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1. Introduction

The study of optimal control of distributed parameter systems started in
the early sixties and since then there have been numerous important develop-
ments on the subject. Most of the works concentrate on linear systems. Se-
lectively we mention the important works of Egorov [24], Friedman [26], [27]
and the classical book of Lions [34]. Nonlinear systems were considered by
Cesari [14], [15], [16], Lions [33], Ahmed [2] and Hou [30] among others. A
comprehensive presentation of the nonlinear theory, together with the more re-
cent trends in the study of distributed parameter systems can be found in the
book of Ahmed-Teo [6]. Very recently, in a series of interesting papers, Ah-
med [3], [4], [5], studied the existence of optimal controls for large classes of
semilinear systems, as well as their relaxation properties.

In this paper we continue on the road paved by those three recent works of
Ahmed. We study the Lagrange optimal control problem for a large class of
nonlinear systems governed by Volterra integrodifferential evolution equations.
Our hypotheses are general enough to incorporate both parabolic and hyper-
bolic distributed parameter control systems. First we establish the existence
of optimal controls by considering systems in which the control appears
linearly in the dynamics. Since the dynamic equation of our system is not
“instantaneous”, but also has memory incorporated in the integral part of the
integrodifferential equation, we encounter serious technical difficulties if we try
to handle systems with the control entering nonlinearly. The otherwise power-
ful and elegant ‘““Cesari-Rockafellar reduction technique” does not seem to
work here. Then we consider completely nonlinear systems. Now in order to
guarantee the existence of optimal controls, we have to pass to a larger system
with measure valued controls, known as the “relaxed system”. For this aug-
mented system, we prove that optimal controls exist and in addition, under
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mild hypotheses the value of the relaxed problem equals that of the original
one. Again the memory feature of our system does not allow us to have an
alternative ‘‘deparametrized” version of the relaxed problem. Finally we prove
a density (relaxation) result relating the trajectories of the original and relaxed
systems. This result illustrates that the relaxed problem is the “closure” of
the original one. Two more results of this nature are also proved. Finally
some examples are worked out in detail.

2. Preliminaries

Let (Q, =) be a measurable space and X a separable Banach space. Throu-
ghout this paper we will be using the following notations:

P, n(X) = {4<X: nonempty, closed, (convex)}
and
Pyo(X) = {4 X: nonempty, w-compact, (convex)} .

A multifunction F: Q—P,(X) is said to be measurable, if for eveiy z€X,
w—d(2, F(0))=inf {||z—x||: x€F(w)} is measurable. Also a multifunction G:
Q—2*\ {@} is said to be “graph measurable”, if Gr G={(0, x)EQXX: xE
G(w)} €2 X B(X), with B(X) being the Borel o-field of X. For closed valued
multifunctions, measurability implies graph measurability. The converse is true
if there exists a complete o-finite measure p(+) on (Q,=). For details we refer
to Wagner [42], Hiai-Umegaki [28] and Levin [32].

Now let (Q, =, p) be a finite measure space and F: Q—2*\ {¢} a multifunc-
tion. By S#(1<p< o) we will denote the set of all L?(X)-selectors of F(-);i.e.
St={feLl(X): f(o)eF (o) p-a.e.}. This set may be empty. It is easy to
see that it is nonempty if and only if F(-) is graph measurable and w—inf {||x||:
xeF (o)} €L4. So if F(-) is graph measurable and w—sup {||x||: xEF (o)}
belongs in L} (in which case the multifunction is said to be ““integrably bounded”),
then Sr=#¢. Using Sk we can define a set valued integral for F(-), by setting

Sn F(o)dp(w)= {S f(0) du(w): f €Sk}, where the vector integrals of the right
Q

hand side are defined in the sense of Bochner.

Recall (see for example Barbu [10]), that the duality map of a Banach space
X, is the mapping F: X—2%* defined by F(x)= {x*&X*: (x*, x)=||x|[>=
[lx*[|%. It is clear that for every x€ X, F (x) is closed, convex, bounded and
furthermore the Hahn-Banach theorem, tells us that F* (x)=0. Note that when
X* is strictly convex, then the duality map is single valued. Using E () we
can define a semi-inner product (-, +)_ on X, by setting (x, y)_=inf {(x*,y):
x*cF(x)}. An operator A: D(A)= X—2% is said to be “dissipative” if and
only if (x—x', y—y")_<0 for all (»,%), (x’,y")€Gr A. The operator A(-) is
said to be “m-dissipative” if and only if it is dissipative and R(—A4)=X for
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each A>0. It is well known that an m-dissipative operator A(+) generates a

semigroup of nonlinear, nonexapansive maps {S(#): D(4)—D(A4), t>0}, via the

Crandall-Liggett exponential formula: S(¢)x=1im (/ _t A)™"x for each = D(4).
x> n

Finally recall that by J,, A>>0 we denote the resolvent of 4 ie. ,=(I—ad4)™
We know that this is a nonexapnsive map defined on all X and lim J, x=x for
all xe D(4). e

Let Z be a separable, complete metric space (a Polish space) and let B(Z)
be its Borel o-field. By M3 (Z) we will denote the space of probability measures
on Z. A transition probability is a function A: QX B(Z)—[0, 1] s.t. for all
AeB(Z), \M(+, A) is S-measurable and for every 0 €Q, Mo, - )EML(Z). If Z
is compact, this definition is equivalent to saying that o—\ (e, +) from Q into
MJ(Z) with the narrow (weak) topology, is measurable. We will denote the set
of all transition probabilities from (Q, =, x) into (Z, B(Z)), by R(Q, Z). Fol-
lowing Balder [9] (see also Warga [43]), we can define a topology on R(Q, Z) as
follows: Let f: O XZ—>R be a Caratheodory, L'-function (i.e. o —f(w, x) is
measurable, x— f(w, x) is continuous and | f(w, x)| <a(w) p-a.e. with a(-)EL})

and let I,: R(Q, Z)—R be the integral functional defined by / f()\.)zsQ SZ f(o, 2)

