Shibuya, T. Osaka J. Math. 26 (1989), 483-490

THE ARF INVARIANT OF PROPER LINKS IN SOLID TORI

Dedicated to Professor Junzo Tao on his 60 th birthday

Tetsuo SHIBUYA

(Received July 6, 1988)

Let $L=K_1\cup\cdots\cup K_n$ be a tame oriented link with *n* components in a 3-space R^3 . *L* is said to be *proper* if the linking number of a knot K_i and $L-K_i$, denoted by $Link(K_i, L-K_i) (= \sum_{1 \le j \le n, j \ne i} Link(K_i, K_j))$, is even for $i=1, \cdots, n$. The total linking number of *L*, denoted by Link(L), means $\sum_{1 \le i \le n} Link(K_i, K_j)$.

For two links L_1, L_2 in $\mathbb{R}^3[a]$, $\mathbb{R}^3[b]$ respectively for a < b, L_1 is said to be related to L_2 (or L_1 and L_2 are said to be related) if there is a locally flat proper surface F of genus zero in $\mathbb{R}^3[a, b]$ with $F \cap \mathbb{R}^3[a] = L_1$ and $F \cap \mathbb{R}^3[b] = -L_2$, where $-L_2$ means the reflective inverse of L_2 .

The Arf invariant of a proper link L, denoted by $\varphi(L)$, is defined to that of a knot related to L which is well-defined by Theorem 2 in [4].

Let V^* , V be solid tori with longitudes λ^* , λ respectively and μ a meridian of ∂V in \mathbb{R}^3 , where λ^* is a trivial knot, and f_m an orientation preserving onto homeomorphism of V^* onto V such that $f_m(\lambda^*) = \lambda + m\mu$ for an integer m. Especially f_0 is said to be *faithful*. For a link ℓ^* in V^* , $f_m(\ell^*)$ is called a link Tcongruent to $\ell = f_0(\ell^*)$ (in V) and denoted by $\ell(m)$. The winding number of ℓ in Vmeans the (algebraic) intersection number of ℓ and a meridian disk of V and is denoted by $w_V(\ell)$ or simply by $w(\ell)$.

Theorem 1. Let l, l(m) and p=w(l) be those of the above. Suppose that p is odd or both p and m are even. Then l is proper if and only if l(m) is proper. Let l be a proper link.

(1) Assume that p is odd. Then

$$\varphi(l(m)) = \varphi(l)$$
 if m is even, or m is odd and $p=8r\pm 1$
 $\equiv \varphi(l)+1 \pmod{2}$ if m is odd and $p=8r\pm 3$.
(2) Assume that p and m are even. Then
 $\varphi(l(m)) = \varphi(l)$ if $p=4r$
 $\equiv \varphi(l)+1 \pmod{2}$ if $p=4r+2$,

for an integer r.

If p is even and m is odd in Theorem 1, l(m) is not always proper even though l is proper.

Let V_1^*, \dots, V_n^* be mutually disjoint solid tori in \mathbb{R}^3 with cores c_1^*, \dots, c_n^* respectively such that $\Gamma^* = c_1^* \cup \dots \cup c_n^*$ is a trivial link. An orientation preserving homeomorphism f of $\mathbb{C}V^* = V_1^* \cup \dots \cup V_n^*$ onto $\mathbb{C}V = V_1 \cup \dots \cup V_n$ is said to be *faithful* if $f |_{V_i^*} : V_i^* \to V_i$ is faithful for $i=1, \dots, n$. For a link $\ell^* = \ell_1^* \cup \dots \cup \ell_n^*$ in $\mathbb{C}V^*$, we write $f(\ell^*)$ (or $f(\ell_i^*)$) by ℓ (or ℓ_i), where ℓ_i^* is a link in V_i^* .

Theorem 2. Let l^* , $l = l_1 \cup \cdots \cup l_n$ and $\Gamma = f(\Gamma^*)$ be those of the above. Suppose that $w(l_i) \equiv w(l_j) (=p) \pmod{4}$ for $i, j=1, \dots, n$ and $q = Link(\Gamma)$. If l^* and Γ are proper, then l is also proper and

(1) $\varphi(l) \equiv \varphi(l^*) + \varphi(\Gamma) \pmod{2}$ if p is odd (2) $\varphi(l) = \varphi(l^*)$ if p and q are even, or q is odd and p = 4m $\equiv \varphi(l^*) + 1 \pmod{2}$ if q is odd and p = 4m + 2

for some integer m.

