of even
order q2 admitting a tensor group of order q(q—l) (see (3.4)) and generalized
Ott-Schaeffer planes admitting groups of order q(q—l) in the translation com-
plement with prescribed Sylow 2 subgroups (see (3.21)).

2. The fundamental structure

NOTES 2.1. For q odd q=ρr, p>3y there is no tensor product plane. If
p>5 there is no generalized Ott-Schaeffer plane of order <f.

Proof. Consider

_ I a'] _ Γl ά
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fixes πa= {(0, x2, — x2 a
1 °", y2)\(x2yy2)\x2y y2^K} pointwise. Further-

more, {τa\a^K^GF(q)}=Sp is elementary abelian. By Foulser [4], Sp must
fix some Baer subplane pointwise, which cannot be the case. Hence, there are
no tensor product planes of characteristic > 5 .

Now assume p=3. The components x=0, y=xM of πay for M=[mi m*\>
must satisfy (0, x2, x2m3, x2m4)=(0, xz, —x2a

1~<r

yy2) so that m3=~a1~<r. ^ m^

On the other hand, in order that y=xM is fixed by τβ, we must have

l αl Γ ^i ™*1 [a ασ + 1Ί , Γ « i <\ Γ1 a~]

j l ] = Lθ a J+L-α 1 - mA |θ ljlj l-j- m
>—a = -\-a .

Hence, pφ3. This argument, which is also valid for arbitrary odd order planes,
was pointed out to the author by Rolando Pomareda. Now assume that π is
a generalized Ott-Schaeffer plane of odd order q2, q=pr. Each element of SB
is Baer and for p>3, Foulser [4] has shown that the Baer subplanes involved
must be disjoint. That is, since | J3| =q, 3) must fix a 1-dimensional subspace
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pointwise, which cannot be the case.
If p=3, it is possible that there are generalized Ott-Schaeifer planes of

order 32r. However, hereafter, in this section, we shall consider only even
order planes.

Theorem 2.2. Any tensor product plane π of even order (f is derivable.
The derivable net is a regulus and the derived plane ΐt is a tensor product plane
defined by the inverse σ~ι of the automorphism σ used in the definition of π.
Moreover, Fix σ=GF(2) and the spread may be represented by x=0y

y = x\
u>*u>d>\m:KxK-+K, u,a*K,aΦθ.
la1" , u+a J

Proof. Consider the notation of (2.1) with

"1 al ^ Γ l a0

f
for a^K^GF(q) is the vector form of a regulus in PG(3, K).

Now derive π using this "regulus" partial spread. Recall, if

represents ra in π by the standard representation of coordinates in n by (xl9 yv x2,
y2), we obtain:

( V ΛJ Ύ 1) I > ί V

Λ l> Λ> Λ2> / 2 ^ V*Ί>

?„ representing τβ in a (see, e.g., Jha-Johnson [6]). Hence,

rl a a" a'+1

Ί

0 1 0 a'
0 0 1 β

L0 0 0 1

-GίHΠ
for W . Hence, [r.- [J «] β [J f ]} in , U {[J »] 0 [J f } in ..

We now consider the componentsy=xM, M=\ ^ ^ 2 of π Λ = {(0, Λ?2, x2a
ι~σ,
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(Baer subplane of π). τa fixes

, m2+aσm4Ί

and ασ+1+w1α
<Γ=ασm4 or rather that 1

Hence, M = Γ w ' m(U' aΆ for all u where m is a function from Kx K to K.
laι-σ, u+a J

Note that if [β1"0", t/+β] does not take on all q2 values then τβ and T* for aφb
(a, δΦO) fix the same component y=xMΦ0 and hence ζτu τ2> must fix a 1-space
pointwise on bothy=xM and #=0. Hence, τa=τb. Thus, [α1"0", wj^fc1"0", w]<=>

Now we consider the general structure of a generalized Ott-Schaeffer plane
7Γ. Let Q be a collineation group of 7r of order q in the linear translation
complement and such that each involution in π is Baer. By Johnson and
Ostrom [8], Q is elementary abelian. Further, assume no two involutions in
3 fix the same Baer subplane pointwise. Then

Lemma 2.3. The q—1 Baer subplanes corresponding to the involutions of
Q lie across (?—1) ? + l components. The remaining q components are in an orbit
under S.

