Kambara, H. Osaka J. Math. 27 (1990), 629–654

ON DIRECTLY FINITE REGULAR RINGS

Dedicated to Professor Manabu Harada on his sixtieth birthday

HIKOJI KAMBARA

(Received February 27, 1989)

This paper is concerned with the following open problem for directly finite, von Neuman regular rings. The problem was given by Goodearl and Handelman [3]: what conditions on a regular ring R induce that the maximal right quotient ring of R is right and left self-injective. In [4], the auther showed an example of directly finite, right self-injective regular ring which is not left self-injective. So we have an interest in this problem. In Theorem 17 in §3, we give necessary and sufficient conditions for this problem. In §2, we consider the maximal left quotient ring Q of a directly finite, right self-injective regular ring. We show that Q is directly finite (Theorem 7) and the factor ring Q/\mathcal{M} is the maximal left quotient ring of the factor ring R/m for every maximal ideal \mathcal{M} (resp. $\supset m$) of Q (resp. R) (Theorem 9). In §3, we give one generalization of a result in [5]: the maximal left quotient ring of a directly finite, right self-injective regular ring is left and right self-injective. Further we obtain necessary and sufficient conditions for the maximal right quotient ring of a regular ring to be directly finite (Theorem 16).

1. Preliminaries

All rings in this paper are associative with unit and ring homomorphisms are assumed to preserve the unit. A ring R is said to be *directly finite* if xy=1 implies yx=1 for all $x, y \in R$. A ring is said to be *directly infinite* if R is not directly finite. A regular ring means von Neumann regular ring.

A rank function on a regular ring R is a map $N: R \rightarrow [0, 1]$ satisfying the following conditions:

- (a) N(1)=1,
- (b) $N(xy) \leq N(x)$ and $N(xy) \leq N(y)$ for all $x, y \in R$,
- (c) N(e+f)=N(e)+N(f) for all orthogonal idempotents $e, f \in \mathbb{R}$,
- (d) N(x) > 0 for all non-zero $x \in R$.

If R is a regular ring with a rank function N, then $\delta(x, y) = N(x-y)$ defines a metric on R, this metric δ is called N-metric or rank metric and the (Hausdorff)

completion of R with respect to δ is a ring \overline{R} which we call the *N*-completion of R.

An idempotent e of a regular ring R is said to be *abelian* if eRe is strongly regular i.e., all idempotents of eRe are central idempotents of eRe. An idempotent e of R is said to be *directly finite* if eRe is directly finite as a ring. For a ring R, we use B(R) to denote the central idempotents in R. We note that B(R) is a Boolean algebra in which $e \lor f = e + f - ef$ and $e \land f = ef$, while e' = 1 - e. If R is regular and right self-injective, then B(R) is complete [2].

Let R be a regular, right self-injective ring. For a given element x in R, put $H = \{g \in B(R) | xg = 0\}$ and $1 - h = \bigvee_{g \in H} g$ in B(R). The idempotent h is called the *central cover* of x, denote c.c(x).

Let R be a directly finite, right self-injective regular ring. Then R is said to be Type II_f if R contains no abelian idempotents. And R is said to be Type I_f if R contains an abelian idempotent f with c.c(f)=1. Note that R is uniquely a direct product of rings of Type I_f , II_f ([2] Theorem 10.13).

For a regular ring R and elements $a, b \in R$, we use $aR \leq bR$ to mean that aR is isomorphic to a direct summand of bR. A regular ring satisfies general comparability provided that for any $x, y \in R$, there exists $g \in B(R)$ such that $gxR \leq RgyR$ and $(1-g)xR \geq (1-g)yR$. Note that every regular right self-injective ring satisfies general comparability ([2] Corollary 9.15).

Let R be a subring of a ring Q. For every element x of Q and right ideal I of Q and left ideal J of Q, , we use $(x^{\cdot}.I), (J^{\cdot}x)$ to denote the right ideal $\{a \in R | xa \in I\}$, the left ideal $\{a \in R | ax \in J\}$, respectively.

Lemma A. For two idempotents e, f of a ring R, the following conditions are equivalent.

- 1). $eR \simeq fR$.
- 2). There exist elements $x \in eRf$, $y \in fRe$ such that yx = f, xy = e.
- 3). $Re \simeq Rf$.

Proof. It is trivial.

Lemma B. Let R be a subring of a ring Q and \overline{R} be a factor ring of R. For two idempotents e, f with $eR \simeq fR$, the followings hold.

- 1). $\bar{e}\bar{R} \simeq f\bar{R}$ and $\bar{R}\bar{e} \simeq \bar{R}f$.
- 2). $eQ \simeq fQ$ and $Qe \simeq Qf$.

Proof. By Lemma A, it is easy.

Lemma C. Let R be a ring. For two idempotents e, f and an integer n, the followings are equivalent.

- 1) $n(eR) \simeq fR$. 2) $n(P_e) \sim Pf$
- 2) $n(Re) \simeq Rf$.

where n(eR), n(Re) are direct sums of n-copies of eR, Re, respectively.

Proof. It is easy.

Lemma D. Let R be a regular ring. For a right ideal $\sum_{i=1}^{\infty} a_i R$, there exist pairwise orthogonal idempotents $\{e_i\}_{i=1}^{\infty}$ which satisfy the following:

(1). $\sum_{i=1}^{m} \bigoplus e_{i}R = \sum_{i=1}^{m} a_{i}R \text{ for all } m.$ (2). $e_{i}R \leq a_{i}R \text{ for all } i.$ If $\sum_{i=1}^{\infty} \bigoplus a_{i}R \text{ is directsum, then } \{e_{i}\} \text{ satisfy (1), (3).}$ (3) $e_{i}R \simeq a_{i}R \text{ for all } i.$

Proof. We prove Lemma by induction on *m*. For m=1 it is trivial. Assume that w $\{e_i\}_{i=1}^m$ satisfy (1), (2) or (3). Now $\sum_{i=1}^{m+1} a_i R = \sum_{i=1}^m \bigoplus e_i R + a_{m+1} R = \sum_{i=1}^m \bigoplus e_i R \bigoplus (1 - \sum_{i=1}^m e_i) a_{m+1} R$. Let e'_{m+1} be an idempotent with $e'_{m+1}R = (1 - \sum_{i=1}^m e_i) a_{m+1} R$. Put $e_{m+1} = e'_{m+1}(1 - \sum_{i=1}^m e_i)$. Then $e^2_{m+1} = e_{m+1}$. And $(1 - \sum_{i=1}^m e_i) a_{m+1} R = e'_{m+1} R \supset e'_{m+1}(1 - \sum_{i=1}^m e_i) R \supset e'_{m+1}(1 - \sum_{i=1}^m e_i) e'_{m+1} R = e'_{m+1} R$, i.e., $e_{m+1}R = (1 - \sum_{i=1}^m e_i) a_{m+1} R$. Thus $\{e_i\}_{i=1}^{m+1}$ are orthogonal and satisfy (1). Since $(1 - \sum_{i=1}^m e_i) a_{m+1} R$ is projective, we have $(1 - \sum_{i=1}^m e_i) a_{m+1} R = e_{m+1} R \lesssim a_{m+1} R$. For (3), we have $A = \sum_{i=1}^m \bigoplus e_i R \oplus a_{m+1} R = \sum_{i=1}^m \bigoplus e_i R \oplus e_{m+1} R$. We denote by p the projection from A to $e_{m+1}R$ induced by the decomposition $A = \sum_{i=1}^m e_i R \oplus e_{m+1} R$. Then p induce an isomorphism of $a_{m+1}R$ to $e_{m+1}R$.

2. Directly finite maximal quotient ring

We consider the necessary and sufficient condition for a regular ring R to have the directly finite maximal right quotient ring of R. For a prime regular ring with a rank function, the following theorem is known [2], [3].

Theorem 1. ([2] Theorem 21.18 and 19) Let R be a prime regular ring with a rank function N. Then Q(R) is directly finite if and only if $Q(R) \subseteq \overline{R}$ as a subring if and only if $\sup \{N(x) | x \in I\} = 1$ for all essential right ideals I of R where Q(R) is the maximal right quotient ring of R and \overline{R} is the completion of R in the N-metric.

In general case, we have the following Proposition and we consider again this property in Theorem 16.

Proposition 2. For a regular ring R, the following conditions are equivalent.

H. KAMBARA

(1) The maximal right quotient ring Q of R is directly finite.

(2) Every right ideal isomorphic to some essential right ideal is an essential right ideal of R.

Proof. (1) \Rightarrow (2): Let Q be directly finite. Suppose that R does not satisfy (2). Let I, J be isomorphic right ideals such that J is essential in R but I is not essential in R. There exists an element $q \in Q$ such that $q: J \rightarrow I(x \rightarrow qx)$ is a given isomorphism. Since the right R-module J is essential in right R-module Q, the homomorphism $q: Q \rightarrow Q$ is a monomorphism. Since I is not essential in right R-module Q, qQ is a proper direct summand of right R-module Q. This contradicts that Q is directly finite.

 $(2) \Rightarrow (1)$: Assume that Q is directly infinite. Then there exists an element q of such that $r_Q(q) = \{x \in Q \mid qx = 0\} = 0, Q \neq qQ$. Then $(q^{\bullet}.R) = \{x \in R \mid qx \in R\}$ is an essential right ideal. By $Q \neq qQ$ and $qQ \cap R \supseteq q(q^{\bullet}.R)$, $q(q^{\bullet}.R)$ is not essential in R_R . On the other hand, by $r_Q(q) = 0$, the homomorphism $q: (q \cdot R) \Rightarrow q(q^{\bullet}.R)$ is an isomorphism between two right ideals of R. So (2) does not hold.

We consider the maximal left quotient ring of R which is directly finite, right self-injective regular ring. For the end, we start with the following proposition.

Proposition 3. Let R be a directly finite, right self-injective regular ring with no abelian idempotents. Then there exists a set $\{e_n^*\}_{n=1}^{\infty}$ of orthogonal idempotents such that $\overset{\sim}{\Sigma} \oplus e_n^* R$ is an essential right ideal and $\overset{\sim}{\Sigma}_{n=m+1}^{\infty} e_n^* R \subset (1-\sum_{n=1}^m e_n^*)R \simeq e_n^* R$, $2^m (e_n^* R) \simeq R$ for all $m=1, 2, \cdots$.

Proof. By [2] Theorem 10.28, there exists an idempotent $e_1^* \in \mathbb{R}$ sucht that $2e_1^*R \simeq R$, $(1-e_1^*)R \simeq e_1^*R$. For $R_1 = (1-e_1^*)R(1-e_1^*)$, there exists an idempotent $e_2^* \in \mathbb{R}_1$ such that $2(e_2^*R_1) \simeq R_1$, i.e., $2^2(e_2^*R) \simeq R$ and $(1-e_1^*-e_2^*)R \simeq e_2^*R$. We obtain inductively a set $\{e_n^*\}_{n=1}^\infty$ of orthogonal idempotents such that $2^n(e_n^*R) \simeq R$, $(1-\sum_{i=1}^n e_i^*)R \simeq e_n^*R$ for all $n=1, 2, \cdots$.