Mo) (d2) dp(w). The weakest topology on R(Q, Z) that makes the above func-
tionals (for any Caratheodory L'-integrand) continuous, is called the weak
topology on R(Q, Z). Observe that when Q is a singleton, then R(Q, Z)=M\(Z)
and the weak topology just defined, is nothing else but the well known narrow
topology (““topologie etroite’ in the Bourbaki terminology [12], see also Choquet
[18]) on M%(Z). Suppose Z is a compact metric space. 'Then the Caratheodory,
L'-integrands can be identified with the Lebesgue-Bochner space LY(C(Z)). To
see this, associate to each Caragheodory L'-integrand f(+, *), the map o— f(w, *)
€C(Z). The measurability of this map follows from the lemma in [36]. From
the Dinculeanu-Foias theorem, we know that L'(C(Z))*=L~(M(Z)) where
M(Z) is equipped with the narrow topology (Warga [43] calls this result
“Dunford-Petts theorem; see [43], p. 268, see also Dunford-Schwartz [22], p.
503). Then the weak topology on R(Q, Z) defined above conicides with the
relative w*(L=(M(Z)), LY(C(Z)))-topology.

3. Existence of optimal controls
Let T=][0, b], X a separable with uniformly convex dual, hence reflexive (X
models the state space) and Y a separable reflexive Banach space (it models the

control space).
The nonlinear optimal control problem under consideration is the follow-

ing:
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J(wu) = S: L(t, %(2), u(?)) dt—inf = m
s.t. JE(t)EAx(t)+S: K(t—9)f(s, x(s) u(s) ds ae. ()
%(0) = x,, u(t) € U(t, x(t)) a.e., u(+) measurable
We will need the following hypotheses on the data of problem (*):

H(A): A: D(A)SX—>2* is an m-dissipative operator s.t. (I—A)™" is comprct.
H(f): f: TXX—->L(Y,X)
(1) t—f(2, x) is measurable,
(2) x—f(¢, »)* is continuous from X into -L(X*, Y*) endowed with
the strong operator topology,
3) @D px, yy<a®)+d@)ll=ll a.e. with a(-)EL3, b(-)ELS.
H(K): K:T—-_L(X) is a C'-function, where L(X) is endowed with the
operator norm topology.
H(U): U: TXX—P;(Y) is a multifunction s.t.
(1) (¢ x)—=U(t, x) is graph measurable,
(2) Gr Ut - )={(x,u)eXxY:ucsU(t, x)} is closed in XX Y,
(3) U(t,x)=W a.e. with WeP,,(Y).
H(L): L: TxXxY—>R=RU {+0co} is an integrand s.t.
(1) (¢, x, w)—L(t, x, u) is measurable,
(2) (%, u)—L(t, %, u) is Ls.c. from XX Y, into R and convex in u,
(3) V() +Ara(?) l|2l[+-ra(2) [lul| <L (2, x, u) a.e. with yny(+), ¥ry(+),
Yro(+)EL

In order for our problem to have content, we will need the following feasi-
bility hypothesis:

H,: There exists admissible ‘“‘state-control” pair (x, u) s.t. J(x, ©)<<oo.
o P

Now we are ready for our existence result concerning optimal sontrol pro-
blem (*). By P(x,) we will denote the set of admissible ‘“‘state-control” pairs

of (*).

Theorem 3.1. If hypotheses H(A), H(f), H(K), H(U), H(L) and H, hold,
then there exists (x, u) € P(x,) s.t. J(x, u)=m.

Proof. First we are going to determine an a priori bound for the trajecto-
ries of our system. So let x(-)eC(T, X) be such a trajectory. From Benilan
[11], we know that

la(t)—S@) xoll < lg(ollds

where {S(f) (+)}:er is the semigroup of nonlinear contractions generated by
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A(+) and g(s)=S: K(s—r) f(r, x(r)) u(r) dr. So we have:

trS
OIS w1+, [, 1K 6=l 170, 50) wtr)l dr ds
t s
<IS@ nll+{ | N+l (w1 ar ds
where |W|=sup {||u||: uc W} and ||K(#)||cx)<N for all t€T. Such an
N>0 exists, since by hypothesis H(K), K(+) is C'. Note that since t—S(¢) x,
is continuous, there exists M,>0 s.t. [|S(¢) xy|| <M,. Therefore we can write
that
t s
I <MAN 118 lall+N W1 (50 )l s
Invoking Theorem 1 of Pachpatte [35], we know that there exists M >0 s.t.
for all x(-)E Py(x,)={set of trajectories of (*)} and all &7, ||x(¢)|| <M.
Next let {(x,, #,)} s»1 S P(x,) be a minimizing sequence for our problem.
We will show that {x,(+)},s, is relatively compact in C(7, X). To this end let
teT\{b} and ~1>0 s.t. t-+h€T. We know (see Barbu [10] and Benilan [11]),
that:

l(e-HB) s < B =l + [ 18u-+B) a0l ds, 21,
where g,,(s)zs: K (s—7) f(r, (7)) s(r) dr. So for all n>1 we have:
lalt-+B) =, D)
<) SCB) wll IS () wo—all+ 1§, Kishr) o, 2,00)) walr) dr
(" K= 107, 5a(r)) mar) il s
<) —S () wll+IS ) wo—all+ | K (Rl (o) dr ds
+{. [ IR G+ h—r)—K =)l vir) dr s,
where (f)=(a(t)+-b(t) M)|W|. Clearly y+(-)€L.. Then from the above

inequalities, we have:

[|#4(2-Fh) —2,(¢)|| =0 as ~—0%, uniformly in n>1.