Proof. Q fixes a component which we call x=0> x—(xv x2). If g,
<1> and Fix g and Fix h share a component X^{x—ϋ) then ζg, K) has fixed
points on both X and (#=0). Since Q is linear, it follows that <£, /ι> is Baer—a
contradiction. Hence, Fix g and Fix A cannot share a component Φ(#=0).
Thus, this accounts for q(q—1)+1 components. As the Baer subplanes corre-
sponding to the involutions in Q do not intersect the remaining set Γ of q com-
ponents, Γ must be a ί?-orbit.

Now choose (y=0) e Γ. Then

Lemma 2.4. Ŵl? m«y choose a basis so that

(1
0

a
1

f{a)
0

1

0

g(a)^
f\a)

a

1 ,

f,g functions K-+K, where f is a 1 — 1 additive andg(a+b)=g(a)+g(b)+af(b)+
bf(a)foralla,b(=K.
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Proof. Let Q fix x=0. Choose a basis so one of the involutions fixes

{(0, x2y 0,y2)\x2,y2&K} =π0 pointwise and π0 shares the components χ=0,y=

0, y=x. Then one of the involutions has the form τ =

fixes πQ and #=0, so p=

Cl=l SO ̂  = ^ 4 = ^ = ^ 4 = 1 . NOW pτ=τp SO

0

0

lo
0
0

h
0

0

*«]
b<

n
0

0

lo

d
1

0
0

0
0

1

0

0\
0

d

l)
. Since | p \ =2, we must have a\=a\=c\=

Γl dlΓb, * 2 Ί = p 1 & 2 ΊΓl dl
Lo l J Lo bj Lo iJLo lJ

and hence b1=b4 (<ίφθ). We assert that at=c2,

Γl aJΓb.bJ Γ^bJΓl cΛ
Lo l JLo bj Lo iJLo iJ

so a2 b1=b1 c2.

If i 1 = θ then p fixes π 0 pointwise. Hence, if p φ r , a2—c2. Now there exists

a component y=xT in the orbit of length q for Γ = x 2 . Change bases by
FT τl 3 *4

r i J . Then tf=0->*=0,

3; = 0 <->j = xT

(That is, after the basis change, y=x may not be an equation of a line.) Then

0 1 0 ί,
for p =

O O l ί
0 0 0 1

we obtain

[I TΊ [I Tl
L θ / J p L θ / J

(1 a fo
0 1 0

0 0 1

0 0 0
a

1

Letting

f(a) = b.+at,

g(a) =
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(note

/I
0

0

o

a
1

0
0

0

1
0

a
1

and

1
0

0

o

a
1

0
0

0

1
0

c-2\

a
1

G ί implies Cy=cly c2—c2 since there are no ela-

tions in 3) where/, g: K->K, we have the proof to (2.4) since 3 is elementary
abelian. Note

•J = * l n i l l Λ , ( β ) J•JLO f(c

If/(α)=0 for αφO, then

l {{xly «,, 0, 0) I *1( ^ e X } is

{(0, x2) 0, 0) |# 2 ei£} and since both equations represent components, we have a
contradiction. .'• / is 1-1. And, we have:

Lemma 2.5. The S-orbit of length q may be represented by y=x ^a'

SW+aW] where a<=K. °
f{a) J

At this point, let the components be x=0, y=0, y=xM, M^JM but / may
(ί af(a)g(a)\

not be in <3A. Let τa=

(2.6). τβ ikesy

Proof. (#, x

0 1 0 f(a)
1 a
0 1 )

for αΦθ.

=[j Jjj], «.=β-1/(α), m^m^α"1^).

