NON-STANDARD REPRESENTATIONS OF DISTRIBUTIONS I

Мото-о KINOSHITA*

(Received August 4, 1987)

1. Introduction

We fix an infinite natural number H in *N-N. We assume that H is even. Let $\varepsilon=1/H$. Then, ε is a positive infinitesimal element of *Q, hence, of *R. We denote by L the set * $Z \cdot \varepsilon$ of all integer multiples of ε . Then, * $Z \subseteq L \subseteq *R$. L is a lattice with infinitesimal mesh ε . Put

$$X = \left\{ x \in \mathbf{L} \mid -\frac{H}{2} \le x < \frac{H}{2} \right\}.$$

Then, X is a *-finite subset of L of cardinality H^2 .

Now, consider the set

$$R(X) = \{ \varphi \mid \varphi \colon X \rightarrow *C, \text{ internal} \}$$
.

By the above, R(X) is an internal H^2 -dimensional vector space over *C . From now on, we will assume that every element φ of R(X) is extended to a function defined on L with period H.

Let Ω be an open set in R. Every function $\Omega \rightarrow C$ we consider is assumed to be extended to a function $R \rightarrow C$ which takes zero outside Ω .

Let's consider $f \in \mathcal{D}(\Omega)$, where $\mathcal{D}(\Omega)$ is the space of indefinitely differentiable functions with compact support on Ω . We have $f: R \to C$, and denoting $K = \sup(f)$, the following statement holds:

$$x \in X$$
, $x \notin K \cap X$ implies $f(x) = 0$.

In the following, we shall define several mappings each from an external subspace of R(X) to some space consisting of distributions on Ω . Let

$$A(\Omega) = \{ \varphi \in R(X) | \sum_{x \in X} \mathcal{E}\varphi(x)^* f(x) \text{ is finite for every } f \in \mathcal{D}(\Omega) \}$$
.

We remark that the sum $\sum_{x \in X} \mathcal{E}\varphi(x)^* f(x)$ in this definition always exists in *C as a

^{*} Posthumous manuscript translated and arranged by H. Kikyo, T. Nakamura and M. Saito.

*-finite sum, and it can be represented as $\sum_{x \in *K \cap X} \mathcal{E}\varphi(x) * f(x)$ with K = supp(f).

We also write these sums $\sum_{x} \mathcal{E} \varphi^* f$ and $\sum_{xK \cap X} \mathcal{E} \varphi^* f$ respectively.

When $\alpha \in {}^*C$ is finite, ${}^{\circ}\alpha$ denotes the standard part of α . For each $\varphi \in A(\Omega)$ and $f \in \mathcal{Q}(\Omega)$, put

$$P_{\varphi}(f) = {}^{\circ}(\sum_{X} \mathcal{E} \varphi^{*}f)$$
.

 $P_{\varphi} \colon \mathcal{D}(\Omega) \ni f \mapsto P_{\varphi}(f) \in \mathbb{C}$ is a linear form on $\mathcal{D}(\Omega)$. $\mathcal{D}(\Omega)^*$ denotes the algebraic dual of $\mathcal{D}(\Omega)$ which is the set of all linear forms on $\mathcal{D}(\Omega)$. Using these, we define a map

$$P: A(\Omega) \ni \varphi \mapsto P_{\varphi} \in \mathcal{Q}(\Omega)^*$$
.

Lemma 1. Let X be a set, k a field, and f_1, \dots, f_n maps from X to k. If f_1, \dots, f_n are linearly independent over k, then there are x_1, \dots, x_n in X such that $\det ||f_i(x_j)|| \neq 0$.

Theorem 1. P is an onto map.

Proof. Choose T from $\mathcal{Q}(\Omega)^*$. For each f in $\mathcal{Q}(\Omega)$, let

$$A(f) = \{ \varphi \in R(X) | \sum_{X} \varepsilon \varphi^* f = T(f) \}$$
.

For any f_1, \dots, f_n in $\mathcal{Q}(\Omega)$ we will show that $\bigcap_{i=1}^n A(f_i) \neq \emptyset$. Then, we can see that

$$\bigcap_{f \in \mathcal{D}(\Omega)} A(f) \neq \emptyset$$

by saturation principle. Picking φ from $\bigcap_{f \in \mathcal{D}(\Omega)} A(f)$, we have

$$\sum_{\mathbf{x}} \mathcal{E} \boldsymbol{\varphi}^* f = T(f)$$

for every f in $\mathcal{Q}(\Omega)$. In other words, $P_{\varphi} = T$.

In the following, we show that $\bigcap_{n=1}^{i} A(f_i) \neq \emptyset$ for any f_1, \dots, f_n in $\mathcal{Q}(\Omega)$ by induction on n.

First of all, we remark that, for any t in R, there is a unique x in X which satisfies $x \le t < x + \varepsilon$, that is the maximum element $x \in X$ satisfying $x \le t$. We denote this x by $^{\wedge}t$. Also, if $t \in \Omega$, then the above $x(=t^{\wedge})$ is an element of $^*\Omega \cap X$, because x = t and Ω is an open set.

For n=1, let $f \in \mathcal{D}(\Omega)$. If f=0, then $0 \in A(f)$. If $f \neq 0$, then $f(t_1) \neq 0$ for some $t_1 \in \Omega$. Choose $t_1 \in {}^{*}\Omega \cap X$ as we have just remarked above and put $x_1 = {}^{*}t_1$. Then, ${}^{*}f(x_1) \neq 0$. Otherwise, the continuity of f and $x_1 = t_1$ would imply $0 = {}^{*}f(x_1) = f(t_1)$. We define $\varphi: X \to {}^{*}C$ by

$$\varphi(x) = \begin{cases} \frac{T(f)}{\varepsilon^* f(x_1)} & (x = x_1) \\ 0 & (x \neq x_1) \end{cases}$$

Then, we have $\sum_{x} \varepsilon \varphi^{*} f = T(f)$, i.e. $\varphi \in A(f)$.

Assuming n>1 and that the assertion holds for n-1, we prove it for n. Let $f_1, \dots, f_n \in \mathcal{D}(\Omega)$. If they are linearly dependent over C, by changing the suffixes if necessary, we can assume that $f_n = \sum_{i=1}^{n-1} c_i f_i$ with c_i 's in C. Choosing φ from $\bigcap_{i=1}^{n-1} A(f_i)$, we have $T(f_i) = \sum_{x} \mathcal{E} \varphi^* f_i$ for $1 \le i \le n-1$. Using this equation, we have

$$T(f_n) = \sum_{i=1}^{n-1} c_i T(f_i) = \sum_{i=1}^{n-1} c_i \sum_{\mathcal{X}} \mathcal{E} \varphi^* f_i = \sum_{\mathcal{X}} \mathcal{E} \varphi \sum_{i=1}^{n-1} c_i^* f_i = \sum_{\mathcal{X}} \mathcal{E} \varphi^* f_n$$

Hence, $\varphi \in \bigcap_{i=1}^n A(f_i)$.

If f_1, \dots, f_n are linearly independent over C, then we can find t_1, \dots, t_n in Ω such that $\det ||f_i(t_j)|| \neq 0$ by Lemma 1. Choose ${}^{\triangle}t_1, \dots, {}^{\triangle}t_n \in {}^*\Omega \cap X$, and put $x_j = {}^{\triangle}t_j$ ($1 \leq j \leq n$). Since

$$\det ||*f_i(x_j)|| \simeq \det ||f_i(t_j)||,$$

we have det $||*f_i/(x_i)|| \neq 0$. There are $\alpha_1, \dots, \alpha_n \in {}^*C$ which satisfy

$$\sum_{j=2}^{n} * f_i(x_j) \alpha_j = T(f_i) \qquad (1 \le i \le n).$$

With this statement and reminding that $x_j \neq x_k$ if $j \neq k$, we can define a map φ : $X \rightarrow *C$ as follows:

$$\varphi(x) = \begin{cases} \frac{\alpha_j}{\varepsilon} & (x = x_j) \\ 0 & (x \neq x_1, \dots, x_n). \end{cases}$$

Then,

$$\sum_{\mathbf{x}} \varepsilon \varphi^* f_i = \sum_{j=1}^n \varepsilon \frac{\alpha_j}{\varepsilon} f_i(x_j) = T(f_i) \qquad (1 \le i \le n).$$

Hence,
$$\varphi \in \bigcap_{i=1}^n A(f_i)$$
.

Theorem 1 above is a modification of a theorem of Robinson ([8], §5.3) by reducing *R to X. The proof is almost same as that of the Robinson's theorem given by M. Saito [9]. Another proof which makes use of the lattice structure of X can be found, for example, in H.J. Keisler [4].

Following this theorem, we will show that by defining several external subspaces $D(\Omega)$, $D_F(\Omega)$, $M(\Omega)$, $M_1(\Omega)$, $E(\Omega)$, and $S(\Omega)$ of $A(\Omega)$ appropriately, the images of these sets by $P: A(\Omega) \to \mathcal{D}(\Omega)^*$ are $\mathcal{D}'(\Omega)$, $\mathcal{D}'_F(\Omega)$, $\mathcal{D}'^{(0)}(\Omega) = \mathcal{M}(\Omega)$, $\mathcal{M}_1(\Omega)$, $\mathcal{L}_{1,loc}(\Omega)$ and $\mathcal{C}(\Omega)$ respectively. Here, $\mathcal{D}'_F(\Omega)$ is the set of distributions of finite oder on Ω , $\mathcal{D}'^{(0)}(\Omega) = \mathcal{M}(\Omega)$ the set of distributions of order 0 on

 Ω which is the set of all (complex) measures on Ω , and $\mathcal{M}_1(\Omega)$ the set of all bounded (complex) measures on Ω . $\mathcal{D}'(\Omega)$, $\mathcal{L}_{1,loc}(\Omega)$ and $\mathcal{C}(\Omega)$ are frequently used symbols. For the knowledge of distributions, refer to L. Schwartz [10].

