THE ARF INVARIANT OF PROPER LINKS IN SOLID TORI

Dedicated to Professor Junzo Tao on his 60 th birthday

Tetsuo SHIBUYA

(Received July 6, 1988)

Let $L=K_{1} \cup \cdots \cup K_{n}$ be a tame oriented link with n components in a 3-space R^{3}. L is said to be proper if the linking number of a knot K_{i} and $L-K_{i}$, denoted by $\operatorname{Link}\left(K_{i}, L-K_{i}\right)\left(=\sum_{1 \leq j \leq n, j \neq i} \operatorname{Link}\left(K_{i}, K_{j}\right)\right)$, is even for $i=1, \cdots, n$. The total linking number of L, denoted by $\operatorname{Link}(L)$, means $\sum_{1 \leqq i<j \leqq n} \operatorname{Link}\left(K_{i}, K_{j}\right)$.

For two links L_{1}, L_{2} in $R^{3}[a], R^{3}[b]$ respectively for $a<b, L_{1}$ is said to be related to L_{2} (or L_{1} and L_{2} are said to be related) if there is a locally flat proper surface F of genus zero in $R^{3}[a, b]$ with $F \cap R^{3}[a]=L_{1}$ and $F \cap R^{3}[b]=-L_{2}$, where $-L_{2}$ means the reflective inverse of L_{2}.

The Arf invariant of a proper link L, denoted by $\varphi(L)$, is defined to that of a knot related to L which is well-defined by Theorem 2 in [4].

Let V^{*}, V be solid tori with longitudes λ^{*}, λ respectively and μ a meridian of ∂V in R^{3}, where λ^{*} is a trivial knot, and f_{m} an orientation preserving onto homeomorphism of V^{*} onto V such that $f_{m}\left(\lambda^{*}\right)=\lambda+m \mu$ for an integer m. Especially f_{0} is said to be faithful. For a link ι^{*} in $V^{*}, f_{m}\left(\iota^{*}\right)$ is called a link T congruent to $\ell=f_{0}\left(l^{*}\right)$ (in V) and denoted by $l(m)$. The winding number of ℓ in V means the (algebraic) intersection number of ℓ and a meridian disk of V and is denoted by $w_{V}(\ell)$ or simply by $w(l)$.

Theorem 1. Let $\ell, \ell(m)$ and $p=w(\ell)$ be those of the above. Suppose that p is odd or both p and m are even. Then l is proper if and only if $\ell(m)$ is proper. Let l be a proper link.
(1) Assume that p is odd. Then

$$
\begin{array}{rlrl}
\varphi(\ell(m)) & =\varphi(\ell) & & \text { if } m \text { is even, or } m \text { is odd and } p=8 r \pm 1 \\
& \equiv \varphi(\ell)+1 & (\bmod 2) & \\
& \text { if } m \text { is odd and } p=8 r \pm 3 .
\end{array}
$$

(2) Assume that p and m are even. Then

$$
\begin{array}{rlrl}
\varphi(l(m)) & =\varphi(\ell) & & \text { if } p=4 r \\
& \equiv \varphi(\ell)+1 & (\bmod 2) & \\
& \text { if } p=4 r+2,
\end{array}
$$

for an integer r.

If p is even and m is odd in Theorem $1, \ell(m)$ is not always proper even though ℓ is proper.

Let $V_{1}^{*}, \cdots, V_{n}^{*}$ be mutually disjoint solid tori in R^{3} with cores $c_{1}^{*}, \cdots, c_{n}^{*}$ respectively such that $\Gamma^{*}=c_{1}^{*} \cup \cdots \cup c_{n}^{*}$ is a trivial link. An orientation preserving homeomorphism f of $C V^{*}=V_{1}^{*} \cup \cdots \cup V_{n}^{*}$ onto $Q V_{1} \cup V_{1} \cup \cdots \cup V_{n}$ is said to be faithful if $\left.f\right|_{V_{i}^{*}}: V_{i}^{*} \rightarrow V_{i}$ is faithful for $i=1, \cdots, n$. For a link $\iota^{*}=\iota_{1}^{*} \cup \cdots \cup \iota_{n}^{*}$ in $C V^{*}$, we write $f\left(l^{*}\right)\left(\right.$ or $\left.f\left(\iota_{i}^{*}\right)\right)$ by $\ell\left(\right.$ or $\left.\iota_{i}\right)$, where ι_{i}^{*} is a link in V_{i}^{*}.