0 /(α)J

Hence we have the following set of components

u , m{u,ά)

for all αφO, MSίC, OT:

x = 0

o «
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where h(u)=g(f""\u))+uf'1(u) for all u^K. So, we obtain the following theo-

rem,

Theorem 2.7. Let π be a generalized Ott-Schaeffer plane of even order q2,

kernel K^GF(q). Let 3 be a collineation group of order q in the linear transla-

tion complement such that each involution of 3 is Baer and no two involutions fix

the same Baer subplane pointwise. Then π and 3 may be represented in the follozΰ-

ingform:

(ί a /(«), g(a))

0 1 0 f(c
0 0 1 a

lθ 0 0 1

,f 1 — 1 and additive

g(a+b)=g(a)+g(b)+bf(a)+af(b)

The components for π are * = 0 , y=0, y=x Γj h^Λ V uEiK, h{u)=uf-\u)+g{f-χ

(u)),h(0)=0,andy=x\ " ' m(u>a) ~] far some function m: KxK->K.
LdΓ1/^), u+a^gζaμ

Proof. Note y=x may not represent a component.

3. Groups of order q(q—1)

We first assume that π is a tensor product plane of even order q2 that admits

a group QSi of order ^ — 1 ) . Further, we assume £—\\ Λ ? ® Λ ? a^K=

GF(q)\ as in section 2 and c#= j | α

 α-i |®| α-<rΊ a^KΛ for some σGAut ic:.

Recall from (2.2) that a spread for π may be represented in the form #=0,

y=x\ u > m ( w ' α )Ί for all « , α G ί , m a function from KxK-+K.

Let τa=

(1 a' a aaλ

0 1 O a
00 1/

loo oi
Consider the images of

u , m{u,b)

?-', u+b

1 <ra

a'+10 0 0
0 a1-' 0 0
0 0 a'-1 0
Ό 0 0 β -

α'+ « , «(«***)Ί Γl α

-, tt+*jLoi
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, a*+ι+ua'+m(u,by]
, a+tf-'a'+u+b J
*-), tn(uyb)+aψ-*a'

So,

Lemma 3.1.

m{a+u+(f δ1"0", b)=m(u, b)+a<r(b1-σ a*+b)fσr all a, u, ft, ftφO o/ίΓ.

Applying pa we obtain

Lemma 3.2.

_ x Γ « . «(«, ft)

J ~ L Λ-α- )J U1-', M+ό J L o a —

-γ-', ua~2+ba-2

5o, m(Mα"2, ba-2)=m(u, b)a-^σ+l) for all u, a, b in K, αφO,

Hence,

Lemma 3.3.

y=χ[*_r>
 m(b' *)Ί Λαi £ί2nl) ίm^βf ω / ί ^ QSi and this orbit includes all

components with a zero in the (2, 2)-entry of the image matrix.

In particular, we have the orbits of length q[i—J denned by the images of

<y=*ΓJ> OT(J> 1 ) l a n d y = * Γ j ' m{^ λΆ (by analogy). By (3.1) and (3.2), the

o r b i t o f y = x ^

[imΆ^a Γα+l+« σ , m1+a"(a<r+1)]

Γ(α+1+«•) r2, («,+/(

for *Ά a, cΦO in K.
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Similarly, the orbit of P ' m ( 0 ' 1 ) = m ° ] is

_ x
L c>-° , {a+a°+l)c

Therefore, we obtain the following theorem:

Theorem 3.4. A translation plane π of even order (f and kernel

admits the group H={[1 j]®[J f ]\a<Ξlή. {[" „-]&["" a-J\\atΞK-{θή
with components x=0, y=0, y=x<=> there exists constants mOi m^K such that the
spread for n may be represented by the matrix spread set:

, (a+a')c

c, (mo+a'(a'+l))c'+Γ\

1Ί
J"

c1-' , {a+a'+\)c

for all u, a, c<=K, cΦO. Also, the fixed field of σ=GF(2), q=2r, and r is odd.

Proof. It remains to prove that r is odd. We see that ° and 1

are in distinct tf-orbits. Hence [J ^ ] ^ [«+«"' W°+β*ίf*+1 )], so that a+

α'Φl . Suppose δ2—A+l for some b&K. Then if #=2", assume r even, and
σ-=2s for s odd. Then ( i 2 f / 2 = & σ / 2 + l - 6 + l « 6 σ / 2 - δ < ^ δ σ - ^ « ^ - 2 - l ^ ( f o r

J φ l ) , Γ :?Jz2,2 r - lΊφl . Since ^ z 2 = 2 s " 1 - l and ( j - 1 , r )=2 ί, we have that

GF(4) cannot be a subfield of GF(q). That is, r is odd.

