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1. Introduction

An experiment & is a triplet (X, A, P), where & is a non-empty set of
probability measures on a o-field <4 of subsets of a set X. ca(A) denotes the
space of all bounded signed measurs on . The closed vector sublattice
L,(€) of ca(A) generated by P is called the minimal L-space of the experi-
ment £ (Le Cam [8], p. 41). & is said to be majorized if there exists a measure
p on J such that each PEP has a density with respect to . In this case,
w is called a majorizing measure for £&. The class of majorized experiments
includes the weakly dominated experiments, where y is localizable (see Mussmann
[12]), the =-finite experiments (see Le Cam [8], p. 13 and p. 667), where p is
decomposable, the semi-decomposable experiments (see Luschgy and Mussmann
[10]), and the discrete experiments, where p is the counting measure on 2% (see
Basu and Ghosh [1]).

For veca(A)*, a set S in Awhich satisfies »(S¢)=0and P(- N S) < v for all
PP is called an &-support of v. & is majorized if and only if each PP has
an E-support (cf. Diepenbrock [2], Lemma 9.3, Ramamoorthi and Yamada [15],
Proposition 1, or Luschgy and Mussmann [9], Theorem 1). Throughout the
present paper we assume that & is majorized. For a set H of measures on
A, put N(H)={4A€A: v(4)=0 for all veH}. If {h;,i<I} is a family of A-
measurable functions, then o(h;, 7€)V N(H) denotes the smallest sub-o-field
(subfield, for short) of 4 which contains N(H) and for which each &;, i1, is
measurable. A subfield B of 1 is said to be PSS (pairwise sufficient containing
supports) for € if B is pairwise sufficient for & and each P 2 has an &-support
belonging to B. An equivalent majorizing measure g is called pivotal measure
for & if the following condition is satisfied: a subfield B of A is PSS for & if
and only if each PEP has a PB-measurable p-density (cf. Ramamoorthi and
Yamada [15]). Obviously, p is pivotal if and only if
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is smallest PSS. If £ is majorized by a o-finite measure then the sufficiency
criterion of Halmos and Savage [6], Theorem 1, implies that each equivalent
finite majorizing measure of the form 33 ¢,P, with ¢,=0 and P, % is pivotal.

From this theorem the Neyman factorization theorem easily follows. In order
to prove extensions of these results for arbitrary majorized experiments, pivotal
measures have been used by Ghosh et al. [5] and by Ramamoorthi and Yamada
[15]. In [20] pivotal measures have been applied to construct common condi-
tional probabilities in an extended form. We shall show that pivotal measures
are closely related to maximal orthogonal systems in L,(&).

An orthogonal system W in a vector lattice V" is a subset of V*\{0} such
that # Av=o for all distinct members # and v of W. If DCL,(€) is a maximal
orthogonal system, we define a measure v, on A by vp(4)=sup &aw(/l): FcD,

F finite}. Notice that each maximal orthogonal system of L,(€) is also a
maximal orthogonal system of the L-space of & and therefore v, is an equivalent
majorizing measure for & (Luschgy and Mussmann [9], Theorem 1, see also
Torgersen [19], p. 10). We shall prove the following results: o(dP/dv,,PEXP)
V N(P) is a smallest PSS subfield and a pairwise smallest sufficient subfield in
the sense of [5]. This implies that », is pivotal. Conversely, each pivotal
measure is of the type v,. L,(€) can be characterized as the set of all measures
on A having o(dP/dv,, P P)V N(P)-measurable densities with respect to vp.
This generalizes a result by Torgersen [18], p. 47.

Furthermore, we discuss the relation between maximal orthogonal systems
in L,(€) and maximal decompositions of X which have been used in the liter-
ature to prove the existence of pivotal measures (cf. Ramamoorthi and Yamada
[15]). We need some more notations. Let x be a measure on A. LYu) de
notes the space of all u-integrable functions. If f & L'(u), then f- x is the bound-
ed signed measure on f with p-density f. Set L(u)={f-u:fLYu)}. The
map from L'(u) onto L(p) which carries f& LY(p) into f-u is an isometric
vector lattice isomorphism. This is easily seen by means of the Radon-Nikodym
theorem since {f>0} has o-finite y-measure for each f & LY(u).

2. Auxiliary Results

Put &*=(X, A, P*) where P* is the set of all probability measures in
L,(€). In the following we shall see that in some situations € can be replaced
without loss of generality by £*.

