THE MODULO 2 HOMOLOGY GROUPS OF THE SPACE OF RATIONAL FUNCTIONS

Yasuhino KAMIYAMA

(Received June 25, 1990)

1. Introduction and statement of results

We shall denote by $F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)$ the space of based holomorphic maps of degree k from S^{2} to $\boldsymbol{C} P^{m}$. Any element of $F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)$ is clearly an element of $\Omega_{k}^{2} \boldsymbol{C} P^{m}$, the space of all based continuous maps from S^{2} to $\boldsymbol{C} P^{m}$ of degree k. Let

$$
\begin{equation*}
i: F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right) \rightarrow \Omega_{k}^{2} \boldsymbol{C} P^{m} \tag{1.1}
\end{equation*}
$$

be the inclusion. Segal [5] showed that i is a homotopy equivalence up to dimension $k(2 m-1)$.

Recently Boyer and Mann [2] introduced a loop sum and a C_{2} structure in $\coprod_{k} F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)$ which are compatible with i. (It is well known [3] that $\Omega^{2} \boldsymbol{C} P^{m}$ has a natural loop sum and a C_{2} structure). Hence we can naturally define the loop sum $*$ and the Araki-Kudo operation $Q_{1}[1]$ in $\underset{k}{\oplus} H_{*}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right) ; \boldsymbol{Z}_{2}\right)$. By using this method, Boyer and Mann constructed certain elements in $H_{*}\left(F_{k}^{*}\right.$ $\left(S^{2}, \boldsymbol{C} P^{m}\right) ; \boldsymbol{Z}_{2}$). Then the following question arises naturally.

Question. Do the elements constructed by loop sums and iterated operations on $\iota_{2 m-1}\left(\iota_{2 m-1}\right.$ will be defined later) form a basis of $H_{*}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right) ; \boldsymbol{Z}_{2}\right)$?

We shall study this question. The results are as follows.
Theorem A. The elements constructed by loop sums and iterated operations on ι_{1} form a basis of $H_{*}\left(F_{2}^{*}\left(S^{2}, \boldsymbol{C} P^{1}\right) ; \boldsymbol{Z}_{2}\right)$.

Theorem B. For $m \geq 2$, the elements constructed by loop sums and iterated operations on $\iota_{2 m-1}$ form a basis of $H_{*}\left(\boldsymbol{F}_{2}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right) ; \boldsymbol{Z}_{2}\right)$.

Theorem C. For $m \geq 2$, the elements constructed by loop sums and iterated operations on $\iota_{2 m-1}$ form a basis of $H_{*}\left(F_{3}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right) ; Z_{2}\right)$.

Theorem D. For $m \geq k+1$, the elements constructed by loop sums and iterated operations on $\iota_{2 m-1}$ form a basis of $H_{*}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right) ; \boldsymbol{Z}_{2}\right)$.

This paper is organized as follows. In $\S 2$ we shall review some results of [2], [3] and [5]. In §3 we shall give a strategy of proving Theorems B, C and D. In $\S 4$ we shall prove Theorems A and B. In $\S 5$ we shall prove Theorem D. In §6 we shall prove Theorem C.

The results of this paper were announced in [4]. The author is grateful to Professor A. Hattori for many useful comments.

2. Known results

First we state the Segal's result precisely.
Theorem 2.1 ([5]). The inclusion

$$
i: F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right) \rightarrow \Omega_{k}^{2} \boldsymbol{C} P^{m}
$$

is a homotopy equivalence up to dimension $k(2 m-1)$, i.e. the induced homomorphism $i_{*}: \pi_{q}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)\right) \rightarrow \pi_{q}\left(\Omega_{k}^{2} \boldsymbol{C} P^{m}\right)$ is bijective for $q<k(2 m-1)$ and surjective for $q=k(2 m-1)$.