2. Complex Measures

Definition. $M(\Omega) = \{ \varphi \in R(X) \mid \sum_{*K \cap X} \varepsilon \mid \varphi \mid \text{ is finite for every compact subset } K \text{ of } \Omega \}.$

Theorem 2. (a) $M(\Omega) \subseteq A(\Omega)$.

(b) The image of $M(\Omega)$ by P is $\mathcal{D}'^{(0)}(\Omega) = \mathcal{M}(\Omega)$.

Proof. (a) Let $\varphi \in M(\Omega)$, $f \in \mathcal{D}(\Omega)$, and K = supp(f). Then,

$$|\sum_{x} \varepsilon \varphi^* f| = |\sum_{xK \cap X} \varepsilon \varphi^* f| \le (\sum_{xK \cap X} \varepsilon |\varphi|) \cdot \sup |f|.$$

So, $\sum_{x} \mathcal{E} \varphi^{*} f$ is finite and $\varphi \in A(\Omega)$.

The first half of (b): Let $\varphi \in M(\Omega)$, and K a compact subset of Ω . Put $C_K = \underset{*K \cap X}{* \sum} \mathcal{E}|\varphi|$. By the formulas in the proof of (a), we get $|P_{\varphi}(f)| \leq C_K \cdot \sup |f|$ for each $f \in \mathcal{D}(\Omega)$ such that $\sup (f) \subseteq K$ and thus, $P_{\varphi} \in \mathcal{D}'^{(0)}(\Omega) = \mathcal{M}(\Omega)$.

The second half of (b): For each $T \in \mathcal{M}(\Omega)$, we show that $T = P_{\varphi}$ for some $\varphi \in M(\Omega)$. Let $\mathcal{K}(\Omega) = \{f : \mathbb{R} \to \mathbb{C}, \text{ continuous } | \sup f)$ is compact $\subseteq \Omega \}$ and for every map $T \colon \mathcal{Q}(\Omega) \to \mathbb{C}$, we will extend it to a map from $\mathcal{K}(\Omega)$ to \mathbb{C} and denote it by the same letter T. we also put $\mathcal{K}_{+}(\Omega) = \{f \in \mathcal{K}(\Omega) | f \geq 0\}$.

Suppose first that $T: \mathcal{K}(\Omega) \to C$ is a positive linear form. For $f \in \mathcal{K}_+(\Omega)$ and e>0, let $A(f,e)=\{\varphi \in R(X) \mid \varphi \geq 0, \mid T(f)-\sum_X \varepsilon \varphi^* f \mid \leq e\}$. For any $f_1, \dots, f_n \in \mathcal{K}_+(\Omega)$ and $e_1, \dots, e_r>0$, we will show that $\bigcap_{1\leq i\leq n, 1\leq j\leq r} A(f_i, e_j) \neq \emptyset$. This will yield the following by saturation principle:

$$\bigcap_{f \in \mathcal{K}_{+}(\Omega), e > 0} A(f, e) \neq \emptyset$$
.

Choosing φ from $\bigcap_{f \in \mathcal{X}_+(\Omega), e > 0} A(f, e)$, we have $\varphi \ge 0$ and

$$|\sum_{\mathbf{r}} \mathcal{E} \varphi^* f - T(f)| \le e$$

for every $f \in \mathcal{K}_{+}(\Omega)$ and e > 0. Hence, $\sum_{x} \varepsilon \varphi^{*} f \simeq T(f)$.

Now, it is enough to show that $\bigcap_{i=1}^n A(f_i, e) \neq \emptyset$ for each f_1, \dots, f_n and $e = \min\{e_1, \dots, e_r\}$.

Let $f_0 \in \mathcal{K}_+(\Omega)$ be such that $f_0 \ge f_1, \dots, f_0 \ge f_n$ (e.g. $f_0 = f_1 + \dots + f_n$). Let $S_0 = \{t \in \Omega \mid f_0(t) \neq 0\}$.

If $T(f_0)=0$, then we get $T(f_i)=0$ for $1 \le i \le n$, since $f_0 \ge f_i$ implies $0=T(f_0) \ge T(f_i) \ge 0$. So, we have $0 \in \bigcap_{i=1}^n A(f_i, e)$.

Now, assume that $T(f_0)>0$. Then, $S_0\neq\emptyset$. We can see that the point $Q=(T(f_1)/T(f_0), \dots, T(f_n)/T(f_0))$ in \mathbf{R}^n is contained in the closed convex closure C of the subset $\{(f_1(t)/f_0(t), \dots, f_n(t)/(f_0(t)) | t \in S_0\}$ of \mathbf{R}^n as follows: Assuming $Q \notin C$, the point Q and the set C are strictly separated by some hyperplane in \mathbf{R}^n . Hence, for some $b_0, \dots, b_n \in \mathbf{R}$,

$$\sum_{i=1}^{n} b_i(T(f_i)/T(f_0)) > b_0 > \sup_{t \in S_0} \sum_{i=1}^{n} b_i(f_i(t)/f_0(t))$$
.

Put $g = \sum_{i=1}^{n} b_i f_i \in \mathcal{K}(\Omega)$. Then,

(1)
$$\frac{T(g)}{T(f_0)} > b_0 > \sup_{t \in S_0} \frac{g(t)}{f_0(t)}.$$

For $t \in S_0$, by the right half of (1), $g(t) < b_0 f_0(t)$ and $t \in \Omega - S_0$ imply $f_0(t) = 0$. Hence, $f_i(t) = 0$ for $1 \le i \le n$. Thus, g(t) = 0 and we have $g(t) = b_0 f_0(t)$. So, $g \le b_0 f_0$. Since T is positive, we get $T(g) \le b_0 T(f_0)$ and $(T(g)/T(f_0)) \le b_0$, which contradicts the first inequality of (1).

Now, since $Q \in C$, for each e > 0, there are $t_1, \dots, t_r \in S_0$ and $a_1, \dots, a_r \in \mathbb{R}$ such that $a_j > 0$, $\sum_{j=1}^r a_j = 1$ and $|T(f_i)/T(f_0) - \sum_{j=1}^r a_j(f_i(t_j)/f_0(t_j))| \le e/2T(f_0)$ $(1 \le i \le n)$. So, we have

(2)
$$|T(f_i) - \sum_{j=1}^r \frac{a_j T(f_0)}{f_0(t_j)} f_i(t_j)| \le \frac{e}{2} \qquad (1 \le i \le n).$$

Here, we can assume that t_1, \dots, t_r are pairwise distinct. (If $t_j = t_k$ for $j \neq k$, then we can write $a_j \frac{T(f_0)}{f_0(t_j)} f_i(t_j) + a_k \frac{T(f_0)}{f_0(t_k)} f_i(t_k) = (a_j + a_k) \frac{T(f_0)}{f_0(t_j)} f_i(t_j)$.) Now, let $x_j = {}^{\Delta}t_j \in {}^{\Delta}t_j \in {}^{\Delta}t_j \in {}^{\Delta}t_j$. Since x_1, \dots, x_r are pairwise distinct, by defining $\varphi: X \to {}^{\Delta}t_j \in {}^{\Delta}t_j \in {}^{\Delta}t_j$.

$$\varphi(x) = \begin{cases} \frac{a_j T(f_0)}{\varepsilon f_0(t_j)} & (x = x_j) \\ 0 & (x \neq x_1, \dots, x_r) \end{cases}$$

we have

$$\sum_{\mathbf{x}} \varepsilon \varphi^* f_1 = \sum_{j=1}^r \varepsilon \varphi(x_j)^* f_i(x_j)$$

$$= \sum_{j=1}^r \frac{a_j T(f_0)}{f_0(t_j)} * f_i(x_j) \simeq \sum_{j=1}^r \frac{a_j T(f_0)}{f_0(t_j)} f_i(t_j)$$

for each i satisfying $1 \le i \le n$, and by combining with (2), we get

$$|T(f_{i}) - \sum_{\mathbf{x}} \varepsilon \varphi^{*} f_{i}| \leq |T(f_{i}) - \sum_{j=1}^{r} \frac{a_{j} T(f_{0})}{f_{0}(t_{j})} f_{i}(t_{j})|$$

$$+ |\sum_{j=1}^{r} \frac{a_{j} T(f_{0})}{f_{0}(t_{j})} f_{i}(t_{j}) - \sum_{\mathbf{x}} \varepsilon \varphi^{*} f_{i}| \leq \frac{e}{2} + \frac{e}{2} = e \qquad (1 \leq i \leq n).$$

Hnece, $\varphi \in \bigcap_{i=1}^n A(f_i, e)$.