NOTES 3.5. In the Ott-Schaeffer planes mo=m1=l. Here, at least it is
possible that there are other translation planes distinct from the OS planes
and admitting the same group of order q(q— 1) that the 0-5 planes admit.

We now further consider generalized Ott-Schaeffer planes π of order (f
and kernel K^GF(q). We may use the representation given in (2.7). As-
sume there is a linear collineation group H such that HK*IK*^H{K* — K—
{0}) and \H\=q(q—l). Note that we use the notation HK* to refer to the
product of H by the kernel homology group of order q— 1.

Lemma 3.6. A Sylow 2-subgroup S2<H or π is Ott-Schaeffer.
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Proof. Let S2 fix the component X. Since the involutions of H (see
(2.7)) are all Baer, it follows from Johnson-Ostrom [8] (3.27) that if π is not
Ott-Schaeffer then the group R generated by the Sylow 2-subgrouρs of H is
reducible and solvable and by the argument to [8] (3.27), R must be a 2-grouρ.
That is, S2<H.

Lemma 3.7. H=S2*C where C is a 2-complement of S2. Then C fixes
two components.

Proof. Clearly, S2 is a Hall normal subgroup so let C be a 2-complement
of order q— 1.

C fixes X and by Maschke's Theorem, decompose π=X®ζW where <W is a
^-invariant 2-space. Either ^ is a component and (3.7) is finished or HP is a
C-invariant Baer subplane. Further, HP is Desarguesian and C\<W<GL(2,c[)
acting on HP. Hence, C must fix two components of HP which are 1-spaces of
7Γ. Hence, C fixes the components of π which contain the C-invariant com-
ponents of SίR

Lemma 3.8. H acts faithfully on X.

Proof. If h&H fixes X pointwise then A is a homology and by the orbit
structure of π (see section 2), it must be that the coaxis of h is moved by <S2.
That is, there must be elations in H by Andrό [1]. Hence, we have the proof
to (3.8).

Lemma 3.9. C acts regularly on <52—<(1> by conjugation.

Proof. Represent S2 as in (2.7), then let

So A, CeiVGi(2>ί) [{[J *] I a(ΞκJj SO that

Lo aj' Lo ctr

Let B=\bl b*\. If τ*=τ Λ for some αφO (see (2.7)) then clearly a^a^

and so τ * = τ 4 V 6Φ0. This implies

L O /(4)J LO 1 . P L 0 I j L θ , Mb J

for all
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Hence

Γai+Cl, a2+c2l Γ/(4) g(b)Ί = [bb3 4(4 1+4 4η
L 0 , aA+cJ L 0 /(4)J LO 44, -Γ

So («ι+cb)/(4)+(β1+c1)^(4)=4(41+44). That is, if a^c, then g{b)=bKλ+
, for

a n d

Thus, if ΛjΦc! then^ is additive.

However, g(b+t)=g(b)+g(t)+bf(t)+tf(b) so that bf(t)=tf(b) for all δ,

Hence/(ί)=ί/(l)
But the components include the q(q— 1) elements

ιf(a\ u+a 1 g{a)A

(see (2.7)) so that the (2, l)-entries are always ^ ^ / ( ^ ^ ( l ) . That is,

y = χ \ U >

L
for /(I) a constant, represents <7(#—1) components which clearly is a contradic-
tion

Hence, ^ + ^ 1 = 0 so that a1=ai=c1=cA and we have

If a2-\-c2Φ0 then f(b)=b a for a some constant. Then we still have

>=x\ ' v > / to represent q(q—1) components—a contradiction.
L/(l), u+a-ιg(a)l
Thus, az=c2 and b1=bA. So the element in C has the form

aλ a2 bλ I

0 ax 0 bλ

0 0 ax a2

0 0 0 aλ

. Multiplying by ax

 x I4 we obtain ρ=

a2aT1=e. We have τ g τe=

1 ef(e)g(e)
0 1 0 f(e)

0
0
0

1
0
0

0
1
0 1

Let

Since S2<HK* we must have
0 0 1 e

(o o o l )
that ρ=re. In other words, the element is in S2K*. However, we assumed
that HK*IK*sέH. This proves (3.9).

