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Abstract
Recently Taylor and Socolar introduced an aperiodic mono-tile. The associated

tiling can be viewed as a substitution tiling. We use the substitution rule for this
tiling and apply the algorithm of [1] to check overlap coincidence. It turns out that
the tiling has overlap coincidence. So the tiling dynamics has pure point spectrum
and we can conclude that this tiling has a quasicrystalline structure.

1. Introduction

Aperiodic tilesare the set of prototiles which tile the space with their isomorphic
images by Euclidean motions (composition of translations,rotations and reflections) but
only in non-periodic way. There have been many examples of aperiodic tiles and study
on them [2, 4, 7, 12, 14, 25, 26, 29, 30]. Two of well-known examples of aperiodic
tiles with simple prototiles up to Euclidean motions are Penrose tiles and Ammann
tiles which are uncovered in the mid ’70s. These sets consistof two prototiles and
it has been the smallest number of prototiles which form aperiodic tiles until recently.
Since then, people have been interested in finding a single prototile for an aperiodic
tile. This problem is coined as ‘Mono-tile’ problem or ‘Einstein’ problem (one stone
in German). It had taken quite some time before Taylor and Socolar announced in
2010 the existence of an aperiodic mono-tile. Their tile is ahexagonal tile with col-
ored decorations and matching rules which can be embedded onto a single tile using
shape only. Penrose had found earlier a mono-tile using matching rules which is the
reformulation of (1C � C �2) aperiodic tiles given in [27], but in this case it is not
known that its matching rule can be encoded into a single tileusing only the shape.
One needs two other tiles to replace the matching rules in thePenrose mono-tile. Both
of Taylor–Socolar mono-tile and Penrose functional mono-tile are based on hexagonal
shape. But they make different tilings. There is recent development on these tilings
that constructs a system which has both tilings as a factor [5].
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Around the mid ’80s, Shechtman [31] discovered a quasicrystal with forbidden ro-
tational symmetry of crystal diffraction pattern. After the confirmation of the existence
of quasicrystals, crystal is redefined as a material whose diffraction patterns consist es-
sentially of bright peaks (cf. [16]). Since tilings made by aperiodic tiles, which we
define as aperiodic tilings, are not periodic, they have served as good models for the
structures of quasicrystals when they show the diffractionpatterns consisting of pure
point diffraction spectrum, i.e., Bragg peaks only withoutdiffuse background. Many
examples of known aperiodic tiling like Penrose tiling and Ammann tiling show the
pure point diffraction spectrum. The objective of this article is investigating whether
the aperiodic Taylor–Socolar tiling, which is a fixed point of a substitution, has pure
point diffraction spectrum.

Mathematically the pure point diffraction spectrum is quiteoften studied through
the spectrum of the dynamics of thedynamical hull, that is, a compact space generated
by the closure of translation orbits of the tiling. The two notions of pure pointedness
in diffraction and dynamical spectra are equivalent in quite a general setting [22, 13,
8, 24]. In general tilings, almost periodicity of tilings isan equivalent criterion for the
pure point spectrum. When it is restricted on substitution tilings, the almost periodicity
can be easily checked by overlap coincidence. Briefly it means the following: when
two tiles in a tiling intersect in the interior after shifting one tile by a translation of
two other same type tiles in the tiling, one can observe a pairof same type subtiles in
the same position in the common interior (see Subsection 2.4) [34, 23].

