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1. Introduction

We fix an infinite natural number H in *N-N. We assume that H is even.
Let &=1/H. Then, € is a positive infinitesimal element of *@, hence, of *R.
We denote by L the set *Z-& of all integer multiples of & Then, *ZSLS*R.
L is a lattice with infinitesimal mesh &. Put

H H
X:{ er|—H< ~}.
xEL| > x<2

Then, X is a *-finite subset of L of cardinality H>
Now, consider the set

R(X) = {p|p: X—*C, internal} .

By the above, R(X) is an internal H?-dimensional vector space over *C. From
now on, we will assume that every element @ of R(X) is extended to a function
defined on L with period H.

Let Q be an open set in R. Every function Q—C we consider is assumed
to be extended to a function R—C which takes zero outside Q.

Let’s consider f €9(Q), where D(Q) is the space of indefinitely differen-
tiable functions with compact support on . We have *f: * R—*C, and denot-
ing K=supp(f), the following statement holds:

x€X, xE*KNX implies *f(x) =0.

In the following, we shall define several mappings each from an external
subspace of R(X) to some space consisting of distributions on Q.
Let

AQ) = {p=R(X) I’%}t&p(x)* f(x) is finite for every f € D(Q)} .

We remark that the sum 3] €p(x)* f (x) in this definition always exists in *C as a
r€X

* Posthumous manuscript translated and arranged by H. Kikyo, T. Nakamura and M. Saito.
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*-finite sum, and it can be represented as >} Ep(x)*f(x) with K=supp(f).
xe*KNX
We also write these sums 3} Ep*fand X1 Ep*f respectively.
x *KNX

When a*C is finite, °a denotes the standard part of a.
For each p = 4(Q) and f € 9P(Q), put

Py(f) = °(Zx E2*f) -

Py: DQ)Sfr=Py(f)eC is a linear form on D(Q). D(Q)* denotes the
algebraic dual of 9(Q) which is the set of all linear forms on P(Q). Using
these, we define a map

P: A(Q)D¢p— P,cDP(Q)*.
Lemma 1. Let X be a set, k a field, and f,, -+, f, maps from X to k. If

fis oo fu are linearly independent over k, then there are x,, -+, x, in X such that

det|fi(xI| 0.
Theorem 1. P is an onto map.
Proof. Choose T from P(Q)*. For each f in 9(Q), let
A(f) = lpERX) T ep*f = T(f)} -

For any f,, +-+, f, in D(Q) we will show that N2, 4(f;)==0. Then, we can see
that

4
e (f)=*0

by saturation principle. Picking @ from N fe @(Q)A( f), we have
S ep*f = T(f)

for every f in D(Q). In other words, P,=T.

In the following, we show that N,%, A(f;)+0 for any f, -+, f, in D(Q) by
induction on #.

First of all, we remark that, for any # in R, there is a unique x in X which
satisfies x<t<<x-+&, that is the maximum element xEX satisfying x<t. We
denote this x by “¢. Also, if z&Q, then the above x(=?") is an element of
*Q N X, because x==t and () is an open set.

For n=1, let fe P(Q). If f=0, then 0 A(f). If f=0, then f(¢,)==0 for
some Q. Choose “,*QNX as we have just remarked above and put
x,="t,. Then, *f(x,)==0. Otherwise, the continuity of f and x,~¢, would imply
0=*f(x,)=f(2,). We define ¢: X—*C by
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)
o) = fmy T
0 (xa,).

Then, we have 3y Ep*f=T(f), i.e. pEA(f).
Assuming n>1 and that the assertion holds for n—1, we prove it for . Let
S [ED(Q). If they are linearly dependent over C, by changing the suffixes
if necessary, we can assume that f,=3}/zic;f; with ¢;’s in C. Choosing ¢ from
121 A(f;), we have T(f;)=3x Ep*f; for 1<i<n—1. Using this equation, we
have

T(f,) = gciT(fi) = gjci zx‘ne¢*fi = zx‘: &p :z;‘::fi*fi = ¥8¢*fn .

Hence, o= N ;%5 A(f).
If f,, -+, f, are linearly independent over C, then we can find ¢, -+, %, in
Q such that det||/(¢;)||#0 by Lemma 1. Choose “#, -+, “t,€*QN X, and put
x;="t; (1<'j<m). Since
det [[*fi(x;)l[=det || fi()Il ,

we have det||*f;/(x;)||%0. There are a, **+, &, E*C which satisfy
S} fxa; = T(f)  (1<i<n).

With this statement and reminding that x;=#x, if j==k, we can define a map ¢:
X—*C as follows:

o
- (x=2x;)
plx) =1 €
0 (=2, o0, xy) .
Then, S eptf; = 3} e%* flx)=T() (1<i<n).
Hence, o€ N %1 A(f)- O

Theorem 1 above is a modification of a theorem of Robinson ([8], §5.3) by
reducing *R to X. The proof is almost same as that of the Robinson’s theorem
given by M. Saito [9]. Another proof which makes use of the lattice structure
of X can be found, for example, in H.J. Keisler [4].