Theorem 2. Let $\iota^{*}, \ell=\ell_{1} \cup \cdots \cup \ell_{n}$ and $\Gamma=f\left(\Gamma^{*}\right)$ be those of the above. Suppose thai $w\left(\iota_{i}\right) \equiv w\left(\iota_{j}\right)(=p)(\bmod 4)$ for $i, j=1, \cdots, n$ and $q=\operatorname{Link}(\Gamma)$. If ι^{*} and Γ are proper, then l is also proper and
(1) $\varphi(\ell) \equiv \varphi\left(\iota^{*}\right)+\varphi(\Gamma)(\bmod 2) \quad$ if p is odd
(2) $\varphi(\ell)=\varphi\left(\iota^{*}\right) \quad$ if p and q are even, or q is odd and $p=4 m$

$$
\equiv \varphi\left(\iota^{*}\right)+1(\bmod 2) \quad \text { if } q \text { is odd and } p=4 m+2
$$

for some integer m.
Corollary 1. Let $\ell^{*}, \ell, \Gamma, p$ and q be those of Theorem 2. If q is even, then

$$
\begin{aligned}
\varphi(\iota) & \equiv \varphi\left(\iota^{*}\right)+\varphi(\Gamma)(\bmod 2) & & \text { if } p \text { is odd } \\
& =\varphi\left(\iota^{*}\right) & & \text { if } p \text { is even. }
\end{aligned}
$$

If $n=1$ in Theorem 2, namely Γ is a knot, we define that $\operatorname{Link}(\Gamma)=0$. Hence we obtain the following.

Corollary 2. If Γ is a knot,

$$
\begin{aligned}
\varphi(\ell) & \equiv \varphi\left(\iota^{*}\right)+\varphi(\Gamma)(\bmod 2) & & \text { if } p \text { is odd } \\
& =\varphi\left(\iota^{*}\right) & & \text { if } p \text { is even. }
\end{aligned}
$$

Theorem 3. Let $\ell^{*}, \ell=\ell_{1} \cup \cdots \cup \ell_{n}$ be those of the above. Suppose that $w\left(\ell_{i}\right) \equiv w\left(\ell_{j}\right)(=p)(\bmod 2)$ and $\operatorname{Link}\left(c_{i}, \Gamma-c_{i}\right) \equiv 0(\bmod 4)$ for $i=1, \cdots, n$. If ι^{*} is proper, then l is proper and

$$
\begin{aligned}
\varphi(\ell) & \equiv \varphi\left(\iota^{*}\right)+\varphi(\Gamma)(\bmod 2) & & \text { if } p \text { is odd } \\
& =\varphi\left(\iota^{*}\right) & & \text { if } p \text { is even. }
\end{aligned}
$$

Theorem 4. Let $\ell=\ell_{1} \cup \cdots \cup \ell_{n}$ and Γ be those of the above. If Γ is a boundary link and ι_{i} is proper for $i=1, \cdots, n$, then $\varphi(\ell) \equiv \sum_{i=1}^{n} \varphi\left(\ell_{i}\right)(\bmod 2)$.

The author thanks to Doctor H. Murakami for his helpful advice.

Proof of Theorems.

Lemma 1 is easily obtained by Theorem 2 in [4].
Lemma 1. If two proper links L_{1} and L_{2} are related, then $\varphi\left(L_{1}\right)=\varphi\left(L_{2}\right)$.