An aperiodic Taylor–Socolar tiling itself does not follow tile-substitution rule
strictly. But as it is mentioned in [35, 32], half-hexagonaltiles satisfy tile-substitution.
We should note here that the Taylor–Socolar half-hexagonaltiling is mutually locally
derivable from the Taylor–Socolar tiling. We consider the Taylor–Socolar half-hexagonal
substitution tiling whose identical image in Taylor–Socolar tilings belongs to the dynam-
ical hull generated by a repetitive Taylor–Socolar tiling.We apply the substitution data
on the half-hexagonal tiles of Taylor–Socolar tiles to the algorithm for checking the over-
lap coincidence. The algorithm can be found in [3]. As the result, we were able to check
that the half-hexagonal Taylor–Socolar substitution tiling has overlap coincidence. So we
can conclude that the aperiodic Taylor–Socolar tiling has pure point spectrum. One can
also note that a dynamical hull of Taylor–Socolar tilings isinvariant under the action
of rotations ofn�=3. In the diffraction pattern of a Taylor–Socolar tiling, weobserved
six-fold rotational symmetry.

The tiling space of Taylor–Socolar tilings with the matching rules is slightly bigger
than the tiling space of a Taylor–Socolar substitution tiling. But it is shown in [21] that
the tilings in the difference have pure point spectrum, computing the total index of cosets.
Thus any Taylor–Socolar tiling under the same matching rules have the pure point spec-
trum. In the case of self-similar tilings, the discrete partof the diffraction pattern, which
is called Bragg spectrum, can be characterized in terms of the Fourier modules. There
are three types of Bragg spectra- limit-periodic, quasiperiodic, limit-quasiperiodic. The
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Taylor–Socolar tilings belong to limit-periodic structure, since the expansion factor is ra-
tional. The Fourier module of this structure is an aperiodicstructure which is the limit
of a sequence of periodic structures (see [11]).

A substitution tiling with half-hexagonal shapes was knownmuch earlier (see [14,
Example 10.1]). It is known from [10] that the substitution point set representing the
half-hexagonal substitution tiling is a cut-and-project set and so it has pure point spec-
trum. However Taylor–Socolar tiling differs from [10] in the sense that we consider
a substitution tiling reflecting the aperiodicity of Taylor–Socolar mono-tile and have to
distinguish prototiles by their colors.

Various other ways to observe the pure point spectrum are pointed out in [6, 21].
One can observe that there is an one-to-one almost everywhere map from a dynamical
hull of Taylor–Socolar tilings to a dynamical hull of half-hexagonal substitution tilings.
Then this induces the pure point spectrum of Taylor–Socolartilings using the result of
[10]. The other observation would be through checking the modular coincidence which
has been introduced in [20, 23]. One can see in the figures of [35] and [32, Fig. 15]
that C or C type tiles form a sublattice structure of a whole hexagonal lattice with
the expansion factor of 2. It would be sufficient to check if the modular coincidence
occurs with theseC and C type tiles. Furthermore [21] provides a geometrical way
to observe the limit-periodic structure in Taylor–Socolartilings which shows that tiling
can be decomposed into a superposition of periodic structure (see Fig. 19 and The-
orem 7.1 in [21]).

Therefore the pure point spectrum may not be so surprising inthe case of Taylor–
Socolar tilings. However comparing with the above methods,the biggest advantage of
our method is that it is almostautomatic and it can be applied to many variations
of Taylor–Socolar substitutions based on hexagonal lattices, such as Penrose mono-tile
tiling, with minor changes of the substitution data and investigate the diffraction spec-
trum of a tiling generated by it. Furthermore it can be applied to substitution tilings
whose underlying structures are not even on lattices.

2. Substitution of Taylor–Socolar tiling

2.1. Tilings and point sets. We briefly mention the notions of tilings and tile-
substitution inR2 that we use in this paper. For more about tilings and tile-substitutions,
see [18, 23].

