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Let L=Kλ U ••• U Kn be a tame oriented link with n components in a 3-sρace
R3. L is said to be proper if the linking number of a knot K, and L—Kiy de-
noted by Lίnk(Kiy L—Kf) ( = 2 Link(Kiy Kj))y is even for i = l , •••, n. The

total linking number of L, denoted by Link(L)y means Σ Link(Kiy Kj).

For two links Z ,̂ L2 in i?3[<z], -R3[i] respectively for α<δ, L2 is said to be
related to L2 (or Lx and L2 are said to be related) if there is a locally flat proper
surface F of genus zero in R3[ay b] with Ff]R3[a]=L1 and jPΠi?3[&]=—L2y

where — L2 means the reflective inverse of L2.
The Arf invariant of a proper link L, denoted by ^>(L), is defined to that

of a knot related to L which is well-defined by Theorem 2 in [4].
Let V*, V be solid tori with longitudes λ*, λ respectively and μ a meridian

of 9 V in R3

y where λ* is a trivial knot, and fm an orientation preserving onto
homeomorphism of F * onto V such that fm(X*)=\-\-niμ for an integer m. Es-
pecially /o is said to be faithful. For a link /* in K*,/„(/*) is called a link T-
congruent to /=/0(/*) (in F") and denoted by /(w). The winding number of / in F
means the (algebraic) intersection number of I and a meridian disk of V and is
denoted by wv(ί) or simply by w(l).

Theorem 1. Let l,l(m) and p=w(f) be those of the above. Suppose that
p is odd or both p and m are even. Then I is proper if and only if l{m) is proper.
Let I be a proper link.

(1) Assume that p is odd. Then
φ{l(m)) = φ{ί) if m is even, or m is odd andp=i

= φ (/)-f-1 (mod 2) if m is odd andp== 8r± 3.
(2) Assume that p and m are even. Then

φ(ί(m)) = φ(f) if p=4r
= 0>(/)+l (mod 2) ifp=4r+2y

for an integer r.
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If p is even and m is odd in Theorem 1, l(m) is not always proper even
though / is proper.

Let Vf, •••, V$ be mutually disjoint solid tori in i?3 with cores cf, •••, cf re-
spectively such that r * = c ? U ••• U c% is a trivial link. An orientation preserving
homeomorphism / of cμ*=yf\j... U P? onto C[;=γχ\j ... y 7w i s said to be
/dώλ/w/ if/lv*: F?->F, is faithful for i = l , ••-, Λ. For a link /*=/? U ••• 11/? in

, we write /(/*) (or/(/?)) by /(or /,.), where /f is a link in F*.

Theorem 2. Let I*, / ^ U —U4 βwJ Γ=/(Γ*) έe ίAo^ o/ ίA
Suppose thai w(/i) = w(/j) (=p) (mod 4) /or i,j=l, ~,n and q—Link(T). If I*
and Γ are proper, then ί is also proper and

(1) φ(/)ΞΞφ(/*)+<p(Γ)(mod2) if p is odd

(2) φ(/)=φ(/*) if p and q are even, or q is odd andp=Am

=<p(/*)+1 {™°d 2) if q is odd andp=4m+2
for some integer m.

Corollary 1. Let /*, /, Γ, p and q be those of Theorem 2. If q is even,
then

φ{f)=φ(l*)+φ{Γ) {mod 2) if p is odd

if p is even.

If n = l in Theorem 2, namely Γ is a knot, we define that Link(Γ)=0.
Hence we obtain the following.

Corollary 2. If Γ is a knot,

φ(ί)=φ(l*)+φ(T) (mod 2) if p is odd
if pis even.

Theorem 3. Let /*, l=ίx{j ••• \Jln be those of the above. Suppose that
w(ti) = w(/j) (=p) (mod 2) and Link(ch Γ—cf ) = 0 (mod 4) for t = l , •••, n. If I* is
proper, then I is proper and

φ(l)=φ(/*)+φ(Γ) (mod 2) if p is odd

=φ(ί*) if pis even.

Theorem 4. Let / = 4 U " ' U 4 , and Γ be those of the above. If Γ is a
n

boundary link and l{ is proper for i=l, "^n, then <p(J)= Σ φ(^i) (mod 2).

