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1. Introduction and statement of results

We shall denote by Ff(S2, CPm) the space of based holomorphic maps of
degree k from *S2 to CPm. Any element of Ff(S2, CPm) is clearly an element
of Cί\ CPm, the space of all based continuous maps from S2 to CPm of degree k.
Let

(1.1) i: Ff(S2

y CPm) ^ Ω| CPm

be the inclusion. Segal [5] showed that i is a homotopy equivalence up to
dimension k(2m—l).

Recently Boyer and Mann [2] introduced a loop sum and a C2 structure in
JIFf(S2

y CPm) which are compatible with i. (It is well known [3] that U?CPm

has a natural loop sum and a C2 structure). Hence we can naturally define the
loop sum * and the Araki-Kudo operation Qx [1] in ®H*(Ff(S2

y CPm)\ Z2).

By using this method, Boyer and Mann constructed certain elements in H*(Ff
(S2, CPm); Z2). Then the following question arises naturally.

QUESTION. DO the elements constructed by loop sums and iterated opera-
tions on c2m-ι(c2m-i will be defined later) form a basis of H%(Ff(S2

f CPm); Z2)ΐ
We shall study this question. The results are as follows.

Theorem A. The elements constructed by loop sums and iterated opera-
tions on cjorm a basis of H*(Ft(S2, CP1); Z2).

Theorem B. For m>2, the elements constructed by loop sums and iterated
operations on c2m_λ form a basis of H*(Ff(S2, CPm)\ Z2).

Theorem C. For m>2, the elements constructed by loop sums and iterated
operations on £2w-i form a basis of H*(Ff(S2

y CPm); Z2).

Theorem D. For m>k+l> the elements constructed by loop sums and
iterated operations on ι2m^iform a basis of H*(Ff(S2, CPm)\ Z2).
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This paper is organized as follows. In §2 we shall review some results of
[2], [3] and [5]. In §3 we shall give a strategy ol proving Theorems B, C and D.
In §4 we shall prove Theorems A and B. In §5 we shall prove Theorem D.
In §6 we shall prove Theorem C.

The results of this paper were announced in [4], The author is grateful to
Professor A. Hattori for many useful comments.

2. Known results

First we state the Segal's result precisely.

Theorem 2.1 ([5]). The inclusion

i: Ff(S2

f CPm) -> al CPm

is a homotopy equivalence up to dimension k(2m—l)> i.e. the induced homomorphism
/*: πq(Ff(S2

y CPm))->πq(Ω,2

kCPm) is btjective for q<k(2m—ί) and suήective for
q=k(2m-l).

Next we describe the Pontryagin ring structure of H*(Ω?CPm; Z2). Let
2̂m-i be the generator of /JΓ2W-I(ΩI CPm\ Z^)=Z2 and let [1] be the generator of

H0(Ω2 CPm\ Z2). Then, according to [3], we can state

Theorem 2.2. H*(Ω? CPm;Z2)=Z2 [[1], Ϊ2m_ly QIt(ί2M^)l the polynomial
algebra over Z2, under loop sum Pontryagin product, on generators [1], ϊ2m.λ and
Qrl(i2m-i)=zQiQi'"Qi(i2m-i)> where // has length I and I is an any natural number.

Finally we review some results of Boyer and Mann. If we regard a function
belonging to Ff(S2, CP1) as a holomorphic function/: S2-+S2 of degree k such
that/(oo)=l, then Ff(S2, CP1) can be described in the following form.

(2.3) Ff(S2, CP1) = {p{z)lq{z) = (zk+a, z ^ + . . . +

H \-bk)\p{%) and q(z) have no common root.}

Similarly we shall regard Ff(S2, CPm) as follows.

(2.4) Ff(S2, CPm) = {[pQ{z\ , Pm(z)] pfa) are monic polynomials

of degree k such that there exists no a^C which satisfies

Note that Ff(S2, CPm) is homotopically equivalent to S2m~ι by (2.4). Let
ι2m^ be the generator of H^^FfiS2, CPm) Z 2 )=Z 2 . If we start with c2m^ and
compute iterated operations on L2m_x and loop sums of such elements, we may
contruct many non-zero homology classes in H*(Ff(S2

y CPm); Z2). Then by
combining Theorems 2.1 and 2.2, the following theorem is known.