2.1.1. Tilings. We begin with a set of types (or colors){1, : : : , m}. A tile in R2

is defined as a pairT D (A, i ) where AD supp(T) (the support ofT) is a compact set
in R2, which is the closure of its interior, andi D l (T) 2 {1, : : : , m} is the type ofT .
A tiling of R2 is a setT of tiles such thatR2

D

S

{supp(T)W T 2 T } and distinct tiles
have disjoint interiors. We always assume that any twoT -tiles with the same color are
translationally equivalent. Let4(T ) WD {x 2 R2

W T D x C T 0 for someT, T 0

2 T }. We
say that a setP of tiles is apatch if the number of tiles inP is finite and the tiles of



600 S. AKIYAMA AND J.-Y. LEE

P have mutually disjoint interiors. We defineT \ A WD {T 2 T W supp(T)\ A¤ ;} for
a bounded setA � R2. We say thatT is repetitive if for every compact setK � R2,
{t 2 R2

W T \K D (tCT )\K } is relatively dense. We say that a tilingT hasfinite local
complexity(FLC) if for each radiusR > 0 there are only finitely many translational
classes of patches whose support lies in some ball of radiusR.

2.1.2. Point sets. A multi-color setor m-multi-color setin Rd is a subset� D
31 � � � � � 3m � R

d
� � � � � R

d (m copies) where3i � R

d. We also write� D
(31, : : : , 3m) D (3i )i�m. Recall that a Delone set is a relatively dense and uniformly
discrete subset ofRd. We say that� D (3i )i�m is a Delone multi-color setin R

d if
each3i is Delone and supp(�) WD

Sm
iD1 3i � R

d is Delone. We say that3 � Rd is
a Meyer setif it is a Delone set and3 � 3 is uniformly discrete ([17]). The types
(or colors) of points on Delone multi-color sets have the same concept as the colors of
tiles on tilings.

2.2. Tile substitution and associated substitution Delonemulti-color set. We
say that a linear mapQ W R2

! R

2 is expansiveif all the eigenvalues ofQ lie outside
the closed unit disk inC.

DEFINITION 2.1. Let A D {T1, : : : , Tm} be a finite set of tiles inR2 such that
Ti D (Ai , i ); we will call them prototiles. Denote byPA the set of non empty patches.
We say that�W A! PA is a tile-substitution(or simply substitution) with an expansive
map Q if there exist finite setsDi j � R

2 for i , j � m such that

(2.1) �(Tj ) D {uC Ti W u 2 Di j , i D 1, : : : , m}

with

(2.2) Q Aj D

m
[

iD1

(Di j C Ai ) for j � m.

Here all sets in the right-hand side must have disjoint interiors; it is possible for some
of the Di j to be empty.

The substitution (2.1) is extended to all translates of prototiles by�(x C Tj ) D QxC
�(Tj ) and to patches and tilings by�(P) D

S

{�(T) W T 2 P}. The substitution�
can be iterated, producing larger and larger patches�

k(P). We say thatT is a sub-
stitution tiling if T is a tiling and�(T ) D T with some substitution�. In this case,
we also say thatT is a fixed pointof �. We say that a substitution tiling isprimitive
if the corresponding substitution matrixS, with Si j D ℄(Di j ), is primitive. A repeti-
tive fixed point of a primitive tile-substitution with FLC iscalled aself-affine tiling. If
T D limn!1

�

n(P), we say thatP is a generating patch.
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We say that� D (3i )i�m is a Delone multi-color setin R2 if each3i is Delone
and supp(�) WD

Sm
iD13i � R

2 is Delone. Any tilingT can be converted into a Delone
multi-color set by simply choosing a pointx(A,i ) for each tile (A, i ) so that the chosen
points for tiles of the same type are in the same relative position in the tile: x(gCA,i ) D

gC x(A,i ). We define3i WD {x(A,i ) W (A, i ) 2 T } and� WD (3i )i�m. Clearly T can be
reconstructed from� given the information about how the points lie in their respec-
tive tiles. This bijection establishes a topological conjugacy of (X

�

,R2) and (XT ,R2).
Concepts and theorems can clearly be interpreted in either language (FLC, repetitivity,
pure point dynamical spectrum, etc.).

If a self-affine tiling T D {Tj C 3 j W j � m} is given, we get an associated sub-
stitution Delone multi-color set�T D (3i )i�m of T (see [19, Lemma 5.4]).