For a given nonzero idempotent $f \in R$, suppose that $fR \leq e_n^*R$ for all n. Then $\aleph_0 fR \leq \sum_{n=1}^{\infty} \bigoplus e_n^*R \subset R$. Since R is directly finite, we have f=0 from [2] Corollary 9.23. This is a contradiction. So, for $f \in R$, we obtain from general comparability on R that $fR \geq ge_m^*R$ for some integer m and some nonzero idempotent $g \in B(R)$.

Suppose that $\sum_{n=1}^{\infty} \bigoplus e_n^* R$ is not essential in R_R , i.e., there exists a nonzero idempotent e with $(\sum_{n=1}^{\infty} \bigoplus e_n^* R) \cap eR = 0$. By the above argument, $eR \ge ge_m^* R$ for some integer m and some nonzero idempotent $g \in B(R)$. Then $\sum_{n=1}^{m} \bigoplus ge_n^* R \oplus$

 $geR \neq gR$, i.e., there exist exists a nonzero idempotent f' such that $\sum_{n=1}^{m} \bigoplus ge_n^*R \oplus geR \oplus f'R = gR$. While $gR \leq \sum_{n=1}^{m} \oplus ge_n^*R \oplus geR$ from $(1 - \sum_{n=1}^{m} e_n^*)R \approx e_n^*R$ and $eR \geq ge_m^*R$, that is, gR is isomorphic to a proper direct summand of gR. This contradicts that R is directly finite. So $\sum_{n=1}^{\infty} \oplus e_n^*R$ is essential right ideal of R. Now we have $(1 - \sum_{n=1}^{m} e_n^*)R \supset \sum_{n=m+1}^{\infty} \oplus e_n^*R$. By the same argument, we

obtain that $\sum_{n=m+1}^{\infty} \bigoplus e_n^* R$ is essential in $(1 - \sum_{n=1}^{\infty} e_n^*)R$.

Throughout this paper, we use $\{e_n^*\}$ to denote the orthogonal idempotents as above.

From Proof of Proposition 3, we have the following proposition.

Proposition 4. Let R be a directly finite right self-injective regular ring with no abelian idempotents. For every idempotent e, there exist an integer m and a nonzero central idepmotent $g \in B(R)$ and an idempotent f of eRe such that $ge_m^*R \simeq fR$.

Corollary of Proposition 3. Let R be as above. Then, for every n, $\sum_{i=n+1}^{\infty} \bigoplus Re_i^*$ is essential in $R(1-\sum_{i=1}^{n}e_i^*)$.

Proof. Since $\{e_i^*\}_{i=1}^{\infty}$ are pairwise orthogonal, $R(1-\sum_{i=1}^{n}e_i^*)$ contains $\sum_{i=n+1}^{\infty}Re_i^*$. Suppose that there exists a nonzero idempotent $e \in R(1-\sum_{i=1}^{n}e_i^*)$ with $Re \cap \sum_{i=n+1}^{\infty}Re_i^*=0$. By Proposition 4, we may assume that $eR \simeq c \cdot c(e)e_m^*R$ for some m. Put $g=c \cdot c(e) \in B(R)$.

(i) A case of m < n. Then $Re_m^*g \simeq Re \subset R(1-\sum_{i=1}^n e_i^*)g \simeq Re_n^*g$ implies $ge_m^*R \leq ge_n^*R$. So the following holds:

(1)
$$2^m(ge_n^*R) \ge 2^m(ge_m^*R) \simeq gR$$
.

On the other hand we obtain from m < n that $2^{m}(ge_{n}^{*}R)$ is isomorphic to a proper direct summand of $gR \simeq 2^{n}(ge_{n}^{*}R)$. By (1), we obtain that gR is isomorphic to a proper direct summand of gR. This contradicts that R is directly finite.

(ii) A case of $m \ge n$. Considering $\sum_{i=1}^{n} \oplus Re_{i}^{*} \oplus \sum_{i=n+1}^{m+1} \oplus Re_{i}^{*}g \oplus Re$ in a regular ring, we may assume that $\{ge_{i}^{*}\}_{i=1}^{m+1} \cup \{e\}$ are pairwise orthogonal. Then $\sum_{i=1}^{m} \oplus ge_{i}^{*}R \oplus eR$ is a proper direct summand of $\sum_{i=1}^{m+1} \oplus ge_{i}^{*}R \oplus eR$, i.e., of gR. On the other hand $Re = Re_{m}^{*}g = R(1 - \sum_{i=1}^{m} e_{i}^{*})g$ implies $\sum_{i=1}^{m} \oplus ge_{i}^{*}R \oplus eR = \sum_{i=1}^{m} \oplus ge_{i}^{*}R \oplus ge_{i}^{*$

obtain that $\sum_{i=n+3}^{\infty} \bigoplus Re_i^*$ is essential in $R(1-\sum_{i=1}^n e_i^*)$.

In a right self-injective regular ring R, B(R) is complete Boolean algebra ([2] Proposition 9.9). For any subset $\{g_i\}_I \subset B(R)$ of pairwise orthogonal idempotents, $(\bigvee_I g_i)R$ is the injective hull of a right ideal $\sum_I \bigoplus_I g_i R$, and the natural ring homomorphism $(\bigvee_I g_i)R \to \prod_I g_I R$ is an isomorphism ([2] Proposition 9.9 and 9.10), where $\prod_I g_I R$ is the ring of direct product of rings $\{g_I R\}_I$. So we regard as $(\bigvee_I g_i)R = \prod_I g_I R$ and we denote by $\prod_I a_i(a_i \in g_I R)$ the element $a \in (\bigvee g_i)R$ such that $ag_i = a_i$ for all $i \in I$. A subset I of R is said to be *centrally closed* if, for every subset $A = \{a_{\alpha} \in I\}$ satisfying the following condition (*), Icontains $a = \prod_A a_{\alpha} \in \prod_A (c \cdot c(a_{\alpha})R) = (\bigvee_A c \cdot c(a_{\alpha}))R$.

(*) $\{c \cdot c(a) | a \in A\}$ are pairwise orghogoanl idempotents in B(R). Note that every essentially closed left ideal is centrally closed in right self-injeative regular rings.

Proposition 5. Let R be a directly finite, right self-injective regular ring with no abelian idempotents and let I be a centrally closed non-zero left ideal of R. Then there exist orthogonal idempotents $\{e_i\}_{i=1}^{\infty}$ in I and an central idempotent $1-g \in B(R) \cap I$ which satisfy the following conditions:

1) $e_i R \simeq c \cdot c(e_i) e_{n(i)}^* R$ for all *i*, where $\{n(i)\}_{i=1}^{\infty}$ is a strictly increasing sequence of integers.

2) $\sum_{i=1}^{\infty} \bigoplus Re_i$ is essential in Ig and $0 = Ig \cap B(R)$.

Proof. Let $\{g_{\alpha}\}$ be a maximal subset of orthogonal idempotents in $I \cap B(R)$. Since I is centrally closed, I containes $1 - g = \prod_{A} g_{\alpha} = \bigvee_{h \in B(R) \cap I} h$. So $Ig \cap B(R) = 0$. We may assume that $I \cap B(R) = 0$ and I is centrally closed.

By induction on m, we will show that there exist orthogonal idempotents $\{e_i\}_{i=1}^{m}$ of I and integers $n(1) < n(2) < \cdots < n(m)$ satisfying 1) and the following condition:

2') For any idempotent f in $I(1-\sum_{i=1}^{m}e_i)$, $fR \simeq c \cdot c(f)e_i^*R$ implies t > n(m).

For m=1, let n(1) be the smallest integer of $\{n \mid c \cdot c(f)e_n^*R \simeq fR$ for some nonzero idempotent f in $I\}$ which is not empty by Proposition 4. Let $\{g_{ab}\}_A$ be a maximal subset of family of orthogonal idempotents in $\{g \in B(R) \mid eR \simeq ge_{n(1)}^*R$ for some idempotent e in $I\}$. Let $\{e_{\alpha}\}_A$ be a set of idempotents of Isuch that $c \cdot c(e_{\alpha}) = g_{\alpha}$, $e_{\alpha}R \simeq g_{\alpha}e_{n(1)}^*R$ for all $\alpha \in A$. Put $e_1 = \prod_A e_{\alpha}$, $g_1 = \prod_A g_{\alpha}$ in $\prod_A g_{\alpha}R = (\bigvee_A g_{\alpha})R$. Since I is centrally closed, it follows that I contains e_1 and $I=Re_1\oplus I(1-e_1)$. Let t be an integer such that $fR\simeq c \cdot c(f)e_i^*R$ for some nonzero idempotent f in $I(1-e_1)$. Since n(1) is minimal and $\{g_a\}_A$ is maximal and $I\cap B(R)=0$, we have n(1) < t.

Assume that $\{e_i\}_{i=1}^m$ satisfy 1), 2'). Now we consider a case of $I(1-\sum_{i=1}^m e_i)=0$, i.e., $I=\sum_{i=1}^m \oplus Re_i$. By Corollary of Proposition 3, we have $R(1-\sum_{i=1}^{n(m)}e_i^*) \supset \sum_{i=n(m)+1}^{\infty} \oplus Re_i^*$. Since $Re_m \simeq Re_{n(m)}^* c \cdot c(e_m) \simeq R(1-\sum_{i=1}^{n(m)} \oplus e_i^*) c \cdot c(e_m)$, it follows that Re_m has an essential submodule isomorphic to $\sum_{i=n(m)+1}^{\infty} \oplus Re_i^* c \cdot c(e_m)$. We can see from Lemma D that there exist orghogonal idempotents $\{e_i'\}_{i=m}^{\infty}$ in $e_m Re_m$ and a sequence $\{n(i)=n(m)+1+(i-m)\}_{i=m}^{\infty}$ such that $e_i''R \simeq c \cdot c(e_m)e_{n(i)}^*R$ for all $i=m, m+1, \cdots, \sum_{i=1}^{\infty} \oplus Re_i$ is essential in I and $\{e_i'\}_{i=m}^{\infty} \cup \{e_i\}_{i=1}^{m-1}$ are orthogonal idempotents. Thus we have orthogonal idempotents $\{e_i\}_{i=1}^{\infty}$ and a sequence $\{n(i)\}_{i=1}^{\infty}$ satisfying 1), 2).

Next, we consider a case of $I(1-\sum_{i=1}^{m} e_i) \neq 0$. Using $I(1-\sum_{i=1}^{m} e_i)$ in place of I, the same argument for m=1 implies that there exist an idempotent e'_{m+1} in $I(1-\sum_{i=1}^{m} e_i)$ and an integer n(m+1) satisfying the same conditions's above. We can see that the idempotent $e_{m+1}=(1-\sum_{i=1}^{m} e_i)e'_{m+1}$ satisfy 1) and $\{e_i\}_{i=1}^{m+1}$ are orthogonal and satisfy 2'). Thus we obtain orthogonal idempotents $\{e_i\}_{i=1}^{m-1}$ satisfying 1).

We will show that $\sum_{i=1}^{m} \oplus Re_i$ is essential in *I*. Suppose that $\sum_{i=1}^{m} \oplus Re_i \cap Rf = 0$ for some non zero idempotent of of *I*. By Proposition 4, we may assume that that $fR \simeq c \cdot c(f)e_i^*R$ for some integer *t*. Let *m* be an integer with n(m) > t. Since $I = \sum_{i=1}^{m} Re_i \oplus I(1 - \sum_{i=1}^{m} e_i) \supset \sum_{i=1}^{m} Re_i \oplus Rf$ implies $I(1 - \sum_{i=1}^{m} e_i) \gtrsim Rf$, there exists an idempotent f' of $I(1 - \sum_{i=1}^{m} e_i)$ such that $Rf' \simeq Rf \simeq Re_i^*c \cdot c(f)$. This contradicts 2'), So $\sum_{i=1}^{m} \oplus Re_i$ is essential in *I*.