Next we describe the Pontryagin ring structure of $H_{*}\left(\Omega^{2} \boldsymbol{C} P^{m} ; \boldsymbol{Z}_{2}\right)$. Let $\tilde{\iota}_{2 m-1}$ be the generator of $H_{2 m-1}\left(\Omega_{1}^{2} \boldsymbol{C} P^{m} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}$ and let [1] be the generator of $H_{0}\left(\Omega_{1}^{2} \boldsymbol{C} P^{m} ; \boldsymbol{Z}_{2}\right)$. Then, according to [3], we can state

Theorem 2.2. $H_{*}\left(\Omega^{2} \boldsymbol{C} P^{m} ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}\left[[1], \tilde{\iota}_{2 m-1}, Q_{I_{l}}\left(\tilde{\iota}_{2 m-1}\right)\right]$, the polynomial algebra over \boldsymbol{Z}_{2}, under loop sum Pontryagin product, on generators [1], $\tilde{\iota}_{2 m-1}$ and $Q_{I_{l}}\left(\tilde{\iota}_{2 m-1}\right)=Q_{1} Q_{1} \cdots Q_{1}\left(\tilde{\iota}_{2 m-1}\right)$, where I_{l} has length l and l is an any natural number.

Finally we review some results of Boyer and Mann. If we regard a function belonging to $F_{k}^{*}\left(S^{2}, C P^{1}\right)$ as a holomorphic function $f: S^{2} \rightarrow S^{2}$ of degree k such that $f(\infty)=1$, then $F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{1}\right)$ can be described in the following form.

$$
\begin{align*}
& F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{1}\right)=\left\{p(z) / q(z)=\left(z^{k}+a_{1} z^{k-1}+\cdots+a_{k}\right) /\left(z^{k}+b_{1} z^{k-1}\right.\right. \tag{2.3}\\
& \left.\left.\quad+\cdots+b_{k}\right) ; p(z) \text { and } q(z) \text { have no common root. }\right\}
\end{align*}
$$

Similarly we shall regard $F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)$ as follows.
$F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)=\left\{\left[p_{0}(z), \cdots, P_{m}(z)\right] ; p_{i}(z)\right.$ are monic polynomials of degree k such that there exists no $\alpha \in \boldsymbol{C}$ which satisfies

$$
\left.p_{0}(\alpha)=0, \cdots, p_{m}(\alpha)=0 .\right\}
$$

Note that $F_{1}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)$ is homotopically equivalent to $S^{2^{m-1}}$ by (2.4). Let $\iota_{2 m-1}$ be the generator of $H_{2 m-1}\left(F_{1}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right) ; \boldsymbol{Z}_{2}\right)=\boldsymbol{Z}_{2}$. If we start with $\iota_{2 m-1}$ and compute iterated operations on $t_{2 m-1}$ and loop sums of such elements, we may contruct many non-zero homology classes in $H_{*}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right) ; \boldsymbol{Z}_{2}\right)$. Then by combining Theorems 2.1 and 2.2, the following theorem is known.

Theorem 2.5([2]). Any element ξ of $H_{*}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right) ; \boldsymbol{Z}_{2}\right)$ with $\operatorname{deg} \xi<k$
$(2 m-1)$ can be constructed by loop sums and iterated operations on $\iota_{2 m-1}$.

3. Strategy of proof

We shall give the strategy of proving Theorems B, C and D. The strategy of proving Theorem A is slightly different. So it will be postponed to $\S 4$. In the following, all homology groups, cohomology groups and compact support cohomology groups have coefficients \boldsymbol{Z}_{2}.

In order to prove Theorems B, C and D, it will be enough to compute $H_{q}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)\right)$ for $q \geq k(2 m-1)$ by virtue of Theorem 2.5. Let us filter F_{k}^{*} ($S^{2}, \boldsymbol{C} P^{m}$) by the closed subspaces

$$
\begin{equation*}
F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)=X_{k} \supset X_{k-1} \supset \cdots \supset X_{1} \tag{3.1}
\end{equation*}
$$

where
(3.2) $\quad X_{n}=\left\{\left[p_{0}(z), \cdots, p_{m}(z)\right] \in F_{k}^{*}\left(S^{2}, C P^{m}\right) ; p_{0}(z)\right.$ has at most n distinict zeros. $\}$

