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1. Introduction and summary of the results

In the present work we study the structural properties of linear autonomous
functional differential equations in Banach spaces within the framework of linear
operator theory. We shall explain our motivation of this study.

In a series of papers Bernier and Manitius [4], Manitius [29] and Delfour and
Manitius [15] they have developed an excellent state space theory for linear
retarded functional differential equations (FDE’s) in the product space R"X
L[—h,0]; R"), h>0. The theory is based on certain relations between semi-
groups associated with the FDE’s and the socalled structural operators F and
G. 'The structural operators have enriched the qualitative theory of linear FDE’s
and have provided various new and efficient techniques for the study of control
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theory involving retarded FDE’s. The power of the theory has been shown nad
increased by a number of contributions (refer to Delfour [12], Delfour, Lee
and Manitius [14], Manitius [30,31], Salamon [39] and Vinter and Kwong
[47]). Recently Salamon has been extended the state space theory to the con-
trolled neutral FDE’s and has used the theory to expand a system theory for
neutral systems in his book [40].

We now pose a question. Is it possible to construct an analogous theory for
partial FDE’s? For the question we shall give an affirmative answer for certain
class of partial FDE’s. We study partial FDE’s in the class consists of abstract
delay evolutional equations in Banach spaces similarly as in Travis and Webb
[44,45], Webb [48], Datko [9, 10] and Kunisch and Schappacher [26, 27]. Par-
tial FDE’s in this class are very general and are appropriate for system theoretical
study as shown in Curtain and Pritchard [8] and Fuhrmann [16], so we take
this class. Let X be a reflexive Banach space and consider the evolution equa-
tion with delay

(E) d’;_(tt)=on(t)+Sihdn(s)x(t+s), >0

on X, where 4, generates a Cj-semigroup and 5 is a bounded Stieltjes measure
on I,=[—h,0]. We study the equation (E) on the state space M,=X X L,(I,; X).
The structural operator F is concerned with the retarded part of (E) and is
defined through the measure 7 quite similarly as in [4]. In [33, 34] the
author has constructed the fundamental solution of (£) under the natural condi-
tion on % and has shown its prominent role in the optimal control theory in-
volving (E). The introduction of fundamental solution permits us to define the
structural operator G, and these G and F have made it possible to develop the
state space for (E).

The objective of this paper is to extend and give certain new contributions
to the state space theory for the equation (E) on a reflexive Banach Space. Many
results obtained here, which are useful in applications, are considered to be pos-
sible generalizations of the results in [4, 15, 29] to infinite dimensions. However
it is also the objective of this paper to propose an approach for simplifying the
state space theory. Due to our approach heavily depending on functional analy-
sis method, many of the proofs can be improved. The author believes that the
results presented here will provide a useful tool in studying the control theory
for partial FDE’s.

We enumerate the contents of this paper. Section 2 gives some preliminary
results on the equation (E). The notations and terminology to be used for

(E) are given in Subsection 2.1. In Subsection 2.2 various fundamental
concepts relating to (E) are introduced; e.g., the fundamental solution W(%),
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the retarded resolvent R(\; Ay, ) which is a bounded inverse of A(A)=
0

AM—4,— S e“dy(s), the three kinds of retarded, point spectrum o 5(4,, 7), con-
~h

tinuous spectrum o ¢(4,, 1), and the residual spectrum o g(4,, 1), the mild solu-
tion; and the basic fact that R(\; 4, 7) is given by the Laplace transform of
W(t) for Re A large is stated. Also, a variation of constants formula for the
mild solution in terms of W(t), which is essential in our treatment, is given. In
the remainder part of this subsection we introduce the transposed equation (E7)
on the adjoint space M} of M, and give an elementary adjoint theory. In
Section 3 we define semigroups S(f) and S;(¢) associated with (E) and (ET)
respectively, by the translation segments of mild solutions. The basic pro-
perties of the semigroups like infinitesimal generator or compactness for ¢># are
investigated as well as those for their adjoint semigroups S*(¢) and S¥(#). Sec-
tion 4 is devoted to study the properties of structural operators. As in Bernier
and Manitius [4] we define the structural operators F and G,, >0, then a key
relation S(t)=G,F, t>h in our theory follows from the variation of constants
formula. The representations of the adjoints F* and G¥ are shown to be of
same type as F and G|, so analogous decomposition for Sy(f) holds. As a con-
sequence of such decompositions we can show that the adjoint semigroup S*(#)
is realized via a modified transposed equation with non-zero forcing term by re-
garding the forcing term as the initial state of the transposed equation. Other
fundamental properties of F' and G=G|, shown in [4, 15, 29] are the intertwined
property S(t)G=GS¥(¢) and FS(¢t)=S#(t)F. These relations are extended to
our Banach space case and their simple proofs based on the new formula S(2)G=
G, are presented. It is also proved in Section 4 that the null space Ker G of
G is {0} and the image ImG of G is dense in M,. We know that similar
conditions for F are hopeful in establishing good qualitative properties of (E), but
these are not true in general. Thus, in Section 5 we examine conditions for F
such that Ker F={0}, InF=M, or Cl (Im F)=M,, where Cl denotes the
closure operation. A number of necessary and/or sufficient conditions for these
criterion expressed by 7 are established by solving a Volterra integral equation with
delays induced by the operator F. Among those it is shown that for differential

0 m
difference equations with the retarded term S hdn(s)x(t+s) = E_lA,x(t—h,),

0<h<-+<h,=h, an equivalent condition to Ker F={0} is Ker 4, = {0}.
Section 6 is devoted to studying the resolvent operators of infinitesimal generators
which generates the semigroups given above. According to [7, 15, 40] various
spectral operators containing exponential function terms are introduced and the
relations each other and connections between F and/or A(\) are investigated.
Using such relations we show, via the characterizations of generators given
in Section 3, that each resolvent is described as a composition of F (or F*),
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retarded resolvent and other spectral operators. Such representations for the
resolvents play an important role in the spectral analysis for (E). With the
help of such forms a detailed and somewhat complicated spectral theory than
[15], [18] is developed in Section 7 and Section 8. Section 7 studies the spectral
decomposition theory for (E). In Subsection 7.1 the spectrum of the generator
A of S(t) is determined. The spectrum of A coincides with the retarded
spectrum completely. Strictly speaking, it is shown that ox(4)= o (4, 7),
o(A)=0cc(Ay 1) and o x(A)=0x(Ap, 7). In Subsection 7.2 a rather sophistcated
spectral decomposition is presented. A characterization of the null space
Ker (W [—A)', =1, 2, -+ in terms of A(\) and its derivatives is established for
AMEap(A4). If \isapole of R(u; Ay, n) of order k,, then M, can be decomposed
as the direct sum of the generalized eigenspace H,=Ker (AI—A)* and its com-
plementary space Hy=Im(A\[—A)». In view of the representation of the
resolvent R(\; A) of A given in Section 6, the cannonical spectral projection P,
on M, is expressed as a composition of F and other operators containing the
retarded resolvent. Finally in this section we restrict a set ACo(4) to a subset
of discrete spectrum and establish the group property of S(t) on the decomposed
space M A:)\g M, (direct sum) with a clear picture of the asymptotic behaviour

of the mild solution of (E). In Section 8 we develop the adjoint spectral de-
composition theory by emphasizing the role of structural operators F and G.
The main concern in Subsection 8.1 is to clarify the relation between the
spectrums of the adjoint A* of A and the generator A, of Sy(t). Thus it is
shown that three kinds of spectrums of A* and A, coincide entirely and the
generalized eigenspace M} of A%, AEa(A4*) is given by M¥=F* M, where
MY denotes the generalized eigenspace of A; corresponding to A. We now
denote by o,(4*) the discrete spectrum of A%, i.e., dim HMF<oo if AE g (A*)C
op(A*). Then it is also established that o,(4*)=0,(4;) and G* ¥ = MK .
This implies, by the property of G*, that dim M¥=dim 5. The last result
in Subsection 8.1 gives the M,-adjoint result for A, in which a fact that
dim HMy=dim H¥ is shown for a pole A of R(u; 4y, 7). In Subsection 8.2 we
are concerned with the representations of spectral projections. From the results
in Subsection 8.1 we know that dim H¥ = dim Mf <oo for AEo,(A). Using
this fact the spectral projection P, for A Eo,(4) is expressed in terms of the bases
of My, ML and the operator F. In Section 9 we study the problem of com-
pleteness of generalized eigenfunctions, which means C1( xegmﬂ"):M"'

First a characterization of the null space Ker P, for a pole A of R(u; Ay, 7) is
given. Then a number of necessary and sufficient conditions for the com-
pleteness are established by the use of the representation of Ker P,. In the final
Section 10 we give some examples of practical partial FDE’s which illustrate the
contents of this paper.
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2. Linear functional differential equations in Banach spaces

2.1. Notation

The sets of real and complex numbers are denoted by R' and C", respectively.
R* denotes the set of non-negative numbers and R" denotes the n-dimensional
Euclidean space. Let X and Y be complex (separable) Banach spaces with
norms |-| and ||+||y, respectively. For ECY the closure of E is denoted by
CI1(E). The adjoint spaces of X, Y are denoted by X*, Y* and their norms
are denoted by |- |, ||+|ly*, respectively. For a closed linear operator 4 on a
dense domain D(4)C X into Y, its adjoint operator is denoted by A*. The
symbols Im 4 and Ker A4 will denote the image and the null space of 4, respec-
tively. The duality pairing between X and X* is denoted by <, > and the
pairing between Y and Y* by {, >y. For ECY the orthogonal complement
{y*eY*:{y, y*>,=0 for all yeE} of E is denoted by E-. B(Y, X) denotes
the Banach space of bounded linear operators from Y into X. When X=1Y,
B(Y, X) is denoted by B(X). Every operator norm simply is denoted by ||-[|.
Given an interval I CR!, L,(I; X) and C(I; X) will denote the usual Banach
space of X-valued measurable functions which are p-Bochner integrable
(1<p< o) or essentially bounded (p=oc) on I and the Banach space of strongly
continuous functions on I, respectively. The norm of L,(I; X) is denoted by
l-ll,,r- W$(I; X) denotes the Sobolev space of X-valued functions x(s) on I

such that x(s) and its distributional derivative i(s):é? belong to L,(I; X).
s

For each integer k>1, C*(I; X) denotes the Banach space of all k-times conti-
nuously differentiable functions from I into X. C(R*; X) (resp. LY(R*; X))
will denote the Fréchet space of functions which belong to C([0, ¢]; X) (resp.
L([0,]; X)) for any t>0. Let M,(I; X) denote the product space X X L,(I; X).
Given an element geM,(I; X), g€ X, g'(-)€L,(I; X) will denote the two coor-
dinates of g, i.e., g=(g% g'). M,(I; X) is the Banach space with norm

lglyir 0 = { (181 +llgls)" i 1<p<eo
My X) !g"l-l—”glllm,z i p—oo .

The symbol X denotes the characteristic function of the set E.