Corollary. Let R, I be as above. Then there exist pairwise orthogonal idempotents $\{f_i\}_{i=1}^{\infty}$ satisfying the following conditions:

(a) $f_i R \simeq c \cdot c(f_i) e_{n(i)}^* R$ for all *i*, where $\{n(i)\}_{i=1}^{\infty}$ is a strictly increasing sequence of integers.

(b) $\sum_{i=1}^{\infty} \bigoplus Rf_i$ is essential in I.

Proof. Let g, $\{e_i\}$, $\{n(i)\}$ be as in Proposition 5. If 1-g=0, the assertion is trivial. Suppose that 1-g=0. Put $f_i=(1-g)e_i^*+e_j$ if i=n(j) for some j, put $f_i=(1-g)e_i^*$ if i=n(j) for all j. Put n(i)=i for all i. By Proposition 5, the H. KAMBARA

assertion is clear.

Proposition 6. Let R be a directly finite, right self-injective regular ring, Q be the maximal left quotient ring of R. Then, for a given element $q \in Q$, there exists a central idempotent $g \in B(R)$ and orthogonal idempotents $\{e_n\}_{n=1}^{\infty}$ which satisfy the following

(1) $R(1-g) \oplus \sum_{n=1}^{\infty} \oplus Re/_n$ is essential in (R, q), $\sum_{n=1}^{\infty} \oplus Re_n$ is essential in Rg. (2) $e_n R \simeq ge_n^* R$ for all n,

Proof. By [2] Theorem 10.13, there is a central idempotent $g^* \in B(R)$ such that $(1-g^*)R$ is a ring of type I_f , g^*R is a ring of type II_f . Then by [2] Corollary 10.25, we have $(1-g^*)R=(1-g^*)Q$, so we have $(1-g^*)\in(R, q)$. It is sufficient of show that g^*R satisfy the assertion. So we may assume that R is type II_f .

Let $\{a_{\alpha}\}_{A}$ be a subset of (R, q) such that $\{c \cdot c(a_{\alpha})\}_{A}$ are pairwise orthogonal idempotents in B(R). Since $a_{\alpha}q \in R$ for all $\alpha \in A$, it follows that $(\prod_{A} a_{\alpha})q = \prod_{A} (a_{\alpha}q) \in \prod_{A} (c \cdot c(a_{\alpha})R) = (\bigvee_{A} c \cdot c(a_{\alpha}))R$, i.e., $\prod_{A} a_{\alpha} \in (R, q)$. So (R, q) is centrally colsed. By Proposition 5, there exist orthogonal idempotents $\{e_i\}_{i=1}^{\infty}$ and a central idempotent $1 - g \in B(R) \cap (R, q)$ satisfying 1), 2) of Proposition 5. Then we may assume for the sake of simpleness that R = Rg, $B(R) \cap (R, q) = 0$. Since (R, q) is an essential left ideal, $\sum_{i=1}^{\infty} \bigoplus Re_i$ is essential left ideal from 2) of Proposition 5.

We will show that $c \cdot c(e_i) = 1$ and n(i) = i for all $i \in N$. Suppose that $c \cdot c(e_i) = 1$ or $n(t) \neq t$ for some t. Then we have $K_1 = \sum_{i=1}^{\infty} \bigoplus (1 - c \cdot c(e_i))e_{\pi(i)}^*R \bigoplus \sum_{m \in N \setminus \{n(i)\}_{i=1}^{\infty}} e_{\pi}^*R \neq 0$. While we obtain $\sum_{i=1}^{\infty} \bigoplus e_i R \cong \sum_{i=1}^{\infty} \bigoplus c \cdot c(e_i)e_{\pi(i)}^*R = K_2$ from 1) of Proposition 5 and and Lemma A. So $\sum_{i=1}^{\infty} \bigoplus e_i R$ is isomorphic to a proper direct summand K_2 of an essential right ideal $\sum_{i=1}^{\infty} \bigoplus e_i^*R = K_1 \bigoplus K_2$. By Proposition 2, $\sum_{i=1}^{\infty} \bigoplus e_i R$ is not essential in R_R . Since R is right self-injective, there exists an idempotent e in R such that $eR \cap \sum_{i=1}^{m} \bigoplus e_i R = 0$ and $e(\sum_{i=1}^{\infty} \bigoplus e_i R) = 0$. Put $x = xe = \sum_{i=1}^{\infty} x_i e_i \in Re \cap \sum \bigoplus Re_i$. Then we obtain that $0 = xee_i = x_ie_i$ for all $i \in N$, so $Re \cap \sum_{i=1}^{\infty} \bigoplus Re_i = 0$. This contradicts that $\sum_{i=1}^{\infty} \bigoplus Re_i$ is essential in $_RR$. We obtain that $c \cdot c(e_i) = 1$, n(i) = i for all $i \in N$.

Theorem 7. Let R be a directly finite, right self-injective regular ring. Then the maximal left quotient ring Q of R is directly finite.

Proof. We may assume that R is Type II_f . Suppose that Q is directly

infinite. Then there is an element q of Q such that $l_Q(q)=0$ and $Q_q \neq Q$. There exist a central idempotent g and orthogonal idempotents $\{e_n\}_{n=1}^{\infty}$ of R which satisfy the following conditions:

(1)
$$(R_{\cdot} q) \supset R(1-g) \oplus \sum_{i=1}^{\infty} \oplus Re_i$$

(2)
$$Rg \supset \sum_{i=1}^{\infty} \bigoplus Re_i$$

(3)
$$e_i R \simeq g e_i^* R$$
 for all *i*.

We will show that (i) Q(1-g)q=Q(1-g) and (ii) Qgq=Qg.

(i): Since $1-g \in (R, q)$ implies $(1-g)q \in R$, we have $R(1-g)q \oplus A = R(1-g)$. While we have $R(1-g) \cong R(1-g)q$ from $1_R/(q) \subset 1_Q(q) = 0$. Since R is directly finite, we obtain A=0, i.e., Q(1-g)=Q(1-g)q.

(ii): Here we claim that $\sum_{n=1}^{\infty} \bigoplus Re_n q$ is essential in Rg. Suppose that there exists a nonzero idempotent e in Rg such that $Re \cap \sum_{u=1}^{\infty} \bigoplus Re_n q = 0$. Further we may assume from Proposition 4 that $eR \simeq g'e_m^*R$ for some integer m and some nonzero central idempotent g' in Rg. Considering the proper direct summand $\sum_{n=1}^{m+1} \bigoplus Re_n qg' \oplus Re$ of Rg', there exist orthogonal idempotents $\{e'\} \cup \{e'_n\}_{n=1}^{m+1}$ such that Re' = Re, $Re'_n = Re_n qg' \simeq Re_n^*g'$ for all $n=1, 2, \dots, m+1$. Then $(e' + \sum_{x=1}^{m+2} e'_n)R$ is a proper direct summand of g'R. On the other hand it easily follows from (3) and Priposition 3 that $g'R \simeq \sum_{n=1}^{m} \bigoplus Re_n R \oplus e'R$. This contradicts that R is directly finite. So we obtain that $\sum_{n=1}^{\infty} \bigoplus Re_n q$ is essential in Rg.

Since Rg is essential in ${}_{R}Qg$, we have $\sum_{n=1}^{\infty} \bigoplus Re_{n}q \subset {}_{e}Qg$. While we obtain from (2) and non-singularity of ${}_{R}Q$ that $\sum_{n=1}^{\infty} \bigoplus Re_{n}q$ is essential in Qgq. Thus we obtain Qgq = Qg.

From (i) and (ii), we obtain Qq=Q. This is a contradiction. Thus Q is directly finite.

Proposition 8. Let R be a directly finite, right self-injective regular ring which contains no nonzero abelian idempotents and \mathfrak{M} a maximal ideal of B(R). Let *m* be the maximal ideal of R such that $m \supset \mathfrak{M}R$ are essential right ideal of \overline{R} . We denote by \overline{R} the factor ring $R/\mathfrak{M}R$.

(I) For a given idempotent e of R, the following conditions are equivalent.

(a) *m* contains e but MR does not contain e.

(b) \mathfrak{M} does not contain the central cover $c \cdot c(e)$ of e and \mathfrak{M} contains all central idempotents $g \in B(R)$ satisfying $ge_n^*R \leq eR$ for some integer n.

(c) There exist orthogonal central idempotents $\{g_i\}_{i=1}^{\infty}$ and idempotents e_1, e_2 and integers $\{n(t)\}_{i=1}^{\infty}$ which satisfy the following conditions;

- (i) $g_t e_i = g_t e_{n(t)-1}^*$ and $g_t e_2 = g_t e_{n(t)}^* / for all t$.
- (ii) $\{n(t)\}_{t=1}^{\infty}$ is a strictly increasing sequence of integers.
- (iii) $e_2^*R \leq eR \leq e_1^*R$.
- (iv) $\bigvee_{i=1}^{\infty} g_i = c \cdot c(e) \oplus \mathfrak{M}, g_i \in \mathfrak{M} \text{ for all } t.$
- (d) $\aleph_0(\bar{e}\bar{R}) \leq \bar{R} \text{ and } \bar{e} \neq \bar{0}.$

(II) For an idempotent e in R, m does not contain e if and only if there exist a nonzero central idempotent g and an integer n such that $g_n^*R < eR$ and $g \in \mathfrak{M}$.

Proof. (a) \Rightarrow (b): Let *e* be an idempotent in $m \setminus \mathfrak{M}R$. Then $e \notin \mathfrak{M}R$ implies $c \cdot c(e) \notin \mathfrak{M}$. Suppose that there exist a central idempotent *g* and an integer *n* satisfying the following condition:

(1) $ge_n^*R \leq eR \text{ and } g \notin \mathfrak{M}.$

From $2^{n}(e_{n}^{*}R) \simeq R$, there exist orthogonal idempotents $\{e_{i}^{\prime}\}_{i=1}^{2^{n}}$ such that $\sum_{i=1}^{2^{n}} e_{i}^{\prime} = 1$, $e_{i}^{\prime}R \simeq e_{n}^{*}R$ for all $i=1, 2, \dots, 2^{n}$ and $e_{1}^{\prime} = e_{n}^{*}$. So we obtain that $\sum_{i=1}^{2^{n}} \bar{e}_{i}^{\prime} = \bar{1}$, $\bar{e}_{i}\bar{R} \simeq \bar{e}_{n}^{*}\bar{R}$, $\bar{e}_{n}^{*} \neq \bar{0}$ in \bar{R} . So we have the following:

(2)
$$\bar{R} = \bar{R}\bar{e}_n^*\bar{R}$$

On the other hand, we obtain from (1) and Lemma B that $\vec{g}=\vec{1}$ and $\bar{e}_n^*\vec{R}=$ $g\bar{e}_n^*\vec{R}\leq \bar{e}\vec{R}$. Then by (2), we obtain $\vec{R}=\vec{R}\bar{e}_n^*\vec{R}=\vec{R}\bar{e}\vec{R}$. This contradicts $e\in m$. We obtain the last part of (b).