2.3. Two equivalent criteria for pure point spectrum. There are two notions
of pure pointness in the study of tilings—pure point dynamical spectrum and pure
point diffraction spectrum. We briefly give the definitions of them.

Let T be a tiling inR2. We define the space of tilings as the orbit closure ofT

under the translation action:XT D {�hC T W h 2 R2}, in the well-known “local top-
ology”: for a small� > 0 two point setsS1, S2 are �-close if S1 andS2 agree on the
ball of radius��1 around the origin, after a translation of size less than�. The group
R

2 acts on XT by translations which are obviously homeomorphisms, and weget a
topological dynamical system (XT , R2). Let � be an ergodic invariant Borel probabil-
ity measure for the dynamical system (XT , R2). We consider the associated group of
unitary operators{Ug}g2R2 on L2(XT , �) for which Ug f (S) D f (�g C S). The dy-
namical system (XT , �, R2) is said to havepure point(or pure discrete) spectrumif
the linear span of the eigenfunctions is dense inL2(XT , �).

On the other hand, there is a notion of pure point diffractionspectrum which char-
acterizes quasicrystals. Let� D (3i )i�m be a multi-color point set inR2. We consider
a measure of the form� D

P

i�m ai Æ3i , whereÆ
3i D

P

x23i
Æx and ai 2 C. The auto-

correlation of� is

 (�) D lim
n!1

1

Vol(Bn)
(�jBn � Q�jBn),

where�jBn is a measure of� restricted on the ballBn of radiusn and Q� is the meas-

ure, defined byQ�( f ) D �( Qf ), where f is a continuous function with compact support

and Qf (x) D f (�x). The diffraction measure of� is the Fourier transformb (�) of the

autocorrelation (see [15]). When the diffraction measureb (�) is a pure point meas-
ure, we say that� has pure point diffraction spectrum and so� has the structures
of quasicrystals.

It turns out that the two notions of pure pointedness are same, i.e, the pure point
dynamical spectrum of (XT , R2, �) is equivalent to the pure point diffractivity of�T

[22, 13, 8, 24].
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2.4. Overlap. A triple (u, y,v), with uCTi ,vCTj 2 T and y 2 4(T ), is called
an overlap if

(uC Ai � y)Æ \ (v C A j )
Æ

¤ ;,

where Ai D supp(Ti ) and A j D supp(Tj ). We define (u C Ai � y) \ (v C A j ) the
support of an overlap(u, y, v) and denote it by supp(u, y, v). An overlap (u, y, v) is
a coincidenceif

u � y D v and uC Ti , v C Ti 2 T for some i � m.

Let O D (u, y, v) be an overlap inT , we definek-th inflated overlap

8

kO D {(u0, Qk y, v0) W u0 2 8k(u), v0 2 8k(v), and (u0, Qk y, v0) is an overlap}.

DEFINITION 2.2. We say that a self-affine tilingT admits anoverlap coincidence
if there existsl 2 Z

C

such that for each overlapO in T , 8lO contains a coincidence.

When T is a self-affine tiling inR2 such that4(T ) is a Meyer set, (XT , R2, �)
has a pure point dynamical spectrum if and only ifT admits an overlap coincidence
[23, 19]. So we will check the pure point spectrum of Taylor–Socolar tilings through
the computation of overlap coincidence in the next subsection.

2.5. Taylor–Socolar half-hexagonal substitution tiling. In the half-hexagonal
substitution tiling, there are 14 half-hexagonal prototiles which come from dividing 7
hexagonal prototilesA, B, C, D, E, F, G into the left and the right (see [32, Fig. 15]).
Since the substitution tiling we defined in (2.1) requires finite prototiles up to only trans-
lations, we need to treat the rotated types and reflected types of the 14 half-hexagonal
prototiles as different prototiles. So we consider a substitution tiling with 168 prototiles.
Using the algorithm in [3] which is originated from [1] and made for the computation
of the Taylor–Socolar tilings, we check if the half-hexagonal substitution Taylor–Socolar
tiling has pure point spectrum.