2.2. Fundamental solution, mild solution and retarded resolvent

We shall review some basic results on linear functional differential equa-
tions (FDE’s) in Banach spaces. Let 2>0 be fixed and I,=[—#, 0]. Consider
the following autonomous retarded FDE (E) on a Banach space X:

@.1) did(;—):on(t)—{—So_hdy;(s)x(t—}—s)+u(t) ae. >0
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(2.2) #0) =g, x(s)=g() ae s€[—h,0),

where g=(g°, gYeM,=M,I,; X), us Ly(R*; X), p€[1, o], and A4, generates
a Cy-semigroup T(f) on X. The Stieltjes measure % in (2.1) is given by

23) 2 = = B XcwsdA— | A@E,  sel,,

where 0<h,<:--<h,=h, A,€B(X) (r=1, -+, m) and 4,€L,(I;; B(X)).

Let W(t) be the fundamental solution of (E), which is a unique solution of

t 0
7(ty+ (" Tt —s g dn(E)W(E+s)ds, 120
iy — | TO+ 10 [ aome

0, 1<0.
Then WAt) is strongly continuous on R* and satisfies, for some M, v,>0,
(2.4) [|[W()|| <M exp (7o), t>0.
If the condition
(2.5) A()eLy,(1,; B(X)), 1p+1p' =1

is satisfied, then for each t&R* the operator valued function U,(+) given by
26)  UL) = 5 Wit—s—h)AXe,, 00+ | Wit—s+AE)dE

— Ss_hW(t—s+£)dn(§) , ae. sel,

belongs to L,(I,/; B(X)). This follows from the Hausdorff-Young inequality.
Hence the function

W(t)g'+ SihU «(5)g(s) ds + S:W(t—s)u(s)ds , >0

g ae te[—h0).

is well defined and is an element of C(R*; X)NL,(/,; X). From (2.4)~2.7)
we can derive the following estimate

(2.8) |%(t; g w)| <(Mollgllar, +Myllu(+)ll00,0) €xp (7o), 120,

where M, and M, are constants depending only on p, 5 and A4,.

@7)  w(t; g u)=

Theorem 2.1. Let (2.5) be satisfied. Then the function x(t)=x(t; g, u) in
(2.7) is the unique solution of the following functional integral equation:

T(t)g°+S:T(t—s)jo_hdn(s)x(wrs)ds+S;T(t—s)u(s)ds, t>0
£ ae. tE[—h0).

(2.9)  x(t) =
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In the sense of Theorem 2.1 we shall call this x(¢) the mild solution of (E).
The formula (2.7) is well known as a variation of constants formula for retarded
FDE’s in R" (cf. Hale [18, Chap. 6]). Since we use the class of mild solutions
(2.7) throughout this paper, the condition (2.5) is always assumed. A sufficient
condition for the existence of differentiable solution of (E) is given by the next
corollary (for the proof see [34]).

Corollary 2.1. Let X be reflexive. If g=(g°, g') and u satisfy

§EWP; X), £(0)=g€D(4,),
ueW®([0, t]; X)  for each t>0,

then the function x(t)=x(t; g, u) given in (2.7) is a strong solution of (E), i.e., x(¢)
satisfies (1) x€C(R*; X)NW§([0, £]; X) for all t>0; (i) x(t)eD(4,) for a.e.
t>0, x(t) is strongly differentiable and satisfies the equation (2.1); (i) x(0)=g°,
x(s)=g'(s) a.e. s&€[—h, 0).

For each A &C" we define the densely defined closed linear operator A(A)=
A()‘; AO) 7]) by

(210) A() = M—do— [ dn(s),

where I denotes the identity operator on X. The retarded resolvent set p(4,, 7)
we understand the set of all values A in C" for which the operator A(\) has a
bounded inverse with dense domain in X. In this case A(A)™ is denoted by
R(\; Ay, 1) and is called the retarded resolvent. The complement of p(4,, 7) in
the complex plane is called the retarded spectrum and is denoted by o(4,, 7).
The three different types of retarded spectrum can be defined as in the following
manner. The continuous :etarded spectrum o¢(A4,, 1) is the set of values A for
which A(\) has an unbounded inverse with dense domain in X. The residual
retarded spectrum o z(4,,7) is the set of values A for which A(A) has an inverse
whose domain is not dense in X. The point retarded spectrum o 5(4,, 1) is the
set of values A\ for which no inverse of A(\) exists (cf. Hille and Phillip [31, p. 54],
Tanabe [43, Chap. 8]).

We know that the retarded resolvent set p(4,, 5) is open in C' and con-
tains right half plane and the retarded resolvent R(\; A4,, 7) is holomorphic on
p(4p, 7). In fact, we have the following

Theorem 2.2. Let
(2.11) wo = inf {a: ||W(t)||<Me*, t>0 for some M>0} .

If Ren>w,, then N Ep(Ay, 1) and the retarded resolvent R(\; Ay, ) is given by
the Laplace transform of W(t), i.e.,
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(2.12) ROv; A m) = S NP (6)dt .

Next we give an elementary adjoint theory for (E) under the assumption that
X is reflexive and p#=co. Then the adjoint space M¥ of M, is identified with
the product space X*x L,(I,; X*), where 1/p+1/p'=1. Let f=(f° fY)eM¥}
and (veLy(R*; X*). The transposed equation (E”) on X* is defined by

(2.13) dfT(tt)=A:,kz(t)+s‘)_hdn*(s)z(t+s)+v(t) ae. t>0

(2.14) 20)=1° =20)=f(s) ae s&[—h0).

Since X is reflexive, the adjoint operator A¥ generates a Cy-semigroup 7*(z) on
X* which is given by the adjoint of 7'(¢) (see [37]). Hencc we can construct
the fundamental solution W7(t) of (E”) as the unique solution of the equation
{ T*(t)+ s T*(t— S)S A EWT(EFs)ds, >0
WT(t) =
o, t<0.

We denote by W*(t) the adjoint of W(t). Then we can show that W7(t)=
W*(t), teR'. This implies that W*(¢) is strongly continuous on R*. Throu-
ghout this paper the condition

Af(-)eLI,; BX*), 1p+1jp'=1

is assumed whenever the transposed equation (E7T) is in consideration. Thus,
the (unique) mild solution 2(#) of (ET) exists and is represented by

2.15)  #(t) =2(t; f, v) = W*(t)f°+5ihV,(s)f‘(s)ds+S:W*(t—s)v(s)ds, >0,
where

R16) Vi) = B WHt—s—h) APy, o)+ | WHO—s+E)AFE)E

ae s€l,,
For A &C" define the operator

0
Ar(\) =A(n; ¥, 7*) = M—Aé‘—g_he“dn*(s)-

The retarded resolvent and three kinds of spectrum corresponding to Az(\) are
defined similarly as for A(\).

Theorem 2.3. (i) NEp(4,, 7) if and only if X(complex conjugate) < p(AF, n*) and
(2.17) R(\; A4y, n)* = R(X; A%, 7*) .
(i) Both retarded resolvent sets p(Ay,7) and p(A¥,n*) contain the half plane
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{AEC"': ReA>wy}, where w, is given in (2.11).
(iit) R(n; AF, 9*) = S: eMW*Ht)dt  for Rer>w,.

Here in Theorem 2.3 (i) we remark that the duality pairing <, between
X and X* satisfies

(2.18) Lx, ax*> = lax, x*> for acl', (x, x*)EXXX*.

Complete proofs of these results in this section can be found in [34, 35].

3. Semigroups associated with functional differential equations

This section is devoted to studying basic properties of semigroups associated
with the equations (E) and (ET). In what follows we assume that X is reflexive
and 1<p<<oo.

Let x(t; g) be the mild solution of (E) with #=0 and g&M,. The solution
operator S(t): M,—>M,, t>0 is defined by

G.0) S(t)g = (¥(t;8), %(+38)  for geM,,

where x,(s; g)=x(t+s;g) a.e. s&€l,. The operator S(¢) is bounded and linear
on M, by (2.7) and has the following properties (for similar results, see [2,4,5,
6,44,46,48]).

Proposition 3.1. (i) The family of operators {S(t): t>0} is a Cy-semigroup
on M,.
(ii) If T(2) is compact for all t>0, then S(t) is compact for t>h.
(iii) The infinitesimal generator A of S(t) is given by

(B2 D)= {g=(g gHEM,: geW(l,; X), g(0) = g'€D(4y)} ,
63 dg= (et | a0, B () for g= @ g)ena),
and for gED(4),

(34) 208 _ as0g = Sydg,  +>0.

Proof. (i) The semigroup property S(¢-+s)==S(t)S(s), S(0)==1 is obvious
from the definition (3.1). Strong continuity of S(#) on M, follows from that
x(t; 8)—>g&° in X as t—0+ by (2.9) and that x,(+; g)—g" in L,(I,; X) as t—0+
by the absolute continuity of Bochner integrable functions (cf. Ahmed and Teo
[, p. 16]).

(i) First we introduce the operator Q': M,—X, t>0 defined by
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(35) 0= Te—sks; s,  geM,,
where
(36) Ko = | dnsstEig), 520

Using Holder inequality and the estimate (2.8), we have

(3.7) k(- 5 &)1, 00,0< My(2)l 811, »

where
My(t) = ( S UAAHIAL 1, 22) (14 Mt exp (vet))

In order to prove the compactness of Q? for £>>0 under the compactness of 7(¢),
t>0, we define the &-approximation Qj: M,—~X of Q' for €€(0, t] by

(3.8) 0ig=T(e) || Tt—e—sks; s,  geM,

Since 7(€) is compact, Q; is also compact. The compactness of Q! follows
from

(39 1©0—0%] = 1| Te—9k(s; s <M gl

where M(t)=( sup IITE)IDM().

Now let ¢t>h be fixed and let the operator R': M,— C([t—h,t]; X) be
defined by

(Rg)(s) = x(s;8),  s€[t—h, 1].

Let E be a bounded set in M,. Since 7(s) and Q° are compact for s>0, from
the equation (2.9) it follows that for each s€[t—#, t], the set {(Rig)(s)E X:
g<E} is precompact in X. Next we shall prove that {R'g; g€ E} is an equi-
continuous family of C([t—h, t]; X). Let 0<a<t—h, g€E and t—h<s'<s<t.
Then we obtain from (3.5) and (3.9) that
(3.10) H(R'g)(s)—(R'g)(s)]

<ITW=TEN 1214 1= T )+ 1&(r; 0) 1 dr

e Tl 1 )

. 17676 )l 1k(rs )l
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<SIT()—T()I- 1 8°1 +Myt)llgllar (s—s)*
+(sup {IIT(r)—T(=)I: 7, 7' E[a, 1], [r—7'| = [s—s"| )}
X 2 My(0)\ gl +2M40) gl lae, - 0% -

For each fixed a>0, it is verified via Hille and Phillips [21, p. 304] that 7(s) is
uniformly continuous on [, #] in the operator norm topology of B(X). Taking
a>0 sufficiently small and applying the uniform continuity to (3.10), we have
the desired equi-continuity. Therefore by Royden [38, p. 155], R* is compact.
Now we introduce the immersion I!: C([t—#, t]; X)—M, by I'x(-)=
(x(2), x,(+)) for x&C([t—h, t]; X). Clearly I* is bounded. Since S(#) can be
decomposed as S(t)=1I'R* for t>h, S(t) is compact for :>h.
(iii) We denote by A4 and D(A4) the infinitesimal generator of S(f) and its
domain, respectively. Let g&D(4) and

(3.11) Ag=("5).