Proposition 2.1. Suppose BC A is a subfield. Let W denote the set of all
weca(A) of the form w=f (3] 27"P,) where f is B-measurable and P, P. The
following assertions hold : ’

a) If each P€ P has an E-support belonging to B, then each we W has an E-
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support which belongs to B.
If B is pairwise sufficient for P, then W is a closed vector sublattice of ca(A)
and B is pairwise sufficient for the set of all probability measures from W.

Proof.
If f is B-measurable, w=f-(327"P,), w&ca(A), and T,€P is an E-
support for P, for each positive integer n, then
(>0 N(U TS
is an &-support for w.
If B is pairwise sufficient for P, it is also sufficient for each dominated

subset of . Therefore, by a theorem of Halmos and Savage [6], Theorem
1, we can assume that dP/d(3327"P,) is B-measurable whenever PEXP is

absolutely continuous with respect to >127*P,. From this we obtain that
n

for each sequence (w,) in W there is a sequence (f,) of B-measurable
functions and a sequence (P,) in & such that w,, =f,-(3327"P,) for all m.

By means of these representations it is easily shown that ¥ is a closed vector
sublattice. Furthermore, we see that it only remains to prove that B is suff-
cient for subsets of probability measures w& W of the form w=/f-(3327"P,)

where f is B-measurable and the sequence (P,) is fixed. For such a weW
we get

SB 1,dw — SB L, fd(3)27°P,) = SB E(1,|9)fd( 5 27"P,)
= gB E(141B)dw forall A=A and BB

where E (1,]9B) is a common conditional expectation for the sequence (P,):

E(1,|B)=Ep, (14| B)P,-a.e. for all n. |
Corollary 2.2. Suppose BC A is a subfield. Then the following assertions

hold :

a)

b)

If each PP has an E-support belonging to B, then each Q& P* has an
E-support belonging to B.
If B is pairwise sufficient for £, then B is pairwise sufficient for E*.

An inspection of the proof of Proposition 2.1 shows that Corollary 2.2.b holds if

“pairwise sufficient” is replaced by “‘sufficient”’. Notice that here and in Prop-

osition 2.1.b and Corollary 2.2.b we do not use the assumption that £ is ma-
jorized, From [9], Lemma 1, we see that £* is majorized by a measure p
whenever & is majorized by u.

Lemma 2.3. Suppose & is majorized by u. Then we have
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a9 * _ (%P
a'(d'u , 0EP*) VN(&) = «(5 Peﬂ’) VN(P).

Proof. The set of all feLY(yu) such that f is o(dP/du, PEP)V N(LP)-
measurable is a closed vector sublattice of L'(u). Because of the vector lat-

tice isomorphism between L'(x) and L(u) (see Section 1), the proposition easily
follows. U

Now we need a lemma which we shall use for the calculation of the den-
sities if the majorizing measure is of the form v, (see Section1). If V is an
L-space, we define z,(y)=sup (yAnx) for all x,yeV™*;  (y) is the projection

of y onto the band generated by x ([16], Proposition II.2.11 and Corollary 2).
Note that for every L-space there exist maximal orthogonal systems by Zorn’s
lemma.

Lemma 2.4. Suppose V is an L-space. Then the following assertions hold:
a) If (x;, i€1) is an increasing net in V'* with sup ||x;||<co, then limx; exists
and lim x;=sup x;. ' '

b) If D is a maximal orthogonal system in V and yE V™, then
y = sup Sz, (y) = lim 3} 7,()

where A ranges through finite nonempty subsets of D. The set {ucD: z,(y)=0}
is countable.

Proof.
a) See [3], proof of Theorem 26 B.
b) By [7], Lemma 3.5, we get

uEEA”u(.y) = ”zu(y)éy :

uEN

Then a) implies
sup 33 7,(y) = lim 35 7.(y) -
By the Riesz decomposition theorem ([16], Theorem I1.2.10), the band in V'

generated by D is equal to V. From [16], Proposition II.2.11, we get
sup 7 sy, (¥)=y. 1If z,( ¥)=0 for all # from an uncountable subset of D,
A

uEN
then there is an €>o0 such that {u€D: ||z, (y)||=&} is infinite. Because
[I¥l[= 23 (|7 (¥l for all A, we get a contradiction. O
4EN

If u,veL,(€)*, then n(u)EL,(E) by Lemma 2.4.a. Using the vector
lattice isomorphism between L'(x) and L(u) with p=u-+v, we get
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(1) = (Z_Z 1(dv/d,;.>0))'l‘ .