Thus, C must fix one of the components in the orbit of <S2 of length q. That

is, C must fix a component of the form y=x ^ ' for :some
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So, we may choose a 2-comρlement C for S2 so that C fixes y=0.

(3.10). Thus, the elements of C have the form

Lθ aj

so that

L O , a;1 JLO «

~ L o , tier1 J Lo

ua4

 λ
.

o ,

(3.11). So αΓ1c1=β4"
Ic4.

Since HK*jK*^H, then CK*jK*^C<*CΓ\K*={\). So multiplying a

typical element by

general form

Consider

2

0 a4 c c2

0 a.

then in CK*, there are q— 1 elements of the

. Assume two such elements have equal (2,2)-entries.

1
0 a4

0 afi_

when Λ4=β4. Then the product

/ > % - > =

and X =

"1

o «I

o l

where ίί=β 2α 4" 1+β 2α 4- 1 and (pX"1)2 must fix Λ ; = 0 pointwise. By (3.8), (pX~1)2=
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1. However, |CK* \ \ (q— I)2, so ρX~ι= 1 <=>p=X. Thus, there must exist a col-

lineation p =
l a,
0 a

c ct

0 ac

where \a\ =q—ϊ.

Hence, since <S2<HK*, we obtain

Γ l b f{b)

c-
0 1 0 /(*)

1 b
0 1 J

C

-i[ f(b) g(b)

L o f(b)

where A=\l aΛ, C=\C ' 2 Ί so that
LO a J LO acΛ

6 Ί Π βi] Γl, ba\ Γ _ 1 Γ1J L J = k J = C Lo
and

o f(b) 0 α-

L o , cf(b)
Since | a | = ? — 1, 3 js as=c, so that we obtain the elements

rl, άb a'f(b), f(b)(cz+a^)+g(b)a'+

0, 1 0 , a'f{b)
1 ab

L 0 1

in S2. Hence,

(3.12) f{ab) = a!f{b) for all b in K* and
(3.13) ^(αδ) = /(*) {ct+aj)+g(p) ai+ϊ for all b in £ * .
Also,

0

2 La—IJ



454 N.L. JOHNSON

The previous argument applied to p' implies

(3.14) f{fίb) = a»f(b) for all δ in # * and

(3.15) g(a'b) =f(b) (c2a«-

for all i^l,

Let ό = l in (3.14) and al=c to obtain f{c)=c>/(I) and further

(3.16) f(c) = cτf where <:''= cτ and τ e Aut K,f = f(l).

Pf. / is additive and / is arbitrary as | a \ —q— 1.
From (3.10),

v = Jf(b),bf(b)+g{b)l
y L o , /(*) J

t y - x Γ/(*)«T' </(*) (^+«2«
τ)+/(δ) έατ+1+^(έ) ατ«}Ί

Using (3.16), f(b)aτ=f(ab) so that the (2,2) entry of the preceding matrix is
df(d)+g(d) for i=0& since (ab)f(ab)=f(b)baτ+1, we obtain

(3.17) g{ab) = £(&) α τ + 1 + i τ / ( l ) fe+^τ) for all i in

Let b=ί in (3.15) to obtain:

(3.18) £(*') = ̂ (1) a ί ( τ + 1 )+/(l) (c2+α2α
τ) [fltf-^ [ ^ ] ] all i> 1 in Z.

Since \a\ =q— 1, we obtain

(a-ί)

for all cφO. Let ί=/(l) ( c '+ a » α ) α- τ, ^(l)=^r,/(l)=/to obtain
(a—I)

(3.19) ^(c) = c τ + 1 ( ί + ^ ) + ί :
τ ί

for all cφO in K.

Recall f(d)=dτf for all rf and £(e+</)=tf(«)+£(<0+«f(Ό+<'/(β) for all e, d
in K. Thus,

g(e+d) =

= (e τ + V+£)+e τ ί)+(^ τ + 1(ί+^)+<ί τ s)+edτf+deτf

so that
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(3.20) (edτ+edr)(s+g+f) = 0

so that either τ = l or s-\-g+f=0. If τ = l then from (2.7), the components
have the form

^x\uh{u)Ύ\ Γ Γ u , m{u,d)

1/ If, u+d->g(d)l

But, the latter set for all u> rfΦO represents q(q— 1) components. For dxΦd2

1[w, m(u, dλ Ί Γu, m(uy d2)
I—I

is singular so τ $ 1.
Change bases by

0 1 0

1 t

0 1)

where t= 2 .