Similarly we can get that ||x,(f)—x,(t—h)||—0 as z—0", uniformly in n>1.
Thus we deduce that {x,(+)},>; is equicontinuous.
Next let A>0, teT. From Brézis [13], we know that

llxa(t)— x”(t)IIS—f— <1+%) So IS (7) () —2a(0)|| dr, n21 .
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But note that
[|S(r) x,(8) — 2, ()| IS (7) xa(8)—S (r) 2(t—7)|| 1S (7) xu(t—1)—2xa(E)]]

¢ s
<lsa(t)—ma(t—nl+,_ 1|, Ks—) fr, ma() wate) drll ds
Given that {x,(+)},>; is an equicontinuous family, there exists u(+) increas-
ing function s.t. u(r)—0 as r—0 and ||x,(f)—=,(t—7)l|<p(r) for all n>1.
Hence

1SC) 22N <nO)+ | N9 ar ds = ), n21,

with () increasing and 4(r)—0 as »—0. So finally for A=28s, BN, we have

Sl 2 (18) | a0 dr < 2 (148) 409 s = 201+8) (%)

-0 as A—0

and the convergence is uniform in #>1.

But by hypothesis J; is compact and so by the resolvent identity J, for A>0
is compact too. So the identity map on {%,()},»; is compact=> {x,(f)} ,»; is
compact for all& 7. Invoking the Arzela-Ascoli theorem, we have that {x,(+ )} >,
is relatively compact in C(7T, X). So by passing to a subsequence if necessary,
we may assume that x,—x in C(7, X).

We have seen in an earlier estimation that for all #>1and A€ T s.t. t+-heT
we have:

1) — (1 < ) — S () oll 1S () ¥o—ol1+ . 1als+-m)—gu(s)]

where as before g,,(s):ss K(s—r) f(r, x,(r)) u,(r) dr. Note that
0

ea—S® %< gl ds = (1]’ K= 10, 5,00 w0 drl s
<[ N vy ar as<{ NIl &5 = Nt .
Also we know (see Barbu [10]), that:
1S(8) w—sll <P 14

Finally set £,(r)=f(r, %,(r)) u,(r). We have:
[ g,,(s—}-h)——g,,(s)llds:S:H S:“' K(s+h—) ) dr—S: K(s—n) fi(r) drl|ds
SS: S”" N y(r) dr ds—f—S: So K (s--ht-r)— K (s—n)| w(r) dr ds, n>1,
- ||’%‘xﬂ(t)usﬂ % S:” W(r) dr ds

¢
0
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+ S (KON K61 4 dr dot- | Axg] 521,
0Jo h

t S
> I8, <N+ | K= i) dr ds-t | 4
SN[l +N W]l 0+ [ Ax] = Ny, ace..
where |[K'(2)[| <N’, te T (recall that by hypothesis H(K), K(-)eCYT, -L(X))).
Therefore for every n>>1 and almost every & 7, we have '

[EXGIIEVAS

. . L W, .
Thus by passing to a subsequence if necessary, we may assume that £,—% in
LX(X).
Also since S}. ) SS% and the latter is sequentially weakly compact in

LXY), we may assume that u,,—vzu in LXY). From Theorem 3.1 of [37], we
know that u(f) € conv w-lim {,(#)} ,»; S conv w-lim U(¢, x,(¢)) a.e. and because
of hypothesis H(U), we have w-lim U(¢, x,(£)) S U(¢, x(t)) a.e.. So u(t)€ U(t, x(£))
a.e.=> u( . ) e S%z(.,,(.)).

Next let n,(t):S:K(t—s) 7(5, %()) ,(s) ds and n(t):S;K(t—s) (s, %(5))

u(s)ds. From hypothesis H(f), we have nn(t)zn(t) for all teT= mv_v)ﬂ in
L*(X). Observe that

(%,, %,—n,)EGr A

whereAfl is the realization (lifting) of 4 on L*X). We know (see Barbu [10]),
that A is m-dissipative too. Since L} X)*=L*X*) and L*X*) is uniformly
convex (see Day [20]), from Proposition 3.5, p.75 of Barbu [10] we know that

sSXw

Gr A is demiclosed (ie. closed in LA(X)xLXX),). Since (x,, X, —n,)—
(%, £—n) in LA(X)x LA X), we have (x, £—5)EGr A=>i(t)E Ax(t)+7(t) a.e.=>
(%, u) is an admissible ‘“‘state-control” pair.

Finally we will show that J(x, #)<lim J(x,, #,). Recall that W with the
weak topology (denoted henceforth by W,) is compact metrizable (see Dunford-
Schwartz [22]). So from Lemma 2 of Balder [8], we know that we can find L,,:
Tx X x W,—R Caratheodory integrands s.t. L,, 1 L and as m—oc and +r(¢)+
o) [o]| +rs(2) [l < L(2, %, w)<m a.e.. Let {8,,(y()}»2: SL=(T, M(W,)) be
the Dirac transition probabilities associated with the functions u,(-), n>1.
Then from Alaoglu’s theorem and Theorem 1., p. 426 of Dunford-Schwar’sz [22],

we may assume by passing to a subsequence if necessary, that 8“”10& in
L=~(T, M(W,)). We also claim that Ly (z)(+)=Ly(t, %,(f), *)=>Ln(t) (+)=
L, (¢, x(t), +) in C(W,) as n—>oo for every m>1. To this end note that
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fgylg [ Ln(t, %4(2), ) —Lin(t, %(2), u)| = | Ln(t, %a(2), n)—Lim(2, %(£), va)|

since L,,(t, x,(t), *)—Lm(t, x(¢), <) is continuous on W,. Again we may assume

that u,,iue W. Then because of the continuity of L,(¢, -, ) on XX W, we
get:

| Ln(2, 2,(£)y 0,)—Ln(t, (£), v,)| >0 asn— oo,
=L,t)(:)=>L,(t)()in C(W,) asn— oo.

Hence by the dominated convergence theorem, we get that
Ly(+) = L,(+)in LT, C(W,)) asn— oo .