Theorem 2.5([2]). Any element ξ of H*(Ff(S2, CPm)\ Z2) with deg ξ<k



T H E SPACE of RATIONAL FUNCTIONS 231

(2m— 1) can be constructed by loop sums and iterated operations on *2m-i

3. Strategy of proof

We shall give the strategy of proving Theorems B, C and D. The strategy
of proving Theorem A is slightly different. So it will be postponed to §4. In
the following, all homology groups, cohomology groups and compact support
cohomology groups have coefficients Z2.

In order to prove Theorems B, C and D, it will be enough to compute
Hq(Ff(S2, CPm)) for q>k(2m-ϊ) by virtue of Theorem 2.5. Let us filter Ff
(S2, CPm) by the closed subspaces

(3.1) Ff(S2,CPm) = ]

where

(3.2) Xn = {[po(z)y ~ypm(z)]^Ft(S2, CPm);p0(z) has at most n distinict zeros.}

Let Hf be the compact support cohomology. Assume that we have some infor-
mations about Hf(Xn_1) and Hf(Xn—Xn^1). Then we obtain new informations
about H*(Xn) by using the following compact support cohomology exact sequence
of the pair (Xny -X»_i).

/o n\ ### TT^cyr JΓ \ TT^ίJC \ TT^CJC \ i-f^^oc J£ ^ »•••

Moreover assume that we have some informations about Hf(Xn+1—Xn).
Then we obtain new informations about Hf(Xn+1) by using the compact support
cohomology exact sequence of the pair (Xn+Ϊy Xn).

We repeat this process. Then finally we obtain new informations about
H*(Ff(S2, CPm)) which can be converted to those of H*(Ff(S2

y CPm)) by the
Poincarό duality. In particular if k and m are taken to be in Theorems B, C and
D, then we can determine Hq(Ff(S2

y CPm)) for q>k(2m-l).

4. Proofs of Theorems A and B

First we prove Theorem B by using the strategy given in §3. Note that in
degrees greater than or equal to Am—2, the elements constructed by loop sums
and iterated operations are given by L2m-\ and Qι(i2m-\) (which are non-trivial by
Theorem 2.2). Hence it will be enough to show the following proposition in
order to prove Theorem B.

Proposition 4.1. Hq(Ff(S2

y CPm)) = \Z* ? = , m ~ ' ™~
I 0 q>Am.

We filter Ff(S\ CPm) as given in §3.

Lemma 4.2. Xx is homeomorphic toCxCmX(Cm)*.
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In fact if [po(z), m >pm(z)] belongs to X1 and po(z) has a multiple root α,
then pi(z) (l<i<m) are completely determined by giving Pi{<x)ip'i{cί) which are
arbitrary except for the constraint (pι(a), •-, £«(«)) Φ(0, •••, 0). •

Let Cn be the space of ordered distinct w-tuples in C.

Lemma 4.3. X2—X1 is the quotient of {(Cw)* X (Cm)*} xC2by a free action
of the symmetric group Σ2.

In fact if [po(z)9 '"tpm(z)] belongs to X2—Xλ and po(z) has roots aly a2, then
pi(z) ( 1 < / < W ) are completely determined by givingpi(oCi)i pi(cx2) which are arbi-
trary except for the constraint (p^a,), •• ,^(α 1 ))Φ(0, •••, 0) and (^(α2), —ypm

Note that Xx is homotopically equivalent to S2m~ι by Lemma 4.2. Hence
we see H\X^)=Q for q>2m. Note also that dimβX1=4rn+2. Hence by the
Poincarό duality, we see

(4.4) Hq

c(X1) = 0 for q<2m+2.

Note also that X2—Xλ is homotopically equivalent to (S2"1"1)2 X S1 by Lemma 4.3.

We consider the Serre spectral sequence of the fiber bundle

(4.5) (S2*-1)2 ^ (S2*-1)2 X S ^ S 1 .

As IP^'l\{S2m-l)2)=Z2, the action of π^S1) on fP^^HS2^1)2) is trivial. By
using this fact, spectral sequence argument shows

As dimΛJΪ"2=4m+4, we see the following fact by (4.6) and the Poincarό duality.

(4.7) ««

By using (4.4) and (4.7), the compact support cohomology exact sequence of
the pair (X2, Xx) shows

(4.8) « W { U
Proposition 4.1 follows easily from (4.8) by the Poincarό duality. •

Next we shall prove Theorem A. We write Ff for Ff(S2

y CP1). Let [1]
be the generator of H0(Ff). Then the elements constructed by loop sums and



THE SPACE of RATIONAL FUNCTIONS 233

iterated operations are given by *i*[l], t\ and £?i(*i) (which are non-trivial by
Theorem 2.2). Hence it will be enough to show the following proposition in
order to prove Theorem A.