Recall

/I df(d)g(d)\
0 1 0 f(d)

v» I ί .
(from section 2) and % commutes with rd. Recall

P =
0 1

\

\

0 α τ + 1 J

so that

p =

( Ί 0
0 α

0
flTατ(α+l)5

0 α τ + 1
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as

l tl[l β lΠ tl_[1 t+a2+tal
O iJLoαJLo l j — Lθ a J

when f=-S- so that t+at+ta=-^-+at+-^~ a=0 and
1+fl 1+α 1+a

LO 1J [θ J+1\ LO l j LO α τ + 1 J
where

as

_

We originally had the components in the form

v = x[f(b)g(b)+bf{b)l
y L 0 fib) J

and

Apply X, the forms become:

Lo f(b) J= x

and

r ^
L C

-I
(£)J

for v=u+cτ 1f't. In other words the form is invariant under X.
Now g(b)+bf{b)=(bτ+\s+g)+bτs+bτ+>f) by (3.19). By (3.20) s+g+f=0

so that g(b)+bf(b)=bτs.
Change bases by

/ 0

0
L o r\
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so that

[bτf, 4 τ ί Ί T Γ6T OΊ
y = xU\bΊΓ

y = xU 6'J
ly = XU-ιf, v+c-ιg{c)\ \ = Yy= If1/, v+c\s+g)+cτ-1 J J

since
Furthermore,

1 0
0 a

\
Ί 0

0 a

Lo l J
CL , Q, I

LO, a"

ri -f-
Lo l

aτ 0

0 α τ + 1

and

7 ' rd 7 =
L 0 0 , / - 1

1 d

0 1

and

/(Ό ^ ) Ί Γ/"1 ^ ' Ί = I"**'/ ̂ T +V+^)+^T *Ί Γ/"1 i/"
o f(d)J L o /-1 J L o dTf J L o f-1

o dτ

dτ dτ+1

o </τ

Thus
1 d dτ dr+

0 1 0 f
0 I ί

Now let τ=σ~1. Then

(Ί b bτbτ+1\ (I a° a a'+1\

0 1 0 bτ

0 0 1 b

,0 0 0 1

0 1 0 a

1 a'

0 1

Lo lJ Lo l J
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for b=a" and

n
0

0
a

ar

0

0

aτ+1/

N.L. JOHNSON

n o
U a

\

d'2

0

0

\

r
/

for a=d~2<τ. Multiplying by

d'+ι

of the kernel homology group, we obtain

Γdσ+1

d1

d"

Hence, we may apply the results on tensor product planes with groups of order

Thus we obtain:

Theorem 3.21. Let π be a translation plane of order (f and kernel

GF(q)f q even. Let H be a group in the linear translation complement of order

q{q—l) and HK*jK*^H. Further, if S2 is a Sylow 2-subgroup of H, assume

the involutions are Boer and no two involutions fix the same subplane pointwise.

Then π is a tensor product plane and the spread is completely determined.

A matrix spread set may be represented as follows:

{a+a°)c

J L c1-" , (a+a" +ί)c

for all u,a,cΦθ of K, m0) wίj constants in K and σGAut K such that the fixed
field of <τ is GF{2) and q=22r+1.

NOTES 3.22. Several authors, [2], [3], [5], have recently studied transla-
tion planes of order q2 that admit H groups of order q(q— 1) where H is an au-
totopism group. In this situation, there are many different classes of noniso-
morphic translation planes. So, we see that the assumption on the nature of
the Sylow ^-subgroups for ρr=q is crucial in (3.21).
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(3.23) Open Problems and Related Questions.

1) (a) What are the Tensor Product Planes?

(b) Are there nontrivial generalized Ott-Schaeffer Planes?

2) Study translation planes of order <f, pr=q kernel GF{q) that admit

linear collineation groups of order q(q— 1): The Sylow ^-subgroups

are

(a) planar.

(b) quartic.

(a) 1) if planar the group is an autotropism group.

(a) 2) no two ^-elements fix the same Baer subplane pointwise.
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