Denote by <-, > the duality brackets for the pair (LYT, C(W,)),
L=(T, M(W,))). We have:

Ly 8,0 = Ly, Ay astt—> oo
and note that <L, 3,,):5" S Ln(t, ,(8), ) 84 c0(dt) dt:S" Lo(t, ,(8), us(t)) dt,
o0ovw 0
while <Z,, x>=S" SW La(t, %(2), 1) Mt) (du) dt.
0
Also by the monotone convergence theorem we have

b
g S La(t, 2(2), ) M) (du) dt 1 Sb S L, %, (£), u) M(t) (du) dt  as m — oo .
0JW oJw
By a diagonalization process, we have
S" Loty %2(2), tn(£)) di — S" S L(t, #(t), ) Mz) (du) di as n—> oo .
0 0w
Recall that u,,zvm in IXY). So for all A= B(T) we have

w
S u,,(t)dt—>g w(i)dt asn— oo
A A

*
and for every n>1 u, (t)=SW w8, (du).  Since 8, 5(+) >\ in L=(T, M(W,)),

we have:
SA Swu 8o (dut) dt SA Swux(t) (du)dt asn— oo
- SA () dt — SA Swux(t) (du)dt forall AEB(T),
= u(t) = Swux(t) (dw) ae..

Since L(t, %, -) is convex, from Jensen’s inequality, we get



OpTiMAL CONTROL 753

S: L(t, % (), u(?)) dt — S: L(t, x(z), Swux(t) (du)) dt
< S: SWL(t, x(8) 1) M2) (du) dt
- S:L(t, %(2) u(t)) dt<lim S: L(t, %,(8), us(t)) dt
= J(x, w)<lim ] (x,, u,) = m.
Since (x, «) is admissible, we conclude that J(x, u)—m.

Remarks. (1) Given u&S7, the evolution inclusion describing the dynamics
of (*), has a strong solution x(+)eC(7T, X). This follows from a standard fixed
point argument as in Hirano [29] (Theorem 2.1 and Corollary 2.1).

(2) It remains an open problem whether instead of the linearity with
respect to %(+) of the dynamic equation, we can have a more general convexity
hypothesis on an appropirate orientor field (analogous to “property Q” of Ce-
sari [7]) and then apply the “Cesari-Rockafellar reduction technique” to establish
the existence of optimal admissible pairs (see [40] where this approach is ap-
plied to a more restricted class of problems with no “memory”).

4. Relaxed problem

In this section we drop the nice features that problem (*) had. Namely
we no longer assume that the control function appears linearly in the dynamics
and that the cost integrand is convex in #. Then in order to guarantee the ex-
istence of an optimal admissible pair, we need to pass to a larger, “‘convexified”
system, known as “relaxed system”. This new augmented system has measure
valued controls. More specifically the relaxed system has the following form:

Jwn = [ Lt %00, 970 (@) dt > inf = m,
s.t. ﬁ(t)eAx(t)—l—S:K(t—s) Swf(s, *(), ) () (d2) ds ae. | (),

%(0) = x, M) EZ () = {uEML(W.): p(U() = 1}
' A(+) is measurable

Note that in this problem f(# x, +) is nonlinear and the original control
constraint set is state independent (open loop). So hypotheses H(f), H(U),
now have the following forms.

H(f): f: TXXXY — X is a map s.t.
(1) t— f(t, x, u) is measurable,
(2) (%, u)— f(#, x,u) is sequentially continuous from XXY, into X,
(where X, and Y, denote the spaces X and Y with their respective
weak topologies),
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3) St » wll<a(t)+b() (lxll+lull) ae. a(-)ELL, b(-)ELT.
H(U)": U: T— P,(Y) is a measurable multifunction s.t. U(f)S W a.e. with
WeP,(Y).

First we will show that the relaxed optimal control problem always has a
solution. By P,(x,) we will denote the set of admissible “‘state-control” pairs
for (*),.

Theorem 4.1. If hypotheses H(A), H(f)', H(K), H(U)’, H(L) and H, hold,
then there exists (x, N) E P, (%) s.t. J(x, N)=m,.

Proof. Let {(®,, A)}n21 S Py(%) be a minimizing sequence for (*),. Asin
the proof of Theorem 3.1 we can show that {x,(-)},>; is relatively compact in
C(T, X) and {%,(+)},>; is uniformly bounded in L*X), thus relatively sequen-
tially weakly compact in LA X). Also {\,(+)},>; is relatively sequentially w*-
compact in L=(T, M(W,,)) (see Dunford-Schwartz [22], Theorem 2, p. 434). So

*

we may assume that x,—x in C(7, X), .72,,2.1': in LX) and )»,,V-V—>7\, in
LT, M(W,)). We claim that (x, A\)EP,(x,). By hypothesis for every n>1,
we have:

jn(t)_'gn(t)EAxn(t) ’ xn(o) = %o
where g,,(t):S;K(t—s) SW F(5, %.(5), 2) An(s) (d2) ds. Let x*€X*. We have
(%, &)=, % Kt—9) | 1650, ) M@ @) as={ | @ K@—9 1

0
2,(5), %)) Nu(s) (A=) ds=<h, (2, x*) (+), Ny (*)Dr0,52, With A, (¢, x*) LY(T, C(W,,)) de-
fined by A,(t, x*) (5)(+)=(x*, K(2—5) f(s, %4(5), +)) and A,(+) E Ss= {set of meas-
urable selectors of 3(¢)}. SoAESs. Also as in the proof of Theorem 3.1 we
can show that h,(t, x*) (+)—A(t, x*) (+) in LY(T, C(W,)), with A(t, x*) (s) (+)=
(x*, K(t—s) f(s, 2(s), +)). Hence we have:

Cha(t, £%), Mdro,n —> <h(2, 2*), Mo,
= g,() > g(f) = S: K(i—s) SW 75, %(5), ©) Ms) (&) ds forall teT,

w
=g, — g in LA(X).
Thus we get
. SXWwW R .
(%, £y—gn) —> (%, —g) in LX(X)x L¥(X)
and for all n>1(x,, £,—g,) =Gr A, which is demiclosed since A being the

realization (lifting) of 4 on L*X), is m-dissipative and L X)*=L*X*) is uni-
formly convex (see Barbu [10]). Hence (x, £—g)&Gr A= () = Ax(t)+g(£)



OpTIMAL CONTROL 755

t

a.e.=> i(2) EA(tH_SO K(t—s) sw S(s, x(5), 2) A(s) (dz) ds=> (x, A) € P,(x,) as claim-
ed.