Now, we have verified as we said above that, for each positive linear form $T: \mathcal{K}(\Omega) \to \mathbf{C}$, there is a map $\varphi \in R(X)$ such that $\varphi \geq 0$ and, for every map $f \in \mathcal{K}_{+}(\Omega)$, the following holds:

(3)
$$\sum_{\mathbf{x}} \varepsilon \boldsymbol{\varphi}^* f \simeq T(f) .$$

It is easily seen that (3) holds for every function $f \in \mathcal{K}(\Omega)$, and in particular, for every function $f \in \mathcal{D}(\Omega)$.

We show that $\varphi \in M(\Omega)$ as follows. For every compact subset K of Ω and every non-negative function $f \in \mathcal{D}(\Omega)$ /such that $0 \le f \le 1$ which equals 1 on K, we have

$$\sum_{*K\subset X} \varepsilon |\varphi| = \sum_{*K\cap X} \varepsilon \varphi = \sum_{*K\cap X} \varepsilon \varphi^* f \simeq T(f)$$
.

Therefore, $\varphi \in M(\Omega)$.

Returning to general case, every measure T can be written in the form $T=T_1-T_2+i(T_3-T_4)$ where T_i $(1\leq i\leq 4)$ are positive linear forms on $\mathcal{K}(\Omega)$. For each i satisfying $1\leq i\leq 4$, we can find $\varphi_i\in M(\Omega)$ such that $\varphi_i\geq 0$ and, for every function $f\in \mathcal{D}(\Omega)$, $\sum_X \mathcal{E}\varphi_i^*f\cong T_i(f)$ holds. Putting $\varphi=\varphi_1-\varphi_2+i(\varphi_3-\varphi_4)$, we have $\varphi\in M(\Omega)$ and $P_{\varphi}=T$.

The above proof is almost same as that in M. Saito [9], §2.2.

Definition. $M_1(\Omega) = \{ \varphi \in R(X) \mid \sum_{{}^*\Omega \cap X} \varepsilon \mid \varphi \mid \text{ is finite} \}.$

We can immediately see from the definition that $M_1(\Omega) \subseteq M(\Omega)$.

Theorem 3. The image of $M_1(\Omega)$ by $P: A(\Omega) \to \mathcal{D}(\Omega)^*$ coincides with $\mathcal{M}_1(\Omega)$. Moreover, if T is real, we can find a function $\varphi \colon X \to {}^*\mathbf{R}$ such that $\varphi \in \mathcal{M}_1(\Omega)$, $P_{\varphi} = T$ and $\sum_{{}^*\Omega \cap X} \mathcal{E}|\varphi| \simeq ||T||$. If T is not real, we only have the inequality $\sum_{{}^*\Omega \cap X} \mathcal{E}|\varphi| \ge ||T||$. Here, ||T|| is the norm of T.

Proof. If $\varphi \in M_1(\Omega)$ and $f \in \mathcal{D}(\Omega)$, then

$$|\sum_{X} \varepsilon \varphi^* f| = |\sum_{*\Omega \cap X} \varepsilon \varphi^* f| \le (\sum_{*\Omega \cap X} \varepsilon |\varphi|) \cdot \sup |f|.$$

Hence, P_{φ} is a bounded measure in Ω .

Now, let $\mathcal{C}_B(\Omega)$ be the set of all complex-valued bounded continuous functions on Ω (assumed to take value 0 on \mathbf{R} - Ω). We write $\mathcal{C}_{B,+}(\Omega) = \{f \in \mathcal{B}_B(\Omega) | f \geq 0\}$. 1_Q denotes the characteristic function of Ω . And, for $T \in \mathcal{M}_1(\Omega)$, we extend it to a linear form $\mathcal{C}_B(\Omega) \to \mathbf{C}$ by integration and denote it by T again.

So, let $T: \mathcal{C}_{\mathcal{B}}(\Omega) \to \mathbf{C}$ be a positive linear form. The proof of the second half of Theorem 2 (b) is also valid if we rsplace $\mathcal{K}(\Omega)$ and $\mathcal{K}_{+}(\Omega)$ by $\mathcal{C}_{\mathcal{B}}(\Omega)$ and $\mathcal{C}_{\mathcal{B},+}(\Omega)$ respectively. This means, for each $T \in \mathcal{M}_{1}(\Omega)$ with T positive, there is $\varphi \in R(X)$ such that $\varphi \geq 0$ and $T(f) \simeq \sum_{X} \mathcal{E} \varphi^{*} f$ for each $f \in \mathcal{C}_{\mathcal{B}}(\Omega)$. Putting $f = 1_{\Omega}$, we get $||T|| \simeq \sum_{{}^{*}\Omega \cap X} \mathcal{E} \varphi = \sum_{{}^{*}\Omega \cap X} \mathcal{E} |\varphi|$. Hence, we have $\varphi \in M_{1}(\Omega)$. The proof for the last part of the theorem is similar to that for Theorem 2. \square

3. Complex-valued functions

We need the theory of Loeb measures on Ω and on Jordan measurable subsets of Ω ([1[, [6], and [7]). To avoid duplications, we use the following notations:

Z: A countable union of Jordan measurable compact subsets of Ω .

 \mathcal{A}_Z : The set of all internal subsets of $*Z \cap X$. We sometimes write \mathcal{A} if there is no danger of confusion.

We define $\nu: \mathcal{A} \to {}^*\mathbf{R}$ by $\nu(A) = (\sharp(A)) \cdot \varepsilon$ for each $A \in \mathcal{A}$. Then, $({}^*Z \cap X, \mathcal{A}, \nu)$ is an internal finitely additive measure space. Let $({}^*Z \cap X, L(\mathcal{A}), \nu_L)$ be the Loeb space associated with it.

An internal function φ : * $Z \cap X \rightarrow *R$ is said to be S-integrable if the following three conditions are satisfied:

- (1) $N \in *N N$ implies $\sum_{(|\varphi| \ge N)} \varepsilon |\varphi| \simeq 0$,
- (2) $N \in {}^*N N$ implies $\sum_{(|\varphi| \le (1/N))} \varepsilon |\varphi| \simeq 0$, and
- (3) $\sum_{*Z \cap X} \mathcal{E}|\varphi|$ is finite.

If $\nu(*Z \cap X)$ is finite, (1) implies (2) and (3).

The following theorems are due to Loeb:

Let \overline{R} be the set of extended real numbers.

(1) If $\varphi: {}^*Z \cap X \to {}^*R$ is S-integrable, then ${}^\circ\varphi: {}^*Z \cap X \to \overline{R}$ is Loeb integrable and

$$\sum_{{}^*Z \cap X} {arepsilon} arphi \simeq \int_{{}^*Z \cap X} {}^\circ arphi d
u_L \, .$$

(2) If $g: *Z \cap X \to \overline{R}$ is Loeb integrable, then there is an S-integrable function $\varphi: *Z \cap X \to *R$ such that ${}^{\circ}\varphi = g(\nu_L$ -almost everywhere).

Moreover, let $\operatorname{Ns}(*Z) = \{x \in *Z \mid x = t \text{ for some } t \in Z\}$. We have $\operatorname{Ns}(*Z) \subseteq \operatorname{Ns}(*R) \cap *Z$, but the equality does not necessarily hold. Here, $\operatorname{Ns}(*R) = \{\alpha \in *R \mid \alpha \text{ is finite}\}$. Define $\operatorname{st}_z : \operatorname{Ns}(*Z) \cap X \to Z$ by $\operatorname{st}_z(x) = {}^{\circ}x$ when $x \in \operatorname{Ns}(*Z) \cap X$. We sometimes omit Z in st_z .

Let (Z, \mathcal{L}, μ) be a Lebesgue messure space over Z. The followings are known.

(3) For a subset E of Z, the condition $E \in \mathcal{L}$ is equivalent to the condition $\operatorname{st}^{-1}(E) \in L(\mathcal{A})$ and if this condition is satisfied, then we have $\mu(E) = \nu_L(\operatorname{st}^{-1}(E))$.

(4) Let $E \subseteq Z$ be \mathcal{L} -measurable and let h be a non-negative \mathcal{L} -measurable function: $E \to \overline{R}$. Then, $h \circ st : st^{-1}(E) \to \overline{R}$ is $L(\mathcal{A})$ -measurable and

$$\int_E h d\mu = \int_{\operatorname{st}^{-1}(E)} (h \circ \operatorname{st}) d\nu_L.$$

Now, if $K \subset \Omega$, then the compactness of K and the inclusion

$$\operatorname{st}^{-1}(K) \supseteq *K \cap X$$

are equivalent. By this fact and by (3) above, if K is a compact subset of Ω , then

$$\nu_L(*K \cap X) \leq \nu_L(\operatorname{st}^{-1}(K)) = \mu(K) .$$

Moreover, if K is a Jordan measurable compact set, we can prove that

$$\nu_L(*K\cap X)=\nu_L(\operatorname{st}^{-1}(K)).$$

We define the local S-integrability below.

Recall that R(X) is the set of internal functions from X to *C . If $\varphi \in R(X)$, K is a compact subset of Ω , and $n \in {}^*N$, then we write

$$A(\varphi, K, n) = \{x \in *K \cap X | |\varphi(x)| \ge n\}.$$

DEFINITION. (1) A function $\varphi \in R(X)$ is said to be *locally S-integrable* over Ω if the following holds for every compact subset K of Ω and every infinite natural number $N \in {}^*N - N$:

$$\sum_{A(\varphi,E,N)} \varepsilon |\varphi| \simeq 0$$
.