Corollary 1. Let l^* , l, Γ , p and q be those of Theorem 2. If q is even, then

$$\varphi(l) \equiv \varphi(l^*) + \varphi(\Gamma) \pmod{2} \quad if \ p \ is \ odd \\ = \varphi(l^*) \qquad if \ p \ is \ even.$$

If n=1 in Theorem 2, namely Γ is a knot, we define that $Link(\Gamma)=0$. Hence we obtain the following.

Corollary 2. If
$$\Gamma$$
 is a knot,
 $\varphi(l) \equiv \varphi(l^*) + \varphi(\Gamma) \pmod{2}$ if p is odd
 $= \varphi(l^*)$ if p is even.

Theorem 3. Let l^* , $l=l_1 \cup \cdots \cup l_n$ be those of the above. Suppose that $w(l_i) \equiv w(l_j) (=p) \pmod{2}$ and $Link(c_i, \Gamma - c_i) \equiv 0 \pmod{4}$ for $i=1, \dots, n$. If l^* is proper, then l is proper and

 $\varphi(l) \equiv \varphi(l^*) + \varphi(\Gamma) \pmod{2} \quad if \ p \ is \ odd$ $= \varphi(l^*) \qquad if \ p \ is \ even.$

Theorem 4. Let $l = l_1 \cup \cdots \cup l_n$ and Γ be those of the above. If Γ is a boundary link and l_i is proper for $i=1, \dots, n$, then $\varphi(l) \equiv \sum_{i=1}^{n} \varphi(l_i) \pmod{2}$.

The author thanks to Doctor H. Murakami for his helpful advice.

Proof of Theorems.

Lemma 1 is easily obtained by Theorem 2 in [4].

Lemma 1. If two proper links L_1 and L_2 are related, then $\varphi(L_1) = \varphi(L_2)$.

484

For a knot K, \vec{K} means the knot orientation reversed to K. For a 2component link $L_0 = K_1 \cup K_2$, let $L'_0 = \vec{K}_1 \cup K_2$ and $s = Link(K_1, K_2)$.

Lemma 2 ([2]). $V_{L'_0}(t) = t^{-3s} V_{L_0}(t)$ for Jones polynomials of L_0, L'_0 .

For a link L, a relation between Jones polynomial and the Arf invariant of L is known by [3].

Lemma 3 ([3]). For a n-component link L,

$$V_{L}(\sqrt{-1}) = \begin{cases} (\sqrt{2})^{n-1} \times (-1)^{\varphi(L)} & \text{if } L \text{ is proper} \\ 0 & \text{if } L \text{ is non-proper.} \end{cases}$$

By using the above Lemmas, we prove Lemma 4 which is effective to prove Theorems 1, 2 and 3.

Let $L=L_1 \cup L_2$ be a link, where L_1 , L_2 consist of m_1 , m_2 knots K_1 , \dots , K_{m_1} , K_{m_1+1} , \dots , $K_{m_1+m_2}$ respectively. The linking number of L_1 and L_2 , denoted by $Link(L_1, L_2)$, means $\sum_{i=1}^{m_1} \sum_{j=m_1+1}^{m_1+m_2} Link(K_i, K_j)$. For a link $L_1=K_1 \cup \dots \cup K_{m_1}$, we denote that $L_1=\overline{K_1} \cup \dots \cup \overline{K_{m_1}}$.

Lemma 4. Let $L=L_1 \cup L_2$ be a proper link and $L'=\overline{L}_1 \cup L_2$. Then L' is also proper and $Link(L_1, L_2)$ is even. Moreover

$$\begin{aligned} \varphi(L') = \varphi(L) & \text{if } Link(L_1, L_2) \equiv 0 \pmod{4} \\ \equiv \varphi(L) + 1 \pmod{2} & \text{if } Link(L_1, L_2) \equiv 2 \pmod{4}. \end{aligned}$$

Proof. Let $L_1 = K_1 \cup \cdots \cup K_{m_1}$ and $L_2 = K_{m_1+1} \cup \cdots \cup K_{m_1+m_2}$. As L is proper, $Link(K_h, L-K_h) = 2r_h$ for $K_h \subset L$ and some integer r_h . Then we see that $Link(\bar{K}_i, L'-\bar{K}_i) = 2 (r_i - Link(K_i, L_2))$ for $K_i \subset L_1$ and $Link(K_j, L'-K_j) = 2 (r_j - Link(K_j, L_1))$ for $K_j \subset L_2$ and that $Link(L_1, L_2) = 2 (r_1 + \cdots + r_{m_1} - Link(L_1))$. Hence L' is also proper and $Link(L_1, L_2)$ is even.