Following this theorem, we will show that by defining several external sub-
spaces D(Q), Dx(Q2), M(Q), M (), E(Q), and S(Q) of A(Q) appropriately, the
images of these sets by P: A(Q)—>D(Q)* are D'(Q), D#(Q), D' V(Q)=H(Q),
M(Q), L10.(Q) and C(Q) respecivetly. Here, D(Q) is the set of distribu-
tions of finite oder on Q, 9’ @(Q)=H(Q) the set of distributions of order 0 on
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Q which is the set of all (complex) measures on Q, and H,(Q) the set of all
bounded (complex) measures on Q. D'(Q), -L;,1,(2) and C(Q) are frequently
used symbols. For the knowledge of distributions, refer to L. Schwartz [10].

2. Complex Measures

DrFINITION. M(Q)={pER(X)|ZkrxEl@]| is finite for every compact
subset K of Q}.

Theorem 2. (a) M(Q)S A(Q).
(8) The image of M(Q) by P is Q' O(Q)=H(Q).

Proof. (a) Let peM(Q), fE€D(Q), and K=supp(f). Then,
1T ép*fl=| 2 ep*fI<( X é€lpl)-suplfl.
x *KNX *KNX

So, 315 Ep*f is finite and p = A(Q).
The first half of (5): Let p=M(Q), and K a compact subset of Q. Put
Cx ———*"I‘{Z‘, &|@|. By the formulas in the proof of (a), we get |Py(f)|<
nx

Cy-sup| f| for each f€P(Q) such that supp(f)SK and thus, P,e D' OQ)=

The second half of (b): For each T & H(Q), we show that T=P, for some
pEM(Q). Let K(Q)={f: R—C, continuous |supp(f) is compactCQ} and for
every map T: 9(Q)—C, we will extend it to a map from K(Q) to C and
denote it by the same letter 7. we also put K (Q)={fKX(Q)| f=>0}.

Suppose first that T': K(Q)—C is a positive linear form. For fe K, (Q)
and >0, let A(f, e)={pER(X)|p>0, | T(f)—Xx ép*f| <e}. Foranyf, -,
fhEHX(Q)and ¢, -+, 6,0, we will show that N <icn,<j<,A(fir€;)F 0. This
will yield the following by saturation principle:

N fesc.(q), e>0d(f; F0 .

Choosing @ from Ny %.,(Q), e>04(/; €), we have =0 and
|60/ T(f)  <e

for every fe K, (Q) and e>>0. Hence, 33y Ep* f=T(f).

Now, it is enough to show that %, A(f;,e)* @ for each f,, -, f, and
e=Min{e, -, ¢,}.

Let fye K.(Q) be such that fo=>f,, -, fo=f, (e.g. o=hH++/fs). Let
Sy={tEQI f{t)%0}.

If T(f,)=0, then we get T(f;)=0 for 1<i<n, since f,>f; implies 0="T(f,)
>T(f;)=0. So, we have 0 N %, A(f;, e).
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Now, assume that 7(f;)>0. Then, Sy==@. We can see that the the point
O=(T(f)ITf), **» T(fu)|T(fy)) in R" is contained in the closed convex closure
C of the subset {(fi(8)[fo(2), ***, [a()/(fo(})) |2E So} of R" as follows: Assuming
Q&C, the point Q and the set C are strictly separated by some hyperplane in
R". Hence, for some by, ++, b,E R,

IR bi(T(fi)/ T(fo»>bo> SUP:es, 20 b(fi()[fo(D) -
Put g=33%, b, f;€K(Q). Then,

T(g) @)
® A= 20}
For t€.S,, by the right half of (1), g(t)<bfo(t) and t€Q—S, imply f(z)=0.
Hence, fi(t)=0 for 1<i<n. Thus, g(f)=0 and we haev g(t)=b,fy(t). So,
g<b,f,. Since T is positive, we get T(g)<b,T(f,) and (T(g)/T(fo))<by, Which
contradicts the first inequality of (1).
Now, since Q= C, for each e>0, there are ¢, -+, {,€S, and a,, -+, a,ER

such that ¢;>0, 33;l1¢;=1 and |T(f)/T(f0) — g‘ai(fi(ti)/fo(tj))l < ¢/2T(fo)
(1<i<mn). So, we have ”

_ <2 aiT(f) (4. e i<n
2 1 T(f)— X [20) [ < 7 (1<i<n).

Here, we can assume that £, -+, ¢, are pairwise distinct. (If ¢;=¢, for j==k, then

we can write a; Z&Q;f,-(ti)—l—a,, j(;(({:;f,-(t,,)=(aj—{—a,,) %]‘,(t!)) Now, let x;="¢;

e*QN X for each j such that 1<j<n. Since x,, -+, x, are pairwise distinct, by
defining @: X —»*C, >0 by

a;T(fo) (x=wx;)
P(x) = Efol2;) !
0 (%=, oo0, x,)

we have

T ep*fi= 3 () i(x)
0T ey = 9T
Ay A Gy

for each 7 satisfying 1<i<#, and by combining with (2), we get

IT()— S ep*il <1 T¢)— 1% s
i T(fo) £y *fl<c €4 € i
+I]§1}°(Tf,(t,) Sepfil<+5=e (I<i<n).
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Hnece, p= N 21 A(f, €).