(b) \Rightarrow (c): Assume that (b) for an idempotent *e* holds. Let n(1) be a minimal integer of $\{n \ge 0 | eR \ge ge_n^*R$ for some $0 \ne g \in B(R)\} = N$ where $e_0^* = 1$. Let $\{g_i\}_I$ be a maximal subset of orthogonal idempotents in $\{g \in B(R) | eR \ge ge_{n(1)}^*R\} = J$. Since R_R is injective and $\sum_{i \in I} \bigoplus g_i e_{n(1)}^*R \le eR$, it follows that $g_1 e_{n(1)}^*R \le eR$ for $g_1 = \bigvee_{i \in I} g_i$. Since $\{g_i\}_I$ is maximal and R satisfies general comparability, we obtain $(1 - g_1)eR \le e_{n(1)}^*R$. Since n(1) is minimal, we have $g_1eR \le g_1e_{n(1)-1}^*R$ when n(1) > 0. From $c \cdot c(e) \in \mathfrak{M}$ and $g_1 \in \mathfrak{M}$ we see that $(1 - g_1)e \neq 0$ and $(1 - g_1)e$ holds (b). By the same argument as above for $(1 - g_1)e$, there exist a central idempotent g_2 and an integer n(2) which satisfy the same conditions as above. Since n(1) is the minimal of N, we have n(1) < n(2). By induction, we can obtain orthogonal central idempotents $\{g_t\}_{t=1}^{\infty}$ and an increasing sequence $\{n(t)\}_{t=1}^{\infty}$ of integers, which satisfy the following conditions:

(3)
$$eR \gtrsim \sum_{i=1}^{\infty} \bigoplus g_i e_{\pi(i)}^* R$$
, $\sum_{i=1}^{\infty} \bigoplus g_i e_{\pi(i-1)}^* R \gtrsim \sum_{i=1}^{\infty} \bigoplus g_i eR$.
(4) $\bigvee_{t=1}^{\infty} g_t = c \cdot c(e)$, $n(1) < n(2) < \cdots$.

Because it follows from $(1-g_t)\cdots(1-g_1)eR \leq (1-g_t)e_{\pi(t)}^*R$ that $g'eR \leq e_{\pi(t)}^*R$ for all

 $t=1, 2, \cdots$, where $g'=c \cdot c(e) - \bigvee_{t=1}^{\infty} g_t$. Then we obtain $\aleph_0(g'eR) \leq \sum_{t=1}^{\infty} \bigoplus e_{\pi(t)}^* R \subset \sum_{t=1}^{\infty} \bigoplus e_{\pi(t)}^* R \subset R$. By [2] Corollary 9.23, we obtain that g'e=0, i.e. $c \cdot c(e) = \bigvee_{t=1}^{\infty} g_t$, because $eR \geq g_t e_{\pi(t)}^* R$ implies $c \cdot c(e) > g_t$ for all t.

Put $e_1 = \prod_{t=1}^{\infty} g_t e_{\pi(t)-1}^*$, $e_2 = \prod_{t=1}^{\infty} g_t e_{\pi(t)}^*$ in $\prod_{t=2}^{\infty} g_t R = \bigvee_{t=1}^{\infty} (g_t) R$. We see from (3), (4) that $\{g_t\}$, e_1 , e_2 satisfy (i), (ii) and (iii) and (iv).

(c) \Rightarrow (d): Let *e* be an idempotent satisfying (c). By (iv) $c \cdot c(e) \notin \mathfrak{M}$, we have $e \notin R\mathfrak{M}$, i.e., $\overline{e} \neq \overline{0}$. By (iii) in (c), we have $\overline{e}_1 \cdot \overline{R} \ge \overline{e} \cdot \overline{R}$. By (iv) $g_t \in \mathfrak{M}$, we obtain that $(\overline{1} - \sum_{i=1}^{t} \overline{g}_i) \overline{e}_1^* = \overline{e}_1^*$ for all $t = 1, 2, \cdots$. By (i) and general comparability on *R*, we obtain the following:

(5)
$$(1-\sum_{i=1}^{t}g_i)e_iR \leq e_{n(t)}^*R$$

for all t. Then the following hold:

$$\begin{split} & \aleph_{0}(\bar{e}\bar{R}) \lesssim \aleph_{0}(\bar{e}_{1}^{*}\bar{R}) \qquad (\text{from } \bar{e}\bar{R} \lesssim \bar{e}_{1}^{*}\bar{R}) \\ & \lesssim \sum_{i=2}^{\infty} \oplus (\bar{1} - \sum_{i=1}^{t} \bar{g}_{i}) \bar{e}_{1}^{*}\bar{R} \qquad (\text{from } \bar{e}_{1}^{*} = (\bar{1} - \sum_{i=1}^{t} \bar{g}_{i}) \bar{e}_{i}^{*}) \\ & \lesssim \sum_{i=2}^{\infty} \oplus \bar{e}_{\pi(i)+1}^{*}\bar{R} \subseteq \bar{R} . \qquad (\text{from } (5)) . \end{split}$$

Thus we have $\aleph_0(\bar{e}\bar{R}) \leq \bar{R}$.

(d) \Rightarrow (a): By [2] Theorem 9.32, $\tilde{R} = \bar{R}/\bar{m} = R/m$ is a directly finite, right self-injective simple regular ring. For an idempotent *e* satisfying (d), we see from $n(\bar{e}\bar{R}) \leq \bar{R}$ that $n(\bar{e}\tilde{R}) \leq \tilde{R}$ for all $n=1, 2, \cdots$. By [2] Corollary 9.23, it follows that $\tilde{e}=0$, i.e., $e \in m$.

(II) It is clear from (I).

Theorem 9. Let R be a directly finite, right self-injective regular ring and Q the maximal left quoitent ring of R. Let \mathfrak{M} be a maximal ideal of B(R). Let \mathfrak{M} and \mathfrak{m} be the maximal ideals of Q and R including the ideal $\mathfrak{M}R$, respectively. Then the factor ring $Q|\mathcal{M}$ is the maximal left quotient ring of $R|\mathfrak{m}$.

Proof. By Theorem 7 and [2] Theorem 10.13, there exists a decomposition $Q=Q_1\times Q_2$ such that Q_1 is type I_f and Q_2 is type II_f . We denote by $R=R_1\times R_2$ the decomposition of R as same as Q. By [2] Proposition 10.4, we have $R_1 \subset Q_1$. Since R_1 is left and right self-injective and $Q_1 \cap R_2 = 0$ ([2] Proposition 10.4), we have $R_1=Q_1$. Then every prime ideal contains R_1 or R_2 . So, if *m* contains R_2 , the assertion is clear. Since $\mathfrak{M}R$ is prime ideal of R, we may assume that R is type II_f .

First we prove that $R \cap \mathcal{M} = m$. Suppose that the equality does not hold. By

[2] Corollary 8.23, *m* is a unique maximal ideal of R which contains the minimal prime ideal $\mathfrak{M}R$. Hence $\mathfrak{m} \supseteq R \cap \mathfrak{M} \supset R\mathfrak{M}$. There exists an idempotent e in $\mathfrak{m} \setminus \mathfrak{M} \cap R$. From $e \notin \mathfrak{M}$ and Proposition 8 (II), there exists a nonzero central idempotent g in B(Q) such that $g \notin \mathfrak{M}$ and

for some integer *m*. From $e \in \mathcal{M}$ and Proposition 8 (I)-(c), there exist orthogonal central idempotents $\{g_i\}_{i=1}^{\infty}$ and idempotents e_2^i , e_1^i and integers $\{n(i)\}_{i=1}^{\infty}$ satisfying the conditions of Proposition 8 (1) (c). From $e_2^i R \leq e_1^i R$, we obtain the following:

There exists an integer t such that n(i) > m for all $i \ge t$. From $g_i \in \mathfrak{M}$, we have $(c \cdot c(e) - \sum_{i=1}^{t-1} g_i)g \neq 0$. There exists an integer s > t satisfying

$$(3) g_s g \neq 0$$

Then the following relations hold:

$$\begin{aligned} Qe^{*}_{\pi(s)-1}g_{s}g &\simeq Qe^{*}_{1}g_{s}g \qquad \text{(from Prop. 8 (c) (i))} \\ &\gtrsim Qeg_{s}g \qquad \text{(from (2))} \\ &\gtrsim Qe^{*}_{\pi}g_{s}g \qquad \text{(from (1))} \end{aligned}$$

Thus we obtain

On the other hand we obtain from Proposition 3 that $2^{n(s)-1-m}(e_{n(s)-1}^*R) \simeq e_m^*R$. So we have

(5)
$$2^{n(s)-1-m}(Qe^*_{n(s)-1}) \simeq Qe^*_m$$
.

Hence, from (3), (4) and (5), nonzero $Qe_m^*g_sg$ is isomorphic to a proper direct summand of itself. This contradicts that Q is directly finite, So we obtain $m = \mathcal{M} \subset \mathbb{R}$.

We prove that $\overline{R} = R/m$ is essential in $\overline{Q} = Q/\mathcal{M}$ as left \overline{R} -module. From Proposition 6, for a given element q in Q, we obtain an essential left ideal $R(1-h) \oplus \sum_{i=1}^{\infty} \oplus Re_i$ in (R, q) such that $h \in B(R)$ and $Re_i \simeq Re_i^* h$ for all integer i. Now $B(\overline{R}) = \{\overline{1}, \overline{0}\}$ implies $(\overline{1}-\overline{h}) = \overline{1}$ or $\overline{0}$. If $(\overline{1}-\overline{h}) = \overline{1}$, then \overline{R} contains \overline{q} , i.e., $(\overline{R}, \overline{q}) = \overline{R}$. If $(\overline{1}-\overline{h}) = \overline{0}$, then $(\overline{R}, \overline{q})$ contains $\Sigma \oplus \overline{R}\overline{e}_n$. Since \overline{R} is a simple regular ring with a unique rank function $N, 2^n(\overline{e}_n^*\overline{R}) \simeq \overline{R}$ implies $N(\overline{e}_n^*) = 1/2^n$. Further $\overline{e}_n^*\overline{R} \simeq \overline{e}_n\overline{R}$ implies $N(\overline{e}_n^*) = N(\overline{e}_n)$. Since $\{\overline{e}_i\}_{i=1}^{\infty}$ are pairwise

orthogonal, we obtain $1 = \sum_{i=1}^{\infty} N(\bar{e}_i) = \sup \{N(x) | x \in \sum_{i=1}^{\infty} \oplus \bar{e}_i \, \bar{R}\}$. Hence $\sum_{i=1}^{\infty} \oplus \bar{R}\bar{e}_n$ is an essential left ideal of \bar{R} , that is, (\bar{R}, \bar{q}) an is essential left ideal of \bar{R} for every $\bar{q} \in \bar{Q}$. Thus \bar{R} is essential in \bar{Q} as left \bar{R} -module.

By [2] Theorem 9.32, \bar{Q} is a left self-injective regular ring. Thus \bar{Q} is the maximal left quotient ring of \bar{R} from $_{R}\bar{R}\subset\bar{Q}$.