Let H_{c}^{*} be the compact support cohomology. Assume that we have some informations about $H_{c}^{*}\left(X_{n-1}\right)$ and $H_{c}^{*}\left(X_{n}-X_{n-1}\right)$. Then we obtain new informations about $H_{c}^{*}\left(X_{n}\right)$ by using the following compact support cohomology exact sequence of the pair (X_{n}, X_{n-1}).

$$
\begin{equation*}
\cdots \rightarrow H_{c}^{q}\left(X_{n}-X_{n-1}\right) \rightarrow H_{c}^{q}\left(X_{n}\right) \rightarrow H_{c}^{q}\left(X_{n-1}\right) \rightarrow H_{c}^{q+1}\left(X_{n}-X_{n-1}\right) \rightarrow \cdots \tag{3.3}
\end{equation*}
$$

Moreover assume that we have some informations about $H_{c}^{*}\left(X_{n+1}-X_{n}\right)$. Then we obtain new informations about $H_{c}^{*}\left(X_{n+1}\right)$ by using the compact suppori cohomology exact sequence of the pair $\left(X_{n+1}, X_{n}\right)$.

We repeat this process. Then finally we obtain new informations about $H_{c}^{*}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)\right)$ which can be converted to those of $H_{*}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)\right)$ by the Poincaré duality. In particular if k and m are taken to be in Theorems B, C and D, then we can determine $H_{q}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)\right)$ for $q \geq k(2 m-1)$.

4. Proofs of Theorems A and B

First we prove Theorem B by using the strategy given in §3. Note that in degrees greater than or equal to $4 m-2$, the elements constructed by loop sums and iterated operations are given by $\iota_{2 m-1}^{2}$ and $Q_{1}\left(\iota_{2 m-1}\right)$ (which are non-trivial by Theorem 2.2). Hence it will be enough to show the following proposition in order to prove Theorem B.

Proposition 4.1. $\quad H_{q}\left(F_{2}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)\right)=\left\{\begin{array}{cl}\boldsymbol{Z}_{2} & q=4 m-2,4 m-1 \\ 0 & q \geq 4 m .\end{array}\right.$
We filter $F_{2}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)$ as given in $\S 3$.
Lemma 4.2. $\quad X_{1}$ is homeomorphic to $\boldsymbol{C} \times \boldsymbol{C}^{m} \times\left(\boldsymbol{C}^{m}\right)^{*}$.

In fact if $\left[p_{0}(z), \cdots, p_{m}(z)\right]$ belongs to X_{1} and $p_{0}(z)$ has a multiple root α, then $p_{i}(z)(1 \leq i \leq m)$ are completely determined by giving $p_{i}(\alpha), p_{i}^{\prime}(\alpha)$ which are arbitrary except for the constraint $\left(p_{1}(\alpha), \cdots, p_{m}(\alpha)\right) \neq(0, \cdots, 0)$.

Let \boldsymbol{C}_{n} be the space of ordered distinct n-tuples in \boldsymbol{C}.
Lemma 4.3. $\quad X_{2}-X_{1}$ is the quotient of $\left\{\left(\boldsymbol{C}^{m}\right)^{*} \times\left(\boldsymbol{C}^{m}\right)^{*}\right\} \times \widetilde{C_{2}}$ by a free action of the symmetric group Σ_{2}.

In fact if $\left[p_{0}(z), \cdots, p_{m}(z)\right]$ belongs to $X_{2}-X_{1}$ and $p_{0}(z)$ has roots α_{1}, α_{2}, then $p_{i}(z)(1 \leq i \leq m)$ are completely determined by giving $p_{i}\left(\alpha_{1}\right), p_{i}\left(\alpha_{2}\right)$ which are arbitrary except for the constraint $\left(p_{1}\left(\alpha_{1}\right), \cdots, p_{m}\left(\alpha_{1}\right)\right) \neq(0, \cdots, 0)$ and $\left(p_{1}\left(\alpha_{2}\right), \cdots, p_{m}\right.$ $\left.\left(\alpha_{2}\right)\right) \neq(0, \cdots, 0)$.