Finally by approximating L(t, x, u) with Caratheodory integrands on 7'x X
X W,, we can show as in the proof of Theorem 3.1, that

5 b
T = L0, 200 @) dr<ti || L0, 500, 2) 0ate) d5)

= liLl],(xm >‘m) =m,

==m, = .] r(x’ 7\‘)

= (¥, M) € P,(x,) is the desired solution of (*), .

The augmented relaxed system will be useful if its value, equals that of
the original problem; i.e. m=m,. Namely we want to show that the relaxed
system captures the asymptotic behavior of the minimizing sequences of the
original problem. Such a result is usually called “relaxation theorem’. Under
some additional hypotheses on the cost integrand L(-, -, +), we can have a
“relaxation theorem”. So we will need the following stronger version of hy-
pothesis H(L).

H(L)": L: TXXXY—R is an integrand s.t.
(1) t—L(¢, x, u) is measurable,
(2) (%, u)—>L(t, x, u) is continuous on XX Y,
(3) 1Lt % )| Sv(t)-Hra(®) (1l P+1ulP) ace. with ¥(+), Yo(-) ELL.

If the control constraint set is state independent (open loop), then from
Hirano’s existence result [29] (see also remark (1) after the proof of Theorem
3.1), we deduce that hypothesis H, is satisfied by all (x, ) € P (x,) = 0.

Theorem 4.2. If hypotheses H(A), H(f)”, H(K), H(U)" and H(L)" hold,
then problem (*), has a solution and m=m,.

Proof. The existence of a solution for problem (*), follows from Theorem
4.1. Let (x,\) be an optimal “state-control” pair for (*),. Invoking Corol-
lary 3 of Balder [9], we can find u,(+)ESy s.t. §,,—\ weakly in R(T, W,) (see
section 2). Since W, is compact, metrizable, the weak topology on R(T, W,)
coincides with the relative w*(L=(T, M(W,)), L*(T, C(W,)))-topology. So

S, i M. Let x,(-)eC(T, X) be the trajectory generated by u,(-),n>1. Ex-
actly as in the proof of Theorem 3.1, via the Arzela-Ascoli theorem, we can
show that {x,(+)},s, is relatively compact in C (T, X) (see Proposition 5.1). So
by passing to a subsequence if necessary, we may assume that x,—x in C (7T, X).
As before, set t,,(t) (+)=L(¢, x,(¢), +) and L(t) (+)=L(¢, x(t), -). We have
L,—L in LYT, C(W,)). Hence
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L8> = [ L 50wty dt > <Ln> = | Lt a(0), 9)70) (@) dt

%Jr(xm 8u,,) = ](xm un) —>],(x, 7\') =m, as Nn—>
=mm,.

On the other hand we always have m,<m. Hence we conclude that m=m,.

Again the memory feature of our system causes serious technical difficulties
in our attempt to introduce an alternative, control free formulation of the relax-
ed system. This was done by Ekeland [24] for memoryless systems driven by
semilinear elliptic equations and by Papageorgiou [38] for memoryless, com-
pletely nonlinear systems driven by evolution inclusions.

5. Relaxation theorems

In this section we will show that the equivalent relaxed problems (*), and
(*¥)7 are the “closure” of the original problem.

This is first illustrated by a density result, which shows that the original
trajectories are dense in the relaxed ones for the C (7, X)-topology.

For this we will need a stronger hypothesis on f(-, -, ).

H(f)": f: TXxXXY — Xis amap s.t.
(1) t— f(t, », u) is measurable,
(2) (x,u)— f(¢, x, u) is continuous from X X Y, into X,
3) f(@, x, w)—f(t, 2, w)|| <n(z) |x—x'|| a.e. for all uc U(¢) and with 7(-)
€L},
@ f(@, x, w)l|<a(®)+5b(2) (||xl|+lul]) a.e. with a(-)eL;, b(-)ELs.

Recall that by Py(x,) we denote the set of trajectories of the original system
and by P, (x,) the set of relaxed trajectories.
Let heLXX). By |k|, we will denote the weak norm on L% X), which is

defined by |A|,=sup {HSt h(s)ds||: t,t’=T}. Suppose that sup ||Ag)l,<< oo and
t n>1
hy I—.l—:h. We claim 4, hid hin IA(X). To see this let s: 7— X be a step func-

tion i.e. ()= 31 Xir, ¢ s> S(B)=m, With =0, 2,—b. Then
k=1

=, 1< 1" )& d 1 1< Vgl 33 el > 0 a5 o
=1 -1 k=1

To conclude the proof of the claim, recall that step functions are dense in
L(X).