For a knot K, \bar{K} means the knot orientation reversed to K. For a 2component link $L_{0}=K_{1} \cup K_{2}$, let $L_{0}^{\prime}=\bar{K}_{1} \cup K_{2}$ and $s=\operatorname{Link}\left(K_{1}, K_{2}\right)$.

Lemma 2 ([2]). $\quad V_{L_{0}^{\prime}}(t)=t^{-3 s} V_{L_{0}}(t)$ for Jones polynomials of L_{0}, L_{0}^{\prime}.
For a link L, a relation between Jones polynomial and the Arf invariant of L is known by [3].

Lemma 3 ([3]). For a n-component link L,

$$
V_{L}(\sqrt{-1})= \begin{cases}(\sqrt{2})^{n-1} \times(-1)^{\varphi(L)} & \text { if } L \text { is proper } \\ 0 & \text { if } L \text { is non-proper }\end{cases}
$$

By using the above Lemmas, we prove Lemma 4 which is effective to prove Theorems 1, 2 and 3.

Let $L=L_{1} \cup L_{2}$ be a link, where L_{1}, L_{2} consist of m_{1}, m_{2} knots $K_{1}, \cdots, K_{m_{1}}$, $K_{m_{1}+1}, \cdots, K_{m_{1}+m_{2}}$ respectively. The linking number of L_{1} and L_{2}, denoted by $\operatorname{Link}\left(L_{1}, L_{2}\right)$, means $\sum_{i=1}^{m_{1}} \sum_{j=m_{1}+1}^{m_{1}+m_{2}} \operatorname{Link}\left(K_{i}, K_{j}\right)$. For a link $L_{1}=K_{1} \cup \cdots \cup K_{m_{1}}$, we denote that $\bar{L}_{1}=\bar{K}_{1} \cup \cdots \cup \bar{K}_{m_{1}}$.

Lemma 4. Let $L=L_{1} \cup L_{2}$ be a proper link and $L^{\prime}=L_{1} \cup L_{2}$. Then L^{\prime} is also proper and $\operatorname{Link}\left(L_{1}, L_{2}\right)$ is even. Moreover

$$
\begin{aligned}
\varphi\left(L^{\prime}\right) & =\varphi(L) & & \text { if } \operatorname{Limk}\left(L_{1}, L_{2}\right) \equiv 0(\bmod 4) \\
& \equiv \varphi(L)+1(\bmod 2) & & \text { if } \operatorname{Link}\left(L_{1}, L_{2}\right) \equiv 2(\bmod 4) .
\end{aligned}
$$

Proof. Let $L_{1}=K_{1} \cup \cdots \cup K_{m_{1}}$ and $L_{2}=K_{m_{1}+1} \cup \cdots \cup K_{m_{1}+m_{2}}$. As L is proper, $\operatorname{Link}\left(K_{h}, L-K_{h}\right)=2 r_{h}$ for $K_{h} \subset L$ and some integer r_{h}. Then we see that $\operatorname{Link}\left(\bar{K}_{i}, L^{\prime}-\bar{K}_{i}\right)=2\left(r_{i}-\operatorname{Link}\left(K_{i}, L_{2}\right)\right)$ for $K_{i} \subset L_{1}$ and $\operatorname{Link}\left(K_{j}, L^{\prime}-K_{j}\right)=2$ $\left(r_{j}-\operatorname{Link}\left(K_{j}, L_{1}\right)\right)$ for $K_{j} \subset L_{2}$ and that $\operatorname{Link}\left(L_{1}, L_{2}\right)=2\left(r_{1}+\cdots+r_{m_{1}}-\operatorname{Link}\left(L_{1}\right)\right)$. Hence L^{\prime} is also proper and $\operatorname{Link}\left(L_{1}, L_{2}\right)$ is even.