Now, we have verified as we said above that, for each positive linear form
T: K(Q)—C, there is a map @< R(X) such that ¢ >0 and, for every map
fe K. (Q), the following holds:

) S ep*f=T(f).

It is easily seen that (3) holds for every function f & K(Q), and in parti-
cular, for every function f €9(Q).

We show that p =€ M(Q) as follows. For every compact subset K of Q
and every non-negative function f & 9(Q)/such that 0< f <1 which equals 1 on
K, we have

> Elpl= X gp= > Ep*f=1(f).
*KcX *KNX *KNX
Therefore, o € M(Q).

Returning to general case, every measure T can be written in the form
T=T,—T,+iT;—T,) where T; (1<i<4) are positive linear forms on K(Q).
For each ¢ satisfying 1<i <4, we can find @, EM(Q) such that ;>0 and, for

every function f € P(Q), 2y Ep;*f=T;(f) holds. Putting p=p,—@,+i(@3—P4),
we have p € M(Q) and P,=T. O

The above proof is almost same as that in M. Saito [9], §2.2.
DerFINITION. M(Q)={pER(X)|Z+anxE|p]| is finite}.
We can immediately see from the definition that M (Q)<S M(Q).

Theorem 3. The image of M,(Q) by P: A(Q)— D(Q)* coincides with
M\(Q). Moreover, if T is real, we can find a function @: X—*R such that
PEM(Q), Po=T and SwanxE|l@|=I||T||. If T is not real, we only have the
inequality Sonx €|l@| =||T||. Here, ||T|| is the norm of T.

Proof. If pEM,(Q) and f € D(Q), then

1S ép*fl=| 3 Ep*fI<( 2 €lpl)-sup|fl].
X *QN X *QN X

Hence, P, is a bounded measure in Q.

Now, let Cy(Q2) be the set of all complex-valued bounded continuous
functions on Q (assumed to take value 0 on R-Q). We write Cp (Q)=
{feBs(Q)|f=0}. 1, denotes the characteristic function of Q. And, for
T € M\(Q), we extend it to a linear form Cz(Q)— C by integration and denote
it by T again.
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So, let T': C5(Q2)— C be a positive linear form. The proof of the second
half of Theorem 2 (d) is also valid if we rsplace K(Q) and K, (Q) by Cz(Q) and
Cp,+(Q) respectively. This means, for each 7€M, (Q) with T positive, there
is pE R(X) such that >0 and T(f)=3x Ep*f for each f & (). Putting
f=1g, we get ||T||=vanx €@ =DManxE|l@|. Hence, we have @ €M,(Q).
The proof for the last part of the theorem is similar to that for Theorem 2. [J

3. Complex-valued functions

We need the theory of Loeb measures on ) and on Jordan measurable sub-
sets of Q ([1[, [6], and [7]). To avoid duplications, we use the following
notations:

Z: A countable union of Jordan measurable compact subsets of Q.

Az: The set of all internal subsets of *Z N X. We sometimes write 4 if
there is no danger of confusion.

We define v: A—*R by v(A4) = (#(A4))-€ for each A= A. Then, (*ZNKX,
A, v) is an internal finitely additive measure space. Let (*Z N X, L(A), v,) be
the Loeb space associated with it.

An internal function ¢@: *ZNX—*R is said to be S-integrable if the
following three conditions are satisfied:

(1) Ne*N—N implies > &|p|=0,

ez
(2) Ne*N—Nimplies > &|ep|=0, and

dei<a/z>

3) X €| is finite.
*ZNX

If »(*Z N X) is finite, (1) implies (2) and (3).

The following theorems are due to Loeb:

Let R be the set of extended real numbers.

(1) Ifp:*ZNX—-*R is S-integrable, then °p: *2ZNX—R is Loeb in-
tegrable and

Shznx Ep = S* ‘pdv; .
znx

(2) If g:*2ZN X—R is Loeb integrable, then there is an S-integrable
function @: *Z N X —*R such htat °@=g (v -almost everywhere).

Moreover, let Ns(*2)={xe*Z |x=t for some t&Z}. We have Ns(*Z)C
Ns(*R) N *Z, but the equality does not necessarily hold. Here, Ns(*R) =
{a=*R|a is finite}. Define st;: Ns(*2)NX—Z by st;(x)="°x when x&
Ns(*Z)NX. We sometimes omit Z in st,.

Let (Z, L, u) be a Lebesgue messure space over Z. 'The followings are
known.

(3) For a subset E of Z, the condition E €_L is equivalent to the condition
st™(E)e L(A) and if this condition is satisfied, then we have u(E)=v(st"(E)).
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(4) Let ECZ be L-measurable and let 2 be a non-negative .L~measurable
function: E—R. Then, host: st™(E)—>R is L(A)-measurable and

SE hdp — S“_m (host)d .

Now, if K CQ, then the compactness of K and the inclusion
stT(K)2*KNX
are equivalent. By this fact and by (3) above, if K is a compact subset of Q, then
v (*K N X)<w(st™}(K)) = w(K) .
Moreover, if K is a Jordan measurable compact set, we can prove that
v, (*K N X) = v (st™}(K)) .