Theorem 5.1. If hypotheses H(A), H(f)”, H(K) and H(U)’ hold, then
P,\(x5)=P\(,), the closure in C(T, X).
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Proof. Let x(-)EP,(%). Then by definition we have

{ A’:(t)eAx(t)—l—S: [ K= 15 56), 5) 76) (d) ds }
2(0) = xp, M(+)E Sy
Using Theorem 12.11, p. 221 of Choquet [18] we get, that if F(¢, x(t))=
(&, x(t), U(2)), then
conv F(t, x(f)) — {SW £t %(2), 5) Md2): AES (@)}
and so
Skosvrc.on = = [ flt, 1), 3)M2) (@2): M Sk -

Invoking Theorem 2 of Chuong [19], we can find k,E Sk (. «(.y S:t. by ﬂ h

where h(t):S f(2, x(2), ) M#) (d=). Because of hypothesis H(f)"’ (4), , € L*X)
w
and sup [lhlly<co. o we have h, Z hinI(X). Let Ry(f)=tuc U(t): h(t)=

f(t, x(t), w)},n>1. From the definition of F(t, x), we see that R,(¢)=0 for all
teT and all #>1. Also from hypotheses H(f)"” and H(U)’, we have Gr R,=
{t, w)eTXW: h,()=f(, x(t),u)} NGr U B(T)xB(W). Apply Aumann’s
selection theorem, to find u,: T—Y measurable s.t. u,(f)ER,(t) a.e. Then
h,(t)=f(t, x(t), u,(t)) a.e. Let x,(+) be the unique strong solution of

{ (1) Ax,,(t)—}—S: K (t—5) £(s, #.(s), us(s)) ds
x,(0) = %,

(see Hirano [29]). Then {x,(+)},» S P,(%,). Arguing as in the proof of The-

orem 3.1, we can show that {x,(+)},s, is relatively compact in C(T, X). So by

passing to a subsequence if necessary, we may assume that x,—y in C(T, X).
For every n>1 we have

£,0)— | K(t—9) 15, %,(5) 1(s)) € Aw 1) ac.
and x(t)~§: K(t—s) SW (s, #(5), 2) Ms) (d2) ds€ Ax(t) ace..
Since by hypothesis H(A), A(-) is m-dissipative, we have:
(#a(t)— | K (=) f, a0, ua(o) ds—2(a)+ | K(t—9){ f6,3(9), 9)76) (d2) ds,
F(x,(5)—2(t)) <0 a.e.

where F': X—X* is the duality map, which is single valued since by hypothesis
X* is uniformly convex (see section 2).



758 E.P. AvGeriNos AND N.S. PAPAGEORGIOU

So we have:

(£.(2)—2(0), Falt) (1)) ‘
<( So K (t—9) f(s, 2(5), () ds—So K(t—s) SW (5, %(5), 2) M) (dz) ds,
F{x,()—x(t) ae..

From Kato [31] (see also Barbu [10], Lemma 1.2, p. 100), we know that:
()~ 40, Py =) = sy - la( &) =3O 2.
Also if we set ,(s)=f(s, %a(s), #,(s)), we have:
([} K(t—5) au(s) do—{ Kie—9) hats) ds-+{] K(e—5) hots) s
— (" Kt—5) h6) ds, P, ()—(0)
= (| K(t—9) lau(s)—a(s)] ds, By ()—(1))
([ B(t—5) )61 ds, B, )—(0)
Hence we can write that
len() (0| - |, 0) (o)
(| K9 lauo)— a1 ds+-{, Kt—) () —h ds,
F(x,()—x(t))) ae..
Integrating the above inequality, we get:
lea(t) —(2)I
<2 (' ([} K @) —ha) dr, Bws)—w(6)) ds
+2{ ([, K= (1)) dr, Bea(s)—(6))) ds
Since &, — kb in LX) and B(x,(+)—x(+)) converges in C(T, X*), we see that
2" (], Ks—) () —10) @r, Blas(9)—()) s > 0 a5 m—> oo
Also by hypothesis H(f)" (3), we have:
2 Kls—) @) —atr) dr, Bws)— 206 ds
<2 [ 1Kl [ 2(0) )00} dr lals)—)) ds.
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Consider the following norm on C(7, X)
¢
lallo = sup [exp (— | #(6) ds) (o)1}, () £C(T, X), A ER, .

Clearly this is equivalent to the usual supremum norm ||+||.. Using norm
[[+]lo, We have:

2 g: [1K]lw S: 7(r) exp (—r S; n(v) dv) exp (A S: 7(v) dv) ||x,(r)—x(r)|| dr
[l2a(5)—x(s)| ds
<2 s: Kl 12,— 211 (So 3(r) exp (M So 7(v) dv) dr) ||x,(s)—x(s)|| ds
<2 S: 1K ]o 1225 —]lo (S: % d (exp o S; ,7(7)) dv))) llx,,(s)——x(s)H ds
<2 S: 1Kl N2, —xllo % (exp A S: 77(1’) dr) ”x,,(S)—x(s)” ds.

Without any loss of generality, we may assume that 1<<5(z) for all z&T. Hence
we have that:

% S: 1Kl [|24—2]]o exp (X S: 7(r) dr) ||xa(s)—x(s)|| ds
= % s: 1Kl {1, —2llo n(s) exp (Zkg 7(r) dr) exp (—2 go 7(r) dr)

llx(s) —()]| ds

S% g: KL 12, — 1[5 (s) exp (20 So n(r) dr) ds

sty — )13 1Kl 2 ROL
< N Y exp (2n 07](3) )
2
_ ”J"Lx"_”;wﬁ exp (2n St 7(s) ds) .
x 0

Hence finally we have:
eu(t) (i< =N e ey 2, 70y a2 ) () K (6= ()
—h(r)) dr, B (x,(s)—(s))) -
Passing to the limit as #—o0, we get
Iyte)—(oe < PRI e 2 {1 )

> (exp (=2 (6) @9 1) (o) < 12 =B 1K=

172
> exp(— || 209 ) Iy —atoy <L IR goran e

t
0
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1/2
= |ly—all sﬂ%‘i lly—alo -

Choose A>||K||Y2. Then from the above inequality we deduce that
y=x=>xE P,(x)=>P,,(%) S P,(x,). But P,(x,)< P, (%) and as in the proof of
Theorem 3.1 we can show that P,(x,) is relatively compact in C(T, X), while
as in the proof of Theorem 4.1, we can show that P,;(x,) is closed in C(T, X).
So P,(%,) S P,,(x,)=> P,(%,)=P,,(%,) as claimed by the theorem.