Since the second coordinate of S(t)g is the z-shift x(¢+-;g), it follows imme-
diately that

+
(312) 3(-;0)=EWP; X) and La(i9 ==y in LX),

<+
where ‘—;— denotes the right hand derivative. By redefining on the set of measure
S

0 we can suppose that x(s; g)=g'(s) is absolutely continuous from 7, to X (cf.
Barbu [3, p. 19, Theorem 2.2]). Since x(0;g)=g°, this implies g%(0)=g" and
%(+; )€ C([—h, o0); X). Then the function k(s; g) in (3.6) is continuous in s>0

0
and satisfies liron k(t; 2) =S dn(s)g'(s). So that
120+ -k

(3.13) lim L S'T(t—s)k(s; g)ds — So_hd-q(s)g’(s) .

t>0+ f Jo

Applying (2.9) and (3.13) to the first coordinate of (3.11), we obtain that
G  y=lim ] (st )
—tim L (70 + (- 9hs: ds—g)
= :li?} 17(T(t)g°—g)—|—gih dn(s)g'(s)  exists in X.
Hence }E& t7(T(2)g°—¢°) exists in X, i.e., g D(4,) and y":Aog"-i—So_hdn(s)g‘(s).

This shows
DA)cD(A) and Ag=A4dg for geD(4).
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Next we show the reverse inclusion. Let g&D(4). According to Corollary 2.1
we have x(-;g)eW([—h, a]; X) for any a>0, from which (3.13) follows.
Combining this with g D(4,) we see that
.1 0
lim = (v(t; £)—¢) = A+ [ dn(8'0)
Noting

(315 ((E: 9—£E)—£(®)

= (s 863 ) —4(63 8) = ¢ | (e 956 s,
for £[—h, 0] we obtain with the aid of Holder inequality that
(16 It 9=t (T 126185 90— 2(&: 9)17ags

This implies that lim ¢7!(x,(-; g)—g") exists in Ly(I,; X) and equals g'. Thus,
t>0+

we prove D(A)CD(A) and Ag=Ag for geD(A), and hence (3.2), (3.3) are
shown. The remaining equality (3.4) is obvious.

Concerning the transposed equation (ET) we define the semigroup Sz(t) on
M¥ in an analogous manner. Thus we have:

Proposition 3.2. (i) The family of operators {S;(¢):t>0} is a Cy-semi-

group on M¥.
(ii) If T(¢) is compact for t>0, then S;(t) is compact for t>h.
(i) The infinitesimal generator Ay of Sy(t) is given by

D(A7) = {f=(f" fleM}: ffeWPL; X*), f(0) = €D},

0 1

Acf = @tr+ar@fe, Ly for 1= p)eDAn),

where 1/p+1/p'=1.

Since M, is reflexive, we know that the adjoint S*() of S(¢) generates a
C,-semigroup on M¥. Probably it was Vinter [46] who first characterized the
infinitesimal generator of the semigroup S*(¢) in the case X=R" and p=2.
His article seems hardly to available, however, we shall give a complete proof
of the result in our Banach space case.

Proposition 3.3. The infinitesimal generator A* of S*(t) is given by

(3.17)  D(A*) = {f = (f’, fHeM: w(f)eWPl,; X*), w(f)(—h) =,
f'e DA}
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(.18)  A*f=(AES'+fY0), d(f))  for f=(f’ f)eD(4¥),
where
(3.19) w()6) = | 0r—r), sel,.

Proof. Note first that the infinitesimal generator of S*(#) is given by the

adjoint A* of A. Let (¢ g')eD(A4) and (f° f)€ M¥. Assume that there
exists a (k°, k') M ¥ such that for all (¢°, g")€D(4),

<A, &) (f* Vou, = (& &), (&, B,

or, equivalently by Proposition 3.1,
0

(3:20) <Ape+| (s, f°>+S°_h<gr‘(s), Fids=<g", k°>+$ih<g‘(s), B(s)>ds

Set M(s):Ss k(§)dE, sel,. M(—h)=0 is evident. Itis easy to see that, by
-k

using integration by parts,
G2 [ <), B =<0, M- @), Moas.
Next we set #;=0 and

Ny = | anror = 5 4, oo+ | arerae.

Again, using integration by parts on each [—h,, —A,_,], r=1, ---, m, it is not
difficult to show that
0 . 0
62) [ @O, N6 = g NOp—<{ dn(9g9), 1

Then by (3.20)-(3.22), we see for (g°, g') €D(4),

(3.23) S:,Q’l(s)’ £Y($)— N(s)+M(s)>ds+<Aeg", f*> = <&’ F*— N(0)+M(0)> .

For g€ D(4,) and g'(s)=g", it is obvious that (g’ g")€D(A4) and ¢=0. Hence
applying such (g%, g') to (3.23), we have

(3.24) A [ = <g% B —N(0)+M(0)>  forall geD(A,)-.
This proves that f'eD(Af) and

(3.25) R — AFfo+ So_hdn*(s)f"— S"_hkl(s)ds.
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Since {£': (g% g")€D(A)} is dense in L,(I,; X), from (3.23) and (3.24) it follows
that

(3.26) FO)—NE+Ms) =0  ae. sel,.

If we put w(f)(s)=N(s)—f(s), s€1,, then by (3.26) w(f) satisfies

(327)  w()eWPd,; X*), w(f)=M=F in Ly,; X*

and

(328 w()(-H=0, w(NO) = reas={ arer—ro.

Therefore, by (3.25), (3.27) and (3.28) we conclude that D(4*) is given by
(3.17) and A*f, f € D(A*) is represented by A*f=(k’, k)=(4¥f°+f*(0), &(f)),
which is (3.18). Conversely it is not difficult ot show that any element of the
right hand side of (3.17) belongs to D(A*). Thus the proof is complete.

4. Structural operators F, G and their adjoint operators

In this section we extend the structural operator F and G, introduced in
[4] for the case X=R" to our Banach space case and study their basic properties
including the decomposition formula as well as their adjoint operators.

Define the operator Fy: L,(I,; X)—L,(I,; X) by

(1) [Fele) = | dn@eE—s)

= 3 A%, 0O (—h—s)+ | A(BE—IE  ae. sel,.

-h
By direct calculations using Holder inequality it is verified that F| is into, linear
and bounded.
First we give an equivalent representation formula of the mild solution
%(t; g) to (2.7) in terms of W(t) and F,, which is given by another complicated
form in [4, p. 902]. The following one is explicit.

Lemma 4.1. The mild solution x(t; g) is represented by
0
(42) 3t 8) = WP+ | Wets) [Fg s, 120.
Proof. In view of (2.7) we are left to prove the equality

(+3) [ voges={ meroreee.

With the aid of suitable changes of variables and Fubini’s theorem we obtain
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| vioges = 5" we—s—h)Agas
+[0 ([ we—stpa@ingen
= [ W9 (E 4200, a9 (—h—)bds

+ Sih wie-+o) AL(E)g(E—s)dE} ds

0
= [ wets)Fg1ds .
. I O .
The first structural operator F: M,—M, is defined by F=|:O F | Les
1
(44) [Fel'=g", [Fel'=Fg for g=(g g)EM,.

By (2.7), (4.4) and Lemma 4.1, we have
W9+ || Wers+o)Fr@dE, 20
gl(t"—s) s t+s<0.

(4.5) x(t+s;8) =

The equality (4.5) suggests us to introduce the operator G,: M,—~M,, t>0
defined by
0
(46)  [Gal() = W9+ | Wierstaw@dE, sl
(+.7) [G:gl’ = [G:£'](0), g=(,8)EM,.

Clearly G, is linear and bounded. Notice that the right hand side of (4.6)
vanishes if #+4s<0. Especially we define the second structural operator G:
M,—~M, by

(4.8) G=G,.

We remark here that G,g=C(I,; X) for t>h and g€ M,.
The following proposition is obvious from (4.5) and the definitions of F,
G,, G and «(2).

Proposition 4.1.  The semigroup S(t) is represented by
(4.9) S(t) = G,F+«(t), >0,
where «(t): M,—M, is given by
(410) [kl =0, [(Ngl) = #U+Wip-n(s) ae. sEl,.
In particular, S(h) is decomposed as
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(4.11) S(h) = GF .

To obtain a similar representation formula for the transposed semigroup
S;(t), we have to compute the adjoints of G, and F (cf. (2.15), (2.16)).
The following proposition can be established by a direct calculation.

Proposition 4.2. The adjoint F*: Mf—M7¥ of F is given by

F*—[I OJ
L0 F¥l,

where F¥: L,(I,: X*)—L,(I,; X*) denotes the adjoint of F, and is represented
by

12 [F10) = [ ar@re—

3 A%y, o (—h—9)+ | AFESE—)dE ae. s€l,.

The following proposition is also easily proved.
Proposition 4.3. The adjoint G¥: M¥—>M75¥ of G,, t=0 is represented by
0
[CHI6) = WHe+9f+ [ WHets+of @, sel,,
[G¥fT = [G¥f1(0), = MHeMm;.

Consider the transposed equation (ET). By (2.15) and Proposition 4.2, we
see that the mild solution 2(¢; f)==(¢; f, 0) of (ET) is written as

a(t: 1) = WP+ [ WHer) PO, 0.
Hence by Proposition 4.3, we obtain the following
Proposition 4.4. The semigroup S;(t) is represented by
Si(t) = G¥F*+k(t), t>0,
where k(t): M¥—M¥ is same as given in (4.10). In particular,
(4.13) Sp(h) = G¥F* .

We can verify by standard manupulation involving the pairing <, D, that
the adjoint «*(f): M¥—>M¥ of «(t) in (4.10) is given by

#14)  [@OfF =0, KO =Xnua®f'—1), fEM}.

Since the same operator as in (4.14) can be defined on M,, we denote this ope-
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rator by the same symbol «*(¢). Then taking adjoints of S(f) and S;(¢), we
have the following result.

Corollary 4.1. The adjoint semigroups S*(t) and S¥(t) are represented by
(4.15) S*(t) = F*G¥+x*@), S¥(@) = FG,+r*@), t=>0,
respectively. In particular,

(4.16) S*(h) = F*G*, S¥(h)=FG.

It is well known that the adjoint semigroup S*(¢) plays an important role
in the study of linear quadratic optimal control problem associated with FDE’s
including their numerical computations (cf. [11, 12, 14,17, 47]). The structure
of S*(t) is not straightforward compared with S(¢), since a functional dif-
ferential equation which realizes S*(f) has not been unknown. The advantage
of the use of transposed semigroup S;(f) depends on this fact and that S*(z)
and Sy(t) are connected by the operators F* and G* in an appropriate way
(see Theorems 4.1, 4.2 below).

A somewhat simple property of G and G* is the following

Proposition 4.5. (i) Cl(ImG)=M,, KerG={0};
(i) Cl(ImG*)=M}%, KerG*={0}.