(2) $E(\Omega) = {\varphi \in R(X) | \varphi \text{ is locally S-integrable over } \Omega}.$

Proposition 1. The following two conditions are equivalent. In particular we have $E(\Omega) \subseteq M(\Omega)$.

- (a) $\varphi \in E(\Omega)$.
- (b) $\varphi \in M(\Omega)$, and for any compact subset K of Ω and for any set $A \in \mathcal{A}$ such that $A \subseteq {}^*K \cap X$,

$$\nu(A) \simeq 0$$
 implies $\sum_{\mathbf{A}} \varepsilon |\varphi| \simeq 0$.

Proof. (a) \rightarrow (b). Assume $\varphi \in E(\Omega)$. Let K be a compact subset of Ω and e > 0. Since φ is locally S-integrable over Ω , we have $*N-N \subseteq \{n \in *N \mid \sum_{A(\varphi,K,n)} \mathcal{E} \mid \varphi \mid \leq e\}$. Hence, there is a natural number $n \in N$ such that $\sum_{A(\varphi,K,n)} \mathcal{E} \mid \varphi \mid \leq e$. Thus, we have

Since $\sum_{K \cap X} \varepsilon = \nu_L(*K \cap X) \le \nu_L(st^{-1}(K)) = \mu(K)$, we can see that $\sum_{K \cap X} \varepsilon |\varphi|$

is finite and thus, we get $\varphi \in M(\Omega)$.

Now, let $A \in \mathcal{A}_{\Omega}$, K be a compact subset of Ω , $A \subseteq *K \cap X$, and $\nu(A) \simeq 0$. Since $N \subseteq \{n \in *N \mid n^2 \cdot \nu(A) \leq 1\}$, we have $N^2 \cdot \nu(A) \leq 1$ for some $N \in *N - N$. Hence we get $N \cdot \nu(A) \simeq 0$. Here, we have

$$\sum_{A} \mathcal{E}|\varphi| \leq \sum_{\{x \in A \mid |\varphi(x)| \geq N\}} \mathcal{E}|\varphi| + \sum_{\{x \in A \mid |\varphi(x)| < N\}} \mathcal{E}|\varphi| \leq \sum_{A(\varphi,K,n)} \mathcal{E}|\varphi| + N \cdot \nu(A).$$

The first term $\simeq 0$ by the hypothesis, and the second term $\simeq 0$ by what we have just shown above. Hence, we get $\sum_{A} \mathcal{E}|\varphi| \simeq 0$.

(b) \rightarrow (a). Let K be a compact subset of Ω , and $N \in *N - N$. Put $A = A(\varphi, K, N) = \{x \in *K \cap X \mid |\varphi(x)| \geq N\}$. We have $A \in \mathcal{A}_{\Omega}$, $A \subseteq *K \cap X$ and the inequality

$$N \cdot \nu(A) \le \sum_{A} \varepsilon |\varphi| \le \sum_{*K \cap X} \varepsilon |\varphi|$$

holds. But the right hand side is finite for $\varphi \in M(\Omega)$. So we have $\nu(A) \simeq 0$. This and the latter half of (b) yields that $\sum_A \mathcal{E}|\varphi| \simeq 0$.

The lemma below will also be used later.

Now, we write $Ns(*C) = \{\alpha \in *C \mid \alpha \text{ is finite}\}$. This set is a commutative ring.

Lemma 2. Let $Y(\Omega)$ be an Ns(*C)-submodule of R(X), $T \in \mathcal{D}'(\Omega)$, and $(f_i)_{i \in \mathbb{N}}$ a partition of unity on Ω . Suppose that, for each $i \in \mathbb{N}$, there corresponds a function $\psi_i \in Y(\Omega)$ such that $P_{\psi_i} = f_i T$ and that ψ_i is 0 on $*K \cap X$ provided K is a compact subset of Ω and $K \cap \text{supp}(f_i) = \emptyset$. Put $\varphi_n = \sum_{i=1}^n \psi_i$ for $n \in \mathbb{N}$. The map from N to $Y(\Omega)$: $n \mapsto \varphi_n$ extends to an internal map from *N to R(X): $n \mapsto \varphi_n$.

In the situation above, there exists an integer $N \in {}^*N$ such that the following conditions hold:

- (a) In case $N \in \mathbb{N}$, then $\varphi_N \in Y(\Omega)$ and $P_{\psi_N} = T$;
- (b) in case $N \in {}^*N N$, then $\varphi_N \in A(\Omega)$, $P_{\psi_N} = T$ and, for every compact subset $K \subseteq \Omega$, there exists an $n \in N$ such that $\varphi_N = \varphi$

and, for every compact subset $K \subseteq \Omega$, there exists an $n \in \mathbb{N}$ such that $\varphi_N = \varphi_n$ on $*K \cap X$.

Proof. For each compact subset K of Ω , choose $n(K) \in \mathbb{N}$ so that i > n(K) implies $\sup_{i \in \mathbb{N}} f_i \cap K = \emptyset$, which yields that ψ_i takes 0 on $K \cap K$. Then, $n \ge n(K)$ implies that $\sum_{i=0}^{n} f_i$ takes 1 on K.

For each $f \in \mathcal{D}(\Omega)$, put n(f) = n(supp(f)) and consider the following internal set:

$$I(f) = \{ n \in *N \mid n \ge n(f) \land \forall l \in *N(n(f) \le l \le n \to l \le n \le p_l *f - T(f) \mid \le \frac{1}{l+1} \} \}.$$

If $n \in \mathbb{N}$ and $n \ge n(f)$, then a natural number $l \in {}^*\mathbb{N}$ satisfying $n(f) \le l \le n$ turns out to be an element of \mathbb{N} , and since $l \ge n(f)$, reminding that $\sum_{i=0}^{n} f_i$ takes 1 on $\sup_{i=0}^{n} f_i$, we get

$$\sum_{\mathbf{x}} \mathcal{E} \varphi_l * f = \sum_{i=0}^l \sum_{\mathbf{x}} \mathcal{E} \psi_i * f \simeq \sum_{i=0}^l (f_i T)(f) = T((\sum_{i=0}^l f_i) f) = T(f)$$
 .

Now, we have $\{n \in N \mid n \geq n(f)\} \subseteq I(f)$. Hence, by Permanence Principle, there is $N(f) \in {}^*N - N$ such that $\{n \in {}^*N \mid n(f) \leq n \leq N(f)\} \subseteq I(f)$. Thus, the family of internal sets $\{I(f) \mid f \in \mathcal{D}(\Omega)\}$ has the finite intersection property and we have $\cap \{I(f) \mid f \in \mathcal{D}(\Omega)\} \neq \emptyset$ by saturation principle. Take $N \in \cap \{I(f) \mid f \in \mathcal{D}(\Omega)\}$. Then N belongs to *N and the following holds:

For any $f \in \mathcal{D}(\Omega)$, $N \ge n(f)$ and for every $l \in *N$,

$$n(f) \le l \le N$$
 implies $|\sum_{x} \varepsilon \varphi_{l} * f - T(f)| \le \frac{1}{l+1}$.

If $N \in \mathbb{N}$, then $\varphi_N \in Y(\Omega)$ and since $N \ge n(f)$ for every $f \in \mathcal{D}(\Omega)$, we have

$$P_{\varphi_N}(f) = \sum_{i=0}^N P_{\psi_i}(f) = \sum_{i=0}^N (f_i T)(f) = T((\sum_{i=0}^N f_i)f) = T(f)$$
.

If $N \in {}^*N - N$, then for every $L \in {}^*N - N$ satisfying $L \le N$, we have

$$\left|\sum_{x} \varepsilon \varphi_{L} * f - T(f)\right| \le \frac{1}{L+1} \simeq 0$$

by what we have shown above and by the fact that $n(f) \leq L$ for any $f \in \mathcal{D}(\Omega)$. Thus we get $\varphi_L \in A(\Omega)$ and $P_{\varphi_L} = T$. We fix this N for a while.

Now, for a compact subset K of Ω , we put

$$J(K) = \{n \in N \mid n \ge 1, \quad \varphi_{n-1} = \varphi_n \quad \text{on} \quad K \cap X\}$$
.

If $n \in \mathbb{N}$ and $n \ge n(K)$, then $\sup(f_n) \cap K = \emptyset$ and thus ψ_n takes 0 on $*K \cap X$ and so, we have $\varphi_n = \varphi_{n-1} + \psi_n = \varphi_{n-1}$ on $*K \cap X$. Hence,

$${n \in \mathbb{N} \mid n > n(K)} \subseteq I(K)$$
,

With this, for each compact subset K of Ω , there exists $N(K) \in {}^*N - N$ such that

$${n \in *N \mid *n(K) < n \leq N(K)} \subseteq J(K)$$
.

Moreover, we can show that, there is $M \in {}^*N-N$ such that for any compact subset K of Ω and for any $n \in {}^*N$, n(K) < n < M implies $\varphi_n = \varphi_{n-1}$ on ${}^*K \cap X$. To show this, choose a fundamental sequence of compact sets $(K_j)_{j \in N}$ for Ω and choose $M \in {}^*N-N$ so that $M \le N(K_j)$ for every $j \in N$. Now, using N we have fixed above, consider the number $\min(M, N)$ and rename it N. Then we

have $\varphi_N \in A(\Omega)$, $P_{\varphi_N} = T$, and $\varphi_N = \varphi_{n(K)}$ on $*K \cap X$ for every compact subset K of Ω .