The author thanks to Doctor H. Murakami for his helpful advice.

Proof of Theorems.

Lemma 1 is easily obtained by Theorem 2 in [4].

Lemma l If two proper links Lx and L2 are related, then <p(L1)=φ(L2).
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For a knot K, R means the knot orientation reversed to K. For a 2-

component link L0=UΓ1UJK2> l e t
 LQ=RX\JK2

 a n d s—Link(Kly K2).

Lemma 2 ([2]). VL,Q(t)=Γ3s VLo(t) for Jones polynomials of Lo, L$.

For a link L, a relation between Jones polynomial and the Arf invariant
of L is known by [3].

Lemma 3 ([3]). For a n-component link L,

_ } = ί ( v D - M - l ) 1 ™ if Lis proper

I 0 if Lis non-proper.

By using the above Lemmas, we prove Lemma 4 which is effective to prove
Theorems 1, 2 and 3.

Let L=L1\JL2 be a link, where Lx, L2 consist of mv m2 knots Kv •••, ϋΓ^,
•^rn* *"> ^m1+m2 respectively. The linking number of L2 and L2, denoted by

m1 m1+m2

Link(Lly L2), means Σ Σ Link(KhKΛ. For a link 1^=^11 ••• U ^ , we

denote that Ly=Rx U

Lemma 4. L ί̂ L—L^L.2 be a proper link and L/=L11)L2. Then 1! is
also proper and Link(Llf L2) is even. Moreover

<p(L')=φ(L) if Link{Ll} L2) = 0 {mod 4)
=φ(L)+l (mod 2) ifLink{Llf L2) = 2 (mod 4).

Proof. Let Ly=Kx U U Kmχ and L2=Kmi+1 U U Kmι+mt. As L is prop-
er, Link(Kh, L—Kh)=2rh for KhdL and some integer rA. Then we see that
Link(Kiy L'-R^Z^i-Lin^Ki, L2)) for K^L^ and Link(KjyL'-Kj)=2
(rj—Link^j,^)) for Kj(zL2 and that Link(Lιy L2)=2 (rxH [-r^—Link^)).
Hence Z/ is also proper and Link(Lv L2) is even.

Let L0 = κ1\J κ2 be a 2-comρonent link related to L such that κv κ2 are
obtained by fusion (band sum) of L19 L2 respectively and let Lo=/Ci U κ2 which is
related to Lr. As Link(κv κ2)=Link(L1, L2) (=s) is even, Lo and L'o are proper.
So by Lemma 1, φ(L0)=φ(L) and φ(LΌ)=φ(L'). As Link(Lv L2)=Link(κ1, κ2)
=sy VL,(t)=Γ*> VLo(t) by Lemma 2 and hence F ^ ( v ^ ϊ ) - ( \ / ^ ΐ ) " 3 s ^ 0 ( \ / ^ T ) .
Therefore if ί=0 (morf4), then φ(Lt)=φ(UQ)=φ(LQ)=φ(L) and if s=2

For a link L in a solid torus F, the minimum of intersection of L and a
meridian disk in V is called the order of L (in V) and denoted by ov(L) or simply
by o(L).

To prove Theorem 1, we prepare Lemma 5.

Lemma 5. Let XXiX2 and XZiXA be torus links of type (8m^l,8#ι±l)>
(8/w±3, 8m±3) and (4-m, 8m),(4m+2,8w+4) for some integer m respectively.
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Then Xu X2 and X3, X4 are proper. Furthermore if we orient X{ so that o{Xi)=
w(Xi)for each i3 then <p(X1)=<p(X3)=0 and φ(X2)=φ(X4)—l.

Proof. It is easily seen that X{ is proper for ί = l , 2, 3, 4.
Next suppose that o(Xi)==w(Xi) for each i. Xx consists of (8m±:l)-

component. Let Xn,Xχ2 be disjoint sublinks of Xx with 4my (4m±: ̂ -com-
ponents respectively. Then Link(Xn, X12)=4m (4m±:l). Hence <p(X1)=φ
(Xn U Xx2) by Lemma 4. As Xn U Xλ2 is related to a torus knot of type ( ± 1, ± 1),
<p(X1)=0. By the same way as above, we see that <p(X2)=l, for the Arf in-
variant of torus link of type (±3, ±3) is 1.