Let $L_{0}=\kappa_{1} \cup \kappa_{2}$ be a 2 -component link related to L such that κ_{1}, κ_{2} are obtained by fusion (band sum) of L_{1}, L_{2} respectively and let $L_{0}^{\prime}=\bar{\kappa}_{1} \cup \kappa_{2}$ which is related to $L^{\prime} . \operatorname{As} \operatorname{Link}\left(\kappa_{1}, \kappa_{2}\right)=\operatorname{Link}\left(L_{1}, L_{2}\right)(=s)$ is even, L_{0} and L_{0}^{\prime} are proper. So by Lemma 1, $\varphi\left(L_{0}\right)=\varphi(L)$ and $\varphi\left(L_{0}^{\prime}\right)=\varphi\left(L^{\prime}\right) . \quad$ As $\operatorname{Link}\left(L_{1}, L_{2}\right)=\operatorname{Link}\left(\kappa_{1}, \kappa_{2}\right)$ $=s, V_{L_{0}^{\prime}}(t)=t^{-3 s} V_{L_{0}}(t)$ by Lemma 2 and hence $V_{L_{0}^{\prime}}(\sqrt{-1})=(\sqrt{-1})^{-3 s} V_{L_{0}}(\sqrt{-1})$. Therefore if $s \equiv 0(\bmod 4)$, then $\varphi\left(L^{\prime}\right)=\varphi\left(L_{0}^{\prime}\right)=\varphi\left(L_{0}\right)=\varphi(L)$ and if $s \equiv 2(\bmod 4)$, then $\varphi\left(L^{\prime}\right)=\varphi\left(L_{0}^{\prime}\right) \equiv \varphi\left(L_{0}\right)+1 \equiv \varphi(L)+1(\bmod 2)$.

For a link L in a solid torus V, the minimum of intersection of L and a meridian disk in V is called the order of L (in V) and denoted by $o_{V}(L)$ or simply by $o(L)$.

To prove Theorem 1, we prepare Lemma 5.
Lemma 5. Let $\mathcal{L}_{1}, \mathcal{L}_{2}$ and $\mathcal{L}_{3}, \mathcal{L}_{4}$ be torus links of type $(8 m \pm 1,8 m \pm 1)$, $(8 m \pm 3,8 m \pm 3)$ and $(4 m, 8 m),(4 m+2,8 m+4)$ for some integer m respectively.

Then $\mathcal{L}_{1}, \mathcal{L}_{2}$ and $\mathcal{L}_{3}, \mathcal{L}_{4}$ are proper. Furthermore if we orient \mathcal{L}_{i} so that o $\left(\mathcal{L}_{i}\right)=$ $w\left(\mathcal{L}_{i}\right)$ for each i, then $\varphi\left(\mathcal{L}_{1}\right)=\varphi\left(\mathcal{L}_{3}\right)=0$ and $\varphi\left(\mathcal{L}_{2}\right)=\varphi\left(\mathcal{L}_{4}\right)=1$.

Proof. It is easily seen that \mathcal{L}_{i} is proper for $i=1,2,3,4$.
Next suppose that $o\left(\mathcal{L}_{i}\right)=w\left(\mathcal{L}_{i}\right)$ for each $i . \quad \mathcal{L}_{1}$ consists of ($8 m \pm 1$)component. Let $\mathcal{L}_{11}, \mathcal{L}_{12}$ be disjoint sublinks of \mathcal{L}_{1} with $4 m,(4 m \pm 1)$-components respectively. Then $\operatorname{Link}\left(\mathcal{L}_{11}, \mathcal{L}_{12}\right)=4 m(4 m \pm 1)$. Hence $\varphi\left(\mathcal{L}_{1}\right)=\varphi$ $\left(\overline{\mathcal{L}}_{11} \cup \mathcal{L}_{12}\right)$ by Lemma 4. As $\overline{\mathcal{L}}_{11} \cup \mathcal{L}_{12}$ is related to a torus knot of type $(\pm 1, \pm 1)$, $\varphi\left(-\mathcal{L}_{1}\right)=0$. By the same way as above, we see that $\varphi\left(\mathcal{L}_{2}\right)=1$, for the Arf invariant of torus link of type $(\pm 3, \pm 3)$ is 1 .
\mathcal{L}_{3} consists of $4 m$-component and let $\mathcal{L}_{31}, \mathcal{L}_{32}$ be disjoint sublinks of \mathcal{L}_{3} with $2 m, 2 m$-components. Then $\operatorname{Link}\left(\mathcal{L}_{31}, \mathcal{L}_{32}\right)=8 m^{2}$. Hence $\varphi\left(\mathcal{L}_{3}\right)=\varphi\left(\overline{\mathcal{L}}_{31} \cup\right.$ \mathcal{L}_{32}) by Lemma 4. As $\overline{\mathcal{L}}_{31} \cup \mathcal{L}_{32}$ is related to a trivial knot, $\varphi\left(\mathcal{L}_{3}\right)=0$. By the same way as above, we easily see that $\varphi\left(\mathcal{L}_{4}\right)=1$.