Proposition 4.9. Hq(Ff) = ,

Note that πi(Ff)=Z by Theorem 2.1. Hence if we follow the proof of
Theorem B in order to prove Theorem A, we will encounter some difficulties.
So we first consider the universal covering of Ft. We define

(4.10) R:Ft-*C*

as follows. Let p{z)jq(z) be an element of Ff and let au a2 be the roots of p(z),
βly β2 be the roots of q(z). Then R(p(z)/q(z)) is defined by Π («••—£>)• Let

Y2 be R~\l). Then it is known in [5] that (4.10) is a fiber bundle with simply
connected fiber Y2.

First we shall compute H*{ Y2). We define the closed subspace Yx of Y2 by

Yλ — {ρ(z)lq(z)^L Y2\ q(z) has a multiple root.}

Lemma 4.11. Y1 is homeomorphic to C2 Π C2.

In fact if p(z)Iq(z) belongs to Yx and q(z) has a multiple root β, then p(z) is
completely determined by giving p(β)y p'(β) which are arbitrary except for the
constraint R{p{z)lq(z))=p(β)2=l. •

We think of C* as {(&, ?2)e(C*)2; & £ 2=1}.

Lemma 4.12. Y2— Yx is the quotient of C* χC2 by a free action of the
symmetric group Σ2.

In fact if p(z)jq(z) belongs to Y2— Yx and q(z) has roots βu β2, then p(z) is
completely determined by giving p(βι), p(β2) which are arbitrary except for the
constraint R{p{z)lq{z))=p{βι)p(β2)^\. •

We define the involution τ on S1 X S1 by

(zy w)τ = (l/zy —to) (zy w)(=SιxSι.

Then by Lemma 4.12, we see that Y2—Yι is homotopically equivalent to Sιx
Sιlτ. Note that S1xSιjτ is Klein's bottle. Now by Lemma 4.11 and the
Poincarό duality, we see

q = 4

otherwise.
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By Lemma 4.12 and the Poincarέ duality, we see

(4.14) HUY2- y j = { Z2®Z2 q = 5

0 otherwise.

Note that Jϊ 1 (y 2 )=0. (In fact Y2 is simply connected). Hence by the Poincarό
duality, we see

(4.15) H5

c(Y2) = 0.

Now by using the compact support cohomology exact sequence of the pair
(Y2, Yx)9 we see by (4.13)-(4.15) that

\Z2 £ = 4,6

^ ^ " ( O otherwise.

By the Poincarό duality, we see

\Z2 q=0y2
(4.17) ~ x . a / .

1 0 otherwise.

We consider the Serre spectral sequence of (4.10). As IP(Y2)=Z29 the
action of TΓ^C*) on IP( Y2) is trivial. By using this fact, spectral sequence argu-
ment shows Proposition 4.9. •

As a corollary of Theorem A, we shall determine the o?(2)-module structure
of H*(F$). Note that {[2], ^*[1], c2

u Qfa)} form the basis of H*(Ff) by
Theorem A. Let ueΞlP(Ff) be the dual of 4 l *[ l] and vtEtPiFf) be the dual
of ι\. Then we have the following

Corollary 4.18. H*(Ff)= /\(u, v), the exterior algebra over Zz on genera-
tors u and v. Sq1 v=uv.

Proof. Note that the following relation holds in H^Ff) by Theorem 2.1.

(4.19)

Let Δ: Ff-*Ff X Ff be the diagonal. Then the following relations are well
known [3].

(4.20)

where Δ*a= Σ
s

(4.21) (Nishida relation) βQ>{a) = (j-ΐ) &~\a)

where β is the Bockstein operation.
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Then the ring structure is proved by observing the following Kronecker
products.

<«2

;ί?> = 0, <uv,Q1(φ=l.

The fact Sqι v=uv is proved by observing the following Kronecker product.

<Sq1v,Q1(φ=l. M

5. Proof of Theorem D

We prove Theorem D by using the strategy given in §3. We filter Ff
(S2, CPm) as given in § 3. In general Xn—Xn_1 has one component for each par-
tition of k into n pieces. Let k=v1-\ \- vn be one of such partitions. We shall
study the component which corresponds to this partition. Let μly •••, μs be the
numbers distinct to each other which appear among the */,.. We can assume μx

appears with multiplicity ily μz appears with multiplicity i2y •••, μs appears with
multiplicity is so that ^H \-ίs=n. We define the subgroup G of Σn by G=
2,-jX Σ, 2X " x Σ l V Then by the same argument as the proof of Lemma 4.3, we
see the following

Lemma 5.1. The component which corresponds to the partition k—v^ f-
vn as above is homotopically equivalent to (S2m~ι)nχCn.