X3 consists of 4m-component and let X3V X32 be disjoint sublinks of Xz

with 2m, 2m-components. Then Link(X3v X32)=Sm2. Hence φ(X3)=φ(X31 U

-£"32) by Lemma 4. As X31(J-A2 is related to a trivial knot, φ(X3)=0. By the

same way as above, we easily see that <p(X4)=l.

Proof of Theorem 1. We easily see that, when p is odd or both p and m
are even, / is proper if and only if l(ni) is proper.

Let n be o(/). Then l(ni) is obtained by a fusion of / and a torus link Xo

of type (ny mή) split from / in V and hence l(nί) is related to l°XQ, where o
means that / is split from Xo. By the way, l°XQ is related to Λ>-£, where X
is a torus link of type {p, mp) for p—w(X). If / and l(ni) are proper, XOi X are
also proper and φ{l(m))—φ(loXj)=φ{loX) by Lemma 1. Hence we obtain
Theorem 1 by Lemma 5.

Let cl?=V1 U ••• U Vn be the union of mutually disjoint solid tori in R3 and
Γ that of Theorem 2. For a core ci9 take a ̂ ,-component link, denoted by^, £t ,
in Viy each of which is parallel and homologous to c{ and non-twisted, namely
pi Ci is contained on a non-twisted annulus A{ in V{ with dAiZDciy in F, for
/ = 1 , •••, n. Especially if ρi=ρj(=ρ)i we denote pcx U ••• Upcn by pT.

In Lemma 6, we consider the case thztp=2 which is used to prove Lemma 7.

f 0 if a is even
Lemma 6. ?>(2Γ) = <

(1 if q is odd, where q=Link(T).

Proof. Let 2 Γ = Γ U Γ r. As cg U c^dΓ U Γ') is non-twisted, Link(Γ, Γ') =
2q. Hence if q is even, <p(2Γ)=<p(Γ U Γ') and if q is odd, φ(2Γ) = φ(T U Γ ' ) + l
(mod 2) by Lemma 4. As Γ U Γ" is related to a trivial knot, we obtain Lemma 6
by Lemma 1.

Lemma 7. If Γ w proper, pT is also proper and

(1)

0 if p and q are even, or q is odd andp=4m{ 0 if p and q are even,

1 if q is odd and p=4m+2
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for some integer m and q=Link(T). Hence if q is even,

φ(pT) = <
(0 if pis even.

Proof. As pc{ is non-twisted, we easily see that if Γ is proper, pT is also

proper.

Lemma 7 is clear if p=0. Hence we assume that p>0. Each pc{ con-

sists of p components, say cn> •••, cip. Let L1=cn U c2ι U ••• U cnl and L2=pT—Lv

Then we see that Link(Lly L2)=2 {p—l) q.

If p is odd or q is even, <p(pT)=<p(L1[JL2) by Lemma 4. As Lx\jL2 is

related to (p—2) Γ, <p(pΓ)=<p((ρ—2) Γ) by Lemma 1. By doing this succes-

sively, if p is odd, <p(pΓ)—<p(T) and if both p and # are even, φ(pT)—φ(O)=0

for a trivial knot O.

Next we consider the case that q is odd and p is even. Then,

φ(pΓ)==φ((p-2)Γ)+l=φ((p-4)r) (mod 2)

by Lemma 4. Hence if p=4my φ(pΓ)=φ(O)=0 and if £ = 4 m + 2 , φ(pT)=

£>(2Γ)=1 by Lemma 6.

By the similar proof of Lemma 7, we obtain Lemma 8.

L e m m a 8. Let pi=pj (mod 4) and p=Min ip^—jp,}. Then φ(pT) =

φ(pι cx U ••• Hpn cn) for a proper link T=c1 U ••• U cn.

Let Jli be a link in V{ with r, components for some integer r{ such that .£*,-

is non-twisted and parallel to c{ and w(Xi)=pi(^ri) for z '=l, « ,/z. Then as

X=Xλ U ••• U-ί'n is related to pλ cx U ••• U./>«£», we obtain Lemma 9.