Now a question would be “when the dynamics of the half-hexagonal substitution
tiling has pure point spectrum, can we infer that the dynamics of the original hexagonal
tiling also has pure point spectrum?”. LetT be a fixed point of a primitive substitution
and�T D (3i )i�m. It is shown in [23, Lemma A.6.] thatT has uniform cluster fre-
quencies (UCF), i.e. for anyT -patch P, there exists

freq(P, T ) WD lim
n!1

L P(hC Bn)

Vol(Bn)

uniformly in h 2 R2. From [22, Theorem 3.2], the measure� D
P

i�m ai Æ3i has pure
point diffraction spectrum, for any choice of complex numbers (ai )i�m if and only if
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Fig. 1. A generating patch around the origin of the substitution
tiling with half-hexagonal Taylor–Socolar tiles.

each measureÆ
3i has pure point diffraction spectrum. By the construction ofthe half-

hexagonal Taylor–Socolar tiling, we can take a substitution point set� representing
the half-hexagonal Taylor–Socolar tiling to include a substitution point set� repre-
senting the original hexagonal Taylor–Socolar tiling. So from [22, Theorem 3.2], we
can conclude that Taylor–Socolar tiling has pure point diffraction spectrum.

As a generating patch, one can start with the patch as shown inFig. 1. Since this
patch is contained in the next inflated patch after the substitution, it gives a fixed tiling
under the substitution.

For the computational reason, we give a tile-substitution whose expansion involves
rotation and reflection. It is possible to use the second iteration of half-hexagons without
rotation and reflection parts on expansions. But in this case, the substitution gets bigger.
The tile-substitution forAL ,AR,AL ,AR is shown in Fig. 2. For other half-hexagonal tiles,
the figures of tile-substitution is similar. We give the precise tile-substitution below. One
can check the computational algorithm in [3]. Let

Q D 2 � Rot � Ref D 2

0

B

�

cos
�

3
� sin

�

3

sin
�

3
cos

�

3

1

C

A

�

�1 0
0 1

�

D 2

0

B

�

� cos
�

3
� sin

�

3

� sin
�

3
cos

�

3

1

C

A

,

whereRot is a rotation of�=3 counter clockwise through the origin andRef is a reflection

throughy-axis. The tile substitution is given as follows; let! D
�

cos(�=3) � sin(�=3)
sin(�=3) cos(�=3)

�

anduD
�

cos(�=6)
sin(�=6)

�

. We denote (SX)n WD !
nSX , wherem 2 Z, S2 {A, B,C, D, E, F,G,

A, B, C, D, E, F , G}, and X 2 {L , R}.
The tile-substitution rule forAL and AR is the following. For 0� n � 5,

Q(AL )n D (GL )2�n [ ((DL )1�n C 2u) [ ((CR)1�n C !
5u) [ ((GR)3�n C 4!5u),

Q(AR)n D (AR)
�n [ ((DR)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((AL )5�n C 4!5u),

Q(AL )n D (AL )2�n [ ((DL )1�n C 2u) [ ((CR)1�n C !
5u) [ ((AR)3�n C 4!5u),

Q(AR)n D (GR)
�n [ ((DR)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((GL )5�n C 4!5u).
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Fig. 2. Substitution of half-hexagonal Taylor–Socolar tile types
AL , AL , AR, and AR. The black dot indicates the origin.

The tile substitution rule for other types of tiles are similar. We give the rules for
the convenience to the readers.