Remarks. (1) Simple continuity of x— f(¢, %, %) is not enough in order
to prove the above density result. In the theory of differential inclusions there
is a nice two dimensional example that illustrates this. For details we refer
to the book of Aubin-Cellina [7].

(2) To our knowledge, the first such density result for distributed param-
eter systems was proved by Ahmed [3] for a class of semilinear systems with
no memory. However as it was indicated in [39], there are some problems
with his proof.

Next we will derive two theorems that illustrate that the relaxed problem
describes the asymptotic behavior of the minimizing sequences of the original
one. For this we will need the following result, which is a continuous depend-
ence result of the elements in P,(%,) on the relaxed controls that generate them.
So consider the following evolution with AeL*(T, M(W,)):

{ﬁ(t)eAx(t)—{—S: K(t—s) SW 165, 6, M) (@) d5 ae. | ey
x2(0) = x,

From Hirano [29] we know that this has a strong solution, which is unique if
hypothesis H(f)"” (3) is valid. Denote this solution by x(\) (-)eC(T, X).

Proposition 5.1. If hypotheses H(A), H(f)” and H(K) hold, then Nn—x(\)
1s sequentially continuous from L=(T, M(W,)),» into C(T, X).

*

Proof. Let 7&,,& N in L(T, M(W,)). Set x,(+)=x(\,)(+). Then as be-
fore we can show that {x,(+)},s, is relatively compact in C(7, X) and so we may
assume that x,—#£ in C(T, X). Also as in the Proof of Theorem 3.1, we may

W . A
assume £, — £ in L*(X). Working as in Theorem 4.1 with the “lifting” A, we
finally get £=x(\)=>\—x()\) is sequentially continuous as claimed.

Now we are ready for the first limit result.

Theorem 5.2. If hypotheses H(A), H(f)”, H(K), H(U)’, H(L)’ hold and
(%, \)EP,(x,), then there exists a sequence {(x,, U,)} 51 S P (%) s.2. J(%, tt,)—>

NECRY



Op1iMAL CONTROL 761

*

Proof. Using Corollary 3 of Balder [9], we can find u,(+)ES} s.t. §,, 5 A

in L*(T, M(W,)). Letx,(-)=x(8,,)(+). Then (x,, u,)<P(x,)and from Propo-

sition 5.1 we have x,—x in C(T, X). Then because of hypothesis H(L)', as in
the proof of Theorem 4.2, we have J(x,, u,)=],(%,, 8,,)— J,(%, \) as n—>o0.

From this result we deduce the second limit theorem.

Theorem 5.3. If hypotheses H(A), H(f)', H(K), H(UY, H(L)’ hold and
(%, M) EP,(x,) solves (*),, then m=m, and there exists a minimizing sequence
{(%n» %4)} 521 S P(%,) Of the original problem s.t. x,—x in C(T, X) and 9§, 5 A in
L=(T, M(W,)).

Proof. Is an immediate consequence of Theorems 4.2 and 5.2.

6. Examples

In this section we present in detail two examples. The first is a hyperbolic
control system and the second is a parabolic one.

ExampLE #1. “Hyperbolic optimal control problem”.

Let T=[0, b] be the time interval and V=[O0, a] the space interval.

Consider the following optimal control problem, with dynamics defined on
T'x V by hyperbolic integro-partial differential equation:

, u(t, %)) dz df — inf = m,

Ji(x, u) = Sb Sa L(t, 2, x(t, 2),

st. 32’;(:2 2) 62’;(; D[ K916, 5,50 D) uls, ) ds on TXV (%)

x(t, 0) = x(t, a) = 0
4 (5, 2)
ot

0x(t, 2)
ot

= x(2) on {0} xV

|u(t,2)|<Mae. on TXV.

x(0, 2) = x,(2) an

We will need the following hypotheses on the data of (¥**),.

H(K),: K: T—R is a C'-function.
H(f),;: f: TXVXR—R is a function s.t.

(1) (¢, 2)—f(t, 2, x) is measurable,

(2) x—f(t, 2, x) is continuous,

() 1 f@ 2 x)| <a(t, 2)+b(t)| x| with a(-, -)ELX(TxV), b(+)eL*(T).
H(L),: L: TXVXRXRXR—>R=RU {+0co} is an integrand s.t.

(1) (¢, 2, x,y,u)—L(¢, 2, x,y, u) is measurable,

(2) (%, uw)—L(t 2, x,7,u)is Ls.c. and convex in ,

(3) Wt 2)<L(t, 2, %, y, u) a.e. with (-, -)EL(TX V).
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Hy: x,€Hy(V)and x,€LX(V).
Also we will need the following “feasibility’ hypothesis:
H,,: There exists admissible “‘state-control” pair for (**¥), s.t. J(x, u)<<oo.

Let X=Hy(V)x LXV). Thisis a Hilbert space with inner product defined
by

oy (30 39> = [ 31) 54(5) ds+ [ ) 3ue) e

Also X is separable, since both H§(V') and LXV') are.
Define the operator 4: D(4)S X —X by

0 1
A= s 0]
&l 0

with D(A)={(y,, y.)€X: neHyV)NH V), y,€Hy(V)}.

From Barbu [10] we know that A(-) defined above is m-dissipative. We
claim that (J—A)™' is compact. To this end let BC X be bounded. We need
to show that (/—A)™!(B) is compact in X. But note that (y,, y,)€(I—A4)™(B)
=R(B) if and only if

»(2) —yz(f) = $,()
=L 5,(2) = $u2)

where J,, §,B. Adding those two equalities, we get that y,(2)—d? y,(2)/dz*=
$1(2)+9(2). From this and Poincare’s inequality, we get that {y,: y,Eproj,
R(B)} is bounded in H§(V). Thus from Sobolev’s embedding theorem (see
for example Adams [1]), we conclude that R(B) is compact in X=>(I—A)™ is
compact and so we have satisfied hypothesis H(A).