Theorem 4. (a) For each $\varphi \in E(\Omega)$, there is $h \in \mathcal{L}_{1,loc}(\Omega)$ such that $P_{\varphi} = T_h$, where T_h denotes the distribution determined by h.

(b) For each $h \in \mathcal{L}_{1,loc}(\Omega)$, there is $\varphi \in E(\Omega)$ such that $P_{\varphi} = T_h$.

Proof. (a) Let $\varphi \in E(\Omega)$ and $\varphi \geq 0$. We shall show that for any $g \in \mathcal{K}_{+}(\Omega)$ and e > 0, there exists d > 0 such that we have, for every $f \in \mathcal{K}_{+}(\Omega)$, $P_{\varphi}(f) \leq e$ provided $f \leq g$ and $\int_{\Omega} f d\mu \leq d$, where $d\mu$ is the Lebesgue measure on Ω . Then, P_{φ} will turn to be a measure on Ω with base μ ; that is, there is $h \in \mathcal{L}_{1,loc}(\Omega)$ and such that we have $P_{\varphi}(f) = \int_{\Omega} h f d\mu$ for every $f \in \mathcal{K}(\Omega)$ ([2], Chap. 5, § 5, n° 5, Cor. 5).

So, let $K=\operatorname{supp}(g)$ and choose $c \ge 0$ so that $c \cdot \operatorname{sup} g \le e/2$. Since $*N-N \subseteq \{n \in *N \mid \sum_{A(\varphi,K,n)} \varepsilon \varphi \le c\}$, there is $r \in N$ such that $\sum_{A(\varphi,K,n)} \varepsilon \varphi \le c$. With this n, choose d > 0 so that $nd \le e/3$. For g and d above, take $f \in \mathcal{K}_+(\Omega)$ such that $f \le g$ and $\int_{\Omega} f d\mu \le d$. We show that $P_{\varphi}(f) \le e$. We get

$$\sum_{x} \varepsilon \varphi^* f = \sum_{*K \cap X} \varepsilon \varphi^* f = \sum_{\{x \in *K \cap X \mid \varphi(x) < n\}} \varepsilon \varphi^* f + \sum_{A(\varphi,K,n)} \varepsilon \varphi^* f$$

$$\leq n \sum_{*K \cap X} \varepsilon^* f + \sup_{A(\varphi,K,n)} \varepsilon^* f, \cdot$$

but in the right hand side of the inequality,

the first term
$$\simeq n \int_{K} f d\mu \leq nd \leq \frac{e}{3}$$
,

thus,

the first term
$$\leq \frac{e}{2}$$
,

and

the second term
$$\leq (\sup f) \cdot c \leq (\sup g) \cdot c \leq \frac{e}{2}$$
.

Hence, $\sum_X \mathcal{E} \varphi^* f \leq \frac{e}{2} + \frac{e}{2} = e$ and immediately we get $P_{\varphi}(f) \leq e$.

(b) Let $h \in \mathcal{L}_{1,\text{loc}}(\Omega)$. Let $(f_i)_{i \in \mathbb{N}}$ be a partition of unity such that each supp (f_i) (we name it K_i) is a Jordan measurable compact set. Since $f_i h \colon K_i \to C$ is μ -integrable, $(f_i h) \circ \text{st} \colon *K_i \cap X \to C$ is Loeb integrable. Hence, for each i, there is an S-integrable function $\psi_i \colon *K_i \cap X \to C$ such that ${}^{\circ}\psi_i = (f_i h) \circ \text{st}(\nu_L$ -almost everywhere) on $*K \cap X$. Extend ψ_i so that it takes 0 on $X - *K_i \cap X$ and also denote it by ψ_i . We have $\psi_i \in R(X)$ and $\psi_i \in E(\Omega)$. We shall show that $P_{\psi_i} = f_i T_k$: For each $g \in \mathcal{D}(\Omega)$, we have

$$\sum_{\mathbf{x}} \varepsilon \psi_i * g = \sum_{*K_i \cap X} \varepsilon \psi_i * g \simeq \int_{*K_i \cap X} {}^{\circ} \psi_i {}^{\circ} * g d\nu_L$$

$$= \int_{*K_i \cap X} ((f_i h) \circ \operatorname{st}) (g \circ \operatorname{st}) d\nu_L$$

$$= \int_{\operatorname{st}^{-1}(K_i)} (f_i h g) \circ \operatorname{st} d\nu_L$$

$$= \int_{K_i} f_i h g d\mu = (f_i T_h)(g).$$

Here, we used the fact that Jordan measurable compact set K_i satisfies the equation $\nu_L(\operatorname{st}^{-1}(K_i)-{}^*K_i\cap X)=0$. Moreover, for a compact subset K of Ω such that $K\cap K_i=\emptyset$, ψ_i takes 0 on ${}^*K\cap X$ by our definition of ψ_i . Now, by applying Lemma 2 to the case $Y(\Omega)=E(\Omega)$, we get an internal function ${}^*N\ni n\mapsto \varphi_n\in R(X)$ and a natural number $N\in {}^*N$ such that $\varphi_n=\sum_{i=1}^n\psi_i$ for each $n\in N$ and satisfy the following conditions:

- (1) $N \in \mathbb{N}$ implies $\varphi_N \in E(\Omega)$ and $P_{\varphi_N} = T_h$.
- (2) $N \in {}^*N N$ implies that $\varphi_N \in A(\Omega)$, $P_{\varphi_N} = T_h$ and that, for each compact subset K of Ω , there is a suitable $n \in N$ such that $\varphi_N = \varphi_n$ on ${}^*K \cap X$.

In the case (1), the proof is done. In the case (2), for each compact subset K of Ω and for each $M \in {}^*N - N$, we have $A(K, \varphi_N, M) = A(K, \varphi_n, M)$ and we get $\varphi_N \in E(\Omega)$ by the following:

$$\sum_{A(K,\varphi_N,M)} \varepsilon |\varphi_N| = \sum_{A(K,\varphi_n,M)} \varepsilon |\varphi_n| \simeq 0.$$

Proposition 2. Let $\varphi \in E(\Omega)$, $\varphi \geq 0$, and $h \in \mathcal{L}_{1,loc}(\Omega)$, $h \geq 0$. Then, the following two conditions are mutually equivalent

- (a) $P_{\varphi} = T_h$.
- (b) ${}^{\circ}\varphi = h \circ st$ a.e. on $Ns(*\Omega) \cap X$.

Proof. (a) \rightarrow (b). Let $f \in \mathcal{K}(\Omega)$ and C be a compact and Jordan measurable subset of Ω with supp $(f) \subseteq C$. Then, st⁻¹ $(C) \supseteq *C \cap X$ because C is compact, and

$$\nu_L(\operatorname{st}^{-1}(C)) = \nu_L({}^*C \cap X)$$

because C is Jordan measurable. We have then

$$\begin{split} \int_{\mathsf{st}^{-1}(C)} {}^{\circ} \varphi(f \circ \mathsf{st}) d\nu_{L} &= \int_{{}^{*}C \cap X} {}^{\circ} (\varphi^{*}f) d\nu_{L} = \int_{X} {}^{\circ} (\varphi^{*}f) d\nu_{L} \\ &= {}^{\circ} \sum_{X} \mathcal{E} \varphi^{*}f = \int_{\Omega} h f d\mu \text{ (by assumption)} = \int_{C} h f d\mu \\ &= \int_{\mathsf{st}^{-1}(C)} (h \circ \mathsf{st}) (f \circ \mathsf{st}) d\nu_{L} \,. \end{split}$$

For every compact subset K of Ω , there exists a sequence of functions $f_n \in \mathcal{K}(\Omega)$ $(n \in \mathbb{N})$ such that

- (a) $f_n \downarrow 1_K$,
- (2) $\operatorname{supp}(f_n) \subseteq C$ for some fixed compact and Jordan measurable subset C of Ω .

By the remark above, we have

$$\int_{\operatorname{st}^{-1}(C)}{}^{\circ}\varphi(f_{\operatorname{n}} \circ \operatorname{st})d\nu_{L} = \int_{\operatorname{st}^{-1}(C)}{(h \circ \operatorname{st})(f_{\operatorname{n}} \circ \operatorname{st})}d\nu_{L}$$

and hence,

The positivity of the integrand implies

$${}^{\circ}\varphi = h {}^{\circ} \mathrm{st}$$
 a.e. on $\mathrm{st}^{-1}(K)$.

Take a sequence of compact sets K_n such that $\Omega = \bigcup_{n \in N} K_n$. Then we have $\operatorname{Ns}(*\Omega) \cap X = \bigcup_{n \in N} \operatorname{st}^{-1}(K_n)$ and therefore

$${}^{\circ}\varphi = h {\circ} st$$
 a.e. on $Ns({}^{*}\Omega) \cap X$.