G

By using Lemma 5.1, we shall show the following

Proposition 5.2. Hq

c{Xk_ϊ)=ΰ for q<2m+k—2.

Proof. We shall admit the following lemma for a moment.

Lemma 5.3. Hq

e{Xn—Xn^=Q for q<n+2m(k-n)-l.

Then we see by Lemma 5.3

O for q<2m(k-l)
and

Hq

c(X2-X1) = 0 for q<2m(k-2)+l.

Hence by using the compact support cohomology exact sequence of the pair

(X2, Xι), we see

0 for q<2m(k-2)+l.

If we repeat this process, we can inductively prove the following fact.

Hl(XΛ) = 0 for q<n+2m(k-ή)-l .

In particular we see
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HίtXi-i) = 0 for q<2m+k-2 . •

Proof of Lemma 5.3. By Lemma 5.1, each component of Xn—Xn^ is
homotopically equivalent to (S2m~ι)nxCn where G is a subgroup of ΣΛ. Note

G

that dimΛ((52wι"1)Λ X Cn)=2tnn+n. Hence we see

(5.4) H9(Xn-Xn^) = 0 for q>2mn+n+l.

Note that άimRXn=2km+2n. Hence by the Poincarό duality, we see

Hq

c{Xn-Xn^) = 0 for q<(2km+2ή)-{2mn+n+l)

= n+2m(k-ή)-l. •

Next by using Proposition 5.2, we shall show the following

Proposition 5.5. H\Xk)^H\Xk-Xk^) for q>k(2m-l).

Proof. By Proposition 5.2, we know

Hq

c(Xk^) = 0 for q<2m+k-2.

Hence by the compact support cohomology exact sequence of the pair (Xky

we see

(5.6) Hi(Xt)^Hl(Xk-Xk^) for q<2m+k-2.

Note that dimRXk=2k(m-\-l). Hence by the Poincarό duality, we see

(5.7) H^X^H^Xk-X^) for q>2k(m+l)-(2m+k-2)

= 2m(k~l)+k+2.

Note that we assumed m>k-\-l. Hence by (5.7), we see

H\Xk)^ H\Xk-Xk^) for q>2mk+k+2-2(k+\)

= k(2m-ί). M

Proposition 5.8. We have the following isomorphism as graded Z2 vector
spaces.

θ Ht{Xt-Xt_l)

Proof. First note that Xk—Xh_x is homotopically equivalent to (S2m~ι)kχ

Ck by Lemma 5.1. We consider the Serre spectral sequence of the fiber bundle

(5.9) (S 2 "- 1 )* -* (52"1"1)* x Ck -> Ckfek.

As HHZm-1X(SZm-1)k)=Z2, the action of r ^ / Σ * ) on fl *0--W((5»—1)») is trivial.
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Note that dimΛ^/2A=2ft. Then we see the following facts.

(5.11) JB{'« = 0 for ρ>2k.

(5.12) E£9 = 0 for (k-1) (2m-l)<q<k(2m-l) or k(2m-l)<q.

Note that we assumed m^k+ί. Then by (5.10)-(5.12), we see

(5.13) £{.w--i>~£*.*β—o for all />.

If we use the consition m^. k-\-1 once more, we can easily prove Proposition 5.8. •

Now by Propositions 5.5 and 5.8, we see

9^.kC2m — 1)

Equivalently

(5.14) θ H^X^H^β^H^^dS'^y).

Hence it will be enough to show the following proposition in order to prove
Theorem D.

Proposition 5.15. The elements of © Hq{Xk) constructed by loop sums

and iterated operations correspond bijectively to the elements of H*(CkIΈ,k)®Hk(2m-.1)

We shall prove Proposition 5.15. First we shall study the elements con-
structed by loop sums and iterated operations. We define /eiV to be 2 / + 1>
k>2K Let [s] be the generator of H0(F*(S\ CPm)). Then the elements con-
structed by loop sums and iterated operations are given by the following two
types.

(5.16)

(5.17)

for some

Lemma 5.18. The degree of an element of type (5.17) is less than k(2m—l).
While the degree of an element of type (5.16) is greater than or equal to k(2m—l).