Proof of Theorem 1. We easily see that, when p is odd or both p and m are even, ℓ is proper if and only if $\ell(m)$ is proper.

Let n be $o(\ell)$. Then $\ell(m)$ is obtained by a fusion of ℓ and a torus link \mathcal{L}_{0} of type ($n, m n$) split from ℓ in V and hence $\ell(m)$ is related to $\ell_{0} \mathcal{L}_{0}$, where \circ means that ℓ is split from \mathcal{L}_{0}. By the way, lo \mathcal{L}_{0} is related to lo \mathcal{L}, where \mathcal{L} is a torus link of type $(p, m p)$ for $p=w(\mathcal{L})$. If ℓ and $\ell(m)$ are proper, $\mathcal{L}_{0}, \mathcal{L}$ are also proper and $\varphi(\ell(m))=\varphi\left(l_{0} \mathcal{L}_{0}\right)=\varphi\left(\ell_{0} \mathcal{L}\right)$ by Lemma 1 . Hence we obtain Theorem 1 by Lemma 5.

Let $C V=V_{1} \cup \cdots \cup V_{n}$ be the union of mutually disjoint solid tori in R^{3} and Γ that of Theorem 2. For a core c_{i}, take a p_{i}-component link, denoted by $p_{i} c_{i}$, in V_{i}, each of which is parallel and homologous to c_{i} and non-twisted, namely $p_{i} c_{i}$ is contained on a non-twisted annulus A_{i} in V_{i} with $\partial A_{i} \supset c_{i}$, in V_{i} for $i=1, \cdots, n$. Especially if $p_{i}=p_{j}(=p)$, we denote $p c_{1} \cup \cdots \cup p c_{n}$ by $p \Gamma$.

In Lemma 6, we consider the case that $p=2$ which is used to prove Lemma 7.
Lemma 6. $\varphi(2 \Gamma)= \begin{cases}0 & \text { if } q \text { is even } \\ 1 & \text { if } q \text { is odd, where } q=\operatorname{Link}(\Gamma) \text {. }\end{cases}$
Proof. Let $2 \Gamma=\Gamma \cup \Gamma^{\prime}$. As $c_{i} \cup c_{i}^{\prime}\left(\subset \Gamma \cup \Gamma^{\prime}\right)$ is non-twisted, $\operatorname{Link}\left(\Gamma, \Gamma^{\prime}\right)=$ $2 q$. Hence if q is even, $\varphi(2 \Gamma)=\varphi\left(\bar{\Gamma} \cup \Gamma^{\prime}\right)$ and if q is odd, $\varphi(2 \Gamma) \equiv \varphi\left(\bar{\Gamma} \cup \Gamma^{\prime}\right)+1$ ($\bmod 2$) by Lemma 4. As $\bar{\Gamma} \cup \Gamma^{\prime}$ is related to a trivial knot, we obtain Lemma 6 by Lemma 1.