Let $L_0 = \kappa_1 \cup \kappa_2$ be a 2-component link related to L such that κ_1, κ_2 are obtained by fusion (band sum) of L_1, L_2 respectively and let $L'_0 = \bar{\kappa}_1 \cup \kappa_2$ which is related to L'. As $Link(\kappa_1, \kappa_2) = Link(L_1, L_2) (=s)$ is even, L_0 and L'_0 are proper. So by Lemma 1, $\varphi(L_0) = \varphi(L)$ and $\varphi(L'_0) = \varphi(L')$. As $Link(L_1, L_2) = Link(\kappa_1, \kappa_2) = s$, $V_{L'_0}(t) = t^{-3s} V_{L_0}(t)$ by Lemma 2 and hence $V_{L'_0}(\sqrt{-1}) = (\sqrt{-1})^{-3s} V_{L_0}(\sqrt{-1})$. Therefore if $s \equiv 0 \pmod{4}$, then $\varphi(L') = \varphi(L'_0) = \varphi(L_0) = \varphi(L)$ and if $s \equiv 2 \pmod{4}$, then $\varphi(L') = \varphi(L'_0) = \varphi(L_0) + 1 \equiv \varphi(L) + 1 \pmod{2}$.

For a link L in a solid torus V, the minimum of intersection of L and a meridian disk in V is called the *order* of L (in V) and denoted by $o_V(L)$ or simply by o(L).

To prove Theorem 1, we prepare Lemma 5.

Lemma 5. Let $\mathcal{L}_1, \mathcal{L}_2$ and $\mathcal{L}_3, \mathcal{L}_4$ be torus links of type $(8m \pm 1, 8m \pm 1)$, $(8m \pm 3, 8m \pm 3)$ and (4m, 8m), (4m + 2, 8m + 4) for some integer m respectively.

T. SHIBUYA

Then \mathcal{L}_1 , \mathcal{L}_2 and \mathcal{L}_3 , \mathcal{L}_4 are proper. Furthermore if we orient \mathcal{L}_i so that $o(\mathcal{L}_i) = w(\mathcal{L}_i)$ for each *i*, then $\varphi(\mathcal{L}_1) = \varphi(\mathcal{L}_3) = 0$ and $\varphi(\mathcal{L}_2) = \varphi(\mathcal{L}_4) = 1$.

Proof. It is easily seen that \mathcal{L}_i is proper for i=1, 2, 3, 4.

Next suppose that $o(\mathcal{L}_i) = w(\mathcal{L}_i)$ for each *i*. \mathcal{L}_1 consists of $(8m\pm 1)$ component. Let $\mathcal{L}_{11}, \mathcal{L}_{12}$ be disjoint sublinks of \mathcal{L}_1 with 4m, $(4m\pm 1)$ -components respectively. Then $Link(\mathcal{L}_{11}, \mathcal{L}_{12}) = 4m$ $(4m\pm 1)$. Hence $\varphi(\mathcal{L}_1) = \varphi$ $(\bar{\mathcal{L}}_{11} \cup \mathcal{L}_{12})$ by Lemma 4. As $\bar{\mathcal{L}}_{11} \cup \mathcal{L}_{12}$ is related to a torus knot of type $(\pm 1, \pm 1)$, $\varphi(\mathcal{L}_1) = 0$. By the same way as above, we see that $\varphi(\mathcal{L}_2) = 1$, for the Arf invariant of torus link of type $(\pm 3, \pm 3)$ is 1.

 \mathcal{L}_3 consists of 4*m*-component and let $\mathcal{L}_{31}, \mathcal{L}_{32}$ be disjoint sublinks of \mathcal{L}_3 with 2*m*, 2*m*-components. Then $Link(\mathcal{L}_{31}, \mathcal{L}_{32}) = 8m^2$. Hence $\varphi(\mathcal{L}_3) = \varphi(\bar{\mathcal{L}}_{31} \cup \mathcal{L}_{32})$ by Lemma 4. As $\bar{\mathcal{L}}_{31} \cup \mathcal{L}_{32}$ is related to a trivial knot, $\varphi(\mathcal{L}_3) = 0$. By the same way as above, we easily see that $\varphi(\mathcal{L}_4) = 1$.