Note that X_{1} is homotopically equivalent to $S^{2 m-1}$ by Lemma 4.2. Hence we see $H^{q}\left(X_{1}\right)=0$ for $q \geq 2 m$. Note also that $\operatorname{dim}_{R} X_{1}=4 m+2$. Hence by the Poincaré duality, we see

$$
\begin{equation*}
H_{c}^{q}\left(X_{1}\right)=0 \quad \text { for } \quad q \leq 2 m+2 \tag{4.4}
\end{equation*}
$$

Note also that $X_{2}-X_{1}$ is homotopically equivalent to $\left(S^{2 m-1}\right)^{2} \times S_{\Sigma_{2}}^{1}$ by Lemma 4.3.
We consider the Serre spectral sequence of the fiber bundle

$$
\begin{equation*}
\left(S^{2 m-1}\right)^{2} \rightarrow\left(S^{2 m-1}\right)^{2} \times S_{\Sigma_{2}} \rightarrow S^{1} \tag{4.5}
\end{equation*}
$$

As $H^{2(2 m-1)}\left(\left(S^{2 m-1}\right)^{2}\right)=Z_{2}$, the action of $\pi_{1}\left(S^{1}\right)$ on $H^{2(2 m-1)}\left(\left(S^{2 m-1}\right)^{2}\right)$ is trivial. By using this fact, spectral sequence argument shows

$$
H^{q}\left(X_{2}-X_{1}\right)= \begin{cases}Z_{2} & q=4 m-2,4 m-1 \tag{4.6}\\ 0 & q \geq 4 m\end{cases}
$$

As $\operatorname{dim}_{R} X_{2}=4 m+4$, we see the following fact by (4.6) and the Poincare duality.

$$
H_{c}^{q}\left(X_{2}-X_{1}\right)=\left\{\begin{array}{cl}
Z_{2} & q=5,6 \tag{4.7}\\
0 & q \leq 4
\end{array}\right.
$$

By using (4.4) and (4.7), the compact support cohomology exact sequence of the pair $\left(X_{2}, X_{1}\right)$ shows

$$
H_{c}^{q}\left(X_{2}\right)=\left\{\begin{array}{cl}
Z_{2} & q=5,6 \tag{4.8}\\
0 & q \leq 4
\end{array}\right.
$$

Proposition 4.1 follows easily from (4.8) by the Poincare duality.
Next we shall prove Theorem A. We write F_{k}^{*} for $F_{k}^{*}\left(S^{2}, \boldsymbol{C} P^{1}\right)$. Let [1] be the generator of $H_{0}\left(F_{1}^{*}\right)$. Then the elements constructed by loop sums and
iterated operations are given by $\iota_{1} *[1], \iota_{1}^{2}$ and $Q_{1}\left(\iota_{1}\right)$ (which are non-trivial by Theorem 2.2). Hence it will be enough to show the following proposition in order to prove Theorem A.

Proposition 4.9. $H_{q}\left(F_{2}^{*}\right)=\left\{\begin{array}{cl}\boldsymbol{Z}_{2} & q=0,1,2,3 \\ 0 & q \geq 4 .\end{array}\right.$
Note that $\pi_{1}\left(F_{2}^{*}\right)=\boldsymbol{Z}$ by Theorem 2.1. Hence if we follow the proof of Theorem B in order to prove Theorem A, we will encounter some difficulties. So we first consider the universal covering of F_{2}^{*}. We define

$$
\begin{equation*}
R: F_{2}^{*} \rightarrow C^{*} \tag{4.10}
\end{equation*}
$$

as follows. Let $p(z) / q(z)$ be an element of F_{2}^{*} and let α_{1}, α_{2} be the roots of $p(z)$, β_{1}, β_{2} be the roots of $q(z)$. Then $R(p(z) / q(z))$ is defined by $\prod_{i, j}\left(\alpha_{i}-\beta_{j}\right)$. Let Y_{2} be $R^{-1}(1)$. Then it is known in [5] that (4.10) is a fiber bundle with simply connected fiber Y_{2}.