We define the local S-integrability below.
Recall that R(X) is the set of internal functions from X to *C. If
@ER(X), K is a compact subset of Q, and nE*N, then we write

Ap, K, n) = {x€ *K N X| | ()| =7} .

DerINTION. (1) A function p=R(X) is said to be locally S-integrable
over Q) if the following holds for every compact subset K of ‘Q and every infinite
natural number Ne*N—N:

> Elpl|=0.

ACp, K, N>
(2) EQ)={p=R(X)|p is locally S-integrable over Q}.

Proposition 1. The following two conditions are equivalent. In particular
we have E(Q)S M(Q).

(a) @<EWQ).

(b) @EM(Q),and for any compact subset K of Q and for any set A€ J such
that AC*K N X,

v(A)=0 implies 248]99[:0.

Proof. (a)—(d). Assume pE(Q). Let K be a compact subset of Q and
e>0. Since @ is locally S-integrable over , we have *N—N < {ne*N|
DiernElpl <e}. Hence, there is a natural number n& N such that
Saw.x.n€lel <e. Thus, we have

2 Elol= P Elpl+ X Elpl<n 3 &+e.
*KNX {xre*Kc X||p(x)| <n} A(9,K,x) *Kc X

Since °Xgax€=v(*K N X)<v (st™}(K))=pw(K), we can see that JJ«gnxE|op|
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is finite and thus, we get @ € M(Q).

Now, let A=Ay, K be a compact subet of Q, AC*K N X, and »(A4)=0.
Since NS {n€ *N|n*-v(4)<1}, we have N?-»(4)<1 for some N&*N—N.
Hence we get N-»(A)=0. Here, we have

& < & < & N-y(A4).
3i¢élpl ol A(EKn) @l +N-v(4)

> Elol+ b
{x€A||o(x)| =N} {x€A||p(x)| <N}
The first term ==0 by the hypothesis, and the second term =0 by what we have
just shown above. Hence, we get 33, &|@|=0.

(b)—>(a). Let K be a compact subset of Q,and N&*N—N. Put A=
Alp, K, N)={x*KNX||p(x)|>N}. We have A€ Ay, AC*KNX and
the inequality

N-yd)< Selpl< 3 &gl
A *KNX

holds. But the right hand side is finite for p€M(Q). So we have »(4)=0.
This and the latter half of () yields that 33, &|@|==0. g
The lemma below will also be used later.
Now, we write Ns(*C)={a=*C|a is finite}. This set is a commutative
ring.

Lemma 2. Let Y(Q) be an Ns(*C)-submodule of R(X), T€D'(Q), and
(fi)ien a partition of unity on Q. Suppose that, for each i €N, there corresponds
a function ;€ Y(Q) such that Py=f;T and that yr; is 0 on *K N X provided K
is a compact subset of Q and K N supp (f;)=0. Put ¢,=>% 4 for nEN.
The map from N to Y(Q): n—e, extends to an internal map from *N to R(X):
n—@,.

In the situation above, there exists an integer N €*N such that the following
conditions hold:

(a) Incase NEN, then oy Y(Q) and Py, =T,

(b) in case NE*N—N, then pyEA(Q), Py,=T
and, for every compact subset K CQ, there exists an n€N such that ¢y =@, on
*KNX.

Proof. For each compact subset K of Q, choose n(K)EN so that :>n(K)
implies supp(f;) N K= @, which yields that y»; takes 0 on *K N X. Then,
n>n(K) implies that 33;%,f; takes 1 on K.

For each fe9(Q), put n(f)=n(supp(f)) and consider the following in-
ternal set:

I(f) = {ne*N|nzn(f)AVIE*Nn(f)<I<n—

*f_ 1
IS ep*f~T(NI< b
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If n€N and #n>n(f), then a natural number [E*N satisfying n(f)<I<n turns

out to be an element of NV, and since />n(f), reminding that i fi takes 1 on
supp(f), we get =

S 6pi*f = 3 D et f= 31 (AT)(f) = T(Z/)) = T() -

Now, we have {neN|n>n(f)} CI(f). Hence, by Permanence Principle, there
is N(f)E€*N—N such that {ne*N|n(f)<n<N(f)} <I(f). Thus, the family
of internal sets {I(f)| f € D(Q)} has the finite intersection property and we have
NI f€ DQ)} =+ @ by saturation principle. Take N e N {I(f)| f€D(Q)}.
Then NN belongs to *V and the following holds:

For any f€9(Q), N =n(f) and for every [E*N,

n(f)<I<N implies I‘;Egv,*f—T(f)lSr—Il_fl .

If NeN, then gy Y(Q) and since N >n(f) for every f € D(Q), we have

P, (f) = S Pu(f) = (AT = TSN = T(f) -
If Ne*N—N, then for every L&*N—N satisfying LN, we have

IS - T() < g =

by what we have shown above and by the fact that #(f)<L for any f€9(Q).
Thus we get ¢, €A4(Q) and P, ,=T. We fix this N for a while.
Now, for a compact subset K of Q, we put

](K):{nE*N[n217 Pn-1 = Pn  ON *KNX}.