Proof. We prove the first half. The second half can be proved similarly.
We assume that an element
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of type (5.17) has degree greater than or equal to k(2m—l). As x is an element
of H*(Ff(S2, CPm))y we have the following fact.

(5.19) s+ao+2aι+-+2ιaι = k .

As deg x>k(2m— 1), we have the following fact. We write M for 2m— 1.

(5.20) a0M+a1(2M+l)+a2(4M+3)+'-+a!(2ιM+2ι-ί)>kM.

Combining (5.19) and (5.20), we see

(5.21) a0M+a1(2M+l)+a2(4M+3)+''-+aι(2ιM+2ι-l)

>sM+a0M+2a1M-\ \ΊιaxM.

(5.21) is equivalent to

(5.22) α 1 + 3 α 2 + + ( 2 / -

By (5.19), we have the following inequality.

(5.23) tfi+3α2+ + ( 2 ' -

Combining (5.22) and (5.23), we see k—s>sM. Hence

(5.24) k>s(M+l) = 2ms.

Note that we assumed m>k-\-\. Hence we see $=0 by (5.24). This is a con-
tradiction. This completes the proof of the first half of Lemma 5.18. •

We write ζ{ for Qifam-i)- Then by Lemma 5.18, the elements of 0
Hq(Xk) constructed by loop sums and iterated operations correspond to

(5.25) {W r?ι £7'; α f>0, a,+2aι+-+2ι at = k} .

(Note that the elements of (5.25) are linearly independent by Theorem 2.2).

Next we shall study the elements of H*(CklXk)®Hk(2m_1)((S2m-1)k). H*
(CklΊ,k) is described in [3]. We follow the notation of [3].

Proposition 5.26. H*(CklΣk)=Z2 [^

Where deg ξj=2j—l and I is the two sided ideal generated by (ί?^)*1 •••(£>,)*', here

By Proposition 5.26, the basis of H^{Ckf^k) is given as follows.

(5.27) {«i &•••#/; kt>0, 2k1+4k2+-+2'kι<k} .

Let [(S2"-1)*] be the fundamental class of (S2*-1)*. Then by (5.27), the ele-
ments of H*(CΛβk)®Hk(Zm_ι)((S?m-ι)k) correspond to



THE SPACE of RATIONAL FUNCTIONS 239

(5.28) { # #.-..

We see that (5.25) and (5.28) correspond to each other. This completes
the proof of Proposition 5.15 and, consequently, of Theorem D. •

6. Proof of Theorem C

In order to prove Theorem C, the case we need to consider is Ff(S2, CP2)
and Ff(S2, CP3) by virtue of Theorem D. We shall prove the former. The
latter can be proved similarly. Note that in degrees greater than or equal to 9,
the elements constructed by loop sums and iterated operations in H*(Ff(S2, CP2))
are given by c\ and c3*Qι(ι3) (which are non-trivial by Theorem 2.2). Hence it
will be enough to show the following proposition in order to prove Theorem C
in the case Ff(S2, CP2).

(Z7 <7=9,10
Proposition 6.1. Hq(Ff(S2, CP2)) = | 2 H

We filter F$(S2> CP2) as given in §3. Then by the same argument as the
proof of Lemmas 4.2 and 4.3, we see the following lemmas.

Lemma 6.2. Xx is homotopically equivalent to S3.

Lemma 6.3. X2—X1 is homotopically equivalent to (S^fxS1.

Lemma 6.4. Xz—X2 is homotopically equivalent to (S3)3χCs.

Note that dimΛJΪ3=18, dimΛX 2

=16 and dimΛX1=14. First we compute

H*(X2).

( Z2 5 = 9
Lemma 6.5. H9

C(X2) = j

Proof. By Lemma 6.2 and the Poincarό duality, we see

(6.6) HliXJ = 0 for

By Lemma 6.3 and the Poincarό duality, we see

Hence Lemma 6.5 follows from the compact support cohomology exact sequence
of the pair (X2,

Next we compute H*(X3—X2). Note that X3—X2 is homotopically equi-
valent to (S3)3xC3 by Lemma 6.4. In order to compute if*((5 3) 3xd 3), we

decompose the covering space
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(6.8) Σ3 —: (S3γ x C3 -* (S3)3 x C3

into the following two covering spaces. We embed Z3 in Σ3 as the alternating
group. Note that the following extension holds.

(6.9) 1-*Z 3 — Σ 3 - * Z 2 - * 1 .