Proposition 2.5. Suppose DC L,,(E) is a maximal orthogonal system. Then

Jor each ve L,(E)* there is a countable subset D'C D such that 2 1s d”“’(v) isa
density of v with respect to vp.

Proof. By Lemma 2.4.b, there is a countable subset D'C D such that v=
> #.(v). Using properties of the £-supports S, of w, we see that
weD’

dr,(v)
= 1, 4%u\9)
2 1s, dw

weD’
is a density of » with respect to v),. U

Proposition 2.5 is essentially known. The above form of the density is
given by Torgersen [19], p. 10, for vEP.

EXAMPLE 2.6.
a) Suppose & is majorized by a o-finite measure. Then there is a majorizing
measure of the form »=>12"*P,, P,&P. The set D= {v} is a maximal

orthogonal system in L,(€) and v=w),

b) If A is the power set of X and if 2 contains all Dirac measures, then the
subset D of all Dirac measures is a maximal orthogonal system in L, (E)
and v is the counting measure.

3. Main Results

In the situation of Example 2.6.a it is known that o(dP/dv,, P& P)V N(P)
is a smallest sufficient subfield. For an arbitrary majorized experiment we shall
show in Theorem 3.1 that a subfield of this form is not dependent on the special

maximal orthogonal system D and that it is smallest PSS.
We define a subfield . A,,C A by

Ay = a(f’ PEP@)VN@),

where DC L,,(€) is a maximal orthogonal system. We use the terms ‘‘pairwise
smallest sufficient” and ‘“‘smallest pairwise sufficient containing supports’ smal-
lest PSS, for short) in the sense of [5].

Theorem 3.1. The subfield A, is pairwise smallest sufficient and smallest
PSS for €. Especially, v, is a pivotal measure for each maximal orthogonal
system DC L,,(E).
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Proof. Without loss of generality we assume E=E&* (see Proposition 2.1).
Obviously, (A, contains an E-support for each PEP. Next we show that 4,
is pairwise sufficient. Suppose P,, P,&P. Putuy=P,+P,eL,(€). There are
An-measurable versions of dP;/du since

dP; _ dP; <d
d

)\t
d,u, = 4 Dl{dl-"ldllp>0) ) p-a.e .

Vp

Thus A, is sufficient for {P,, P,} because of [6], Theorem 1. It remains to
investigate the minimality of A4,. Let SCA be a pairwise sufficient subfield.
For P there is a countable subset D' C D such that P= 2 7.(P) (see

Lemma 2.4.b). Let xEca(A) be of the form k= 3] ¢,w, ¢,=0. Smce E=E*

weD’
and since in the dominated case pairwise sufficiency implies sufficiency, § is
sufficient for

{llwll™w: we D'} U{llz Pl z,P: #,P+0, weD’} .

By [6], Theorem 1, we may assume that dz,(P)/dx and dw/dx are S-measurable
for all weD’. Furthermore,

dP _ > dm,(P)l - dﬂw(P)/dw) (im0} 1B

dvp, e dw weD’ dr

Hence dP/dv), is SV N(«)-measurable. For fixed P,, P,& 2 we may suppose that
P, P,< « holds in the above calculation. Therefore dP/dv, is SV N(P,+P,)-
measurable for all P,, P, P, and A,, is pairwise smallest sufficient. If & con-
tains an &-support for each PEP, then {dw/dv,>0} € ScoN(P) for all weD

and
(_i]: dr,(P) |dw _
dvp wED’( dk / )1 dvD>0} Vo

Hence dP/dvy, is SV N(LP)-measurable. We conclude that .4, is smallest PSS

and v, is a pivotal measure. O

The existence of a smallest PSS subfield has been proved by Ghosh et
at. [5], Theorem 5. A detailed discussion of the smallest PSS subfield can be
found in Fujii and Morimoto [4], Theorem 5. Pairwise smallest sufficiency is
treated in Siebert [17] (see also [5], Theorem 5) and using invariance considera-
tions in [11]. In Theorem 3.4 we shall see that any piovtal measure can be
represented by means of a suitable maximal orthogonal system in L,(&). First
we give a more concrete representation of L,(&).