If neN and n>n(K), then supp(f,) N K=¢@ and thus 4, takes 0 on *K N X
and so, we have ¢,=@,_,+V,=@,_; on *K N X. Hence,

{neN|n>n(K)} < J(K),
With this, for each compact subset K of Q, there exists N(K)e*N—N such that
{ne*N|*n(K)<n<NK)} < J(K) .

Moreover, we can show that, there is M €*N—N such that for any compact
subset K of Q and for any nE*N, n(K)<n<M implies ¢,=¢p,_, on *K N X.
To show this, choose a fundamental sequence of compact sets (K;);en for Q
and choose ME*N—N so that M <N(K;) for every j EN. Now, using N we
have fixed above, consider the number Min(M, N) and rename it N. Then we
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have oy €A(Q), Py,=T, and py=@,) on *K N X for every compact subset K
of Q. ]

Theorem 4. (a) For each @< E(Q), there is h& L 1,(Q) such that
Py,=T,, where T, denotes the distribution determined by h.
(b) For each he L, ,,.(Q), there is p = E(Q) such that Pp=T,.

Proof. (a) Let p=E(Q)and ¢=>0. We shall show that for any g K, (Q)
and e>0, there exists d>0 such that we have, for every f& K, (Q), Py(f)<e
provided f <g and [qfdu<d, where dyu is the Lebesgue measure on Q. Then,
P, will turn to be a measure on Q with base p; that is, there is k&L, ,,(Q) and
such that we have P (f)=/fohfdu for every fe K(Q) ([2], Chap. 5, §5, n° 5,
Cor. 5).

So, let K=supp(g) and choose ¢>0 so that c-supg<e/2. Since *N—-NC
NMEXN| X sw.x.m EPp=<c}, there is? EN such that 3], x,»Ep<c. With this
n, choose d>0 so that nd<e/3. For g and d above, take f & K, (Q) such that
f<gand f[ofdu<d. We show that Py(f)<e. We get

Septf= 3 Ep*f= 2 Ep*f+ 3 Ep*f
4 *KNX {xe*KN X|p(x)<n} A(p,K.n)
<n 3 &ftsupf 3 &*f,
*KNX A(p,K,n)

but in the right hand side of the inequality,

e

the first term =z S fdp<nd< 3
K

thus,

the first term < —% ,

and
the second term < (sup f)-c<(sup g)-¢c < % .

Hence, 3¢ ega*fg%-{——;— =e and immediately we get Py(f)<e.

(b) Let he L) ,,(Q). Let (f;);en be a partition of unity such that each
supp(f;) (we name it K;) is a Jordan measurable compact set. Since f;4: K,—C
is p-integrable, (f;h)ost: ¥*K;N X — C is Loeb integrable. Hence, for each 7,
there is an S-integrable function r;: *K; N X —C such that °yr;=(f;h)ost(v,-
almost everywhere) on *K N X. Extend +; so that it takes 0 on X—*K;NX
and also denote it by ;. We have y;&R(X) and {, EE(Q). We shall show
that Py,=f;T,: For each g 9)(Q), we have
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D &YPi*g

x

;¥ gdv,

S'xmx

S &Yty =
*KinX

I

S'K.-nx ((fih)ost)(gest)dv,
S““(K,-) (fihg)°st dv,

[, fhedn = (£T(e) -

I

Here, we used the fact that Jordan measurable compact set K; satisfies the
equation v, (st™(K;)—*K;NX)=0. Moreover, for a compact subset K of Q
such that K N K;=0, +r; takes 0 on *K N X by our definition of 4»;. Now, by
applying Lemma 2 to the case Y(Q)=FE(Q), we get an internal function
*Non—@,ER(X) and a natural number NE*N such that @,=31;%,; for
each nE N and satisfy the following conditions:

(1) NEN implies py€E(Q) and Py =T,.

(2) Ne&*N—N implies that oy € A(Q), Py, =T, and that, for each com-
pact subset K of Q, there is a suitable &N such that g y=¢, on *K N X.

In the case (1), the proof is done. In the case (2), for each compact sub-
set K of Q and for each M €*N—N, we have A(K, ¢y, M)=A(K, ¢,, M)
and we get oy EE(Q) by the following:

N Eloxl= 3 €Ele,|=0.
AKgwtd VT AR g ?sl =

Proposition 2. Let p€E(Q), >0, and h& L, 1,(Q), h=>0. Then, the
following two conditions are mutually equivalent

(a) P — Th‘

(b) °@=host a.e. on Ns(*Q)NX.

Proof. (a)—(b). Let feX(Q) and C be a compact and Jordan mea-
surable subset of Q with supp(f)SC. Then, st™(C)2*C NX because C is

compact, and
VL(St_l(C)) = PL(*C n X)

because C is Jordan measurable. We have then
°o( fo = °(p* =\ o(p*
[, oot = @*f)av.={_°(@*f)aw,
— O3, Ep*f = Sn hfdy (by assumption) — S hfdu
c

- S,t—«c) (host)(fost)dvy, .
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For every compact subset K of ), there exists a sequence of functions f, € K()
(nEN) such that

(a) fnl IK’

(2) supp(fs)<C for some fixed compact and Jordan measurable subset C
of Q.
By the remark above, we have

S.t‘l(c) “plfaest)dy, = L-l(c) (host)(fuost)dv.

and hence,

°pd =S host)dy, .
sst’l(K) PavL st_l(K)( OS) P

The positivity of the integrand implies
°p = host a.e. on st™}(K).