Set Y=LXV) and define f: Tx Xx Y—X by
F& ) u(-) = (0.1t - () () -

It is routine to check that f(-, -, ) defined as above, satisfies H(f).

Here the control constraint set is U={u€Y: |u(2)| <M} S L V) and let
£o=|:x°] €X. Alsolet K: T—_L(X)be defined by K (t)=(0, K(t) I). Because

Xy

of hypothesis H(K),, K(-) is a C*-map from T into L(X).

Finally let L: Tx XX Y —R be defined by

Lt y,u) = So L(t, 2, (%), o(2), u(2)) dz

From Balder [8] (see also Ekeland-Temam [25]), we know that L(-, )
satisfies hypothesis H(L).
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Rewrite (***), as the following abstract control problem:

T, u) = S: Lz, x(2), u(t)) dt — inf — m,

s.t. ﬁ(t)eAx(t)—]—S: R (t—s) f(s, 2(s)) u(s) ds a.e. (%)
%(0) = x,
w(t)eU a.e. u(-) is measurable

Note that this is a special case of problem (¥). So we can apply Theorem 3.1
to get a solution of (¥***){ and so of (***), too.

Theorem 6.1. If hypotheses H(K),, H(f),, H(L),, H, and H,, hold, then
there exists an admissible control u(-)e L>(T, L*(V')) and a corresponding trajectory
x(+)EAC(T, HyV)) with x(t)cHY V) a.e. s.t. J(x,u)=m,,

ExampLE #2. ‘Parabolic optimal control problem”.

Let T=JO0, 4] and let ¥ be a bounded domain in R" with smooth boundary
OV=T". On TXV we consider the following parabolic optimal control pro-
blem:

T, 1) = S” S L(t, 2, #(t, 2), u(t, #)) dz df — inf — m,
0JV
ot 18[<m
DPx(t,2) = 0 on TXT for |B|<m—1
2(0, 2) = x,(2) on {0} X V',
lu(t, 2)| < M, u(+, -) is measurable

o.t. 05 2) Sy (_{yiel D* 4 (2, y(w(2)) = S: K(t—s) f(s, 2, %(s, 2)) u(s, z) ds }

(***)2

Here a=(ay, ***, @,) is an n-tuple of nonneagtive integers (multi-index),
|a| =a,++-+a, (the length of the multi-index), D*=D1---Dj» with D,=0/0z;
and n(x)={D"x(+): |a| <m}.

We will need the following hypotheses on the data of ( **¥),:

H(A),: A,: VXR"—R are functions s.t.
(1) 2—>A,2, n) is measurable,
(2) —>A.(2,n) is continuous,
() 1 4u(z, ) <& llnll+bi(2), >0, (- )ELAV),
(4) I’EM(Aa(z: 77)—145(21 ’71)) (nw—n;)ZCZIEml ’7¢_’7¢;|2 a.e. with >0

|
Note that nm:(n—i-m). .
n!m!

H(L),: L: TXVXR—R is a normal integrand, convex in u# s.t. (¢, 2)<
L(t, 2, x) a.e. with ¢(+, -)€L(TXT).
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Also hypotheses H(K),, H(f), and H,, (for Jy(-, -)) from Example #2 are
valid.

Consider the Dirichlet form a: Hg(V)x H§(V)— R associated with the non-
linear elliptic differential operator of our problem. We have

awy) =3 | Auds, w(x(2) D* y(z) do

for all (x, y)Hy V)X Hy(V).

Because of hypothesis H(A) (3) and Krasnoselski’s theorem, for every
multi-index o with |a|<m, we have A, (-, n(x(:))€L¥(V). So using the
Cauchy-Schwartz and Minkowski inequalities, we get:

[ 4ute, ne(a) D 5(3) dal
([, 14z n(@@)12 doy (| 1D° y()1 dxy
<l 2, 107 3@ asy (| drdsy ([ 1D° (o)1 de)
< Lo el gy + 1911] 151y -
Since ¢ was an arbitrary multi-index of length <m, we get

la(x, )] S(flllxlng(V)JrélMIIz) llyHng(V), ¢, ¢>0.

From this inequality we deduce that for every x(-)eHg(V), a(x, -) is a con-
tinuous, linear map from H§ (V) into H™"(V)=Hg(V)*. Hence there exists a
generally nonlinear operator A: HZ(V)—=H ™ "(V) s.t.

a(x,y) = (4(x), ) -
Also using hypothesis H(A), (4), it is easy to see that
(A () — A (), 0,—x5) =, Hxl—xZHHg,(V) , >0
i.e. A(+) is strongly monotone.
Let X=L*V') and let A: D(A)SX—X be defined by
Ax = Ax

for all xeD(A):{ yeX: AyeX}. From Barbu [10], we know that A is maxi-
mal monotone (hence m-accretive). Also from the strong monotonicity pro-
perty, we see that A is coercive and since H $(V)>LAV) compactly, it is easy
to see that (/+4)~! is compact.

Let Y=L*V) (the control space) and define:

(@) f: TXXXY—>X by f(t, ®) u() = (2, -, x()) u(*),

() L: TxXxY—R by L(t, x, u) — gv L(t, 2, x(2), u(2)) dz,
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(iii) K: T—L(Y)by K(f) = K@),
(iv) U={ueY: |y(2)|<Mael},
W) A= x(-)ELD).
Rewrite problem (***), in the following abstract form:
T, u) = SZ L2, (¢), u(®) dt — inf = m,
st. £()e —Ax(t)—{—S: K(t—s) f(s, x(s)) u(s)ds a.e. (*%)z
%(0) = £, w(f)e U a.e. u(-) is measurable

Again this is a special case of problem (*). Apply Theorem 3.1 to get the

following existence result:

Theorem 6.2. If hypotheses H(A),, H(K),, H(f),, H(L), and H, hold,

then there exists an admissible control u(-, -)€L>(T, LX(V)) and a corresponding
trajectory x(-, <) AC(T, LXV)) s.t. Jy(x, u)=ms.
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