First we shall compute $H^{*}\left(Y_{2}\right)$. We define the closed subspace Y_{1} of Y_{2} by

$$
Y_{1}=\left\{p(z) / q(z) \in Y_{2} ; q(z) \text { has a multiple root. }\right\}
$$

Lemma 4.11. $\quad Y_{1}$ is homeomorphic to $\boldsymbol{C}^{2} \amalg \boldsymbol{C}^{2}$.

In fact if $p(z) / q(z)$ belongs to Y_{1} and $q(z)$ has a multiple root β, then $p(z)$ is completely determined by giving $p(\beta), p^{\prime}(\beta)$ which are arbitrary except for the constraint $R(p(z) / q(z))=p(\beta)^{2}=1$.

We think of \boldsymbol{C}^{*} as $\left\{\left(\xi_{1}, \xi_{2}\right) \in\left(\boldsymbol{C}^{*}\right)^{2} ; \xi_{1} \xi_{2}=1\right\}$.
Lemma 4.12. $\quad Y_{2}-Y_{1}$ is the quotient of $\boldsymbol{C}^{*} \times \breve{C}_{2}$ by a free action of the symmetric group Σ_{2}.

In fact if $p(z) / q(z)$ belongs to $Y_{2}-Y_{1}$ and $q(z)$ has roots β_{1}, β_{2}, then $p(z)$ is completely determined by giving $p\left(\beta_{1}\right), p\left(\beta_{2}\right)$ which are arbitrary except for the constraint $R(p(z) / q(z))=p\left(\beta_{1}\right) p\left(\beta_{2}\right)=1$.

We define the involution τ on $S^{1} \times S^{1}$ by

$$
(z, w) \tau=(1 / z,-w) \quad(z, w) \in S^{1} \times S^{1}
$$

Then by Lemma 4.12, we see that $Y_{2}-Y_{1}$ is homotopically equivalent to $S^{1} \times$ S^{1} / τ. Note that $S^{1} \times S^{1} / \tau$ is Klein's bottle. Now by Lemma 4.11 and the Poincaré duality, we see

$$
H_{c}^{q}\left(Y_{1}\right)= \begin{cases}Z_{2} \oplus Z_{2} & q=4 \tag{4.13}\\ 0 & \text { otherwise }\end{cases}
$$

By Lemma 4.12 and the Poincare duality, we see

$$
H_{c}^{q}\left(Y_{2}-Y_{1}\right)= \begin{cases}Z_{2} & q=4,6 \tag{4.14}\\ \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} & q=5 \\ 0 & \text { otherwise }\end{cases}
$$

Note that $H^{1}\left(Y_{2}\right)=0$. (In fact Y_{2} is simply connected). Hence by the Poincare duality, we see

$$
\begin{equation*}
H_{c}^{5}\left(Y_{2}\right)=0 . \tag{4.15}
\end{equation*}
$$

Now by using the compact support cohomology exact sequence of the pair (Y_{2}, Y_{1}), we see by (4.13)-(4.15) that

$$
H_{c}^{q}\left(Y_{2}\right)=\left\{\begin{array}{cl}
Z_{2} & q=4,6 \tag{4.16}\\
0 & \text { otherwise }
\end{array}\right.
$$

By the Poincaré duality, we see

$$
H^{q}\left(Y_{2}\right)=\left\{\begin{array}{cl}
Z_{2} & q=0,2 \tag{4.17}\\
0 & \text { otherwise }
\end{array}\right.
$$

We consider the Serre spectral sequence of (4.10). As $H^{2}\left(Y_{2}\right)=\boldsymbol{Z}_{2}$, the action of $\pi_{1}\left(C^{*}\right)$ on $H^{2}\left(Y_{2}\right)$ is trivial. By using this fact, spectral sequence argument shows Proposition 4.9.