Take a sequence of compact sets K, such that Q= U ,en K,. Then we have
Ns(*Q) N X= U yenst™'(K,) and therefore

°@ = host a.e. on Ns(*Q)NX.
(b)—>(a). Let feK(Q) and C be a comapct and Jordan measurable subset
of Q with supp(f)SC. Then we have

D Ep*f=C"Shcox Ep¥*f = S °@*fdy,

*nx

= L coostdn = [ (host) (fost)d,
- Sc hfdu = Sn hfdp . O

DErFINITION. Recall that M;(Q) is the set of internal functions @ on X
such that 3,5 &|@| is finite,and that E(Q) is the set of internal functions on
X which are locally S-integrable on Q. Put E,(Q)=E(Q)N M,(Q), and, for
every p=>1in R, put

E(Q) = {pRX)| |p|*SEQ)} .
In case p=1, two definitions of E,(Q) coincide.

Lemma 3. Let pc E(Q) and ¢ >0. Then we have @"*& E(Q) for
every p=>11in R.

Proof. Recall that an internal function ¢ is said to be locally S-integrable
on Q if we have X, .£.m &|@|=0 for every compact subset K of Q and for
every infinite natural number NN, where A(p, K, N) is the internal set of all
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x€*K N X such that |p(x)| >N.

Now let p€E(Q), >0 and KCQ compact and N infinite. Then,
A(p'?, K, N)=A(p, K, N?) for every p>1. Since |p(x)|"?<|p(x)| for
xEA(p, K, N?), we have

Ept = 31 &t 3N Ep=0. O
A(p*/?,K,N) A(p,K,N?) A(p.K,N?)

Proposition 3. For every p>1 in R, we have E,(Q) S E(Q).

Proof. Let p=E,(Q). The definition of E,(Q) gives |p|?€ E|(Q) S E(Q),
hence |@| € E(Q) by the above Lemma, so we have o € E(Q). O

Theorem 5. Let p>1in R. Recall that L,(Q) is the set of measurable
functions @ on Q such that |@|? is integrable on Q. Then we have

(a) For every p=E(Q), there exists an h& _L,(Q) such that Py=T,.

(b) For every he_L,(Q), there exists a p EE,(Q) such that Py=T,.

Proof. (a) Suppose first p=1. For every o € E,(Q) S E(Q), there exists
an e L, 1,.(Q) such that P,=T,. Since pEE(Q)SM,(Q) we have T,=P,&
M,(Q), that is, T,=P, is a bounded measure. On the other hand, Bourbaki’s
“Integration” [2] Chap B §5. 5, n° 4, Theorem 1, Corollary says that, for every
he L 10(Q), T, is a bounded measure if and only if A& _£,(Q). Applying this
to our case, there exists an A€ _[}(Q) such that P,=T),.

Suppose next p>1 and pEE,(Q), p=>0. Then ¢’ €E,(Q). By the result
for p=1, there exists a g € [}(Q), g >0 such that Py»=T,. Proposition 2
implies

°@p? = gost a.e. on Ns(Q¥)NX.

Putting A=g"?, we have h&_L,(Q) and °@?=Ah’ost a.e. on Ns(*Q)NX. Hence
°@=host a.e. on Ns(*Q) N X and we have P,=T, by Proposition 2.
If @ is not positive, the result follows from the decomposition p=p,—@,+

ips— 1Py, Py, P2y P3, Py beINg positive.
(b). Let he L,(Q), h=0. Then A& Li(Q). We extend the function

h?ost on Ns(X) to whole X by giving the value 0 outside Ns(X), which we write
h?o st. Then this function is positive and »;-measurable, and we have

S hrost dv, — S Wost dvy — S Wdu<oo .
X Q

Ns(*Q)n X

The theory of Loeb integration assures us the existence of an S-integrable func-
tionyr>0 in R(X) such that

®yp = hfost a.e. on X.

We then have € E|(Q), because
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Sanx EP S 3y Ep = sx *Yrdv;, = Sx Rost dv, = SQ Wdp<oo.

Putting @p=+"?, Lemma 3 implies pE(Q). Moreover we have @p’=
Y EE\(Q), hence p=E,(Q2). On the other hand, we have

°@? = h?ost a.e. on Ns(*Q)NX

and hence the equality

o

@ = host a.e. on Ns(*Q)NX,
which implies P,=T, by Proposition 2. O

DerINITION. (1) After A. Robinson [8], we call a function pER(X)
S-continuous on Q if @(x)=¢(y) whenever x, yNs(*Q)N X and x—y.

(2) Let S(Q) be the set of functions ¢ € R(X) which are finite-valued and
S-continuous on .

(3) For each p =S(Q), define the function Yp: Q—C by Y@(t)="p("t) for
teQ (recall that “teNs(*Q) N X, “t<t<*t+E).

The property (a) in the following theorem is due to P. Loeb ([15]), and other
parts can be easily deduced from theories and definitions by Loeb.