Proof. First we shall show Ker G={0}. Assume Gg=0 in M,. Then
by (4.6) and (4.8), 0=[Gg](—h)=W(0)¢’=¢°*. Using this and changing vari-
ables £——¢£ and A+s—s in (4.6), we have

(4.17) [Gg]l(s-h):S:W(s—g)gl(—g)dgzo for all s€[0, A] .

Now we can use a convolution type result on the fundamental solution in Nakagiri
[34, Lemma 5.1] to obtain from (4.17) that g'(—&)=0 a.e. £€][0, &], i.e., g'=0in
L,(I,; X). Hence g=(g° ¢")=0 in M,, which proves Ker G={0}. Similarly,
by Proposition 4.3 Ker G*= {0} holds. Since M, is reflexive, it follows from
the duality theorem (cf. Kato [25, p. 243], Tanabe [43, Chapter III]) that
Ker G={0} (resp. Ker G*={0}) is equivalent to Cl(Im G*)= M} (resp.
Cl(Im G)=M,). This proves (i) and (ii).

In the special case where 4, is bounded, we have the following sharper

result for G than Proposition 4.5.

Proposition 4.6. Let A, be bounded. Then
(i) ImG=D(A) and G: M,—D(A) is bijective;
(i) G™':D(A)—>M, is given by
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(4.18) { [G7'2](s) = 8(—s—h)— Aug'(—s—h)— den(f)gl(f——s—h) ae. sel,
' [G-igl" = g(—k), gED(A);

(i)

(4.19) Im St)CD(4)  for t>h.

Proof. Since A4, is bounded, we see from Delfour [13, Theorems 1.1, 1.2]
that the function

(4.20) W(ek-+ S: Wit—s)k(s)ds, 1[0, h],

where '€ X, k'€ L,([0, h]; X), gives a unique strong solution of (E) with g"=&,
g'=0and u=k'. For g=(¢’ ¢')EM, the function y(¢t)=[Gg]'(¢t—r), tE[0, k] is
given by (4.20) with =g’ and k'(s)=g'(—s). Then [Gg]'(:)=y(-+h)E
W(1,; X), and hence by [Gg]'(0)=[Gg]’, GgD(4) ie., InGcD(4). To
prove the reverse inclusion let g=(g%(0), g') € D(A4) and define yr=(4°, ¥') by the
right hand side of (4.18). Itis clear that Y& M,. Put y(t)=g(t—h), t€[0, A]
and y(0)=g'(—h), y(s)=0 a.e. s€I,. Then from (4.18) it follows immediately
that y(¢) is a strong solution of (E) with k°=+/° and k'(s)=+'(—s). Hence by
uniqueness, y(t)=[G]'(t—h)=g"(t—h), t<[0, k] and especially y(h)=[G]'(0)
=[Gr]"=g"(0). So that Gyr=g, or »=G'g. This shows (i) and (ii) simul-
taneously. Since S(¢)=S(k)S(t—h)=GFS(t—h) by (4.11) and Im G=D(4), we
have (iii). In other words, S(¢) is differentiable for ¢>#A.

We note that S*(z) also satisfies Im S*(t) C D(4A*) for t>h. Next we
establish a simple and fundamental relation between S(f) and G; which can
not be found in any literatures studying state space theory for (E).

Proposition 4.7. (i) S()G=G,,;, SHt)G*=G¥., t>0;
(i) G*S*#)=G¥4 GS¥t)=G t=>0.
Proof. (i) With the aid of (2.7), (4.6), (4.8), we have for g=(g°, g") EM,,
(421)  [SEGEIG) = W+ IW I+ | U)W+ EMIENS
+( werowan-regee

T So,, S i,l Ui o &) Wh+E+a)g(a)dadt = I+ 1,+1;.

As is easily seen
42 LL=( WetoWhte)+ [ U(Wihte+a)dag@e.

We now recall the following quasi-semigroup property of W(¢) given in [35,
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Eq. (4.9)];
0
(423 Wett) = W)W+ | U@WetaaE, 6,620,
Applying (4.23) to I, in (4.21) and the integrand in (4.22), we obtain that
0

(4.24)  [S(®)Gel(s) = W(t+s+h)g’+ S_h W(t+-s+h+E)g(E)dE = [Grangl'(s) -
Substituting s=0 in (4.24), we have [S(t)Ggl’=[G;+,£]". Therefore, S(¢)G =
G4y is proved. Similarly S,(#)G*=G¥,, is true.
(if) Take adjoints of the equalities in (i).

We are now ready to give the main theorem which is one of the key results
in the state space theory. A similar result for X=R" is already proved by
Manitius [29, Theorem 3.3], however his proof is much complicated and can

not be carried to our Banach space case (W(t) is not differentiable!). Here we
shall give a very simple proof based on Proposition 4.7.

Theorem 4.1. (i)

(425)  S(t)G = GS¥(t), G*S*(t)= S,(t)G*, £>0;
(ii)
(426) GD(A¥)CD(A) and AG = GAf on  D(A%);

(427)  G*D(A¥)CD(A;) and G*A* = A,G*  on D(A*).

Proof. The part (i) is a direct consequence from Proposition 4.7 and the
part (ii) follows from (i) and the definition of infinitesimal generator.

The next is the second key result related to F, which is first proved by
Bernier and Manitius [4, Theorem 5.4] and later by Delfour and Manitius [15,
Theorem 3.1] for more general measure 5. Compare their proofs and our
simple proof.

Theorem 4.2. (i)

(4.28) FS(t) = S¥()F, S*@)F* = F*S.(1), t>0;
(i)
(4.29)  FD(A)c D(4%) and FA = A¥F on D(A4);

(4.30) F*D(A4;)cD(A*) and A*F*=F*4, on D(4;).
Proof. Since (ii) follows from (i), we prove only (i). By (4.25) and (4.11),

431)  G(SHF) = (GSH(t)F = S(t)GF = S(t)S(h) = S(h)S(t)
= GFS(t) = G(FS(t)), £>0.
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Since Ker G= {0}, it follows from (4.31) that S¥(¢{)F=FS(t), t=>0. The second
equality in (i) is proved analogously.

Corollary 4.2. (i)

(4.32) Ker F= {geM,: x(t;g) =0 for t€]0, hl};
(it)
(4.33) Ker F* = {feM¥: 2(t;f)=0 for t€[0, h]}.

Proof. Since S(¢) is a semigroup defined by (3.1) and (E) is autonomous,
we see easily that

(4.34) S(h)g =0 if and onlyif S(t+h)g=0 forall >0,
if and only if x(¢;g)=0  forall >0,
ifand only if x(¢;g)=0  forall t€[0, A].

From (4.11) and Ker G= {0}, we have Ker F=Ker S(k). Hence (4.34) implies
(4.32). Similarly (4.33) is proved by (4.13) and Proposition 4.5 (ii).

Lastly in this section we introduce a bilinear form {, ) between M, and
M¥ defined by

(4.35) (8 ) =<Fg, fou, =<8 F*fou,-

The form (, ) is considered a time reversing one of the Hale’s bilinear form
(see [18, p. 173]) and appears in the representation of basis for generalized
eigenspaces associated with (E) (which will be given in Section 8 below). The
following corollary is obvious from Theorem 4.2 and the definition (4.35).

Corollary 43. (i) (Ag, /)=(g 4zf), (2 f)ED(A)XD(Ay).
i) (S NH=(e S:Of), 20, (gf)eM,xM¥.

5. Characterizations of Ker F and Im F

In this section we shall give a number of necessary and/or sufficient con-
ditions for Ker F= {0}, Im F=M, and C1(Im F)=M, in terms of the coefficient
operators appearing in the measure 7.

By definition it is clear that

(5.1 Ker F= {0} xKer F;,, ImF=XXImF,.
Further, we know by the duality theorem that
(Im F))* = (C1(Im F,))" = Ker F{.

Since F¥ is an operator of the same type as F, (Proposition 4.2), we mainly
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investigate the structure of Ker ;. From the definition (4.1) of F, we see
that the condition g'&Ker F, is equivalent to that g' satisfies

(52) B AXwo(—h—9+| A@PE-—E=0 ae sel,.

—k
The equation (5.2) can be written by the following homogeneous Volterra in-
tegral equation with delays:

(53)  Aub)+ S A X0, aOb(t—m)+ | AlE—hp—EE = 0
ae. t€[0,4]
where yr(t)=g'(—1?), t€[0, 4] and 7,=h—h,>0, r=1, .-, m—1.

Hence by the first equality in (5.1), Ker F= {0} is equivalent to that the equation
(5.3) admits a unique trivial solution y+(f)=0 a.e. &[0, k]. In order to give con-
ditions for Ker F= {0} we introduce the following null space N(4;; a), a<€l,
associated with the kernel 4,(£):

NA;; a) = {xe€X: A (E)x =0 for ae. E€[—h, a]} .
Proposition 5.1. A4 necessary condition for Ker F= {0} is
(5.4) Ker 4,,NN(4;; a) = {0} for each as(—h, —h,_].

Proof. Suppose (5.4) does not hold. Then there exist ay&(—h, —h,_,]
and x,=30 such that x,cKer 4, N N(4;; a), i.e.,

(5.5) Axg=0 and A (E)x,=0 ae. E€[—h, a).
Define

56 £) — { 0) tE[O’ —ao]

(5.6) Y(t) = xy t€(—a, ],

where yr(+)=0 in L,([0, h]; X). Making use of (5.5) we can verify straight-
forwardly that ++(¢) in (5.6) satisfies (5.3). Hence y(—-) € Ker F,, so that
Ker F =+ {0}. This proves the proposition.

Theorem 5.1. Assume that A/s)=0 in a neighbourhood of —h. A neces-
sary and sufficient condition for Ker F= {0}, or equivajntly C1(Im F*)=M?}, is

(5.7) Ker 4,, = {0} .

Proof. Since the condition (5.7) is necessary by Proposition 5.1 and as-
sumption, it sufficies to prove that Ker 4, ={0} implies Ker F,={0}. Let
g'€Ker F, and 4 be given in (5.3). Suppose A,(s)=0 a.e. s&€[—h, —h-+7] for
some 7&(0, h~—h,,_,] by assumption. Then by (5.3),
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(5.8) A(O)+ S A X, a(tpp(t—7,) = 0

for a.e. t€[0, 7]; in particular A4,r(f)=0 a.e. t€[0, min (7, 7,_;)]. So that
Yr(t)=0 a.e. t€[0, min (7, 7,-,)] by (5.7). Using this, via step by step argu-
ment, we obtain from (5.8) that yr(f)=0 a.e. t€[0,7]. Let 2>1 and suppose
Y(t)=0 a.e. t€[0, kr]. Then for t€[kr, (k+1)7], we have

¢ t—kT
[[4iE—rrp—erag = | Ag—nppe—gdE = 0.
Thus, () satisfies (5.8) for a.e. t&[0, (k+1)7]. Consequently we have y»(t)=0
a.e. t€[0, (k+1)7] similarly as above. Then by mathematical induction »=0,
or g'=0in L,(I;; X) follows. This shows Ker F={0}.

Proposition 5.2. If 0cp(4,,), then
(5.9) ImF=M,, ImF*=M¥.