3. Left and right self-injective regular ring

A ring R is said to be right (resp. left) \aleph_0 -injective if every homomorphism from a countablely generated right (resp. left) ideal of R into R extends to an endomorphism of right (resp. left) R-module R.

By Proposition 6, we obtain the following theorem.

Theorem 10. Let R be a directly finite, right self-injective regular ring. Then R is a left self-injective ring if and only if R is left \aleph_0 -injective.

Proof. Let R be left \aleph_0 -injective and Q the maximal left quotient ring of R. For any element q in Q, there exist a set $\{e_n\}_{n=1}^{\infty}$ of orthogonal idempotents and a central idempotent $g \in B(R)$ such that $\sum_{i=1}^{\infty} \bigoplus Re_n \bigoplus R(1-g)$ is essential in (R, q) and $Re_n \cong Re_n^* g$ for all n. Since the right multiplication by q is a homomorphism from $\sum \bigoplus Re_n \bigoplus R(1-g)$ to R, there exists an element x in R such that $(\sum \bigoplus Re_n \bigoplus R(1-g))(q-x)=0$. Since Q is a nonsingular left R-module, we obtain that R contains q=x, i.e., that Q=R.

The converse is trivial.

A ring is said to satisfy K_i (resp. K_r) if every non-essential left (resp. right) ideal has a non zero right (resp. left) annihilator ideal. We consider one generalization of Kobayashi's theorem. For the end we use the following Utsumi's theorem:

Theorem. Let R be a regular ring and Q_1 (resp. Q_r) the maximal left (resp. right) quotient ring of R. Then $Q_1=Q_r$ if and only if R satisfies K_1 and K_r . ([6] Theorem 3.3)

In the following Lemmas 11, 12 and 13 and 14, we denote by R a right self-injective regular ring of type II_f and by Q the maximal left quotient ring of R. We use $\{e_i^*\}_{i=1}^{\infty}$ to denote the orthogonal idempotents of R given by Proposition 3.

Lemma 11. Let $\{e_i\}_{i=1}^{\infty}$, $\{f_i\}_{i=1}^{\infty}$ be pairwise orthogonal idempotents respectively, which satisfy the following conditions:

(a). (i) $Re_i \simeq Re_{\pi(i)}^* c \cdot c(e_i)$ for all $i \in N$,

(ii) $\{i | e_i \neq 0\}$ is infinite, and for every nonzero $g \in B(R)$, $ge_i \neq 0$ for infinite many *i*,

where $\{n(i)\}_{i=1}^{\infty}$ is a strictly increasing sequence.

(b). There exists an integer t such that $Rf_i \simeq Re_{i+i}^*$ for all $i \in N$.

(c).
$$\sum_{i=1}^{\infty} \oplus Re_i \cap \sum_{i=1}^{\infty} \oplus Rf_i = 0$$
 and $\sum_{i=1}^{\infty} \oplus Re_i \oplus \sum_{i=1}^{\infty} \oplus Rf_i$ is essential in _RR.
Then $Re_i \simeq Re_i^*$ for all $i=1, 2, \dots, t-1$ and $Re_i \simeq Re_{i+1}^*$ for all $i \ge t$.

Proof. If $n(i) \neq t$ for all $i \in N$, then the following relations hold:

$$\sum_{i=1}^{\infty} \oplus Re_i \simeq \sum_{i=1}^{\infty} \oplus Re_{n(i)}^* c \cdot c(e_i) \quad (\text{from (a)})$$
$$\lesssim \sum_{i=1,\pm i}^{\infty} \oplus Re_i^* \quad (\text{from } n(i) \pm t \text{ for all } i)$$
$$\sum_{i=1}^{\infty} \oplus Rf_i \simeq \sum_{i=i+1}^{\infty} \oplus Re_i^* \quad (\text{from (b)})$$
$$\subseteq R(1 - \sum_{i=1}^{i} e_i^*) \simeq Re_i^* \quad (\text{from Proposition 3} \text{ and its Corollary}).$$

By Theorem 7, R satisfy (2) of Proposition 2 for left ideals of R. Since $\sum_{i=1}^{\infty} \bigoplus Re_i \bigoplus \sum_{i=1}^{\infty} \bigoplus Rf_i$ is an essential left ideal, it follows from Proposition 2 that $Re_i \simeq Re_i^*$ for all $i=1, 2, \dots t-1, Re_i \simeq Re_{i+1}^*$ for all i>t. So we will show that $n(i) \neq t$ for all $i \in N$.

We begin by showing that n(i)=i for $i=1, 2, \dots, t-1$. Suppose that there exists an integer s with $n(i) \pm s > t$ for all i. Now the following relations hold:

$$\sum_{i: n(i)>s} Re_i \simeq \sum_{i: n(i)>s} Re_{n(i)}^* c \cdot c(e_i) \quad (\text{from (a)})$$

$$\lesssim \sum_{i=s+1}^{\infty} Re_i^*$$

$$\subset R(1 - \sum_{i=1}^{s} e_i^*) \simeq Re_s^* \quad (\text{from Proposition 3} \text{ and its Corollary})$$

$$\sum_{i: n(i)

$$\lesssim \sum_{i=1}^{s-1} Re_i^*$$

$$\sum_{i=1}^{\infty} \bigoplus Rf_i \simeq \sum_{i=t+1}^{\infty} \bigoplus Re_i^* \quad (\text{from (b)})$$

$$\subset R(1 - \sum_{i=1}^{t} e_i^*) \simeq Re_i^* \quad (\text{from Proposition 3} \text{ and its Corollary})$$$$

Consequently essential left ideal $\sum_{i=1}^{\infty} \bigoplus Re_i \oplus \sum_{i=1}^{\infty} \bigoplus Rf_i$ is subisomorphic to a proper direct summand $R(e_1^* + e_2^* + \dots + e_s^* + e_i^*)$ of R. This contradicts that R satisfy (2) of Proposition 2. Thus we obtain n(i)=i for $i=1, 2, \dots, t-1$.

Here we show that $Re_i \simeq Re_i^*$ for all i < t. Suppose that there exists an nonzero idempotent $g \in B(R)$ which $e_s g = 0$ for some s < t. Using the simillar

argument as above for $e_i g$ and $e_i^* g$, essential left ideal $\sum_{i=1}^{\infty} \bigoplus Re_i g \bigoplus \sum_{i=1}^{\infty} \bigoplus Rf_i g$ of Rg is subisomorphic to a proper direct summand $R(e_1^* + e_2^* + \dots + e_s^* + e_i^*)g$ of Rg. This is a contradiction as above. So we obtain that for every s < t, $e_s g \neq 0$ for every nonzero $g \in B(R)$. So we have

for all i < t.

Suppose that n(t) = t. Put $h = c \cdot c(e_i) \neq 0$. Now $\sum_{i=1}^{t} \bigoplus Re_i h \oplus \sum_{i=1}^{\infty} \bigoplus Rf_i h \cong$ $\sum_{i=1}^{t} \bigoplus Re_i^* h \oplus \sum_{i=t+1}^{\infty} \bigoplus Re_i^* h$ from (1) and (b). By (a), $\sum_{i=1}^{t} \bigoplus Re_i h$ is a proper direct summand of $\sum_{i=1}^{\infty} \bigoplus Re_i h$, that is, $\sum_{i=1}^{t} \bigoplus Re_i h \oplus \sum_{i=1}^{\infty} \bigoplus Rf_i h$ is not essential in Rh. This is a contradiction. Hence we obtain $n(i) \neq t$ for all i.

Lemma 12. Let $e \in Q$ be an idempotent with $eQ \simeq e_n^*Q$ for some integer n. There exist orthogonal idempotents $\{f_i\}_{i=1,\pm n}^{\infty}$ in $l_R(e)$ such that $\sum_{i=1,\pm n}^{\infty} \bigoplus Rf_i$ is essential in $l_R(e)$, $Rf_i \simeq Re_i^*$ for all $i(\pm n) \in N$.

Proof. We see that $l_{\mathbb{R}}(e)$ is a centrally closed left ideal of \mathbb{R} . By Corollary of Proposition 5, there exists a set $\{f_i\}_{i=1}^{\infty}$ of orthogonal idempotents in $l_{\mathbb{R}}(e)$ which satisfy the following conditions:

(1) $f_i R \simeq c \cdot c(f_i) e_{\pi(i)}^* R$ for all *i* where $\{n(i)\}_{i=1}^{\infty}$ is a strictly increasing sequence of integers.

(2) $\sum_{i=1}^{\infty} \bigoplus Rf_i$ is essential in $l_R(e)$.

Then there exists an essentially closed left ideal K of R such that $\sum_{i=1}^{\infty} \bigoplus Rf_i \bigoplus K$ is essential in $_{R}R$. Let a be an element in eQe_{π}^{*} such that the right multiplication by a induces a given isomorphism $Qe \cong Qe_{\pi}^{*}$. By Corollary of Proposition 5, there exists a set $\{f'_i\}_{i=1}^{\infty}$ of orthogonal idempotents in $K \cap (R \cdot a)$ which satisfies the following conditions:

(3) $f'_i R \simeq c \cdot c(f'_i) e^*_{n'(i)} R$ for all *i* where $\{n'(i)\}_{i=1}^{\infty}$ is a strictly increasing sequence of integers.

(4) $\sum_{i=1}^{\infty} \bigoplus Rf'_i$ is essential in $K \cap (R \cdot a)$.

Here we claim that $Rf'_{i} \simeq Re^{*}_{n+i}$ for all *i*. From $l_{Q}(a) = Q(1-e) \underset{e}{\supset} l_{R}(e) \underset{i=1}{\supset} \sum \underset{i=1}{\overset{m}{\oplus}} Rf_{i}$ and $\sum_{i=1}^{\infty} \bigoplus Rf_{i} \cap K = 0$, the right multiplication by *a* is a monomorphism from $\sum_{i=1}^{\infty} \bigoplus Rf'_{i}$ to Re^{*}_{n} . Since $\sum_{i=1}^{\infty} \bigoplus Rf_{i} \bigoplus K \cap (R_{\bullet}^{\bullet}a)$ is essential left ideal, we obtain

(5)
$$\sum_{i=1}^{\infty} \bigoplus Rf'_i \lesssim_{e} Re^*_n.$$

H. KAMBARA

If n'(i) < n for some *i*, then n'(i) < n implies $Re_n^* \ge Rf'_i \simeq Re_{n'(i)}^* c \cdot c(f'_i)$ which contradicts that *R* is directly finite. So we have $n'(i) \ge n$ for all *i*. Suppose that n(1)=n. Put $g=c \cdot c(f'_1) \in B(R)$. If $f'_k g \neq 0$ for some *j*, then we obtain $Rf'_1 \oplus Rf'_j g \le Re_n^* g$ from (5) and $Rf'_1 \simeq Re_n^*$ from n(1)=n, and they imply that $Re_n^* g$ is isomorphic to a proper direct summand of itself. This is a contradiction. So we have $f'_i g=0$ for all $i \ge 2$. By Corollary of Proposition 3, the following holds:

(6)
$$Re_n^* \simeq R(1 - \sum_{i=1}^n e_i^*) \supset \sum_{i=n+1}^\infty \bigoplus Re_i^*$$

Then $Rf'_1(\simeq Re^*_n g)$ contains a left ideal which is isomorphic to $\sum_{i=n+1}^{\infty} \bigoplus Re^*_i g$ and is essential in Rf'_1 . Changing suitable $\{f'_i\}_{i=1}^{\infty}$ from Lemma D, we may assume that n'(i) > n for all *i*. Then we obtain the following relation:

(7)

$$\sum_{i=1}^{\infty} \bigoplus Rf'_{i} \simeq \sum_{i=1}^{\infty} \bigoplus Re^{*}_{n'(i)}c \cdot c(f'_{i}) \quad (\text{from (3)})$$

$$\lesssim \sum_{i=n+1}^{\infty} \bigoplus Re^{*}_{1} \quad (\text{from } n'(i) > n)$$

$$\subset R(1 - \sum_{i=1}^{n} e^{*}_{i}) \simeq Re^{*}_{n} \quad (\text{from (6)})$$

Using Proposition 2 and Theorem 7 for two left ideal $\sum_{i=n+1}^{\infty} \bigoplus Re_i^*$, $\sum_{i=1}^{\infty} \bigoplus Rf'_i \leq Re_n^*$ (from (5), (7)), the homomorphism (7) $\sum_{i=1}^{\infty} \bigoplus Rf'_i \leq \sum_{i=n+1}^{\infty} \bigoplus Re_i^*$ implies that $Rf'_i \simeq Re_{n+i}^*$ for all *i*.