Lemma 7. If Γ is proper, $p \Gamma$ is also proper and

$$
\begin{align*}
& \varphi(p \Gamma)=\varphi(\Gamma) \text { if } p \text { is odd } \tag{1}\\
& \varphi(p \Gamma)= \begin{cases}0 & \text { if } p \text { and } q \text { are even, or } q \text { is odd and } p=4 m \\
1 & \text { if } q \text { is odd and } p=4 m+2\end{cases}
\end{align*}
$$

for some integer m and $q=\operatorname{Link}(\Gamma)$. Hence if q is even,

$$
\varphi(p \Gamma)= \begin{cases}\varphi(\Gamma) & \text { if } p \text { is odd } \\ 0 & \text { if } p \text { is even }\end{cases}
$$

Proof. As $p c_{i}$ is non-twisted, we easily see that if Γ is proper, $p \Gamma$ is also proper.

Lemma 7 is clear if $p=0$. Hence we assume that $p>0$. Each $p c_{i}$ consists of p components, say $c_{i 1}, \cdots, c_{i p}$. Let $L_{1}=c_{11} \cup c_{21} \cup \cdots \cup c_{n 1}$ and $L_{2}=p \Gamma-L_{1}$. Then we see that $\operatorname{Link}\left(L_{1}, L_{2}\right)=2(p-1) q$.

If p is odd or q is even, $\varphi(p \Gamma)=\varphi\left(L_{1} \cup L_{2}\right)$ by Lemma 4. As $L_{1} \cup L_{2}$ is related to $(p-2) \Gamma, \varphi(p \Gamma)=\varphi((p-2) \Gamma)$ by Lemma 1. By doing this successively, if p is odd, $\varphi(p \Gamma)=\varphi(\Gamma)$ and if both p and q are even, $\varphi(p \Gamma)=\varphi(\mathcal{O})=0$ for a trivial knot \mathcal{O}.

Next we consider the case that q is odd and p is even. Then,

$$
\varphi(p \Gamma) \equiv \varphi((p-2) \Gamma)+1 \equiv \varphi((p-4) \Gamma) \quad(\bmod 2)
$$

by Lemma 4. Hence if $p=4 m, \varphi(p \Gamma)=\varphi(\mathcal{O})=0$ and if $p=4 m+2, \varphi(p \Gamma)=$ $\varphi(2 \Gamma)=1$ by Lemma 6.

By the similar proof of Lemma 7, we obtain Lemma 8.
Lemma 8. Let $p_{i} \equiv p_{j}(\bmod 4)$ and $p=\operatorname{Min}\left\{p_{1}, \cdots, p_{n}\right\}$. Then $\varphi(p \Gamma)=$ $\varphi\left(p_{1} c_{1} \cup \cdots \cup p_{n} c_{n}\right)$ for a proper link $\Gamma=c_{1} \cup \cdots \cup c_{n}$.

Let \mathcal{L}_{i} be a link in V_{i} with r_{i} components for some integer r_{i} such that \mathcal{L}_{i} is non-twisted and parallel to c_{i} and $w\left(\mathcal{L}_{i}\right)=p_{i}\left(\leqq r_{i}\right)$ for $i=1, \cdots, n$. Then as $\mathcal{L}=\mathcal{L}_{1} \cup \cdots \cup \mathcal{L}_{n}$ is related to $p_{1} c_{1} \cup \cdots \cup p_{n} c_{n}$, we obtain Lemma 9 .

Lemma 9. If Γ is proper and $p_{i} \equiv p_{j}(\bmod 2), \mathcal{L}$ is also proper and $\varphi(\mathcal{L})=$ $\varphi\left(p_{1} c_{1} \cup \cdots \cup p_{n} c_{n}\right)$.