Proof. Since 0& p(4,), the inverse A,' exists and is bounded. Let
¢ L,([0, 2]; X) be given. Consider the following inhomogeneous Volterra
integral equation with delays

(5:10) w0+ S CXerma(eppi—r)+ | Cle—mue—e)ae = 4319(0),

where C,=A4,'4,€B(X), r=1, :-,m—1 and C,(-)=4,'4,(-)ELy(1I;; B(X)).
For t€[0, 7,-,] the equation (5.10) becomes a Volterra integral equation

(5.11) 1}»(t)—{—S:C,(t—h—§)xp(§)dE=A;1¢(t) ae. t€[0, Ty

Since the term A ¢(2) belongs to L,([0, 7,-,]; X), the equation (5.11) admits a
unique solution Y& L,([0, 7,-,]; X). This can be proved in the usual manner
using the contraction mapping principle in L,-space (see e.g. Miller [32] or Honig
[22]). 'Then (5.10) is solvable on [0, 7,,—,]. Suppose that 4 solves (5.1) a.e. in
[0, k7,-1], k>1. Then for a.e. t E [kry-y, (R+ 1)7p-y], the equation (5.10) is
wiritten by the equivalent form as

(5.12) w+|  Cut—h—gpaE

t

kTm—1
kT m—1

— 42— | "7 Cult—h— g BME— 5 CXer ity —)

Because t—r,<t—r7,_<k7,_,, r=1, :--,m—1, the last term in the righth and

side of (5.12) is a known function, and hence the right hand side denotes a known

function in L,([k7y-;, (B+1)7,-,]; X). We then have that the equation (5.12)
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is a Volterra integral equation which can be solved in the space
L,[krp-1, (R+1)Tp-y]; X). This concludes that (5.10) is solvable on
[0, (.+1)7,-,]. Hence by induction, (5.10) is solvable on whole [0,/#]. By a
change of variables t— —s and an application of A4, to (5.10), we derive
Im Fi=L,I,; X), and this implies Im F=M,. It is well known (cf. Kato
[25, p. 184]) that O0ep(4,) is equivalent to 0p(4%). Thus we have the
second equality in (5.9) similarly as above.

The following corollaries are obvious from Theorem 5.1 and Proposition
5.2.

Corollary 5.1. For the differential difference equation
% = on(t)+ 'gml Arx(t—hr) ’

a necessary and sufficient condition for Ker F= {0} (resp. Ker F*={0}) is
Ker 4,,= {0} (resp. Ker A%¥={0}).

Corollary 5.2. Assume that A,(s)=0 in a neighbourhood of —h. If
0ep(4,), then 0p(F) and 0€p(F*), in other words, F and F* are boundedly
invertible.

The above results are infinite dimensional analogue of those given in Delfour
and Manitius [15, Section 2.1], in which the proofs are more complicated than
those given here, because they have intended to include a very general Stieltjes
measure 7 on R” of bounded variation. Our proofs are simple and easy be-
cause of the restricted form of % given in (2.3).

6. Representations of resolvent operators

This section is devoted to give convenient forms of the resolvents of 4, 4,
A* and A¥. In order to give such forms we require some definitions. Ac-
cording to Delfour and Manitius [15], Burns and Herdman [7] and Salamon
[40] we introduce the following linear operators E,, T, K, and H,. Let A&C'
and an ordered pair of spaces (Y, Z,) be the pair (X, M,) or (X*, M¥). Define
E:.Y-Z, T,: Z,~Z, K,: Z,~Z, and H,: Z,~Y by

[E)\z]o =%,

(6.1) { for z€Y,
[EN‘Z]I(S) = e"’z ) SEI;,
[T y]o =0,

(6.2) { ' 0 for y=(0" )€,
[Tl = | eeoy@ae,  sel,
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[K y]o =0,
(6.3) { ’ for y=(0"5)€Z,,

[Kole) = | eey@ae,  sel,
-k
0
(6:4) Hy= y°+S €5 for y=(0"y)€Z,,
respectively. 'The operator E, is often called the exponential map. All above

are operator valued entire functions in A. In what follows we denote the k-th

derivative j—;k f(A) of f(A) by f®(\), or simply f® for k=0, 1, 2, ---.

Proposition 6.1. For each »&C" and integer k>0,

(1)

(6.5) FT! = KiF, F*T!— KF*

(i1)

(6.6) TE, — %’f E®;

(iit)

6.7) (FE)® = FE®, (F*E)® — F*E®;

(iv)

68) HFTE, — (=D aempn) g reriE, = (D" ageop).
k1) E+1)!

Proof. (i). First we shall show FT}=K}ZF for k=1. Let g=(g° g"YEM,.
Since [FT,gl’=[K,Fg]’=0, in order to prove FT,=K,F we have to prove, by
(6.2) and (6.3), that
©9) | oo | aymge—pag={ ann| ocrogmys,  ser,.
Since the relation can be shown with the aid of the Fubini theorem, the detailed
proof is omitted. The equality FT{=K}F for k>2 follows easily by induc-
tion. Since F* has the same form as F (Proposition 4.2), we can verify F*T{=
K}F* similarly as above.

(ii), (iii). These parts are proved easily by straightforward calculations using
the definitions (4.1), (6.1), (6.2) of F, E,, T,.
(iv). We prove only the first equality in (6.8). By virtue of (6.4) and (6.6),
the element H,FT}E,x, x€ X is written by

(6.10)  HFT!Ex— (:k'L)k H,FE®«x

= 8k'0x+(—1)" Sih e St—hdn(s) _(__‘s‘_;_'f_)kek(s—&)xds .
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Thus, the equations (6.10) and (6.9) with g‘(s):;alTs” e x imply that

0 0 k
HFT!Ex = 8, gx--(—1)* S_hdn(s) S e"‘-%xd&
sk+l
B+ 1)
so_he"‘dn(s)x

= Surt(— 1 | dnee S

_ o (_l)k . drt!
ROTT (RE1)1 dak

_ (=D aan
= MA( Y(\)x .

This completes the proof.

Now we can give explicit representations of the resolvents of 4 and A,
in terms of the retarded resolvent, structural operator F and other operators
introduced in this section.

Theorem 6.1. (i) p(A4)=p(A4y n) and the resolvent R(\; A) of A is
given by

(6.11) R(\; A) = E,R(\; Ay, n)H\F+T,, AEp(4).
(i) p(A7)=p(4F, n*) and the resolvent R(\; Ay) of Ay is given by
(6.12) R(\; A7) = E\R(\; A, n*)H,F*+T,, AEp(4y).

Proof. For a given ¢=(¢’°, ¢')EM,, we construct a g=(g(0), g(-))=D(4)
such that (\[—A4)g=¢. This is equivalent, in view of Proposition 3.1 (iii),
to that

613)  rgO-AgO-{ dn)g) =,  OED(A)
614)  AO—Lg()= ), €l

We solve the differential equation (6.14) to obtain

(6.15) 8() = g0+ [ eevpen,

(6.16) (80, 8) = EgO+Ta

Substituting (6.15) in (6.13) and using (6.9), we have
617 amgO) = a0 eerpenere
= | anopE—sate =HFs.
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Assume that AEp(4,, ). Then by definition, A(A) has a bounded inverse
AY\)=R(\; Ay, 7). So that by (6.16) and (6.17), we derive

(6.18) (80, 8) = ExR(\; Ao, n)HyFo+ T3¢ .

Since all operators appearing in (6.18) are bounded, A Ep(4) and the resolvent
R(n; A) is given by (6.11). Next we show the inclusion p(4)Cp(4y, 7). Let
AEp(4). Then for any ¢p=(¢°, ¢')EM, there exists a unique g=(g(0), g)E
D(A) such that (A ]—A)g=¢, or equivalently, (6.16) and (6.17) hold. We note
that A(A) is one to one. Because if not, there exists a g°€D(4,), £°+0 such
that A(A)g°=0. The element g=E, g€ D(A4) satisfies (A\[—A)g=0, g==0, which
contradicts to AEp(4). For special ¢p=(¢° 0), ¢°€ X, the equality (6.17)
means that there exists a g=(g(0), g)=D(A4) such that AA)g(0)=¢°. This
concludes that the densely defined closed linear operator A(A): D(4,)c X — X is
onto and one to one. Hence by open mapping theorem, A(A)™ exists and is
bounded, i.e., AEp(Ay, 7). Therefore (i) is proved. The part (ii) is proved in
quite analogous manner as in (i).

Next we characterize the resolvents of the adjoint operators A* and A%.
Lemma 6.1. The relation

(6.19) AW—A%)f =+, feDA*), veM}

1s equivalent to

(6.20) AN = Hyp, f'eD(A¥) and f= KyWw+F*E,\f°.

Proof. In view of Proposition 3.3, (6.19) is written by the following equi-
valent condition

(6.21) AO=AEf—f10)=+°, f'eD4F),
(6.22) MO—Lo(f)O) =), sk,
where w(f) is given in (3.19). Put f°=(f°, fYEM¥ ie., [fT=f% [FT6)=/",

and @=—w(f). Since f'=[F*f°]'+& by (3.19), we can solve the differential
equation (6.22) with the initial condition @(—#4)=0 to obtain

@) = e [ (E) AT} e
= ereoy@ae-| ecenf amora, el

By (6.3) and applying the Fubini theorem to the last term of the above equality,
we obtain without difficulty that
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(6.23) W(s) = [Kag ') —[F*f T+ [F*EfT(s),  s€L,.
Thus,
f'=[F*fT4@ = [+ [F*E ST,

which shows the second equality in (6.20). Substituting s=0 in (3.19) and
(6.23), we have

PO = anror+a0) = ewieat| odprese.

0
-k
Hence the equality (6.21) is rewritten as
(- ag—{ eanr o) =yot| ewiods,  reDay,

which is the first equality in (6.20).

Theorem 6.2. (i) p(A*)=p(A¥, n*) and the resolvent R(\; A*) of A* is
given by
(6.24) R(\; A*) = F*E,R(\; AF, n*)H,+K,, aEp(4*).
(i) p(AF)=p(A4e n) and the resolvent R(\; A¥) of A¥ is given by
(6.25) R(\; A¥) = FE,R(\; Ao, n)H\+K, , AEp(4¥) .

Proof. Using Lemma 6.1 we can prove (i) by analogous argument as in
the proof of Theorem 6.1. The proof of the remaining part (ii) is similar.

Here we give important relations between the operators E,, H,, T, and K,
Taking into account of the relation (2.18), we can verify by direct computa-
tions involving the pairing < , D, that for each AEC",

(6.26) E¥=H;, Hf¥=E;, T¥=K;, K¥=T;.

Consequently, by using the equality (2.17) and (6.26) Theorem 6.2 can be
derived as the adjoint version of Theorem 6.1. This may be a simple proof
of Theorem 6.2.

Corollary 6.1. (i)
(6.27)  FR(n; A) = R(n; AH)F, R(\; A)G = GR(:; A%)
for nEp(4) = p(AF) = p(4y, 7) -
(i)
(6.28)  R(n; A¥)F*=F*R(\; A7), G*R(\; A*) = R(\; 47)G*
for NEp(A¥) = p(Ar) = p(d¥, 7*).
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Proof. (i) follows from Theorems 4.1, 4.2, 6.1 and 6.2. (ii) follows
from Proposition 6.1 (i), Theorems 6.1 and 6.2.