Suppose that there exists a nonzero central idempotent $g \in B(R)$ satisfying $gf_i=0$ for all but finite many *i*. For the sake of simplicity, put $\{i | gf_i \neq 0\} = \{1, 2, \dots, m\}$. So we have $Rg \supset \sum_{i=1}^{m} \bigoplus Rf_i g \oplus \sum_{i=1}^{\infty} \bigoplus Rf'_i g$.

Here we claim that (I): $\{n(i) | i=1, 2, \dots, m\} \supseteq \{1, 2, \dots, n\}, (II): Rf_i g \simeq Re_i^* g$ for all $i \leq n$, (III): $\{n(i) | 1 \leq i \leq m\} = \{1, 2, \dots, n\}.$

(I) Suppose that there exists an integer $s(\leq n)$ with $s \neq n(i)$ for all $1 \leq i \leq m$. Now we obtain the following from Proposition 3:

(8)
$$\sum_{i=1}^{\infty} \bigoplus Rf'_i g \lesssim_e Re^*_n g \simeq R(1-\sum_{i=1}^n e^*_i) g$$

(9)
$$\sum_{i: n(i) < s} \bigoplus Rf_i g \simeq \sum_{i: n(i) < s} \bigoplus Rc \cdot c(gf_i) e_{n(i)}^* \quad (\text{from (1)})$$
$$\subset \sum_{i=1}^{n-1} \bigoplus ge_i^* Q$$

(10)
$$\sum_{i:n(i)>s} \bigoplus Rf_i g \simeq \sum_{i:n(i)>s} \bigoplus Re^*_{n(i)}c \cdot c(gf_i)$$
$$\leq \sum_{i=s+1}^{n(m)} \bigoplus ge^*_i Q$$

FINITE REGULAR RINGS

On the other hand, from Proposition 3, $\sum_{i=s+1}^{n(m)} \oplus ge_i^* Q$ is isomorphic to a proper direct summand of $Re_s^* g (\simeq R(1-\sum_{i=1}^s e_i^*)g \supseteq \sum_{i=s+1}^{\infty} Re_i^* g)$. Thus we obtain from (8), (9), (10) that $\sum_{i=1}^{\infty} \oplus Rf_i g \oplus \sum_{i=1}^{\infty} \oplus Rf'_i g (\subset Rg)$ is subisomorphic to a proper direct summand of Rg. This contradict that R is directly finite. So we have (I).

(II). Suppose that for a given nonzero idempotent $h=gh\in B(R)$, $hgf_s=0$ for some $s \leq n$. Using $\{f'_i gh, ghf_i, ghe_i^*\}$ for $\{f_i g, f'_i g, e_i^* g\}$, the same argument as above implies that an essential left ideal of Rgh is subisomorphic to a proper direct summand of Rgh. This is a contradiction. So we obtain that $Rf_ig \simeq Re_i^*g$ for all $1 \leq i \leq n$.

(III). Suppose that n(m) > n. Then $\sum_{i=1}^{n} \bigoplus Rf_i g \bigoplus \sum_{i=1}^{\infty} \bigoplus Rf'_i g$ is a proer proper direct summand of $\sum_{i=1}^{m} \bigoplus Rf_i g \bigoplus \sum_{i=1}^{\infty} \bigoplus Rf'_i g$. On the other hand we obtain from (I), (II) and Proposition 3 that $\sum_{i=1}^{n} \bigoplus Rf_i g \bigoplus \sum_{i=1}^{\infty} \bigoplus Rf'_i g (\simeq \sum_{i=1}^{\infty} \bigoplus Re_i^* g)$ is essential in Rg. This is a contradiction. Thus we have (III).

is essential in Rg. This is a contradiction. Thus we have (III). Put $J = \{g \in B(R) | gf_i = 0$ for all but finite many $i\}$. Put $h = \bigvee_j g$ in B(R). Then $Rf_i h \simeq Re_i^* h$ for all $i=1, 2, \dots, n$. By Proposition 3, it follows that Rhf_n contains a left ideal which is isomorphic to $\sum_{i=n+1}^{\infty} \bigoplus Re_i^* h$. Changing suitable pairwise orthogonal idempotents $\{f_i\}_{i=1}^{\infty}$ from Lemma D, we may assume that for every nonzero central idempotent $g \in B(R)$, $gf_i \neq 0$ hold for infinite many $i \in N$. By Lemma 11, we obtain that $Rf_i \simeq Re_{n(i)}^*$ for all $i \neq n$ and n(i)=i for all $i \leq n-1$ and n(i)=i+1 for all $i \geq n$.

Lemma 13. Let I be an essentially closed right ideal of Q such that $I \oplus eQ$ is essential in Q_Q , $eQ \simeq e_i^*Q$ for some integer t. There exist pairwise orthogonal idempotents $\{e_n\}_{n=1,\pm t}^{\infty}$ of I such that $\sum_{n=1,\pm t}^{\infty} \oplus e_nQ$ is essential in I, $e_nQ \simeq e_n^*Q$ for all $n(\pm t) \in N$.

Proof. Since I is essentially closed, I is centrally closed in Q. From Corollary of Proposition 5, there exist pairwise orthogonal idempotents $\{e_i \in I\}_{i=1}^{\infty}$ which satisfy the following conditions:

(1) $e_i Q \simeq c \cdot c(e_i) e_{n(i)}^* Q$ for all *i* where $\{n(i)\}_{i=1}^{\infty}$ is a strictly increasing sequence.

(2) $\sum_{i=1}^{\infty} \bigoplus e_i Q$ is essential in *I*.

Suppose that there exists a nonzero central idempotent $g \in B(R)$ satisfying $ge_i=0$ for all but finite many *i*. By the similar argument in (*I*), (*II*), (*III*) of Proof of Lemma 12, we obtain that $ge_iQ \simeq ge_i^*Q$ for all $i \leq t$ and $ge_i=0$ for all

i>t.

Put $J = \{g \in B(R) | ge_i = 0 \text{ for all but finite many } i\}$. Put $h = \bigvee_{J} g$ in B(Q). Then $he_iQ \simeq he_i^*Q$ for all $i=1, 2, \dots, t$. By Proposition 3 and its Corollary, it follows that he_iQ contains a right ideal which is isomorphic to $\sum_{i=t+1}^{\infty} \bigoplus he_i^*Q$ and essential in he_iQ . Changing suitable pairwise orthogonal idempotents $\{e_i\}_{i=1}^{\infty}$ from Lemma D, we may assume that for every nonzero central idempotent $g \in B(R), ge_i \neq 0$ for infinite many $i \in N$. Since $eQ \simeq e_i^*Q \simeq (1 - \sum_{i=1}^{t} e_i^*)Q$, $\supset \sum_{i=t+1}^{\infty} \bigoplus e_i^*Q$, it follows that there exist pairwise orthogonal idempotents $\{f_i\}_{i=1}^{\infty}$ satisfying $eQ \supset \sum_{i=1}^{\infty} \bigoplus f_iQ$ and $f_iQ \simeq e_{i+1}^*Q$ for all i. Applying Lemma 11 to the present argument, we complete the proof.

Lemma 14. Let I be an essentially closed right ideal of Q such that $I \oplus eQ$ is essential in Q_q , $eQ \simeq e_i^*Q$ for some integer t. Then $l_q(I)$ is nonzero.

Proof. By Lemma 13, there exist pariwise orthogonal idempotents $\{e_n\}_{n=1,\pm t}^{\infty}$ in *I* which satisfy the following for every $n \pm t$:

(1)
$$e_n Q \simeq e_n^* Q$$
.

(2)
$$\sum_{n=1,\pm t}^{\infty} \bigoplus e_n Q \subset I_{\epsilon}$$

By Lemma 12, for every e_n , there exist pairwise orthogonal idempotents $\{f_{ni}\}_{i=1,\pm n}^{\infty}$ in $l_R(e_n)$ which satisfy the following for every $i \pm n$.

Put $f_n = \sum_{i=1,\pm n}^{n+t+2} f_{ni}$ in $l_R(e_n)$ for all $n \neq t$. From [2] Theorem 4.14, R satisfy cancellation property. Since R has two decompositions $R = \sum_{i=1,\pm n}^{n+t+2} \bigoplus Rf_{ni} \bigoplus R(1-f_n) \cong \sum_{i=1,\pm n}^{n+t+2} \bigoplus Re_i^* \bigoplus Re_n^* \bigoplus R(1-\sum_{i=1}^{n+t+2} f_{ni})$, we obtain the following from (3):

$$R(1-f_n) \simeq Re_n^* \oplus R(1-\sum_{i=1}^{n+t+2} f_{ni})$$

$$\simeq Re_n^* \oplus Re_{n+t+2}^* \quad \text{(from Proposition 3)}$$

So we obtain:

(4)
$$(1-f_n)R \simeq e_n^* R \oplus e_{n+t+2}^* R .$$

On the other hand $l_R(e_n) \supset Rf_n$ implies $r_R l_R(e_n) \subset (1-f_n) R$. So we have

(5)
$$\sum_{n=1,\pm t}^{\infty} r_R l_R(e_n) \subset \sum_{n=1,\pm t}^{\infty} (1-f_n) R.$$

By Lemma D, there exist pairwise orthogonal idempotents $\{h_n\}_{n=1,\pm t}^{\infty}$ in R, which satisfy the following for every $n \pm t$.

$$(6) (1-f_n) R \gtrsim h_n R.$$

(7)
$$\sum_{n=1,\pm t}^{\infty} (1-f_n) R = \sum_{n=1,\pm t}^{\infty} \oplus h_n R.$$

Consequently we obtain:

(8)

$$\sum_{n=1,\pm t}^{\infty} \bigoplus h_n R \lesssim \sum_{n=1,\pm t}^{\infty} \overline{\bigoplus} (e_n^* R \oplus e_{n+t+2}^* R) \quad (\text{from (4), (6)})$$

$$\approx \sum_{n=1,\pm t}^{\infty} \bigoplus e_n^* R \overline{\bigoplus} \sum_{n=1,\pm t}^{\infty} \bigoplus e_{n+t+2}^* R$$

$$\lesssim (1-e_i^*) R \overline{\oplus} e_{i+2}^* R$$

where we denote by $\overline{\oplus}$ outer direct sum. Since R satisfy cancellation property, $R = (1 - e_i^*) R \oplus e_i^* R = \sum_{n=1}^{t} \oplus e_n^* R \oplus (1 - \sum_{n=1}^{t} e_n^*) R$ and $(1 - \sum_{n=1}^{t} e_n^*) R \simeq e_i^* R$ implies $(1 - e_i^*) R \simeq \sum_{n=1}^{t} \oplus e_n^* R$. So we obtain from (8) that $\sum_{n=1, \pm t}^{\infty} \oplus h_n R \lesssim \sum_{n=1}^{t} \oplus e_n^* R \oplus e_{i+2}^* R \oplus e_{i+1}^* R \oplus (1 - \sum_{n=1}^{t+2} e_n^*) R$, i.e., $\sum_{n=1}^{t} \oplus e_{i+2}^* R \oplus e_{i+2}^* R$ is a proper direct summand of R, it follows from (7) and Proposition 2 that $\sum_{n=1,\pm t}^{\infty} (1 - f_n) R$ is not essential in R_R .