Proof of Theorem 2. Let $\mathcal{G}=U_{1} \cup \cdots \cup U_{n}$ be the union of mutually disjoint solid tori in R^{3} with core $-\Gamma=\left(-c_{1}\right) \cup \cdots \cup\left(-c_{n}\right)$, the reflective inverse of Γ, split from \mathcal{V} by a 2 -sphere S^{2} and symmetric with respect to S^{2}. For $\ell=\ell_{1} \cup \cdots \cup \ell_{n}$ in ϑ, let $\tilde{\mathcal{L}_{i}}$ be a link with $r_{i}\left(=o\left(\ell_{i}\right)\right)$ components in U_{i} such that $\tilde{\mathcal{L}_{i}}$ is non-twisted and parallel to $-c_{i}$ and $w\left(\tilde{\mathcal{L}_{i}}\right)=p_{i}\left(=w\left(\ell_{i}\right)\right), i=1, \cdots, n$. Attach a 3-ball B_{i}^{3} to $V_{i} \cup U_{i}$ such that $V_{i} \cup U_{i} \cup B_{i}^{3}$ is symmetric with respect to S^{2}, Fig. 1(b) for each i. Let M_{i}, M_{i}^{\prime} be meridian disks of V_{i}, U_{i} respectively such that $\#\left(\ell_{i} \cap M_{i}\right)=\#\left(\tilde{\mathcal{L}_{i}} \cap M_{i}^{\prime}\right)=p_{i}$ and $M_{i} \cap B_{i}=\partial M_{i} \cap \partial B_{i}\left(=\left\{\right.\right.$ an $\left.\left.\operatorname{arc} \alpha_{i}\right\}\right), M_{i}^{\prime} \cap$ $B_{i}=\partial M_{i}^{\prime} \cap \partial B_{i}\left(=\left\{\right.\right.$ an arc $\left.\left.\beta_{i}\right\}\right)$, where $\#(X)$ means the number of points of X, see Fig. 1(a). Let D_{i} be a proper non-twisted disk in B_{i} with $\partial D_{i} \supset \alpha_{i} \cup \beta_{i}$ and $\Delta_{i}=M_{i} \cup M_{i}^{\prime} \cup D_{i}$. For each i, perform the fusion of $\ell_{i} \circ \tilde{\mathcal{L}_{i}}$ along Δ_{i} and we obtain a link L_{i} which is contained in a solid torus $W_{i}=\overline{V_{i} \cup U_{i} \cup B_{i}-\Delta_{i} \times[-\varepsilon, \varepsilon]}$

Fig. 1
for a small positive number ε, Fig. 1(c). Then $\mathscr{W}=W_{1} \cup \cdots \cup W_{n}$ is the union of disjoint solid tori which is symmetric with respect to S^{2} by the construction. So the core of \mathscr{W} is cobordant to zero by [1] and hence $L=L_{1} \cup \cdots \cup L_{n}$ is cobordant to $L^{*}=L_{1}^{*} \cup \cdots \cup L_{n}^{*}$ by [5], [6] for a faithful homeomorphism f_{0} of \mathscr{W}^{*} onto \mathscr{W}, where $L=f_{0}\left(L^{*}\right)$. As $\tilde{\mathcal{L}}_{i}$ is non-twisted, L^{*} is ambient isotopic to L^{*}. As L is cobordant to l^{*} and ℓ^{*} is proper, L is also proper. Moreover as Γ is proper, $\tilde{\mathcal{L}}=\tilde{\mathcal{L}_{1}} \cup \cdots \cup \tilde{\mathcal{L}_{n}}$ is proper. Hence we easily see that ℓ is also proper. As L and $10 \mathcal{L}$ are related,

$$
\varphi(\iota)+\varphi(\tilde{\mathcal{L}}) \equiv \varphi(L)=\varphi\left(L^{*}\right)=\varphi\left(\iota^{*}\right) \quad(\bmod 2)
$$

So we obtain Theorem 2 by Lemmas 7, 8 and 9 .
Remark 1. In Theorem 2, if we replace the condition " $p_{i} \equiv p_{j}(\bmod 4)$ " by " $p_{i} \equiv p_{j}(\bmod 2)$ ", the conclusion is not true. For example, we consider the links Γ, ι illustrated in Fig. 2. Then $\varphi(\Gamma)=0$ and $\varphi(\iota)=1$, hence $\varphi(\iota) \equiv \varphi\left(\iota^{*}\right)+\varphi(\Gamma)$ $(\bmod 2)$.