As a corollary of Theorem A, we shall determine the $\mathcal{A}(2)$-module structure of $H^{*}\left(F_{2}^{*}\right)$. Note that $\left\{[2], \iota_{1} *[1], \iota_{1}^{2}, Q_{1}\left(\iota_{1}\right)\right\}$ form the basis of $H_{*}\left(F_{2}^{*}\right)$ by Theorem A. Let $u \in H^{1}\left(F_{2}^{*}\right)$ be the dual of $\iota_{1} *[1]$ and $v \in H^{2}\left(F_{2}^{*}\right)$ be the dual of ι_{1}^{2}. Then we have the following

Corollary 4.18. $H^{*}\left(F_{2}^{*}\right)=\wedge(u, v)$, the exterior algebra over \boldsymbol{Z}_{2} on generators u and $v . S q^{1} v=u v$.

Proof. Note that the following relation holds in $H_{1}\left(F_{2}^{*}\right)$ by Theorem 2.1.

$$
\begin{equation*}
Q_{1}[1]=\iota_{1} *[1] . \tag{4.19}
\end{equation*}
$$

Let $\Delta: F_{k}^{*} \rightarrow F_{k}^{*} \times F_{k}^{*}$ be the diagonal. Then the following relations are well known [3].

$$
\begin{equation*}
\Delta_{*} Q_{1}(a)=\sum_{s}\left\{Q_{1}\left(a_{s}^{\prime}\right) \otimes\left(a_{s}^{\prime \prime}\right)^{2}+\left(a_{s}^{\prime}\right)^{2} \otimes Q_{1}\left(a_{s}^{\prime \prime}\right)\right\} \tag{4.20}
\end{equation*}
$$

where $\Delta_{*} a=\sum_{s} a_{s}^{\prime} \otimes a_{k}^{\prime \prime}$.
(4.21) (Nishida relation) $\beta Q^{j}(a)=(j-1) Q^{j-1}(a)$
where β is the Bockstein operation.

Then the ring structure is proved by observing the following Kronecker products.

$$
\left\langle u^{2}, \iota_{1}^{2}\right\rangle=0,\left\langle u v, Q_{1}\left(\iota_{1}\right)\right\rangle=1
$$

The fact $S q^{1} v=u v$ is proved by observing the following Kronecker product.

$$
\left\langle S q^{1} v, Q_{1}\left(\iota_{1}\right)\right\rangle=1
$$

5. Proof of Theorem D

We prove Theorem D by using the strategy given in §3. We filter F_{k}^{*} ($S^{2}, \boldsymbol{C} P^{m}$) as given in §3. In general $X_{n}-X_{n-1}$ has one component for each partition of k into n pieces. Let $k=\nu_{1}+\cdots+\nu_{n}$ be one of such partitions. We shall study the component which corresponds to this partition. Let μ_{1}, \cdots, μ_{s} be the numbers distinct to each other which appear among the ν_{i}. We can assume μ_{1} appears with multiplicity i_{1}, μ_{2} appears with multiplicity i_{2}, \cdots, μ_{s} appears with multiplicity i_{s} so that $i_{1}+\cdots+i_{s}=n$. We define the subgroup G of Σ_{n} by $G=$ $\Sigma_{i_{1}} \times \Sigma_{i_{2}} \times \cdots \times \Sigma_{i_{s}}$. Then by the same argument as the proof of Lemma 4.3, we see the following

Lemma 5.1. The component which corresponds to the partition $k=\nu_{1}+\cdots+$ ν_{n} as above is homotopically equivalent to $\left(S^{2 m-1}\right)^{n} \times \tilde{C}_{n}$.

By using Lemma 5.1, we shall show the following
Proposition 5.2. $H_{c}^{q}\left(X_{k-1}\right)=0$ for $q \leq 2 m+k-2$.
Proof. We shall admit the following lemma for a moment.
Lemma 5.3. $H_{c}^{q}\left(X_{n}-X_{n-1}\right)=0$ for $q \leq n+2 m(k-n)-1$.
Then we see by Lemma 5.3

$$
H_{c}^{q}\left(X_{1}\right)=0 \quad \text { for } \quad q \leq 2 m(k-1)
$$

and

$$
H_{c}^{q}\left(X_{2}-X_{1}\right)=0 \quad \text { for } \quad q \leq 2 m(k-2)+1
$$