Let e' be an idempotent in R such that $\sum_{n=1,\pm t}^{\infty} (1-f_n) R$ is essential in e'R. We obtain that $0 \pm R(1-e') = l_R(e') \subset l_R((1-f_n) R) = Rf_n \subset l_R(e_n)$ for all $n \pm t$. Thus $\bigcap_{n=1,\pm t} l(e_n) \supset R(1-e') \pm 0$. For any element q in I, we obtain from (2) that $(q' : \sum_{n=1,\pm t}^{\infty} \bigoplus e_n Q) = J$ is an essntial right idela of Q. Since (1-e') qJ = 0 and Q_q is

nonsingular, we see that (1-e') q=0. Thus $l_Q(I) \supset Q(1-e') \neq 0$.

Theorem 15. Let R be a directly finite, right self-injective regular ring. Then the maximal left quotient ring of R is a left and right self-injective regular ring.

Proof. By [2] Theorem 10.13, R has a decomposition $R=R_1 \times R_2$ such that R_1 is type I_f and R_2 is type II_f . Then R_1 is right and left self-injective. So we may assume that R is type II_f .

Suppose that Q satisfies K_r . Since Q satisfies K_1 , it follows by Utsumi's Theorem that the maximal right quotient ring of Q is equal to the maximal left quotient ring of Q, i.e., Q. Thus Q is left and right self-injective ring. So it is sufficient to show that Q satisfies K_r .

Let I be a non-essential right ideal of Q such that $eQ \cap I=0$ for some non-

H. KAMBARA

zero idempotent e in Q. Put $e'=e'^2$ in eQe such that $Qe' \simeq Qe_i^* g$, $g=c \cdot c(e')$ for some integer t. We prove that $l_Q(I) \neq 0$. So we may assume that $Qe \simeq Qge_2^*$, $c \cdot c(e) = g$ and $eQ \oplus I$ is an essential right ideal of Q. Since $I \subseteq I^c$ implies $l(I^c) \subseteq l(I)$ and $I^c \cap eQ = 0$ where I^c is the essential closure of I, we may assume that I is essentially closed. From $l_{gQ}(gI) \subseteq l_Q(I)$, we can assume that $c \cdot c(e) = 1$. By Lemma 14, we have $l_Q(I) \neq 0$, i.e., that Q satisfies K_r .

Corollary. ([5]) Let R be a regular ring with a rank function N. Suppose that N satisfy $1=\sup\{N(x)|x\in I\}$ for every essential left ideal I of R. Then the maximal right quotient ring of the maximal left quotient ring of R is left and right self-injective and is isomorphic to the N-completion of R by an extention of natural map $\varphi: R \rightarrow \overline{R}$ (See [2]).

Proof. From [2] Theorem 21.17, the maximal left quotient ring S of R is directly finite. By Theorem 15, the maximal right quotient ring Q of S is left and right self-injective. By the hypothesis and [2] Theorem 21.17, we consider that S is a subring of the N-completion of R and there exists a rank function N of S as a extention of N. For every essential left ideal I of S, we have ${}_{R}I \supset_{e} I \cap R$ and $R \supset I \cap R$. So $1 = \sup \{N(x) | x \in I \cap R\} \leq \sup \{N(x) | x \in I\} \leq 1$, i.e. $\sup \{N(x) | x \in I\} \leq 1$, i.e. $\sup \{N(x) | x \in I\}$ $\{N(x) | x \in I\} = 1$ for all essential left ideal I of S. For a given essential right ideal J of S, there exist pairwise orthogonal idempotents $\{g_n\}$ such that $J \supset_e$ $\sum_{n=1}^{\infty} \bigoplus g_n S. \quad \text{Suppose } \sum_{n=1}^{\infty} \bigoplus Sg_n \subset S(1-g) \text{ Then } ga = \sum g_n a_n \in gS \cap \sum g_nS \text{ im-}$ plies $0=g_ng_a=g_na_n$ for all n, so g=1, i.e., $\sum Sg_n$ is essential in $_sS$. Thus $1=\sum$ $N(g_n) \leq \sup \{N(x) | x \in J\} \leq 1$, i.e., $1 = \sup \{N(x) | x \in J\}$ for all essitial right ideal J of S. From [2] Theorem 21.17, we consider that Q is a subring of the Ncompletion \overline{R} of R and have a same rank function N. In the same way as S, we obtain that $1 = \sup \{N(x) | x \in K\}$ for all essential right ideal of Q. From [2] Proposition 21.3 and 4, N is countably additive on Q. By [2] Theorem 21.7, Q is complete in the N-metric. So $R \subset Q \subset \overline{R}$ implies $Q = \overline{R}$.

We consider again a necessary and sufficient condition for the maximal right quotient ring of a regular ring to be directly finite.

Theorem 16. For a regular ring R, the following conditions are equivalent.

1) The maximal right quotient ring of R is directly finite.

2) Every right ideal isomorphic to some essential right ideal is essential in R_{R} .

3) The maximal left quotient ring of the maximal right quotient ring of R is right and left self-injective.

4) There exists a left and right self-injective regular ring S such that R is a subring of S and S is a non-singular right R-molule:

Proof. 1) \Rightarrow 2): Proposition 2.

1) \Rightarrow 3): Theorem 15 and Proposition 2.

3) \Rightarrow 4): Let Q be the maximal right quotient ring of R and S the maximal left quotient ring of Q. Suppose that x is a singular element in S such that r(x)is an essential right ideal of R. Since $(Q \cdot x) = \{q \in Q \mid qx \in Q\}$ is an essential left ideal of Q, $((Q \cdot x) x) r_R(x) = 0$ implies $0 = Z(Q_R) \supset (Q \cdot x) x$. Since S is a nonsingular left Q-module, it follows that x=0, i.e., S is a non-singular right Rmodule.

4) \Rightarrow 1): Let S_R be non-singular. Since R is regular, S is a flat left R-module. So S is non-singular injective right R-module ([2] Lemma 6.17). Put $Q = \{s \in S \mid (s, R) \text{ is an essential right ideal of } R\}$. For every $0 \neq q \in Q$, we have $qR \cap R \supset q(q, R) \neq 0$ from nonsingularity of S_R . So Q is essential hull of R in injective module S_R , i.e., Q_R is injective.

We will show that $(t \cdot (s \cdot R))$ is an essential right ideal for every $s, t \in Q$. Suppose that $(t \cdot (s \cdot R)) \cap xR = 0$ for some nonzero $t, s \in Q$ and $x \in R$. Then $0 = txR \cap (s \cdot R)$ and $(s \cdot R) \subset R$ implies txR = 0, i.e., $xR \subset (t \cdot (s \cdot R))$, which is a contradiction. So $(t \cdot (s \cdot R))$ is essential right ideal for all $t, s \in Q$. Thus we obtain that Q is a subring of S. So Q is the maximal right quotient ring of R.

Since S is directly finite from Utsumi [7] (see [2] Theorem 9.29), Q is directly finite.

Let R be a regular ring and Q be the maximal right quotient ring of the maximal left quotient ring of R. Here we consider necessary and sufficient conditions for Q to be complete in the N-metric for some rank function N of Q (Corollary 1). And, in Corollary 2, we consider a case that R is a prime regular ring

Corollary 1. Let R be a regular ring and Q be the maximal right quotient ring of the maximal left quotient ring of R. Then the following conditions are equivalent.

1). There exists a rank function on R such that $1 = \sup \{N(x) | x \in I\}$ for all essential left ideal I of R.

2). There exists a rank function N of R such that the N-completion of R is the maximal right quotient ring of the maximal left quotient ring of R.

3). There exists a rank function \overline{N} on Q such that Q is complete in the \overline{N} -metric.

4). There exists a rank function N on R such that the N-completion \overline{R} of R is a nonsigular R-module.

Proof. Let S be the maximal left quotient ring of R.

1) \Rightarrow 2): Corollary of Theorem 15.

 $(2) \Rightarrow 3$: [2] Theorem 19.6.

3) \Rightarrow 4): The restriction of \overline{N} to R is a rank function on R. From 3) and $Q \supset R$, the \overline{N} -completion $\overline{Q} = Q$ of Q contains the N-completion \overline{R} of R as a sub-

ring. Suppose that $0 \neq q \in Z(RQ)$ is a singular element of Q. Then there exists $b \in (q^{\bullet}.S) = \{x \in S \mid qx \in S\}$ such that $qb \neq 0$. Then $l_R(q) qb = 0$, which contradicts that RS is nonsingular.

4) \Rightarrow 1): For a given essential left ideal I of R, there exist pairwise orthogonal idempotents $\{e_i\}_{i=1}^{\infty}$ such that $I \supset_e \sum Re_i$. Set $f = \lim_n \sum_{i=1}^n e_i$ in \overline{R} . Then $\sum Re_i(1-f)=0$ implies 1-f=0. So, from [2] Theorem 19.6, $1=N(f)=\lim_{i=1}^n \sum_{i=1}^n N(e_i)=\sum N(e_i)\leq \sup \{N(x)|x\in I\}$, i.e., $\sup \{N(x)|x\in I\}=1$.

Corollary 2. Let R be a prime regular ring. Then the following conditions are equivalent.

1). There exists a rank function N on R such that $1 = \sup \{N(x) | x \in I\}$ for all essential left ideal I of R.

2). The maximal left quotient ring of R is directly finite.

3). The maximal right quotient ring of the maximal left quotient ring of R is right and left self-injective.

4). There exists a rank function N on R such that the N-completion of R is a nonsingular left R-module.

Proof. 1) \Rightarrow 2): [2] Corollary 21.19.

2) \Rightarrow 3): Theorem 15.

 $3) \Rightarrow 4$: [2] Corollary 21.14 and 3) $\Rightarrow 4$) in Proof of Corollary 1 of Theorem 16.

4) \Rightarrow 1): See 4) \Rightarrow 1) in Proof of Corollary 1 of Theorem 16.

A regular ring R is said to satisfy K_1^* if $r_R(I) \oplus r_R(J)$ is an essential ringt ideal of R for every essential left ideal $I \oplus J$. Note that essentiality of $I \oplus J$ implies $r_R(I) \cap r(RJ) = 0$.