Theorem 6. (a) @&.S(Q) implies "p=C(Q), that is, 'p is a continuous
Sfunction on Q.

(b) If hel(Q) (by the convention that h is extended so that it takes value 0
outside Q, we have *h: *R—*C and *h(x)=0 for x&*R—*Q), then *h| X =.S(Q)
and ¥ (*h| X )=h.

(c) S(Q)SEQ) and p=S(Q) implies P,=T\,,

4. Distributions

Proposition 4. For each p = R(X), the following two conditions are equi-
valent:

(a) For any compact subset K of Q, there is m& N such that 3y, x €| @]
is finite.

(b) For any compact subset K of Q, there is REN such that Sy, x| p|*
is finite.

Proof. (a)—(b). Let K be a compact subset of Q, mEN, and > &"|gp|
finite. We have *KNX

S w512 () gmtl | )2
*KNX 4 (*KnX ?l)

and the right hand side of the inequality is finite. Hence we get (b) with
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k=2m-1.
(b)—>(a). Let K be a compact subset of Q, REN, and Jhgnx & |p|?
finite. Choose m& N such that k<2m. We have

2 8’"+1 ZS *KnX <H-. 82m+2 2
(2 & ely<wd ) H 2 lol

and
H. 2 82m+2|¢lz — 2 £2m+ll¢|2S 2 £k+l|¢lz .
*KNX *KNX *KNX
As the right hand side of the second inequality is finite, we get (a). O

DEerFINITION.  Z(Q) denotes the set of all  =R(X) which satisfies the con-
dition (a) in Proposition 4.
Immediately, we have M(Q)< Z(Q).

DeFINITION. For each ¢ €R(X), we define Dy and D_g as follows :

D,p(x) = PETE=P() 44 p_g(x) = PH)=2(x—E)
€ &

(Note that we extend @: X—*C to @: L—*C to have the period H.)

Proposition 5. (a) Z(Q) is stable under D, and D_.
(b) If @, v EZ(Q), then prEZ(Q).

Proof. (a) Let p=Z(Q) and K be a compact subset of Q. Choose a
compact subset K; of Q so that K S K, S and:

If x€X, then x=*K implies x4-&€*K|.
By choosing mE& N so that 3. o x ™| | is finite, we have

> e Dipl< 32 e prte)|+ X2 e ol
*KNX *KNX *KNX
Both terms in the right hand side turn out to be less than or equal to
Srnx ™| @| and thus, Sl x E™V* | D,gp| is finite.
(b) Let K be a compact subset of Q and choose k, /€N so that both
Shenx & @|? and gy &F|4r|? are finite (Proposition 4). By choosing
m,n €N such that 2<2m-1 and I<2n-1, we get

( 2 8m+n+2|¢1!,l)2£ 2 82m+2l¢|2. E 2m+Z|¢|2
*KNX *KNX *KNX

S 2 £n+2|,‘!r|2. 2 81+1[¢|2. D
*KNX *KNX

Proposition 6. Let o= AQ)NZ(Q) and he E(Q). Then we have D.p,
*hep € A(Q) N Z(Q) and if f € D(Q), then PDiv(f)Z —Py(f") and Puyy(f)=Py(hf).
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Here, £(Q) denotes the set of C-valued, indefinitely differentiable functions on Q,
and its elements are assumed to be extended to whole R so that they take O outside
Q. We have written simply *h for *h| X. f' denotes the derived function of f.

Proof. (i) We bave D.p&Z(Q) by Proposition 5. Now we show that
DipeA(Q) and Pp_o=—Py(f’) as follows. Suppose f € D(Q) and K=supp(f).
Choose a compact set K, satisfying K € K, CQ so that, for each x€X, xE*K
implies ¥+-6€*K,, and then choose mEN so that 3l ,x "] is finite.
With signs in the respective order, we have

2 EDsp)*f = £ S p(x16)* () F S o*f
=+ 3 p(®)*fxFEF 2 p(x)*f(x)

— — Bt - LETO=A

- {%1 (?1)"_18&-1 S1Ep*f®

=1 Rl
+(<TTRT'8 3 e"p(x)(*Re f " (xF o€)+-i *Im f ‘"‘*”WTG)))}

(o, TE*R, 0<0, 7<1).

As for the sums in the scope of negative sign, we have
m+ k-1
the first sum = 3 ($_kl')_ EIPL(f®)=Py(f"),
k=1 |

and

&
the second sum < E" | p|2sup | f*+D|=0 .
(m+2)!*K%X l@l2sup | f™*]
Hence, D.p€ A(Q) and Pp_o(f)=—Py(f’) for each f € D(Q).
(i) If ke&(Q), then *heS(Q)SE(Q) by Theorem 6, and we have E(Q)<
M(Q) S Z(Q) by Proposition 1 and definitions. Hence, *hp & Z(Q) for p=Z(Q)
by Proposition 5. Now , since if € D(Q) for f € D(Q), we have

S 6*hp*f = 3 ep*(H)=Py(hf)

Thus we get *hp = A(Q) and Pro(f)=Py(kf). O

DEFINITION. Dg(Q) denotes the smallest subset of R(X) which includes
M(Q) and closed under applications of D, and D_, multiplication of *% for each
he&(Q), and addition.