Hence by using the compact support cohomology exact sequence of the pair (X_{2}, X_{1}), we see

$$
H_{c}^{q}\left(X_{2}\right)=0 \quad \text { for } \quad q \leq 2 m(k-2)+1
$$

If we repeat this process, we can inductively prove the following fact.

$$
H_{c}^{q}\left(X_{n}\right)=0 \quad \text { for } \quad q \leq n+2 m(k-n)-1
$$

In particular we see

$$
H_{c}^{q}\left(X_{k-1}\right)=0 \quad \text { for } \quad q \leq 2 \mathrm{~m}+k-2
$$

Proof of Lemma 5.3. By Lemma 5.1, each component of $X_{n}-X_{n-1}$ is homotopically equivalent to $\left(S^{2_{m-1}}\right)^{n} \times{ }_{\sigma} C_{n}$ where G is a subgroup of Σ_{n}. Note that $\operatorname{dim}_{R}\left(\left(S^{2 m-1}\right)^{n} \times \tilde{C}_{n}\right)=2 m n+n$. Hence we see

$$
\begin{equation*}
H^{q}\left(X_{n}-X_{n-1}\right)=0 \quad \text { for } \quad q \geq 2 m n+n+1 \tag{5.4}
\end{equation*}
$$

Note that $\operatorname{dim}_{R} X_{n}=2 k m+2 n$. Hence by the Poincare duality, we see

$$
\begin{aligned}
H_{c}^{q}\left(X_{n}-X_{n-1}\right)=0 \quad \text { for } \quad q & \leq(2 k m+2 n)-(2 m n+n+1) \\
& =n+2 m(k-n)-1
\end{aligned}
$$

Next by using Proposition 5.2, we shall show the following
Proposition 5.5. $\quad H^{q}\left(X_{k}\right) \simeq H^{q}\left(X_{k}-X_{k-1}\right)$ for $q \geq k(2 m-1)$.
Proof. By Proposition 5.2, we know

$$
H_{c}^{q}\left(X_{k-1}\right)=0 \quad \text { for } \quad q \leq 2 m+k-2
$$

Hence by the compact support cohomology exact sequence of the pair (X_{k}, X_{k-1}), we see

$$
\begin{equation*}
H_{c}^{q}\left(X_{k}\right) \simeq H_{c}^{q}\left(X_{k}-X_{k-1}\right) \quad \text { for } \quad q \leq 2 m+k-2 . \tag{5.6}
\end{equation*}
$$

Note that $\operatorname{dim}_{\boldsymbol{R}} X_{k}=2 k(m+1)$. Hence by the Poincaré duality, we see

$$
\begin{align*}
H^{q}\left(X_{k}\right) \simeq H^{q}\left(X_{k}-X_{k-1}\right) \quad \text { for } \quad q & \geq 2 k(m+1)-(2 m+k-2) \tag{5.7}\\
& =2 m(k-1)+k+2 .
\end{align*}
$$

Note that we assumed $m \geq k+1$. Hence by (5.7), we see

$$
\begin{aligned}
H^{q}\left(X_{k}\right) \simeq H^{q}\left(X_{k}-X_{k-1}\right) \quad \text { for } \quad q & \geq 2 m k+k+2-2(k+1) \\
& =k(2 m-1)
\end{aligned}
$$

Proposition 5.8. We have the following isomorphism as graded \boldsymbol{Z}_{2} vector spaces.

$$
\underset{q \geq k(2 m-1)}{\oplus} H^{q}\left(X_{k}-X_{k-1}\right) \simeq H^{*}\left(\tilde{C}_{k} / \Sigma_{k}\right) \otimes H^{k(2 m-1)}\left(\left(S^{2 m-1}\right)^{k}\right) .
$$

Proof. First note that $X_{k}-X_{k-1}$ is homotopically equivalent to $\left(S^{2 m-1}\right)^{k} \times$ $\widetilde{C_{k}}$ by Lemma 5.1. We consider the Serre spectral sequence of the fiber bundle

$$
\begin{equation*}
\left(S^{2 m-1}\right)^{k} \rightarrow\left(S^{2 m-1}\right)^{k} \times{\tilde{\Sigma_{k}}}_{k} \rightarrow \tilde{C}_{k} / \Sigma_{k} \tag{5.9}
\end{equation*}
$$

As $H^{k(2 m-1)}\left(\left(S^{2 m-1}\right)^{k}\right)=\boldsymbol{Z}_{2}$, the action of $\pi_{1}\left(\widetilde{C_{k}} / \Sigma_{k}\right)$ on $H^{k(2 m-1)}\left(\left(S^{2 m-1}\right)^{k}\right)$ is trivial.