L e m m a 9. If Γ ύ proper and pi=pj (mod 2), X is also proper and <p(X) =

Proof of Theorem 2. Let CU= Uι U ••• U Un be the union of mutually dis-

joint solid tori in R3 with core —Γ=(—cι) (J ••• U (—cn), the reflective inverse of

Γ, split from Q? by a 2-sphere *S2 and symmetric with respect to S2. For

l=Ίγ U ••• U 4 m ^y l e t -A be a link with r t (=o(/ t )) components in C/t such that

.£,• is non-twisted and parallel to — c{ and w(Xi)=pi(—w(/i))y i=l, •••, w. Attach

a 3-ball 5? to F U E/* such that F t U ^ U j B i is symmetric with respect to S2,

Fig. l(b) for each ί. Let M t , Mi be meridian disks of Vh C/t respectively such

that #(4nM0HK-4nM0=A and M.Π^—ΘM,. n8B«(={an arc α,}), M< Π
B — dM'i n θ 5 , ( = { a n arc /?,•}), where #(-X") means the number of points of X,

see Fig. l(a). Let Z)t be a proper non-twisted disk in B{ with dD^a^ U /S, and

Δ f = M f U M i U A For each i, perform the fusion of /,-o-Γ along Δ, and we

obtain a link L, which is contained in a solid torus W~ V{ U t/, U -β,—Δ, X [—£, £]
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v\\\\ / / / / / u V t t Hlii vΰV\
^ A '

S2

(a) (b) .

Fig. 1

(c)

for a small positive number £, Fig. l(c). Then (W=W1[J ••• U Wn is the union

of disjoint solid tori which is symmetric with respect to S2 by the construction.

So the core of W is cobordant to zero by [1] and hence L=L1\J "ΊiLn is

cobordant to L*=Lf U ••• U L$ by [5], [6] for a faithful homeomorphism f0 of W*

onto W, where L=/0(L*). As ./?,• is non-twisted, L* is ambient isotopic to /*.

As L is cobordant to /* and /* is proper, L is also proper. Moreover as Γ is

proper, J2=-Cλ U ••• U-£Λ is proper. Hence we easily see that / is also proper.

As L and l°Jl are related,

= φ{L*) = φ{ί*) {mod 2) .

So we obtain Theorem 2 by Lemmas 7, 8 and 9.

REMARK 1. In Theorem 2, if we replace the condition itpi^pj (mod 4)" by
"p{=pj (mod2)", the conclusion is not true. For example, we consider the links
Γ, / illustrated in Fig. 2. Then 9>(Γ)=0 and φ(ί)=l, hence φ(l)3Ξφ(l*)+φ(T)
(mod 2).

Fig. 2

Proof of Theorem 3. As Link(Cf,T—Cι)=O (mod 4), Link(cit Γ—c, )

for some integer r, for each z. Then 2Link(T)= Σ Link(ch Γ—ci)=4 (^-f 1-
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rn). Hence Link(T) is even. Therefore we obtain Theorem 3 by Lemma 7 and
the proof of Theorem 2.

REMARK 2. The link in Fig. 2 is an example that the conclusion of Theorem
3 is not true if we replace that "Link(ci9 Γ—c,) = 0 (mod 4)" by "Link(ciy Γ—£,)
= 0(mod2)".

EXAMPLE 1. Let Γ, / be links illustrated in Fig. 3. As Link(T)=3 and /*
is a trivial link, φ(/)=φ(/*)+l = l by Theorem 2.

Fig. 3

EXAMPLE 2. Let /be a link illustrated in Fig. 4. As Γ is the Whitehead
link, Link(T)=0 and φ(T)=ί and /* is a trivial link. Hence φ(l)=φ(/*)+φ(Γ)
= 1 by Theorem 3.

Fig. 4

Proof of Theorem 4. For a proper link /,• in F, , let k{ be a knot obtained

by a fusion of /,- in V{ for each i. As lh I are related to kiy lo=kx U ••• U kn res-

pectively, φ{ίi)=φ(ki) and <p(/)=φ(/0) by Lemma 1. Furthermore as Γ is a

boundary link, there are mutually disjoint surfaces 3!=Fι U ••• ΌFn with 32Γ=/0,

dF—kf. Then φ(Q= Σ 9?(̂ *) (#*w/ 2) by Theorem 3 in [4]. Hence we obtain

that
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φ[t) = φ{lo)= Σ φ{k,)= Σ φ(i,) {mod 2) .
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