7. Spectral decomposition

In this and following sections we study the spectral decomposition theory
for the FDE’s in Banach spaces. The spectral theory for various types of
FDE’s in R" is further developed by many authors (see [6, 15, 18, 19, 20, 24, 36, 40]
for examples). An attempt to extend the spectral theory to retarded FDE’s in
infinite dimensional spaces was first made by Travis and Webb [44] whose main
concern is the stability of mild solutions. Their analysis and investigations have
been carried in the space C(Z,; X), but seems incomplete compared with those for
X=R". The purpose here is to construct a rather complete spectral decompo-
sition theory for the equation (E) on the space M,, which extends the work of
[15,29] to general Banach space case. Our analysis, however, is more delicate
than those in [15, 29] because of permitting X being infinite dimensional.

7.1. Classification of spectrum

The retarded spectrum introduced in Section 2 is efficiently used to deter-
mine the spectrum of the infinitesimal generators associated with (E) and (E7).

Proposition 7.1. Three kinds of spectrum of A and A, are given by

(7.1)  op(d) =0p(dey 1), oA)=0cc(An 1), ox(A)=0cr(4e7),
(7-2) O'P(AT) = O'P(A:Jki 77*) ’ O'C(AT) = O'C(A:)k’ 77*) ’ O'R(AT) = UR(/P:, 77*) ’

respectively.

Proof. First we recall the following fact which is already shown in the
proof of Theorem 6.1. That is, the relation W[ —A)g=¢, g €D(A), pEM, is
equivalent to that A(\)g’=H,F¢, g€D(4,), g=E,g"+ T $. If we substitute
¢=0 in the above equivalence, then we have that Ker (A]—A4)= {0} is equivalent
to that Ker AA)= {0}, and hence Ker(A[—A)= {0} if and only if Ker A(\)
= {0}. This concludes, by definition, op(4)=0cp(4y, 7). By the same reason,
from Lemma 6.1 it follows that Ker (A\]—A*)={0} if and only if Ker Az(\)
={0}. Then by putting A=X and using the duality theorem, we have that
Cl(Im (XI—A4*)*)=Cl1(Im W —A4))=M, if and only if Cl(ImA;(X)*)=
Cl(Im A(\))=ZX. This implies, by contradiction, that Im A()\) is not dense in
X if and only if Im (A/—4) is not dense in M,. Now we are ready to prove
ox(4e, 7)=0(4). From the definition of residual spectrum, AEo (4, 7) if
and only if

(7.3)  A(\)7!exists (ie., Ker AA) = {0}) but Im A(\) is not dense in X .

It then follows that (7.3) is equivalent to
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(7.4 (M—A)™ exists but Im (A]—A) is not dense in M, .

The statement (7.4) is exactly the definition of AEax(4). Hence ox(4,, 7)=
ap(4) is proved. The rest equality oo(4,, 7)=0c(4) is now evident. The part
for A, is proved in a same manner as above.

RemMARK 7.1. In the case where X=R", it is well known that o(4)=0(4)
={\: det A(\)=0} is countable and isolated. However there exists an operator
A defined by (3.2) and (3.3) such that o(A)=¢ or ox(A)=+¢ in our infinite

dimensional case.

7.2. Generalized eigenspaces and spectral decomposition

Let Ax€0p(A4). The generalized eigenspace M, of A corresponding to A
is defined by

(7.5) My = U Ker (M—A4)".

To characterize the structure of Ker (A I—A4)/, I=1, 2, -+, we introduce operator
valued matrices A= A;(\) defined by

D, D, D,
76 - 0 D1 - 1?1_1
0O O D:l . 1=1,2,
where
(7.7) D, = Dy (0) = jL!A(i)(X) . j=0,1,2, -

The following result extends the results of [15, Proposition 4.3] and [18, Lemma
3.3, p. 177] to reflexive Banach space case.

Proposition 7.2. Let NEcp(A). Then Ker(WI—A)' coincides with the
space of functions ¢ €M, of the form

(7.8) ¢ = Ig Ji( E\yin)?,

where Y=col (y,, **+, ¥1), Yin€ED(A,), j=0, 1, -+, I—1 satisfies A,Y=0 in X'.

Proof. Let p=Ker(A[—A4). Set py=¢ and ¢;=ANI—A)p;-,, j=1,--,1;
then ¢ is characterized by ¢,=0. The relation ¢;=(NI—A)¢,_, is written as

(79)  $j-=EpiatTagp; and AQNpI = HyF¢;, ¢}.1€D(4,),
j=1,1.



382 S. NAKAGIRI

Since ¢;=0, we have
(7 10) ( ¢ = E¢1—1 y b= EA¢?—2+TA¢I—1 = EA¢?—2+ T}.Exd’?-l» )
* -1 . I-1
L, =S 1B~ 6= =S TiB,

so that by (6.6) and a change r— j,
- v
$=3] }(Ewl)f 92

If we put y,.,=(—1)Y¢yeD(4,), j=0,1,:+,1—1, we obtain (7.8). From
the second equality in (7.9) it follows by (7.10) that

. . -1 .
(7.11)  A\)y; = (1Y HyF¢; = (—1) 'l(g H,FT{VE(—1)"y,4)
= (=1 g (=1 "H\,FT; 7 E\y,y, -

By virtue of (6.8), the equation (7.11) is written as

-1 1 ;
AN)y; = (—1 = Al
M\yi=(— )E r—j+1)! (A)Yr+15
and hence (by changing r —7r-+-1),
(7.12) oL Aeday, =0, j=1,e1.
= )

The system of equations (7.12) is rewritten simply by J,Y=0 in X', where
@Y=col (y,, ***,¥;).- This completes the proof.

In order to go into a further spectral decomposition theory we have to
restrict A to the isolated spectrum. We now require the following definitions:

(4 1) = {NEC*: \ is an isolated singular point of R(w; Ay, 7)} .
ao(4y, 7) = {NEC: X is a pole of R(u; Ay, 1)} -

Similarly we define the spectral sets o;(4) and o,(A4). It is obvious that
ao(Aos 1) T (Ao, 1), ao(A)CTa(A4). Since all E,, H, and T, are entire functions,
Theorem 6.1 (i) implies that A is a pole of R(u; A) of order &, if and only if A
is a pole of R(u; Ay, ) of same order k,. Then, oo(4)=0¢(Ay, 7).

Let A€o0 (A) and let P, be the projection operator
(7.13) Po=-t{ Rius A)dn,

271 Jra

where T, is a closed rectifiable curve containing A inside and all other singular
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points of R(u; A) outside. By Yosida [49, p. 228-231] (see also Taylor and
Lay [41], Tanabe [43] and Kato [25]), we obtain the following decomposition of
the space M,

Theorem 7.1. Let A\ be a pole of R(u; Ay, 1) of order ky. Then nEap(A4)
and the direct sum decomposition

(7.14) M, = Ker (N —AA®Im AI—A), M, = P,M, = Ker \—A)

holds. Both M, and Im (WI—A)r=Ker P, are closed and invariant under S(t).
Moreover the resolvent R(w; A) has the Laurent series expansion

(7.15) R(p; 4) = 5} (520,
"=k
in a neighbourhood of N, where Q, is given by

(7.16) 0= (=) R(us D).

Clearly P,=0Q_,. Put Q,=0_,, then from the expression (7.16) (cf. Kato
[25, p. 180] it follows that

(7.17) 0.,=0%", n=2,--k, Q=0 (nilpotent),
(7'18) POy = 0Py = Oy, APy = AP0y .
The decomposition of M, in Theorem 7.1 is slightly generalized as
— — — A\
(7.19) M,= (D I)ORy, R=0ImAI—A),

where ACa(4) is a finite set (see e.g., Kato [25, p. 181]).

ReEMARK 7.2. Proposition 7.2 tells us dim Ker (A/—A4)'= dim Ker 1,
but the dimension may be infinity even if A is a pole of R(u; 4).

From (7.13), (7.16), (7.18) and (6.11) the following corollary follows at
once. Notice that 7} is entire.

Corollary 7.1. For A Eoy(4y, 7),

(i)
(7.20) P, =&,F, 8A=21—_S EuR(u; Ay 1)Hudp;
7Tl JTA
(02)  O=FF, T | NER; o m)Hadi;
7Tl JTA
(i)

(7.22) Ker F cKer P,CKer Q, .
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Next we consider the case for the transposed operator A;. Let i denote
the generalized eigenspace of A, corresponding to A Eao(Ay); let the matrices
AT=AT(A), I=1, 2, -+ be defined by (7.6) in which D,,, is replaced by

,l'A(Tj)(h), j=0, 1,2, ---; and let P denote the spectral projection corresponding
to AEc(A4;). Then we have:

Theorem 7.2. (i) If n is a pole of R(u; A¥, n*) of order m,, then N&E
o p(Ayr) and the decomposition

M} = Ker M —A;)""®Im AI—A)™, ML = PIMF = Ker (\—A;)"™

holds.  Moreover the resolvent R(w; Ay) has the Laurent series expansion
R(u; A7) = 53 (n—2)0F

in a neighbourhood of N, where Q is given by (7.16) in which R(n; A) is replaced
by R(u; Ar).
(i) For nEap(Ay), the space Ker WI—A;)' coincides with the set of functions
Ve M7 of the form
-1 .

Y= ]Eo j—'(EAygﬂ‘l)(,) )
where YT = col (yT, -+, y7), y1..€D(AF), j=0, 1, -+, -1 satisfies ATY" =0
in X*.
(i) For nEay(4F, n*),

Pl =¢1F* €l =_1{ E.Ru; 4t +*)Hedu,
27t Jra

0f = FIF*; Ff = | (u—NERGu; Af, 7)Hudp,
2m1 Ima

where QT=0Q7, and
Ker F*CKer PicKer OF .

We shall describe a group property of S(¢). For this the following discrete
spectrum o,(A4) of A is needed to be defined by

ci(d) = rEoy(4): dim (Im PY)<+ oo} .

It is well known (Kato [25, p. 181]) that o,(4) Coy(4)Cap(A) and Im Py= M=
Ker(W[—A) for AEoy(4). Let AEo,(A4) and let d,=dim H,. We shall
write by @,={$,1, ***, Pa.an} a basis of H, of the form (7.8). Since A M, H,,
there exists a d, X d, matrix B, such that

(7.23) A®, = P\B, and S(t)D,=D,e’M for t>0.
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Hence the only eigenvalue of B, is A and S(#) can be extended to a holomorphic
group on H,. Now we can prove the following result in a similar fashion as in
Hale [18, Chapter 7, Theorem 2.2] with suitable modifications to the space M,.