Q(BL )n D (BL )2�n [ ((F L )1�n C 2u) [ ((CR)1�n C !
5u) [ ((GR)3�n C 4!5u),

Q(BR)n D (GR)
�n [ ((FR)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((AL )5�n C 4!5u),

Q(BL )n D (GL )2�n [ ((F L )1�n C 2u) [ ((CR)1�n C !
5u) [ ((AR)3�n C 4!5u),

Q(BR)n D (BR)
�n [ ((FR)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((GL )5�n C 4!5u),

Q(CL )n D (FL )2�n [ ((EL )1�n C 2u) [ ((CR)1�n C !
5u) [ ((F R)3�n C 4!5u),

Q(CR)n D (DR)
�n [ ((ER)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((DL )5�n C 4!5u),

Q(CL )n D (DL )2�n [ ((EL )1�n C 2u) [ ((CR)1�n C !
5u) [ ((DR)3�n C 4!5u),

Q(CR)n D (F R)
�n [ ((ER)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((FL )5�n C 4!5u),

Q(DL )n D (BL )2�n [ ((DL )1�n C 2u) [ ((CR)1�n C !
5u) [ ((BR)3�n C 4!5u),

Q(DR)n D (AR)
�n [ ((ER)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((AL )5�n C 4!5u),

Q(DL )n D (AL )2�n [ ((EL )1�n C 2u) [ ((CR)1�n C !
5u) [ ((AR)3�n C 4!5u),

Q(DR)n D (BR)
�n [ ((DR)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((BL )5�n C 4!5u),

Q(EL )n D (BL )2�n [ ((EL )1�n C 2u) [ ((CR)1�n C !
5u) [ ((BR)3�n C 4!5u),

Q(ER)n D (GR)
�n [ ((ER)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((GL )5�n C 4!5u),

Q(EL )n D (GL )2�n [ ((EL )1�n C 2u) [ ((CR)1�n C !
5u) [ ((GR)3�n C 4!5u),

Q(ER)n D (BR)
�n [ ((ER)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((BL )5�n C 4!5u),
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Q(FL )n D (BL )2�n [ ((F L )1�n C 2u) [ ((CR)1�n C !
5u) [ ((BR)3�n C 4!5u),

Q(FR)n D (GR)
�n [ ((ER)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((AL )5�n C 4!5u),

Q(F L )n D (GL )2�n [ ((EL )1�n C 2u) [ ((CR)1�n C !
5u) [ ((AR)3�n C 4!5u),

Q(F R)n D (BR)
�n [ ((FR)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((BL )5�n C 4!5u),

Q(GL )n D (BL )2�n [ ((DL )1�n C 2u) [ ((CR)1�n C !
5u) [ ((GR)3�n C 4!5u),

Q(GR)n D (AR)
�n [ ((FR)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((AL )5�n C 4!5u),

Q(GL )n D (AL )2�n [ ((F L )1�n C 2u) [ ((CR)1�n C !
5u) [ ((AR)3�n C 4!5u),

Q(GR)n D (BR)
�n [ ((DR)1�n C 2!4u) [ ((CL )1�n C !

5u) [ ((GL )5�n C 4!5u).

Let us describe how the algorithm works in general term. Whentile-substitution
date� is given, we consider a substitution Delone multi-color set� which is fixed
under the substitution. To build the set�, we need to find a pointx 2 � which is
fixed under the substitution. Applying the substitutions to{x} infinitly many times, we
can easily obtain a point set� which is fixed under the substitution. It is sufficient
to check the overlap coincidence for all the overlaps which occur by finite translation
vectors of same type tiles in the tiling. From the Meyer property, the number of over-
laps are finite. After collecting all the overlaps, we can check overlap coincidence for
each overlap applying the substitution many times. Here thenumber of times of apply-
ing the substitution can be limited by the number of overlaps. So the algorithm will
be terminated. The detail is given in [1].

The computation of overlap coincidence of Taylor–Socolar tiling takes rather long
time comparing to other examples in [1]. We guess that it is due to the number of
prototiles (168) which is much more than other examples. Here we are wondering if
the computation time of the algorithm can be another way of measuring the complexity
of the substitution rule when the number of prototiles on thesubstitution tiling is fixed.

ACKNOWLEDGMENT. We are grateful to Michael Baake and Franz Gähler for
their interest and helpful suggestions.
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