(b) \rightarrow (a). Let $f \in \mathcal{K}(\Omega)$ and C be a comapet and Jordan measurable subset of Ω with supp $(f) \subseteq C$. Then we have

$$^{\circ}\sum_{X} \mathcal{E}\varphi^{*}f = ^{\circ}\sum_{{}^{*}C \cap X} \mathcal{E}\varphi^{*}f = \int_{{}^{*}C \cap X} ^{\circ}\varphi^{\circ *}f d\nu_{L}$$

$$= \int_{\mathsf{st}^{-1}(C)} ^{\circ}\varphi(f \circ \mathsf{st}) d\nu_{L} = \int_{\mathsf{st}^{-1}(C)} (h \circ \mathsf{st}) (f \circ \mathsf{st}) d\nu_{L}$$

$$= \int_{C} hf d\mu = \int_{\Omega} hf d\mu.$$

DEFINITION. Recall that $M_1(\Omega)$ is the set of internal functions φ on X such that $\sum_{{}^*\Omega \cap X} \varepsilon |\varphi|$ is finite, and that $E(\Omega)$ is the set of internal functions on X which are locally S-integrable on Ω . Put $E_1(\Omega) = E(\Omega) \cap M_1(\Omega)$, and, for every $p \ge 1$ in R, put

$$E_p(\Omega) = \{ \varphi \in R(X) | |\varphi|^p \in E_1(\Omega) \}$$
.

In case p=1, two definitions of $E_1(\Omega)$ coincide.

Lemma 3. Let $\varphi \in E(\Omega)$ and $\varphi \geq 0$. Then we have $\varphi^{1/p} \in E(\Omega)$ for every $p \geq 1$ in \mathbb{R} .

Proof. Recall that an internal function φ is said to be locally S-integrable on Ω if we have $\sum_{A(\varphi,K,N)} \varepsilon |\varphi| \approx 0$ for every compact subset K of Ω and for every infinite natural number N, where $A(\varphi,K,N)$ is the internal set of all

 $x \in {}^*K \cap X$ such that $|\varphi(x)| \ge N$.

Now let $\varphi \in E(\Omega)$, $\varphi \geq 0$ and $K \subset \Omega$ compact and N infinite. Then, $A(\varphi^{1/p}, K, N) = A(\varphi, K, N^p)$ for every $p \geq 1$. Since $|\varphi(x)|^{1/p} \leq |\varphi(x)|$ for $x \in A(\varphi, K, N^p)$, we have

Proposition 3. For every $p \ge 1$ in \mathbb{R} , we have $E_p(\Omega) \subseteq E(\Omega)$.

Proof. Let $\varphi \in E_p(\Omega)$. The definition of $E_p(\Omega)$ gives $|\varphi|^p \in E_1(\Omega) \subseteq E(\Omega)$, hence $|\varphi| \in E(\Omega)$ by the above Lemma, so we have $\varphi \in E(\Omega)$.

Theorem 5. Let $p \ge 1$ in R. Recall that $\mathcal{L}_p(\Omega)$ is the set of measurable functions φ on Ω such that $|\varphi|^p$ is integrable on Ω . Then we have

- (a) For every $\varphi \in E_p(\Omega)$, there exists an $h \in \mathcal{L}_p(\Omega)$ such that $P_{\varphi} = T_h$.
- (b) For every $h \in \mathcal{L}_p(\Omega)$, there exists a $\varphi \in E_p(\Omega)$ such that $P_{\varphi} = T_h$.

Proof. (a) Suppose first p=1. For every $\varphi \in E_1(\Omega) \subseteq E(\Omega)$, there exists an $h \in \mathcal{L}_{1,loc}(\Omega)$ such that $P_{\varphi} = T_h$. Since $\varphi \in E_1(\Omega) \subseteq M_1(\Omega)$ we have $T_h = P_{\varphi} \in \mathcal{M}_1(\Omega)$, that is, $T_h = P_{\varphi}$ is a bounded measure. On the other hand, Bourbaki's "Integration" [2] Chap B § 5. 5, n° 4, Theorem 1, Corollary says that, for every $h \in \mathcal{L}_{1,loc}(\Omega)$, T_h is a bounded measure if and only if $h \in \mathcal{L}_1(\Omega)$. Applying this to our case, there exists an $h \in \mathcal{L}_1(\Omega)$ such that $P_{\varphi} = T_h$.

Suppose next p>1 and $\varphi \in E_p(\Omega)$, $\varphi \geq 0$. Then $\varphi^p \in E_1(\Omega)$. By the result for p=1, there exists a $g \in \mathcal{L}_1(\Omega)$, $g \geq 0$ such that $P_{\varphi^p} = T_g$. Proposition 2 implies

$${}^{\circ}\varphi^{p}=g\circ\mathrm{st}$$
 a.e. on $\mathrm{Ns}(\Omega^{*})\cap X$.

Putting $h=g^{1/p}$, we have $h \in \mathcal{L}_p(\Omega)$ and ${}^{\circ}\varphi^p = h^p \circ st$ a.e. on $\operatorname{Ns}(*\Omega) \cap X$. Hence ${}^{\circ}\varphi = h \circ st$ a.e. on $\operatorname{Ns}(*\Omega) \cap X$ and we have $P_{\varphi} = T_h$ by Proposition 2.

If φ is not positive, the result follows from the decomposition $\varphi = \varphi_1 - \varphi_2 + i\varphi_3 - i\varphi_4$, φ_1 , φ_2 , φ_3 , φ_4 being positive.

(b). Let $h \in \mathcal{L}_p(\Omega)$, $h \ge 0$. Then $h^p \in \mathcal{L}_1(\Omega)$. We extend the function $h^p \circ st$ on Ns(X) to whole X by giving the value 0 outside Ns(X), which we write $h^p \circ st$. Then this function is positive and ν_L -measurable, and we have

$$\int_X h^p \circ \operatorname{st} d
u_L = \int_{\operatorname{Ns}(^*\Omega) \cap X} h^p \circ \operatorname{st} d
u_L = \int_\Omega h^p d\mu < \infty$$
 .

The theory of Loeb integration assures us the existence of an S-integrable function $\psi \ge 0$ in R(X) such that

$$^{\circ}\psi = h^{p} \circ \text{st}$$
 a.e. on X .

We then have $\psi \in E_1(\Omega)$, because

$$\sum_{^*\Omega\cap X} \mathcal{E}\psi \leq \sum_X \mathcal{E}\psi \simeq \int_X {}^\circ\psi d
u_L = \int_X h^{\flat} \circ \operatorname{st} d
u_L = \int_\Omega h^{\flat} d\mu \leq \infty \; .$$

Putting $\varphi = \psi^{1/p}$, Lemma 3 implies $\varphi \in E(\Omega)$. Moreover we have $\varphi^p = \psi \in E_1(\Omega)$, hence $\varphi \in E_p(\Omega)$. On the other hand, we have

$${}^{\circ}\varphi^{p} = h^{p} \circ \operatorname{st}$$
 a.e. on $\operatorname{Ns}({}^{*}\Omega) \cap X$

and hence the equality

$$^{\circ}\varphi = h \circ \text{st}$$
 a.e. on $\text{Ns}(^{*}\Omega) \cap X$,

which implies $P_{\varphi} = T_h$ by Proposition 2.

DEFINITION. (1) After A. Robinson [8], we call a function $\varphi \in R(X)$ S-continuous on Ω if $\varphi(x) \simeq \varphi(y)$ whenever $x, y \in Ns(*\Omega) \cap X$ and $x \simeq y$.

- (2) Let $S(\Omega)$ be the set of functions $\varphi \in R(X)$ which are finite-valued and S-continuous on Ω .
- (3) For each $\varphi \in S(\Omega)$, define the function $\varphi : \Omega \to C$ by $\varphi(t) = \varphi(t)$ for $t \in \Omega$ (recall that $t \in Ns(*\Omega) \cap X$, $t \le t < t + \varepsilon$).

The property (a) in the following theorem is due to P. Loeb ([15]), and other parts can be easily deduced from theories and definitions by Loeb.

Theorem 6. (a) $\varphi \in S(\Omega)$ implies $\varphi \in C(\Omega)$, that is, φ is a continuous function on Ω .

- (b) If $h \in \mathcal{C}(\Omega)$ (by the convention that h is extended so that it takes value 0 outside Ω , we have $*h: *\mathbf{R} \to *\mathbf{C}$ and *h(x) = 0 for $x \in *\mathbf{R} *\Omega$), then $*h \mid X \in S(\Omega)$ and $\lor(*h \mid X) = h$.
 - (c) $S(\Omega) \subseteq E(\Omega)$ and $\varphi \in S(\Omega)$ implies $P_{\varphi} = T_{\vee_{\varphi}}$.

4. Distributions

Proposition 4. For each $\varphi \in R(X)$, the following two conditions are equivalent:

- (a) For any compact subset K of Ω , there is $m \in \mathbb{N}$ such that $\sum_{K \cap X} \mathcal{E}^{m+1} |\varphi|$ is finite.
- (b) For any compact subset K of Ω , there is $k \in \mathbb{N}$ such that $\sum_{K \cap X} \mathcal{E}^{k+1} |\varphi|^2$ is finite.

Proof. (a) \rightarrow (b). Let K be a compact subset of Ω , $m \in \mathbb{N}$, and $\sum_{*K \cap X} \varepsilon^{m+1} |\varphi|$ finite. We have

$$\sum_{*K\cap X} \mathcal{E}^{(2m+1)+1} |\varphi|^2 \le (\sum_{*K\cap X} \mathcal{E}^{m+1} |\varphi|)^2$$

and the right hand side of the inequality is finite. Hence we get (b) with

k = 2m + 1.