Proof of Theorem 1. We easily see that, when p is odd or both p and m are even, l is proper if and only if l(m) is proper.

Let *n* be o(l). Then l(m) is obtained by a fusion of l and a torus link \mathcal{L}_0 of type (n, mn) split from l in V and hence l(m) is related to $l \circ \mathcal{L}_0$, where \circ means that l is split from \mathcal{L}_0 . By the way, $l \circ \mathcal{L}_0$ is related to $l \circ \mathcal{L}$, where \mathcal{L} is a torus link of type (p, mp) for $p = w(\mathcal{L})$. If l and l(m) are proper, \mathcal{L}_0 , \mathcal{L} are also proper and $\varphi(l(m)) = \varphi(l \circ \mathcal{L}_0) = \varphi(l \circ \mathcal{L})$ by Lemma 1. Hence we obtain Theorem 1 by Lemma 5.

Let $CV = V_1 \cup \cdots \cup V_n$ be the union of mutually disjoint solid tori in \mathbb{R}^3 and Γ that of Theorem 2. For a core c_i , take a p_i -component link, denoted by $p_i c_i$, in V_i , each of which is parallel and homologous to c_i and non-twisted, namely $p_i c_i$ is contained on a non-twisted annulus A_i in V_i with $\partial A_i \supset c_i$, in V_i for $i=1, \dots, n$. Especially if $p_i = p_j (=p)$, we denote $pc_1 \cup \cdots \cup pc_n$ by $p\Gamma$.

In Lemma 6, we consider the case that p=2 which is used to prove Lemma 7.

Lemma 6. $\varphi(2\Gamma) = \begin{cases} 0 & \text{if } q \text{ is even} \\ 1 & \text{if } q \text{ is odd, where } q = Link(\Gamma). \end{cases}$

Proof. Let $2\Gamma = \Gamma \cup \Gamma'$. As $c_i \cup c'_i (\subset \Gamma \cup \Gamma')$ is non-twisted, $Link(\Gamma, \Gamma') = 2q$. Hence if q is even, $\varphi(2\Gamma) = \varphi(\overline{\Gamma} \cup \Gamma')$ and if q is odd, $\varphi(2\Gamma) \equiv \varphi(\overline{\Gamma} \cup \Gamma') + 1$ (mod 2) by Lemma 4. As $\overline{\Gamma} \cup \Gamma'$ is related to a trivial knot, we obtain Lemma 6 by Lemma 1.

Lemma 7. If Γ is proper, $p\Gamma$ is also proper and (1) $\varphi(p\Gamma) = \varphi(\Gamma)$ if p is odd (2) $\varphi(p\Gamma) = \begin{cases} 0 & \text{if } p \text{ and } q \text{ are even, or } q \text{ is odd and } p=4m \\ 1 & \text{if } q \text{ is odd and } p=4m+2 \end{cases}$

486

for some integer m and $q=Link(\Gamma)$. Hence if q is even,

$$\varphi(p\Gamma) = \begin{cases} \varphi(\Gamma) & \text{if } p \text{ is odd} \\ 0 & \text{if } p \text{ is even.} \end{cases}$$

Proof. As pc_i is non-twisted, we easily see that if Γ is proper, $p\Gamma$ is also proper.

Lemma 7 is clear if p=0. Hence we assume that p>0. Each pc_i consists of p components, say c_{i_1}, \dots, c_{i_p} . Let $L_1=c_{11}\cup c_{21}\cup\dots\cup c_{n1}$ and $L_2=p\Gamma-L_1$. Then we see that $Link(L_1, L_2)=2(p-1)q$.

If p is odd or q is even, $\varphi(p\Gamma) = \varphi(L_1 \cup L_2)$ by Lemma 4. As $L_1 \cup L_2$ is related to $(p-2) \Gamma$, $\varphi(p\Gamma) = \varphi((p-2) \Gamma)$ by Lemma 1. By doing this successively, if p is odd, $\varphi(p\Gamma) = \varphi(\Gamma)$ and if both p and q are even, $\varphi(p\Gamma) = \varphi(\mathcal{O}) = 0$ for a trivial knot \mathcal{O} .