Then (6.8) is decomposed as follows.

(6.10) Z3 -* (S3)3 x C3 -> (S3)3 x C3.

(6.11) Z2 -> (S3)3X C3

Z*

As for (6.10), we see

(6.12) H*((S3fx C 3 ) ^
3

In order to compute (6.12), we need to know H*(C3). H*(C3) is described
in [3]. We follow the notation of [3].

Proposition 6.13.

(1) H\C3) = Z2φZ2®Z2 and a basis is {afu afu cc%}.
(2) H\CZ) = Z2@Z2 and a basis is {afi afu aft a%}.

(3) afi a% = aT1(afi+af2)
(4) Let σ = (2 3) (1 2) be the generator of Z3. 77**;* σ*a?i = a?2, σ*a?i = aft

awJ σ*af2 = aft.
(5)

Now by using (6.12) and Proposition 6.13, we have the following

Lemma 6.14. Hq((S3)3 x C3) = = 9, 10

0

Let (ώi) be the Gysin exact sequence of (6.11) and let {Q2) be the compact
support cohomology exact sequence of the pair (X3y X2). By inspecting (3^)
and (32), we shall prove Proposition 6.1. We write X for X3—X2.

Step 1. H\X) = 0 for q>\\ .

In fact by the fact Hq((S3)3xC3)=0 for ? > l l (Lemma 6.14), we see H\X)

—Hι\X) for q> 11 by (ί?i). As X is a finite dimensional manifold, Step 1 holds.

Step 2. Hq(X3) = 0 for j ^ l l .

In fact we see Hq(X)=0 for q<7 by Step 1 and the Poincarό duality. Note
that H'(X2)=Q for q<8 (Lemma 6.5). Hence we see Hg

c(X3)=0 for q<Ί by
(Q2\ By the Poincare duality, we see H9(X3)=0 for j > l l .
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In order to complete the proof of Proposition 6.1, it will be enough to deter-
mine H\X3) and Hί0(X3) by virtue of Step 2.

Step 3. ίΓ 0(Z) = Z2 and H\X) -* HW(X) is surjective in (^)

In fact by the fact IP\X)=0 (Step 1) and ί P ^ S 3 ) 3 x <?3)=Z2 (Lemma 6.14),
we can write (<?j) in the following form. z%

-* H\X) -* H10(X) -* Z 2 -» IP\X) -* 0

By the exactness, Step 3 follows.
Before we proceed to Step 4, we shall state a fact about H\X3).

(6.15) H\X3) = 0.

((6.15) is easily proved by using Theorems 2.1 and 2.2.)

Step 4. m\X) = Z2. Hence H*(X) = Z2.

In fact by the fact H*((S3)3xC3)=Z2®Z2 (Lemma 6.14), we see H*(X)±0

by {ύi). Hence #ί°(Z)Φθ by'the Poincare duality. Note that H9

C(X2)=Z2

(Lemma 6.5). Note also that Hl°(X3)=0 ((6.15) and the Poincare duality).
Hence we see H\\X)=Z2 by (Q2). By the Poincarέ duality, H*(X)=:Z2.

Step 5. m{X)^H%X3), H%X)^H%X3).

In fact as Hl(X2)^H8

c(X2)=0 (Lemma 6.5), we see IPC{X)^HXX3) by {32).
In (<?2), we see H9

c(X2)-*-Hι

c°(X) is an isomorphism by Step 4. Hence we see

Step 6. Hι\Xz) = Z2.

In fact by the fact Hl0(X)=Z2 (Step 3), we see H*C(X)=Z2 by the Poincarέ
duality. Hence we see H%XZ)=Z2 by Step 5. Then we see H10(X3)=Z2 by the
Poincarό duality.

Step 7. H9(X3) = Z2.

In fact by the fact H*(X)=Z2 (Step 4), ί f 9 ( ( S 3 ) 3 x Q = Z 2 (Lemma 6.14),

H10(X)=Z2 and H\X)->Hι\X) is surjective in (^j) (Step 3), we can write (S^)
in the following form.

-> Z2 -> H\X) ->Z2-> H\X) -*Z2-*0

By the exactness, we see H9(X)=Z2. Hence H9

C(X)=Z2 by the Poincarά duality.
Then H*c(X3)=Z2 by Step 5 so H9(X3)=Z2 by the Poincarό duality. This com-
pletes the proof of Proposition 6.1 and, consequently, of Theorem C in the case
Ff(S\CP?). M
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