Proposition 7.3. Assume that ACa,(A) is a finite set {\,, -, \,}. Let
D\=A{D,,, -+, ®,,} and By=diag (B,, ---, B,,). Then for any column vector a
of the same dimension as ® \(=d,,+---+d, ), we have
(1) S(t)®pa can be defined on (— oo, o) by the relation

S() D2 = D, exp (tBy)e
where
{ [@4]}(s) = [@4]’ exp (sBa) , SEL,
[@A] = {2, (0), -+, @,,(0)}
(i) { [S(#)®se]'(s) = [@n exp ((t-+5) Ba)e]’, sel,,

for t>0;
[S@)Pra]’ = [®4] exp (tBa)a,

(ili) x()=[SE)D <]’ is a mild solution (in fact, a strong solution) of (E) on
(— o0, o0) with the initial condition g=® pe and u=0;
(iv) M, is decomposed into the direct sum

M, = M\DRy, Ma ngﬁm
as in (7.19), where M, is given by
My ={pEM,: ¢ = D\ for some ac CU™ s} .
Moreover, SO MMy forall te(—oo, o)
SHE)RACRA for all t>0.

The above proposition gives a precise information on the asymptotic beha-
viour of the mild solution of (E) on generalized eigenspaces for discrete spectrum.
Analogous result to Proposition 7.3 for 4; holds true.

Remark 7.3. If A, has compact resolvent, then the retarded resolvent
R(\; Ay, 1) is compact. From this and the representation (7.20) the compactness
of P, follows, so that o;(4)=0c,4(A) is true in this case.

Proposition 7.4. (i) For n€ao(A4), F is one to one on M,.
(i) For n€o(Ay), F* is one to one on HM; .

Proof. We prove only (i). Assume first that ¢ &Ker (A [—A4) and F¢$=0.
Then by (4.11), 0=GF ¢=S(h)p=e ¢ and hence ¢$=0. This shows F is one
to one on Ker (A\[—4). Next assume ¢ & My=Ker W[—A)* and Fp=0. If
we set ¢, =(N]—A)"'p, then ¢, Ker (\]—A4) and
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S(h)p, = W—AYr"1S(h)p = W[—AY2"'GF$ = 0.

So that ¢,=0. Continuing this procedure %, times we have ¢=0, i.e., F is
one to one on H,.

8. Adjoint spectral decomposition

In this section we study the spectral decomposition theory for the adjoint
operator A* of A in the space M¥, with an emphasis of the relations between
A* and the transposed operator A,. The structural operators F* and G* will
appear to key connections between the generalized eigenspaces of A* and 4,.

8.1. Generalized eigenspaces and structural operators

Let SM¥ (not the adjoint space of .H,!) denote the generalized eigenspace of
A* corresponding to AEap(A*). Similarly we denote by " the generalized
eigenspace of A¥ corresponding to A Eo p(4%).

Theorem 8.1. (i) Three kinds of spectrum of A* and Ay are identical and
are given by
(8.1) op(A*) = op(Ar) = op(AT, 7)), or(A*) = ga(dr) = o (A4, 7%),
oo(4%) = oo(Ar) = ool AF, 1),

respectively.
(i) For each NEop(A*)=0p(4r),

8.2) Ker(A[—A*)! = F* Ker(M[—A4,), =12,
In particular
(8.3) M¥ = F* M.

Proof. (i). Using Lemma 6.1 we can prove this part by similar argu-
ments as in the proof of Proposition 7.1.

(). By (4.30), W—A*)F*=F*(\I—A;) on D(A4;). Hence, by induction,
we have
(W[—A*)'F* = F¥*(\[—A;)) on D(4%).
Thus
(8.4) F*Ker(W[—A4;) cKer(W—A*), I=1,2,--.
The reverse inclusions in (8.4) were proved by Delfour and Manitius [15] by

using mathematical induction. Here we give a direct proof based on Lemma
6.1. Let JyreKer(A—A4*)! and put

(8.5) Vo= and ; =N—A¥),_,, j=1,-,1.
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Then {r&Ker(AI—A*)! is equivalent to y,=0. In view of Lemma 6.1 we see
that Jr;=(AI—A*Wr;_, is equivalent to

(8:6) Ar(MWi1=Hyp;, ¥iED(AF) and o = K, +F*Ep) .
Since yr,=0, it follows from the last equality in (8.6) that

Yy = F *E)‘ ?—1
Yoy = F *EN"?—Z“"KA\P‘:—l =F *Ex\lf?-z ‘|‘KxF *EX‘I"(I)—I
= F*Exy}—, “I—F*TAEN"?—I = F*(EA‘I"?—2+ T)\EX‘I"?—I) ’ (by (6-5))

Y=y =F¥ 2 T{ExS) -
If we set yl1=(—1)}, j=0, 1, --+,I—1, then by (6.6) 4» can be written as
Y= F*( —(E,‘y,“)(’)) where YT =col(y7,+++, y7) satisfies ATY"=0 in X*.

Hence by Theorem 7.2 (ii), € F* Ker (A [—A4,)!, i.e., the reverse inclusions of
(8.4) are proved. Therefore (8.2) is shown. The rest equality (8.3) is clear from
(8.2) and the definition of generalized eigenspaces.

The statement (ii) of Proposition 8.1 has concluded that the null space
Ker (A]—A*)" is obtained by the application of F* to Ker(A]—A4;)!, whose
elements are straightforwardly computed as given in Theorem 7.2 (ii).

If we notice (4;),=A, we have the following result.

Corollary 8.1. (i) op(AF)=0cp(4d)=0p(4s 1),
or(Af)=cx(A)=0x(40 1), oc(AF) = oc(4) = ac(4o 7)-
(i) For each AEop(AF)=ap(A),
Rer(A—A%F) = FKer(Z\[—A4)', [=1,2,-
In particular
M = F M, .
Analogous inclusions to (8.4) involving the operator G are:
Lemma 8.1. For each N Eacp(A*)=0p(4;) (resp. MEap(A)=0p(AF)),
G* Ker(W[—A*) CcKer(A—A;) I=1,2, -
(resp. G Ker(A[—A¥f)' cKer(A[—A4), 1=1,2,.).

Proof. This lemma can be proved similarly as in the proof of (8.4) by using
(4.26) and (4.27) instead of (4.30).



388 S. NAKAGIRI

Theorem 8.2. (i)

(8.7) oo A¥) = o4(4y) .
(ii)
(8.8) G* Ker(\—A*)' = Ker(\—A4,)',

(8.9) dim Ker(AI—A*)! = dim Ker(AI—A4;)" = dim Ker AT(A)<<o,
I=1,2, -, ANEoyds).

In particular

(8.10) dim M = dim M  for AEa,(4*) = oy(4s).

Proof. (i). Let A€ag,(A4*). Then AEagy(4*) and from Kato [25, p. 184]
and Theorem 7.1, we have

AEo,(A) is a pole of R(u; A) of order k5 at p=X,
(8.11) My = Ker(A[—A4)x, dim MF = dim Mz <o,
(8.12) sup dim Ker(X[—A4)' = dim Mz <co .

1=

Since G is one to one and
(8.13) G Ker(A[—A4%)' c Ker(A[—A4)}, I=1,2,-

for XEo(4)Cop(A)=0p(A%F) (by Lemma 8.1), it follows from (8.11)—(8.13) that
sup dim Ker(A—A4¥)'<co. This implies dim H; <o, and hence X Ea,(A4¥).

=1
Again by using Kato [25, p. 184] we have x:iead(AT), which proves o,(4*)C
o4(A47). The reverse inclusion o,(4;)Ca,(A*) is obtained similarly as above.
Thus, (8.7) is shown.

(i1). For nEq,(4y), the space Ker(A[—A4;)" is finite dimensional and is invari-
ant under the semigroup S;(t). Then the operator S;(h)=G*F* in (4.13) is
bijective on Ker(A—A;)" (cf. Proposition 7.4). Consequently by (8.2),

Ker(A—A4,;)' = G*F* Ker (A — A4,)} = G* Ker(\— A%)' .

Since G* is one to one and dim Ker(A/—A4;)'< oo, we have (8.9) by (8.8) and
Theorem 7.2 (ii).

Corollary 8.2. (i) o,(A¥)=a4,(A4).

(ii) G Ker(M—A#)' — Ker(\—A)',
dim Ker(A— A%)' = dim Ker(A/—A4)" = dim Ker A,(A\) <o,
I=1,2,, AEcyd).

Lastly in this subsection we give an M,-adjoint result for A which is an
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immediate consequence from Kato [25, p. 184].

Theorem 8.3. Let )\ be a pole of R(p; Ay, u) of order ky at p=x. Thken X
is a pole of R(w; A¥, n*) of same order k, at u=X. Furthermore

ME = Ker RA[—A*)r = (P)*M¥, dim M, = dim H¥ (may be infinity) ,
where the adjoint (Py)* of P, in (7.13) is given explicitly by

(By* =L Ru; 4%)du = Py
2mi I,

with T, the miller image of T,.
The same result for 4; holds, but we omit to give such a representation.

8.2. Representations of spectral projections

It was shown in the proof of Theorem 8.2 that if A&o,(4), then AE
O'd(A*)=0'd(AT) and

(8.14) dim M, = dim HF = dim H] =d,<oo .

Let @®={¢,, ***, P4} and U= {yfr;, -, ¥r,,} be the bases of M, and H] respec-
tively. Let M be a dyXxd, matrix of element m;;=<{¢;, F*yr;>),. Then by
(8.14) and (8.3), M is nonsingular. Hence we can suppose

(815) <¢j’ F*‘I’j>Mp = <<¢i» ‘},\j» = 8:';') l:] = 1) R d). )

where { , ) denotes the ‘hereditary pairing in (4.35). Now we introduce the
continuous projection operator

o
>

Pyg= 23K8 F*br Dy, bi 5 gEM,.

il
-

It is easily verified that Im P,—= ¥, and Ker P,=Im (A\/—A)*, so that P,=P,.
Thus, we obtain the following desired result.

Theorem 8.4. Let NEc,(A). Then the spectral projection P, in (7.13)
has the following equivalent representation

(816) pAg = ZE; «g’ '\I’i»d)n‘ ) gEMp ]

where {p,, ++, ba} 15 a basis of My and {\ry ,++, Ya,} is a basis of M5 satisfying
(8.15).

Corollary 8.4. Let NEac,(A;). Then the spectral projection P} associ-
ated with A, has the following equivalent representation



390 S. NAKAGIRI

Plf= S (o i, fEMS,

where d{=dim M} =dim My, {Jr, =+, Y4} 15 a basis of My and {py, -, Ps;}
is a basis of M satisfying the same condition in (8.15).

9. Completeness of generalized eigenfunctions

The problem of completeness of generalized eigenfunctions of retarded
FDE’s has been studied by Delfour and Manitius [15] and Manitius [29] for
n-dimensional equations. The purpose of this section is to extend some of
their results to infinite dimensional case.

First we give characterizations of the kernels of spectral projections P, and
others in terms of F, H, and the retarded resolvent. Let AEoy(4) and P, be
the projection in (7.13). Then by (7.15), (7.16) and (7.18), we have that

g€KerP, ifandonlyif Qig=(A[—A)P)'g=0, n=1, k

if and only if R(up; A)g is holomorphic (h.l.) at p =X .
Since E,, H, and T, are operator valued entire functions, the equality
(9.1 {gEeM,: R(p; A)g s hl. at p=2n}

= {g€M,: R(p; Ay n)HuFg is hl. at p =2}
follows from the representation (6.11) of R(u; A). Hence Ker P, is given by
the right hand side of (9.1). Let P} and P]* denote the spectral projections
associated with A* and A%, respectively. Then the next proposition follows

from the representations of R(u; A*) and other resolvents given in Theorems
6.1 and 6.2 as above. Note that [R(u; A*)fI°=R(p; AT, n*)H,f.