(b) \rightarrow (a). Let K be a compact subset of Ω , $k \in \mathbb{N}$, and $\sum_{{}^{k}K \cap X} \mathcal{E}^{k+1} |\varphi|^2$ finite. Choose $m \in \mathbb{N}$ such that $k \leq 2m$. We have

$$(\sum_{*K\cap K} \mathcal{E}^{m+1}|\varphi|)^2 \leq \nu_L(*K\cap X)\cdot H\cdot \sum_{*K\cap X} \mathcal{E}^{2m+2}|\varphi|^2$$

and

$$H \cdot \sum_{*K \cap X} \mathcal{E}^{2m+2} |\varphi|^2 = \sum_{*K \cap X} \mathcal{E}^{2m+1} |\varphi|^2 \le \sum_{*K \cap X} \mathcal{E}^{k+1} |\varphi|^2$$
.

As the right hand side of the second inequality is finite, we get (a). \Box

DEFINITION. $Z(\Omega)$ denotes the set of all $\varphi \in R(X)$ which satisfies the condition (a) in Proposition 4.

Immediately, we have $M(\Omega) \subseteq Z(\Omega)$.

DEFINITION. For each $\varphi \in R(X)$, we define $D_{+}\varphi$ and $D_{-}\varphi$ as follows:

$$D_+ \varphi(x) = \frac{\varphi(x+\xi) - \varphi(x)}{\xi}$$
 and $D_- \varphi(x) = \frac{\varphi(x) - \varphi(x-\xi)}{\xi}$.

(Note that we extend $\varphi: X \to {}^*C$ to $\varphi: L \to {}^*C$ to have the period H.)

Proposition 5. (a) $Z(\Omega)$ is stable under D_+ and D_- .

(b) If
$$\varphi$$
, $\psi \in Z(\Omega)$, then $\varphi \psi \in Z(\Omega)$.

Proof. (a) Let $\varphi \in Z(\Omega)$ and K be a compact subset of Ω . Choose a compact subset K_1 of Ω so that $K \subseteq K_1 \subseteq \Omega$ and:

If
$$x \in X$$
, then $x \in K$ implies $x + \varepsilon \in K$.

By choosing $m \in \mathbb{N}$ so that $\sum_{K_1 \cap X} \mathcal{E}^{m+1} |\varphi|$ is finite, we have

$$\sum_{*K \cap X} \varepsilon^{m+2} |D_{\pm}\varphi| \leq \sum_{*K \cap X} \varepsilon^{m+1} |\varphi(x \pm \varepsilon)| + \sum_{*K \cap X} \varepsilon^{m+1} |\varphi|.$$

Both terms in the right hand side turn out to be less than or equal to $\sum_{{}^{*}K \cap X} \mathcal{E}^{m+1} |\varphi|$ and thus, $\sum_{{}^{*}K \cap X} \mathcal{E}^{(m+1)+1} |D_{\pm}\varphi|$ is finite.

(b) Let K be a compact subset of Ω and choose $k, l \in \mathbb{N}$ so that both $\sum_{{}^{*}K \cap X} \mathcal{E}^{k+1} |\varphi|^2$ and $\sum_{{}^{*}K \cap X} \mathcal{E}^{l+1} |\psi|^2$ are finite (Proposition 4). By choosing $m, n \in \mathbb{N}$ such that $k \leq 2m+1$ and $l \leq 2n+1$, we get

$$(\sum_{*K\cap X} \varepsilon^{m+n+2} |\varphi\psi|)^2 \leq \sum_{*K\cap X} \varepsilon^{2m+2} |\varphi|^2 \cdot \sum_{*K\cap X} \sum^{2m+2} |\varphi|^2$$

$$\leq \sum_{*K\cap X} \varepsilon^{n+2} |\psi|^2 \cdot \sum_{*K\cap X} \varepsilon^{l+1} |\varphi|^2.$$

Proposition 6. Let $\varphi \in A(\Omega) \cap Z(\Omega)$ and $h \in \mathcal{E}(\Omega)$. Then we have $D_{\pm}\varphi$, $*h\varphi \in A(\Omega) \cap Z(\Omega)$ and if $f \in \mathcal{D}(\Omega)$, then $P_{D_{\pm}\varphi}(f) = -P_{\varphi}(f')$ and $P_{*h\varphi}(f) = P_{\varphi}(hf)$.

Here, $\mathcal{E}(\Omega)$ denotes the set of C-valued, indefinitely differentiable functions on Ω , and its elements are assumed to be extended to whole \mathbf{R} so that they take 0 outside Ω . We have written simply *h for *h|X. f' denotes the derived function of f.

Proof. (i) We have $D_{\pm}\varphi \in Z(\Omega)$ by Proposition 5. Now we show that $D_{\pm}\varphi \in A(\Omega)$ and $P_{D_{\pm}\varphi} = -P_{\varphi}(f')$ as follows. Suppose $f \in \mathcal{Q}(\Omega)$ and $K = \sup(f)$. Choose a compact set K_1 satisfying $K \subseteq K_1 \subseteq \Omega$ so that, for each $x \in X$, $x \in K$ implies $x \pm \varepsilon \in K_1$, and then choose $m \in N$ so that $\sum_{K_1 \cap X} \varepsilon^{m+1} |\varphi|$ is finite. With signs in the respective order, we have

$$\sum_{\mathbf{x}} \varepsilon (D_{\pm} \varphi)^* f = \pm \sum_{\mathbf{x} \in \mathbf{X}} \varphi (\mathbf{x} \pm \varepsilon)^* f(\mathbf{x}) \mp \sum_{\mathbf{x}} \varphi^* f$$

$$= \pm \sum_{\mathbf{x} \in \mathbf{X}} \varphi (\mathbf{x})^* f(\mathbf{x} \mp \varepsilon) \mp \sum_{\mathbf{x} \in \mathbf{X}} \varphi (\mathbf{x})^* f(\mathbf{x})$$

$$= -\sum_{\mathbf{x} \in \mathbf{X}} \varepsilon \varphi (\mathbf{x}) = \frac{*f(\mathbf{x} \mp \varepsilon) - *f(\mathbf{x})}{\mp \varepsilon}$$

$$= -\left\{ \sum_{k=1}^{m+1} \frac{(\mp 1)^{k-1}}{k!} \varepsilon^{k-1} \sum_{\mathbf{x}} \varepsilon \varphi^* f^{(k)} + \frac{(\mp 1)^{m+1} \varepsilon}{(m+2)!} \sum_{\mathbf{x} \in \mathbf{X}} \varepsilon^{m+1} \varphi (\mathbf{x}) (*\operatorname{Re} f^{(m+2)}(\mathbf{x} \mp \sigma \varepsilon) + i *\operatorname{Im} f^{(m+2)}(\mathbf{x} \mp \tau \varepsilon))) \right\}$$

$$(\sigma, \tau \in *\mathbf{R}, 0 < \sigma, \tau < 1).$$

As for the sums in the scope of negative sign, we have

the first sum
$$\simeq \sum_{k=1}^{m+1} \frac{(\mp 1)^{k-1}}{k!} \mathcal{E}^{k-1} P_{\varphi}(f^{(k)}) \simeq P_{\varphi}(f')$$
,

and

the second sum
$$\leq \frac{\varepsilon}{(m+2)!} \sum_{*K_1 \cap X} \varepsilon^{m+1} |\varphi| \cdot 2 \sup |f^{(m+2)}| \simeq 0$$
.

Hence, $D_{\pm}\varphi \in A(\Omega)$ and $P_{D_{\pm}\varphi}(f) = -P_{\varphi}(f')$ for each $f \in \mathcal{Q}(\Omega)$.

(ii) If $h \in \mathcal{E}(\Omega)$, then $*h \in S(\Omega) \subseteq E(\Omega)$ by Theorem 6, and we have $E(\Omega) \subseteq M(\Omega) \subseteq Z(\Omega)$ by Proposition 1 and definitions. Hence, $*h\varphi \in Z(\Omega)$ for $\varphi \in Z(\Omega)$ by Proposition 5. Now, since $hf \in \mathcal{D}(\Omega)$ for $f \in \mathcal{D}(\Omega)$, we have

$$\sum_{x} \mathcal{E}^*h\varphi^*f = \sum_{x} \mathcal{E}\varphi^*(hf) \simeq P_{\varphi}(hf).$$

Thus we get $*h\varphi \in A(\Omega)$ and $P_{*h\varphi}(f) = P_{\varphi}(hf)$.

DEFINITION. $D_F(\Omega)$ denotes the smallest subset of R(X) which includes $M(\Omega)$ and closed under applications of D_+ and D_- , multiplication of *h for each $h \in \mathcal{E}(\Omega)$, and addition.

Theorem 7. (a) $D_F(\Omega) \subseteq A(\Omega) \cap Z(\Omega)$. If $\varphi \in D_F(\Omega)$ and $h \in \mathcal{E}(\Omega)$, then $D_{\pm}\varphi$, $*h\varphi \in D_F(\Omega)$ and $P_{\varphi} \in \mathcal{D}'_F(\Omega)$, $P_{D_+} = (P_{\varphi})'$ and $P_{*h\varphi} = hP_{\varphi}$.

(b) Every $T \in \mathcal{D}'_F(\Omega)$ can be represented in the form $T = P_{\varphi}$ for some $\varphi \in D_F(\Omega)$.