Next we consider the case that q is odd and p is even. Then,

$$\varphi(p\Gamma) \equiv \varphi((p-2)\Gamma) + 1 \equiv \varphi((p-4)\Gamma) \pmod{2}$$

by Lemma 4. Hence if p=4m, $\varphi(p\Gamma)=\varphi(\mathcal{O})=0$ and if p=4m+2, $\varphi(p\Gamma)=\varphi(2\Gamma)=1$ by Lemma 6.

By the similar proof of Lemma 7, we obtain Lemma 8.

Lemma 8. Let $p_i \equiv p_j \pmod{4}$ and $p = Min \{p_1, \dots, p_n\}$. Then $\varphi(p\Gamma) = \varphi(p_1 c_1 \cup \dots \cup p_n c_n)$ for a proper link $\Gamma = c_1 \cup \dots \cup c_n$.

Let \mathcal{L}_i be a link in V_i with r_i components for some integer r_i such that \mathcal{L}_i is non-twisted and parallel to c_i and $w(\mathcal{L}_i)=p_i(\leq r_i)$ for $i=1, \dots, n$. Then as $\mathcal{L}=\mathcal{L}_1\cup\cdots\cup\mathcal{L}_n$ is related to $p_1c_1\cup\cdots\cup p_nc_n$, we obtain Lemma 9.

Lemma 9. If Γ is proper and $p_i \equiv p_j \pmod{2}$, \mathcal{L} is also proper and $\varphi(\mathcal{L}) = \varphi(p_1 c_1 \cup \cdots \cup p_n c_n)$.

Proof of Theorem 2. Let $\mathcal{U} = U_1 \cup \cdots \cup U_n$ be the union of mutually disjoint solid tori in \mathbb{R}^3 with core $-\Gamma = (-c_1) \cup \cdots \cup (-c_n)$, the reflective inverse of Γ , split from \mathcal{V} by a 2-sphere S^2 and symmetric with respect to S^2 . For $\ell = \ell_1 \cup \cdots \cup \ell_n$ in \mathcal{V} , let $\tilde{\mathcal{L}}_i$ be a link with $r_i (=o(\ell_i))$ components in U_i such that $\tilde{\mathcal{L}}_i$ is non-twisted and parallel to $-c_i$ and $w(\tilde{\mathcal{L}}_i) = p_i(=w(\ell_i)), i=1, \cdots, n$. Attach a 3-ball B_i^3 to $V_i \cup U_i$ such that $V_i \cup U_i \cup B_i^3$ is symmetric with respect to S^2 , Fig. 1(b) for each *i*. Let M_i, M'_i be meridian disks of V_i, U_i respectively such that $\sharp(\ell_i \cap M_i) = \sharp(\tilde{\mathcal{L}}_i \cap M'_i) = p_i$ and $M_i \cap B_i = \partial M_i \cap \partial B_i (= \{\text{an arc } \alpha_i\}), M'_i \cap B_i = \partial M'_i \cap \partial B_i (= \{\text{an arc } \beta_i\})$, where $\sharp(X)$ means the number of points of X, see Fig. 1(a). Let D_i be a proper non-twisted disk in B_i with $\partial D_i \supset \alpha_i \cup \beta_i$ and $\Delta_i = M_i \cup M'_i \cup D_i$. For each *i*, perform the fusion of $\ell_i \circ \tilde{\mathcal{L}}_i$ along Δ_i and we obtain a link L_i which is contained in a solid torus $W_i = \overline{V_i \cup U_i \cup B_i} - \Delta_i \times [-\mathcal{E}, \mathcal{E}]$

for a small positive number \mathcal{E} , Fig. 1(c). Then $\mathcal{W}=W_1\cup\cdots\cup W_n$ is the union of disjoint solid tori which is symmetric with respect to S^2 by the construction. So the core of \mathcal{W} is cobordant to zero by [1] and hence $L=L_1\cup\cdots\cup L_n$ is cobordant to $L^*=L_1^*\cup\cdots\cup L_n^*$ by [5], [6] for a faithful homeomorphism f_0 of \mathcal{W}^* onto \mathcal{W} , where $L=f_0(L^*)$. As $\tilde{\mathcal{L}}_i$ is non-twisted, L^* is ambient isotopic to ℓ^* . As L is cobordant to ℓ^* and ℓ^* is proper, L is also proper. Moreover as Γ is proper, $\tilde{\mathcal{L}}=\tilde{\mathcal{L}}_1^{-}\cup\cdots\cup\tilde{\mathcal{L}}_n^{-}$ is proper. Hence we easily see that ℓ is also proper. As L and $\ell \circ \tilde{\mathcal{L}}$ are related,

$$\varphi(\ell) + \varphi(\mathcal{L}) \equiv \varphi(L) = \varphi(L^*) = \varphi(\ell^*) \pmod{2}.$$

So we obtain Theorem 2 by Lemmas 7, 8 and 9.