Let R be a subring of a ring S such that R_R is nonsingular. Then S is said to be *left quotient ring* of R if R is essential in _RS.

In the following theorem, we consider necessary and sufficient conditions that the maximal right quotient ring of a regular ring is left and right selfinjective.

Theorem 17. For a regular ring R, the following conditions are equivalent.

1) The maximal right quotient ring of R is right and left self-injective.

2) The maximal left quotient ring of R is directly finite and a right quotient ring of R.

3) i) Every left ideal isomorphic to some essential left ideal is an essential left ideal of R.

ii) R satisfies K^{*}_i.

Proof. Let Q be the maximal right quotient ring of R.

1) \Rightarrow 2): Let Q be a right and left self-injective ring. By [2] Lemma 6.17,

Q is injective left R-modlue. Suppose that x is a singular element of left R-module Q. Since R is a non-singular left R-module, it follows that $l_R(x) \{x(x, R)\} = 0$ implies x(x, R) = 0, Since Q is a non-singular right R-module, it follows that x=0, i.e., Q is non-singular left R-module.

Put $S = \{x \in Q \mid (R, x) \subset_R R\}$. By similar symmetric argument as $3 \rightarrow 1$ in Proof of Theorem 16, we obtain that S is the maximal left quotient ring of R and S is a right quotient ring of R.

 $2) \Rightarrow 1$: Let S be the maximal left quotient ring of R such that S is a directly finite, right quotient ring of R, i.e., $R_R \subset S_R$. So we can consider that S is a submodule of Q. For any element s, t of S, we denote by sot the multiplication of s and t in Q. Put $I=(t^{\bullet},(s^{\bullet},R))$ and $J=(st^{\bullet},R)$. Then $t(I \cap J) \subset (s^{\bullet},R)$ and $(s \circ t) (I \cap J) = s(t(I \cap J)) = st(I \cap J)$. Since Q is a non-singular right R-module, we have $s \circ t = st$. Thus S is a subring of Q. Since Q is right self-injective module. While $Q_{R,e} \subset R_R$ implies $Q_S \supset_e S_S$. Thus Q is the maximal right quotient ring of S. By Theorem 15, it follows that Q is left and right self-injective.

3) \Leftrightarrow 2): By Proposition 2, 3)-i) is equvalent that the maximal left quotient ring of R is directly finite. Let S be the maximal left quotient ring of R.

Suppose that R satisfies K_1^* . By [2] Theorem 13.14, S has a decomposition $S=S_1 \times S_2$ such that S_1 is strongly regular ring and S_2 has no non-zero central abelian idempotent. Since $S_1 \cap R \subset_e S_1$ as right R-module, it is sufficient to show that $S_2 \cap R \subset_e S_2$ as right R-modules. By [2] Theorem 13.16, S_2 is generated as a ring by all its idempotents. For a given idempotent e in S_2 , put $I=Se \cap R$ and $J=S(1-e) \cap R$. Then $I \oplus J$ is an essential left ideal of R. Since $r(I) \oplus r(J) = (1-e) S \cap R \oplus eS \cap R$ is essential in R_R , it follows that $(e^{\cdot},R) \supset r(I) \oplus r(J)$ are essential right ideals of R. Therefore S_R is an essential extention of R_R .

Conversely, suppose that S is a right quotient ring of R, i.e., S is a subring of Q. Let $I \oplus J$ be an essential left ideal of R. There exists an idempotent f in S such that $I \subset_{\epsilon} Sf$ and $J \subset_{\epsilon} S(1-f)$. Then $fQ \cap R \oplus (1-f)Q \cap R$ is essential in R_R . Now $fQ \cap R \supset fS \cap R \supset fR \cap R$. While we have $fQ \cap R \subset fR \cap R$ from $f(fQ \cap R) = fQ \cap R$. So $r(J) = fS \cap R = fQ \cap R$. Similarly $r(I) = (1-f)Q \cap R$. Therefore $r(I) \oplus r(J)$ is essential in R_R . Thus R satisfies K_1^* .

REMARK. For a regular ring, the condition K_1^* implies the condition K_1 . For, let R be a regular ring satisfying K_1^* . Suppose that I is a non essential left ideal of R with r(I)=0. Let J be a nonzero left ideal of R such that $I \oplus J$ is essential in R_R . Then $r(I) \oplus r(J) = r(J)$ is an essential right ideal. Since R_R is nonsingular, it follows that J=0. This is a contradiction.

We don't know whether the converse hold or not.

Here we consider the same problem as Theorem 17 for a regular ring with a rank function (Corollary 1) and for a prime regular ring (Corollary 2). The equivalence $2) \Leftrightarrow 4$ in Corollary 1 was proved by A. Vogel [8].

Collorary 1. For a regular ring R with a rank function N, the following conditions are equivalent.

1). The maximal left quotient ring S of R is a right quotient ring of R and $\sup \{N(x) | x \in I\} = 1$ for all essential left ideal I of R.

2). The N-completion \overline{R} of R is the maximal right quotient ring of R

3). The maximal right quotient ring Q of R is right and left self-injective and there exists a rank function \overline{N} on Q such that \overline{N} is an extention of N and Q is complete in the \overline{N} -metric.

4). For every left ideal I of R,

 $\sup \{N(x) | x \in I\} + \sup \{N(x) | x \in r(I)\} = 1.$

Proof. 1) \Rightarrow 2): Since S is right quotient ring, we have $Q_R \supset_e S_R \supset_e R_R$, where Q is the maximal right quotient ring of R. Let E be an injective hull of S_s . For every $a \in E$, $(a^{\bullet}.S)_s = \{x \in S \mid ax \in S\}$ is an essential right ideal of S, so $(a^{\bullet}.S) \cap R$ is an essential right ideal of R. Then we have $E_{R,e} \supset S_R$, so we consider $Q \supset E$. For every $q \in Q$, we have $(q^{\bullet}.S)_s \supset (q^{\bullet}.R)_R$ and $(q^{\bullet}.R)_R$ is essential right ideal of R, so $E \supset Q$. Then Q is maximal right quotient ring of S. From Corollary 1 of Theorem 16, \overline{R} satisfies 2).

 $2) \Rightarrow 3$: It is clear from [2] Theorem 19.6.

3) \Rightarrow 4): Let $\{e_i\}_{i=1}^{\infty}$ be pairwise orthogonal idempotents with $\sum_{i=1}^{\infty} Re_i \ e \subset R$. Set $f = \lim_{n} \sum_{i=1}^{n} e_i$ in Q. Then $0 = r(\sum Re_i) \supset (1-f) \ Q \cap R$ implies 1-f=0. From [2] Theorem 21.7, \overline{N} is countably additive on Q. Thus we obtain $1 = \sum \overline{N}(e_i) = \sum N(e_i)$, i.e., $1 = \sup \{N(x) | x \in I\}$ for all essential left ideals I of R. While, from [2] Theorem 21.7, we have $1 = \sup \{N(x) | x \in I'\}$ for all essential right ideals I' of R.

For a given left ideal I of R, set $I \oplus J_e \subset R$ and ${}_R J \subset R$. Then 1=sup $\{N(x) | x \in I\} + \sup \{N(x) | x \in J\}$ Then $r(I) \oplus r(J)_e \subset R_R$ from Theorem 17. So $1 = \sup \{N(x) | x \in r(I)\} + \sup \{N(x) | x \in r(J)\}$. From $(1-f) R \supset r(I)$ for every $f^2 = f \in I$, we have $1 - N(f) \ge \sup \{N(x) | x \in r(I)\}$ for every $f \in I$, i.e., $1 - \sup \{N(x) | x \in I\} \ge \sup \{N(x) | x \in r(I)\}$. Similarly, $1 - \sup \{N(x) | x \in J\} \ge \sup \{N(x) | x \in r(J)\}$. Then $1 \ge \sup \{N(x) | x \in I\} + \sup \{N(x) | x \in r(I)\} = \sup \{N(x) | x \in r(J)\} = \sup \{N(x) | x \in r(J)\} \ge \sup \{N(x) | x \in I\} + \sup \{N(x) | x \in J\} = 1$. Thus R satisfies 4).

4) \Rightarrow 1): By 4), sup $\{N(x)|x \in I\} = 1$ for every essential left ideal I of R. So we have sup $\{N(x)|x \in J\} + \sup \{N(x)|x \in J'\} = 1$ for every essential left ideal $J \oplus J'$ of R. From 4), sup $\{N(x)|x \in J\} + \sup \{N(x)|x \in r(J)\} = 1$ and sup $\{N(x)|x \in J'\} + \sup \{N(x)|x \in r(J')\} = 1$. Hence we have sup $\{N(x)|x \in R)\} = 1$.

r(J) + sup $\{N(x) | x \in r(J')\} = 1$, so $r(J) \oplus r(J')$ is essential in R_R , i.e. R satisfies 3) of Theorem 17. Thus the maximal left quotient ring of R is right quotient ring of R and $1 = \sup \{N(x) | x \in I\}$ for all essential left ideal I of R.

Collorary 2. For a prime regular ring R, following conditions are equivalent. 1). The maximal left quotient ring of R is a right quotient ring of R and directly finite.

2). There exists a rank function N on R such that the N-completion of R is the maximal right quotient ring of R.

3). The maximal right quotient ring of R is left and right self-injective.

4). There exists a rank function N on R such that $1 = \sup \{N(x) | x \in I\} + \sup \{N(x) | x \in r(I)\}$ for every left ideal I of R.

Proof. 1) \Rightarrow 2): From [2] Corollary 21.19, there exists a rank function N on R such that sup $\{N(x) | x \in I\} = 1$ for every essential left ideal I of R. By Corollary 1 of Theorem 17, R satisfies 2) by the rank function N.

 $(2) \Rightarrow 3$: [2] Theorem 19.6.

 $3) \Rightarrow 4$: By Corollary 21.14, there exists a rank function \overline{N} of the maximal right quotient ring Q of R such that Q is complete in the \overline{N} -metric. From Corollary 1 of Theorem 17, R satisfies 4).

 $4) \Rightarrow 1$: It is clear from Corollary 1 of Theorem 17 and [2] Corollary 21.19.

I thank K.R. Goodearl for sending me a letter that directed my attention to [8].

References

- K.R. Goodearl: Ring theory: Nonsingular rings and modules, Dekker, New York, 1976.
- [2] K.R. Goodearl: von Neumann regular rings, Pitman, London-San Francisco-Melbourne, 1979.
- K.R. Goodearl and D. Handelman: Simple self-inj^octive rings, Comm. Algebra, 3 (1975), 797-834.
- [4] H. Kambara: On existence of directly finite, only one sided self-injective regular rings. to appear.
- [5] K. Kobayashi: Completion and maximal quotient rings over regular rings, to appear.
- [6] Y. Utsumi: On rings of any one-sided quotients are two sided, Proc. Amer. Math. Soc. 14 (1963), 141-147.
- [7] Y. Utsumi: On continuous rings and self-injective rings, Trans. Amer. Math. Soc. 118 (1965), 158-173.
- [8] A. Vogel: Completion and injective hull of von Neumann regular ring, Comm. in Algebra 12 (1984), 1787-1794.

H. KAMBARA

Kii School of General Education Wakayama Medical College Hironishi 651 Wakayama 649–63 Japan