Proposition 9.1.
(1) Ker P, ={g&M,: R(p; Ay, n)HuFg is h.l. at p=A}, NEay(4).
(1) Ker Pl ={feM}f: R(u; Af, n*)HF*f is hl. at p=A}, AEay(4y).
(i) Ker P¥ ={feMF: R(u; AF, »*)Huf is hl. at p=N\}, AEay(4¥*).
(iv) Ker P{*={geM,: R(u; Ay, n)Hug is hl. at p=>2\}, AEay(4¥).

For notational brevity we set

M= U M, M= U M, M= U M, M= U H

AE0 (4 AE0 4, AE0 (4% AEGP(A;,)

DeriniTION 9.1, The systems of generalized eignefunctions of A, A*, A,
and A¥ are said to be complete if

CYM) = M,, CUM*)= M}, CUM)=M} CUH")=M,,

respectively.
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For a set ECC!, E denotes the miller image of E. Following the con-
sideration in preceding sections, we know that

9-2) M = a(4*) = o(47) = o'o(Aak’ 7%),
oo(47) = ao(4%) = o o(4) = ao(4o, 1) -

Proposition 9.2. (i) If op(A)=0c(4y, 1), then

(9.3) M= {feM}: R(\; AF, 7*)H,f is hl. on p(A¥, 1) Uo( 48, n*)},
9.4) (HM™)- = {feM¥: R(\n; A%, n*)H,F*f is h.l. on
P(Agc) 77*) U O‘o(A:)k, 77*)} b
(i) If op(Ar)=0co(A4¥, n*), then
(9.5) (M) = {gM,: R(\; Ay, n)H,g is hl. on p(A,, n) U (Ay, 0},
(9.6) (M*)* = {geM,: R(\; Ay, n)H\Fg is h.l. on p(Ay 1) Uao(4e 1)},
Proof. We shall prove only (9.3). Other equalities are proved quite ana-

logously. Using the duality theorem and assumption, we have by the first
relation in (9.2) that

) Ea— - - K *
(9.7) M Aeo (A)f/ux AEQCA)(Im B) AEQ(A) er(P,)
= N KerP¥F= N KerP¥= N KerP}
Aoy (4) INSERT) A0 (4%)

Hence the equality (9.3) follows immediately from Proposition 9.1 (iii). See
Theorem 8.3 for completeness in deriving (9.7). Hence the equality (9.3)
follows immediately from Proposition 9.1 (iii).

Since C1(H)=M, if and only if "= {0}, from Proposition 9.2 we have
the following criteria for the completeness of generalized eigenfunctions.

Theorem 9.1. (i) Assume that o(A)=oyAy n). Then the system of
generalized eigenfunctions of A (resp. A¥) is complete if and only if
(9.8) {feM¥: R(\n; A¥, n*)H,f is entire} = {0}
9.9 (resp. {fEeM¥: R(n; AF, p*)H,F*f is entire} = {0}).
(i) Assume that o(Ar)=c(AF, n*). Then the system of generalized eigenfun-
ctions of Ay (resp. A*) is complete if and only if
(9.10) {g€M,: R(\n; Ay, n)H,g is entire} = {0}
(9.11) (resp. {g€M,: R(\; Ay, n)H, Fg is entire} = {0}).

We now recall the definition of H, appearing in the conditions (9.8) and
(9.10):
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9.12) Ho = ¢+[ egids=cta0),

for p€M ¥ in (9.8) or for =M, in (9.10), where c=¢°. The last term g(\)
in (9.12) is a finite Laplace transform of ¢'€L,(I,; X*)in the case (9.8) or of
¢'€L,(I,; X) in the case (9.10). We denote these sets of all such functions by
FLT¥ and by FLT,, respectively.

An additional property of H, is given by

Lemma 9.1. Ancl Ker H, = {0} .

Proof. We shall show the case H,: M,—»X. Let¢pe N Ker H,. Then
rec!
by (9.12),
0

(9.13) ¢+ S Mols)ds=0 forall re&C'.

h
Tending Re A— o0 in (9.13) we have ¢°=0. Then ¢'=0 follows from (9.13)
and the bijectivity of Laplace transform.

Corollary 9.1. Assume that o(A)=ay(Ay, 1) (resp. (A7) = ao(4E, n*)).
The system of generalized eigenfunctions of A (resp. Ay) is complete if and only if
for ce X* and q(\)EFLTF,

R(\; AF, 7*)(c+4q(\)) is entire = c+q(\)=0
(resp. for c€ X and g(\)EFLT,,
R(\; Ay, n)(c+q(N)) is entire = c+q(\)=0).
Proof. Obvious from Theorem 9.1 and Lemma 9.1.

Corollary 9.1 is interpreted as that the completeness for A is equivalent
to the nonexistence of nontrivial entire function in the class ¢+¢q(A), cEX*,
g\)EFLT¥, which completely cancellate all poles of R(A; A¥, »*) in the
form R(\; A%, 7*)(c+4q(\)), provided that R(n; AF, »*) has poles only.

10. Illustrative examples

We shall give some applications of the abstract results of preceding sec-
tions to practical partial FDE’s in the following examples.

ExampLE 10.1. Consider the parabolic partial FDE

ox(t,E) _ 0 ox(t, ) ud .
(10'1) T - @(a(g) “65—’)+b(§)x(t1 £)+'=21 a,(f)x(t hrr E)

+{ as, etets, gyas, >0, £€(0, 1)
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with boundary and initial conditions

(10.2) x(t,0)=x(¢, 1) =0, >0,
(10.3) %(0, &) = gY&), =x(s, &) =g'(s, &) ae. (s, ), x[0,1].

For the system (11.1)-(11.3) we assume

®)

(104)  a®)>0 for E€[0,1], a(-)eC[0,1], b(-)eCO, 1];

(ii)

(10.5) G ()EL0, 1], r=1, - m O<h< - <hy=h,
a(+) LI, X[0, 1]);

(i)

(10.6) g£=(80), £(-)EL0, 1] x Ly(Z; X [0, 1]) .

The product space L,[0, 1]X L,(I, %[0, 1]) in (10.6) can be identified with
L,[0, 11X Ly(I,; L,[0, 1]), so we denote this space simply by M,. Let A4, be the
realization in L,[0, 1] of the Sturm-Liouville operator 9/0&(a()0/d¢)+b(E) with
Dirichlet boundary condition (10.2). In what follows we shall write L, instead
of L,[0, 1] for brevity. Since L, is a Hilbert space, we identify L, and L¥ as
usual. Now we define the operator 4, B(L,), r=1, :--, m and A, L,(1,; B(L,))
by
(A4,2)(&) = a,(E)2(E) ae. E€[0,1], r=1,:,m

and
(A()2)E) = ay(s, E)2(E) ae. E€[0, 1] for ae. sel,

respectively. By the condition (10.5) and the use of Schwartz inequality the
above operators are well defined. Then the system (10.1)—(10.3) can be written
in the same form as of (E) on the space X=L,. The (weak) solution x(z, £&; 2)
of (10.1)~(10.3) is interpreted as the mild solution x(¢; g)(&) of (E) at the point
g0, 1]. So, for each t>0, x(¢, £; g) has sense for a.e. £€[0, 1]. Since 4,
is selfadjoint with compact resolvent in L, by (10.4), there exists a set of
eigenvalues and eigenfunctions {u,, ¥,: n=1, 2, .-} of A, such that

(iv) {®w,} is a complete orthonormal system in L,;

V) vV— u,,:Cn—{—O(i) as n—oo, where Cis a constant depending only on
n

the coefficient a(£) (cf. Kato [25, p. 277], Ince [23, p. 270-273]).

Consequently, 4, generates an analytic semigroup 7'(¢) given by

oo

T(t)z = 2 e“"t<z’ ‘I,n>L2‘yn ’ zELZ ’

n=1
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where {2, ‘If,,>L2=Sl 2(E)¥,(§)dE. Using the asymptotics of {u,} in (v), we can
0

verify that 7(f) is compact for all £>0. Then by Proposition 3.1 (ii), S(t) is
compact for t>h. This implies by spectral mapping theorem (cf. Yosida [49,
p- 277)) that o(4)=0s(4)=0,(4) is countable, bounded from below and o (4) N
{z: a<Re 2} is a finite set for each a=R'. Now following the line of Hale’s
proof in [18, Chapter 7, Section 4] with some obvious modifications, we have the
following result on the asymptotic stability.

The zero solution of (10.1)-(10.3) is exponentially asymptotic stable in L,,
i.e., there exist constants K >1 and &>0 such that

1
0

(107 (s &5 o) 1ae < k([ 1 2@ rag+( [ 196, 8)1aga),
t>0, geM,

provided that

(10.8) sup {Rer: AE0,(4)}<0.

For the system (10.1)—(10.3), in view of Proposition 7.1, the condition (10.8) is
replaced by that, for Re A >0,

0_2 §£o _ o__m ~Ahy __0 As 0de —
109) rg— 2 (a®) 2 ) b0 —F v arg [ s, s =0,
gLeD(4,) implies g2 =0 in L,.

ExampLE 10.2. In this example, we consider the special equation

1010 288 = D b 1 Hare .5, >0, £

of (10.1) with the same mixed conditions (10.2) and (10.3), where a>0, b, a,
are real constants. For the system (10.10), (10.2), (10.3) we have easily that
By = —an’n?+-b y W= \/7 sin nr , n=1,2,.-,

so that the spectrum o(4) is given by
a(4) = {AEC"': A +Han’*r®—b— i a,e™Mr =0 for some n=1,2, -} .
r=1
It is evident that o(4) is countable and each A&Eo(A4) has finite multiplicity

(may be #1). The asymptotic stability condition (10.9) is now reduced to a
verifiable condition that
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all roots of the transcendental equations
(10.11) A= —an2n2+b+’él aeM,  n=12,

have negative real parts .
A simple sufficient condition for (10.11) is éla,l <am*—b, which is shown by
direct calculations using contradiction. Rec;lltly Lenhart and Travis [28, Corol-
lary 1.2] have proved that (10.11) holds for all #,>0 if and only if ':Ezla,l <an®—b
and gla,<a7z2—b. Set A,,()\.)———7H—anz7z2—b—’§1‘I a,e”Mr,  Let {\,}7-1 be the

set of roots of A,(A)=0 and let &,; be the multiplicity of A,;. Then the retarded
resolvent R(\; A,, 1) is given by

. LS 2
R(\; 4y, 9)z = EA"()\,)

<z, sinnzf)p, sinngf , AEC'—{\,;: m, j=1,2, -+};

the basis of the generalized eigenspace JH,,, corresponding to \,;Ea(4) is given
by

A,

{e*ni® sin nzk, -+, s*ni~1eMi® sin nE}.

If a,=+0, this system of generalized eigenfunctions is compléte in M, Butif
a,=0, the completeness does not hold in general (cf. [29, 35]).
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