Fig. 2
Proof of Theorem 3. As $\operatorname{Link}\left(c_{i}, \Gamma-c_{i}\right) \equiv 0(\bmod 4), \operatorname{Link}\left(c_{i}, \Gamma-c_{i}\right)=4 r_{i}$ for some integer r_{i} for each i. Then $2 \operatorname{Link}(\Gamma)=\sum_{i=1}^{n} \operatorname{Link}\left(c_{i}, \Gamma-c_{i}\right)=4\left(r_{1}+\cdots+\right.$
r_{n}). Hence $\operatorname{Link}(\Gamma)$ is even. Therefore we obtain Theorem 3 by Lemma 7 and the proof of Theorem 2.

Remark 2. The link in Fig. 2 is an example that the conclusion of Theorem 3 is not true if we replace that $" \operatorname{Link}\left(c_{i}, \Gamma-c_{i}\right) \equiv 0(\bmod 4)$ " by $" \operatorname{Link}\left(c_{i}, \Gamma-c_{i}\right)$ $\equiv 0($ mod 2$)$ ".

Example 1. Let Γ, ι be links illustrated in Fig. 3. As $\operatorname{Link}(\Gamma)=3$ and ι^{*} is a trivial link, $\varphi(\iota)=\varphi\left(\iota^{*}\right)+1=1$ by Theorem 2.

Fig. 3
Example 2. Let ℓ be a link illustrated in Fig. 4. As Γ is the Whitehead link, $\operatorname{Link}(\Gamma)=0$ and $\varphi(\Gamma)=1$ and ι^{*} is a trivial link. Hence $\varphi(\iota) \equiv \varphi\left(\iota^{*}\right)+\varphi(\Gamma)$ $=1$ by Theorem 3 .

Fig. 4
Proof of Theorem 4. For a proper link ℓ_{i} in V_{i}, let k_{i} be a knot obtained by a fusion of ℓ_{i} in V_{i} for each i. As ℓ_{i}, ℓ are related to $k_{i}, \ell_{0}=k_{1} \cup \cdots \cup k_{n}$ respectively, $\varphi\left(\ell_{i}\right)=\varphi\left(k_{i}\right)$ and $\varphi(\ell)=\varphi\left(\ell_{0}\right)$ by Lemma 1. Furthermore as Γ is a boundary link, there are mutually disjoint surfaces $\mathscr{F}=F_{1} \cup \cdots \cup F_{n}$ with $\partial \mathscr{F}=l_{0}$, $\partial F_{i}=k_{i}$. Then $\varphi\left(\ell_{0}\right)=\sum_{i=1}^{n} \varphi\left(k_{i}\right)(\bmod 2)$ by Theorem 3 in [4]. Hence we obtain that

$$
\varphi(l)=\varphi\left(l_{0}\right) \equiv \sum_{i=1}^{n} \varphi\left(k_{i}\right) \equiv \sum_{i=1}^{n} \varphi\left(l_{i}\right) \quad(\bmod 2)
$$

References

[1] F. Hosokawa: A concept of cobordism between links, Ann. of Math. 86 (1967), 362-373.
[2] V.F.R. Jones: A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), 103-111.
[3] H. Murakami: A recursive calculation of the Arf invariant of a link, Math. Soc. Japan, 38 (1986), 335-338.
[4] R.A. Robertello: An invariant of knot cobordism, Comm. Pure Appl. Math., 18 (1965), 543-555.
[5] T. Shibuya: On the cobordism of compound knots, Math. Sem. Notes Kobe Univ., 8 (1980), 331-337.
[6] T. Shibuya: A condition for links to be cobordant to zero, Memoirs of Osaka Inst. Tech. 30 (1985), 11-16.

Department of Mathematics
Osaka Institute of Technology
Asahi, Osaka 535
Japan