Theorem 7. (a) Dy(Q)CAQ)NZ(Q). If pEDx(Q) and hEE(Q), then
D.p, *hp&Dy(Q) and Po& DH(Q), Py, =(Py) and Peyy=hP,.



822 M. KINOSHITA

(b) Every T Dr(Q) can be represented in the form T =P, for some
PEDHQ).

Proof. (a) Since M(Q)SAQ)NZ(Q) and A(Q)N Z(Q) is stable under
D, D_, and *h, we have D(Q)< A(Q) N Z(Q).

Now, if @ € M(Q), then we have P, D' V(Q) S Dr(Q), and DF(Q) is stable
under derivation and multiplication of 2. On the other hand, by Proposition 6
we have

PDifP(f) = —Py(f"), and Puo(f) = Py(hkf),
and thus we can prove that, for each o €D(Q), P, D7(Q2) and
Pp,o =(Py)" and Puy = hP,

by induction on the number of operations of D,, D_ and *k to an element of

(b) For each T€9D7(Q), we can represent it in the form T'=S® for
some S €9'®(Q) and kEN. Representing S in the form S=P, with € M(Q),
we have Diyr €Dy(Q) and Ppty=(Py)P=T. O

DrrINITION. Let D(Q) denote the set of elements @ € R(X) such that, for
each compact subset K of Q, there is some Yy&ED (Q) which satisfies =1
on *K NX.

ReMARK.  D(Q)< A(Q) N Z(Q).

Theorem 8. (a) If p=D(Q), then P, D'(Q).
(b) If pED(Q), then D.p € D(Q) and Py y—(Py)’.

(©) If pED(Q) and he&(QY), then *he € D(Q) and Peyy—=hP,.
d) If Te9D'(Q), then there is some p =D(Q) such that Py=T.

Proof. (a) Suppose @ € D(Q). Let (f;);,en be a sequence in 9(Q, K)
such that f;—0 in 9(Q, K). Choose Y& Dy() corresponding to K such that
@=+on*K NX. Thenby Theorem 7, we have Py D7(Q) and thus Py(f;)—0.
On the other hand, we have Py(f;)=Py(f;) for every jEN, so Py(f;)—0. Hence
P,e9'(Q).

(b) Suppose p=D(Q). We know that D.pe 4(Q) N Z(Q) by Proposition
6. For a compact subset K of Q, choose a compact set K; so that KK, CQ
and x+&€*K, for each x*K NX. Choose Yr&D(Q) so that ¢ =+ on
*K,NX. By Theorem 7, we hae have D,y € Dx(Q) and D,p=D.y on
*KNX. Thus D.peD(Q).

Now, since D(Q)<S A(Q) N Z(Q2), we have

Ppo(f) = —Po(f') = (Pe)'(f)
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for each f € 9(Q) by Proposition 6.

(c) Suppose that peD(Q) and 2€E(Q). We have *hp € A(Q) N Z(Q2) by
Proposition 6. For each compact subset K of Q, choose Jr& D (Q) so that gp=n)r
on *K NX. Then *hjpr&Dr(Q) by Theorem 6, and obviously, *hp*="*hyr on
*KcX. Hence, *hp=D(Q).

Also, since D(Q)< A(Q) N Z(2), we have

P*w(f) = Pv(hf) = (thv) (f)

for each f € 9(Q) by Proposition 6.

(d) Suppose T€D'(Q). Let (f;);en be a partition of unity on Q such that
each K;=supp(f;)is a convex compact set which has an interior point. Each
fiT is a distribution on Q with support contained in K;. Thus, we can represent
each f;T as a finite sum of derivatives of elements belonging to C(Q) with each
support contained in K; ([3], Chap. 1, corollary to Theorem 1.5). Now we shall
show that there is a function ;& D(Q) for each ¢ such that Py,=f;T and that
yr; is 0 on *K N X for every compact subset K of Q with the property K N K;=0@.
For it, we can assume that f;7=(T,)™ with he((Q), supp(h)SK; and n>0.
By Theorem 6, we have

*H| X eSQ)CM(@Q) and Puyy=T,.

Clearly, *h| X takes 0 outside *K; N X. Then, D3(*h|X) belongs to Dx(Q) and
if you choose a compact set K such that K N K;=@, then it takes 0 on *K N X,
and moreover,

PDZ(*hIX) = (P*hlx)(") = (Th)(") :fiT-

Thus we get the claim above.

Now, applying Lemma 2 for Y(Q)= Dg(Q), we get an internal map
*Non—@p,=R(X)and Ne*N such that n€N implies @,=>)%0 Y, EDr(Q)
and satisfy following conditions:

(1) NeN implies oy EDR(Q) and Py, =T;

(2) Ne&*N—Nimplies pyE A(Q), Py,=T and for each compact subset
K of Q, with an appropriate & N, we have py=¢, on *K N X.

So, let p=g@y. For the case (1), there is nothing more to prove. For
the case (2), as each @, belongs to Dn(Q)), we have p=D(Q) and P,= T, and
we finish the proof. O
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