REMARK 1. In Theorem 2, if we replace the condition " $p_i \equiv p_j \pmod{4}$ " by " $p_i \equiv p_j \pmod{2}$ ", the conclusion is not true. For example, we consider the links Γ, ℓ illustrated in Fig. 2. Then $\varphi(\Gamma)=0$ and $\varphi(\ell)=1$, hence $\varphi(\ell) \equiv \varphi(\ell^*) + \varphi(\Gamma) \pmod{2}$.

Fig. 2

Proof of Theorem 3. As $Link(c_i, \Gamma - c_i) \equiv 0 \pmod{4}$, $Link(c_i, \Gamma - c_i) = 4r_i$ for some integer r_i for each i. Then $2Link(\Gamma) = \sum_{i=1}^{n} Link(c_i, \Gamma - c_i) = 4(r_1 + \dots + 1)$ r_n). Hence $Link(\Gamma)$ is even. Therefore we obtain Theorem 3 by Lemma 7 and the proof of Theorem 2.

REMARK 2. The link in Fig. 2 is an example that the conclusion of Theorem 3 is not true if we replace that " $Link(c_i, \Gamma - c_i) \equiv 0 \pmod{4}$ " by " $Link(c_i, \Gamma - c_i) \equiv 0 \pmod{2}$ ".

EXAMPLE 1. Let Γ , ℓ be links illustrated in Fig. 3. As $Link(\Gamma)=3$ and ℓ^* is a trivial link, $\varphi(\ell)=\varphi(\ell^*)+1=1$ by Theorem 2.

Fig. 3

EXAMPLE 2. Let l be a link illustrated in Fig. 4. As Γ is the Whitehead link, $Link(\Gamma)=0$ and $\varphi(\Gamma)=1$ and l^* is a trivial link. Hence $\varphi(l)\equiv\varphi(l^*)+\varphi(\Gamma)$ =1 by Theorem 3.

Fig. 4

Proof of Theorem 4. For a proper link l_i in V_i , let k_i be a knot obtained by a fusion of l_i in V_i for each *i*. As l_i , *l* are related to k_i , $l_0 = k_1 \cup \cdots \cup k_n$ respectively, $\varphi(l_i) = \varphi(k_i)$ and $\varphi(l) = \varphi(l_0)$ by Lemma 1. Furthermore as Γ is a boundary link, there are mutually disjoint surfaces $\mathcal{F} = F_1 \cup \cdots \cup F_n$ with $\partial \mathcal{F} = l_0$, $\partial F_i = k_i$. Then $\varphi(l_0) = \sum_{i=1}^n \varphi(k_i) \pmod{2}$ by Theorem 3 in [4]. Hence we obtain that T. SHIBUYA

$$\varphi(\ell) = \varphi(\ell_0) \equiv \sum_{i=1}^n \varphi(k_i) \equiv \sum_{i=1}^n \varphi(\ell_i) \pmod{2}$$
.

References

- [1] F. Hosokawa: A concept of cobordism between links, Ann. of Math. 86 (1967), 362-373.
- [2] V.F.R. Jones: A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), 103-111.
- [3] H. Murakami: A recursive calculation of the Arf invariant of a link, Math. Soc. Japan, 38 (1986), 335-338.
- [4] R.A. Robertello: An invariant of knot cobordism, Comm. Pure Appl. Math., 18 (1965), 543-555.
- [5] T. Shibuya: On the cobordism of compound knots, Math. Sem. Notes Kobe Univ., 8 (1980), 331-337.
- [6] T. Shibuya: A condition for links to be cobordant to zero, Memoirs of Osaka Inst. Tech. 30 (1985), 11-16.

Department of Mathematics Osaka Institute of Technology Asahi, Osaka 535 Japan