Theorem 3.2. Suppose DCL,(E) is a maximal orthogonal system. Then
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L&) = {f -vp: fEL(wp| An)} -

Proof. It suffices to prove that the inclusionDholds. Because of the form
of the densities given in Proposition 2.5, it is enough to show for each fixed
we D that for each f € L zp|A,) there is a u L, (E) with

f‘ lsm - ﬂ '13. vp-a.c.
dVD
This follows from [14], proof of Proposition I-1-1, since vp(+ NS,)=w is a
finite measure. O

In Theorem 3.2 A, can be replaced by any pairwise smallest sufficient sub-
field. This theorem generalizes a result of Torgersen [18], p. 47, for dominated
experiments and of Mussmann [13], Proposition 2.1 and Proposition 2.5, for
weakly dominated experiments. The latter paper also gives a characterization
of the smallest sufficient subfield.

Theorem 3,3. If yu is a pivotal measure for &, then p=v¢ for some maximal
orthogonal system G in L,(E).

Proof. Let DcL,(E) be a maximal orthogonal system. Put S,=
{dw/du>0} for all weD. S, is an E-support for w. By Lemma 2.3, dw/du
is A ~measurable. Hence S, & A, and there is a countable set K, and a pairwise
disjoint family (S,,, k€ K,) in A, with Sw——-hELgchw,, and 0<p(S,4)<<oo for all

keK,. By Theorem 3.2, the measures 15  +w, wED and kEK,, also define
a maximal orthogonal system in L, (). Therefore we shall assume without loss
of generality that 0<<u(S,)<<oo holds for all weD. Put v,=pu(-NS,) for all
weD. v,EL,(E) because of

v = (deofdp) ™ 15,) v

and Theorem 3.2. Furthermorc, v,, and w are equivalent for all weD. There-
fore G=(v,, wE D) is a maximal orthogonal system in L,(€). It is easily shown
that u=w; since p is semi-finite, that is u(4)=sup {u(F): Fc 4, F€4, and
w(F)<oo}. 0

ExamPpLE 3.4. Suppose X is the unit interval, .4 the corresponding Borel
sets, and P= {\} where A is the Lebesgue measure on X. Then \ is also pivotal
for £ since {@, X} is a smallest sufficient subfield. We have L, (&)= {v: v=ai
for some real a}. Because A= Er A(+ N 4;) for any countable measurable parti-

tion {4;,i€J} of X, we see that the pivotal measure A can be represented as a
sum of orthogonal measures which are not from L,(&).
For each PP let S,EA,, be an E-support for P. A subset FC A, is
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called a maximal &|,-decomposition if F;NF,&N(2P) for distinct members

F,, F,e), for each F €T there is a P, P with P(F)>0 and F\S, EN(P),

and each Be 4, such that B\Sq& N(<) for some Q € P and BN F< N(P) for

all FEY is in N(¥). Such an F exists by Zorn’s lemma (cf. [15], p. 171). In

[15], Proposition 3, it is shown that FEEPF( +NF) defines a pivotal measure.
(S

This will also follow from Theorem 3.1 and our next theorem, where the relation
between maximal £*|A,-decompositions and maximal orthogonal systems in
L,(€) is exhibited. It easily follows from the definition that each maximal
&| An-decomposition is a maximal £* | A,,-decomposition.

Theorem 3.5. The following assertions hold

a) If G is a maximal &*|A,-decomposition, then {Pp(- NF): FEJ} is a
maximal orthogonal system in L,(E).

b) If D is a maximal orthogonal system in L,(E) and S, E A, is an E-support for
each we D, then {S,: weE D} is a maximal E* | A,,-decomposition.

Proof.
a) Let D be a maximal orthogonal system in L,(£). By Theorem 3.2, for
each F €Y there is an J4,,-meesurable gp such that

Pp(- NF) = (1pgr) vpELW(E) .

We conclude that {Pg(- NF}): F %} is an orthogonal system in L, (E).
Suppose v €L,,(E)* and v APp(- NF)=0for all FEYF. By Theorem 3.2,
v=f+v, for some A,-measurable f. We get

0 = vp({f>0} N {lpgr>0}) = vp({f>0} NF) forall FEF.

The definition of &F implies vp({f>0})=0. Hence v=0, and the maxi-
mality of {Px(+ NF): FEZ} follows.

b) Suppose BEA,, B\S,&N(P) for some Q= P*, and BN S, N(P)for all
we D. By Theorem 3.2, O(- N B)=(13f)+vp for some .A,-measurable f.
We conclude O(- NB)eL,,(€) and QO(- NB)Aw=0 for all weD. Max-
imality of D implies Q(- N B)=0. Hence B&N(P). Now it is easily seen

that {S,: we D} is a maximal P*|A,,-decomposition. O
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