Proof. (a) Since $M(\Omega) \subseteq A(\Omega) \cap Z(\Omega)$ and $A(\Omega) \cap Z(\Omega)$ is stable under D_+ , D_- , and *h, we have $D_F(\Omega) \subseteq A(\Omega) \cap Z(\Omega)$.

Now, if $\varphi \in M(\Omega)$, then we have $P_{\varphi} \in \mathcal{D}'^{(0)}(\Omega) \subseteq \mathcal{D}'_F(\Omega)$, and $\mathcal{D}'_F(\Omega)$ is stable under derivation and multiplication of h. On the other hand, by Proposition 6 we have

$$P_{\mathcal{D}_+ arphi}(f) = -P_{arphi}(f') \,, \quad ext{and} \quad P_{*_h arphi}(f) = P_{arphi}(hf) \,,$$

and thus we can prove that, for each $\varphi \in D_F(\Omega)$, $P_{\varphi} \in \mathcal{D}_F'(\Omega)$ and

$$P_{{\scriptscriptstyle D}_{\pm}^{\, arphi}} = \!\! (P_{arphi})'$$
 and $P_{{}^*{\scriptscriptstyle h}^{\, arphi}} = h P_{arphi}$

by induction on the number of operations of D_+ , D_- and *h to an element of $M(\Omega)$.

(b) For each $T \in \mathcal{D}'_F(\Omega)$, we can represent it in the form $T = S^{(k)}$ for some $S \in \mathcal{D}'^{(0)}(\Omega)$ and $k \in \mathbb{N}$. Representing S in the form $S = P_{\psi}$ with $\psi \in M(\Omega)$, we have $D_+^k \psi \in D_F(\Omega)$ and $P_{D_+^k \psi} = (P_{\psi})^{(k)} = T$.

DEFINITION. Let $D(\Omega)$ denote the set of elements $\varphi \in R(X)$ such that, for each compact subset K of Ω , there is some $\psi \in D_F(\Omega)$ which satisfies $\varphi = \psi$ on $*K \cap X$.

Remark. $D(\Omega) \subseteq A(\Omega) \cap Z(\Omega)$.

Theorem 8. (a) If $\varphi \in D(\Omega)$, then $P_{\varphi} \in \mathcal{D}'(\Omega)$.

- (b) If $\varphi \in D(\Omega)$, then $D_{\pm}\varphi \in D(\Omega)$ and $P_{D_{\pm}\psi} = (P_{\psi})'$.
- (c) If $\varphi \in D(\Omega)$ and $h \in \mathcal{E}(\Omega)$, then $*h\varphi \in D(\Omega)$ and $P_{*h\varphi} = hP_{\varphi}$.
- (d) If $T \in \mathcal{D}'(\Omega)$, then there is some $\varphi \in D(\Omega)$ such that $P_{\varphi} = T$.

Proof. (a) Suppose $\varphi \in D(\Omega)$. Let $(f_j)_{j\in \mathbb{N}}$ be a sequence in $\mathcal{Q}(\Omega, K)$ such that $f_j \to 0$ in $\mathcal{Q}(\Omega, K)$. Choose $\psi \in D_F(\Omega)$ corresponding to K such that $\varphi = \psi$ on $*K \cap X$. Then by Theorem 7, we have $P_{\psi} \in \mathcal{Q}'_F(\Omega)$ and thus $P_{\phi}(f_j) \to 0$. On the other hand, we have $P_{\psi}(f_j) = P_{\psi}(f_j)$ for every $j \in \mathbb{N}$, so $P_{\psi}(f_j) \to 0$. Hence $P_{\psi} \in \mathcal{Q}'(\Omega)$.

(b) Suppose $\varphi \in D(\Omega)$. We know that $D_{\pm}\varphi \in A(\Omega) \cap Z(\Omega)$ by Proposition 6. For a compact subset K of Ω , choose a compact set K_1 so that $K \subseteq K_1 \subseteq \Omega$ and $x \pm \varepsilon \in {}^*K_1$ for each $x \in {}^*K \cap X$. Choose $\psi \in D_F(\Omega)$ so that $\varphi = \psi$ on ${}^*K_1 \cap X$. By Theorem 7, we have $D_{\pm}\psi \in D_F(\Omega)$ and $D_{\pm}\varphi = D_{\pm}\psi$ on ${}^*K \cap X$. Thus $D_{+}\varphi \in D(\Omega)$.

Now, since $D(\Omega) \subseteq A(\Omega) \cap Z(\Omega)$, we have

$$P_{\mathcal{D}_+\varphi}(f) = -P_{\varphi}(f') = (P_{\varphi})'(f)$$

for each $f \in \mathcal{D}(\Omega)$ by Proposition 6.

(c) Suppose that $\varphi \in D(\Omega)$ and $h \in \mathcal{E}(\Omega)$. We have $*h\varphi \in A(\Omega) \cap Z(\Omega)$ by Proposition 6. For each compact subset K of Ω , choose $\psi \in D_F(\Omega)$ so that $\varphi = \psi$ on $*K \cap X$. Then $*h\psi \in D_F(\Omega)$ by Theorem 6, and obviously, $*h\varphi^* = *h\psi$ on $*K \subset X$. Hence, $*h\varphi \in D(\Omega)$.

Also, since $D(\Omega) \subseteq A(\Omega) \cap Z(\Omega)$, we have

$$P_{h\varphi}(f) = P_{\varphi}(hf) = (hP_{\varphi})(f)$$

for each $f \in \mathcal{Q}(\Omega)$ by Proposition 6.

(d) Suppose $T \in \mathcal{D}'(\Omega)$. Let $(f_i)_{i \in N}$ be a partition of unity on Ω such that each $K_i = \text{supp}(f_i)$ is a convex compact set which has an interior point. Each $f_i T$ is a distribution on Ω with support contained in K_i . Thus, we can represent each $f_i T$ as a finite sum of derivatives of elements belonging to $\mathcal{C}(\Omega)$ with each support contained in K_i ([3], Chap. 1, corollary to Theorem 1.5). Now we shall show that there is a function $\psi_i \in D_F(\Omega)$ for each i such that $P_{\psi_i} = f_i T$ and that ψ_i is 0 on $*K \cap X$ for every compact subset K of Ω with the property $K \cap K_i = \emptyset$. For it, we can assume that $f_i T = (T_h)^{(n)}$ with $h \in \mathcal{C}(\Omega)$, $\text{supp}(h) \subseteq K_i$ and $n \ge 0$. By Theorem 6, we have

$$*h|X \in S(\Omega) \subseteq M(\Omega)$$
 and $P_{*h|X} = T_h$.

Clearly, $*h \mid X$ takes 0 outside $*K_1 \cap X$. Then, $D_+^n(*h \mid X)$ belongs to $D_F(\Omega)$ and if you choose a compact set K such that $K \cap K_i = \emptyset$, then it takes 0 on $*K \cap X$, and moreover,

$$P_{D_{\perp}^{n}(*_{h}|X)} = (P_{*_{h}|X})^{(n)} = (T_{h})^{(n)} = f_{i}T.$$

Thus we get the claim above.

Now, applying Lemma 2 for $Y(\Omega) = D_F(\Omega)$, we get an internal map $*N \ni n \mapsto \varphi_n \in R(X)$ and $N \in *N$ such that $n \in N$ implies $\varphi_n = \sum_{i=0}^n \psi_i \in D_F(\Omega)$ and satisfy following conditions:

- (1) $N \in \mathbb{N}$ implies $\varphi_N \in D_F(\Omega)$ and $P_{\varphi_N} = T$;
- (2) $N \in {}^*N N$ implies $\varphi_N \in A(\Omega)$, $P_{\varphi_N} = T$ and for each compact subset K of Ω , with an appropriate $n \in N$, we have $\varphi_N = \varphi_n$ on ${}^*K \cap X$.

So, let $\varphi = \varphi_N$. For the case (1), there is nothing more to prove. For the case (2), as each φ_n belongs to $D_F(\Omega)$, we have $\varphi \in D(\Omega)$ and $P_{\varphi} = T$, and we finish the proof.

Bibliography

- [1] R.M. Anderson: A non-standard representation for Brownian motion and Ito integration, Israel Jour. Math., 25 (1976), 15-46.
- [2] N. Bourbaki: Elément de Mathématique, Intégration, Chapitre 5, Intégration

- des mesures, 2ème édition, Hermann (1967).
- [3] A. Kaneko: Linear Partial Differential Equations with Constant Coefficients (in Japanese), Iwanami Shoten (1976).
- [4] H.J. Keisler: An infinitesimal approach to stochastic analysis, Mem. Amer. Math. Soc., No. 297, Vol. 48 (1984).
- [5] P.A. Loeb: A note on continuity for Robinson's predistributions, Victoria Symposium on Nonstandard Analysis, Lecture Notes in Math. 369, Springer (1974), 153–154.
- [6] P.A. Loeb: Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122.
- [7] P.A. Loeb: An introduction to non-standard analysis and hyper-finite probability theory, Probabilistic analysis and related topics, Vol. 2, Academic Press (1979), 105–142.
- [8] A. Robinson: Non-standard Analysis, Revised edition, North Holland, 1974.
- [9] M. Saito: On the non-standard representation of linear mappings from a function space, Comment. Math. Univ. St. Pauli 27 (1977), 165-185.
- [10] L. Schwartz: Théorie des Distributions, 3ème Edition, Hermann, 1966.