Note that $\operatorname{dim}_{R} C_{k} / \Sigma_{k}=2 k$. Then we see the following facts.

$$
\begin{equation*}
\oplus_{p \leq 2 k} E_{2}^{p, k(2 m-1)} \simeq H^{*}\left(C_{k} / \Sigma_{k}\right) \otimes H^{k(2 m-1)}\left(\left(S^{2 m-1}\right)^{k}\right) . \tag{5.10}
\end{equation*}
$$

$E_{2}^{p, q}=0$
for $\quad(k-1)(2 m-1)<q<k(2 m-1)$ or $k(2 m-1)<q$.
Note that we assumed $m \geq k+1$. Then by (5.10)-(5.12), we see

$$
\begin{equation*}
E_{2}^{p, k(2 m-1)} \simeq E_{\infty}^{p, k(2 m-1)} \quad \text { for all } p . \tag{5.13}
\end{equation*}
$$

If we use the consition $m \geq k+1$ once more, we can easily prove Proposition 5.8.
Now by Propositions 5.5 and 5.8, we see

$$
\underset{g \geq k(2 m-1)}{\oplus} H^{q}\left(X_{k}\right) \simeq H^{*}\left(\tilde{C}_{k} / \Sigma_{k}\right) \otimes H^{k(2 m-1)}\left(\left(S^{2 m-1}\right)^{k}\right) .
$$

Equivalently

$$
\begin{equation*}
\underset{q \geq k(2 m-1)}{\oplus} H_{q}\left(X_{k}\right) \simeq H_{*}\left(\widetilde{C}_{k} / \Sigma_{k}\right) \otimes H_{k(2 m-1)}\left(\left(S^{2 m-1}\right)^{k}\right) . \tag{5.14}
\end{equation*}
$$

Hence it will be enough to show the following proposition in order to prove Theorem D.

Proposition 5.15. The elements of $\underset{q \geq k(2 m-1)}{\oplus} H_{q}\left(X_{k}\right)$ constructed by loop sums and iterated operations correspond bijectively to the elements of $H_{*}\left(\widetilde{C}_{k} / \Sigma_{k}\right) \otimes H_{k(2 m-1)}$ $\left(\left(S^{2 m-1}\right)^{k}\right)$.

We shall prove Proposition 5.15. First we shall study the elements constructed by loop sums and iterated operations. We define $l \in \boldsymbol{N}$ to be $2^{l+1}>$ $k \geq 2^{l}$. Let [s] be the generator of $H_{0}\left(F_{s}^{*}\left(S^{2}, \boldsymbol{C} P^{m}\right)\right)$. Then the elements constructed by loop sums and iterated operations are given by the following two types.

$$
\begin{gather*}
\iota_{2 m-1}^{\alpha_{0}} * Q_{1}\left(\iota_{2 m-1}\right)^{\alpha_{1}} * \cdots * Q_{I_{l}}\left(\iota_{2 m-1}\right)^{\alpha_{l}} \tag{5.16}\\
\iota_{2 m-1}^{\alpha_{0}} * Q_{1}\left(\iota_{2 m-1}\right)^{\alpha_{1} * \cdots * Q_{I_{l}}\left(\iota_{2 m-1}\right)^{\alpha_{l}} *[s]} \tag{5.17}
\end{gather*}
$$

for some $s \in N$.
Lemma 5.18. The degree of an element of type (5.17) is less than $k(2 m-1)$. While the degree of an element of type (5.16) is greater than or equal to $k(2 m-1)$.

Proof. We prove the first half. The second half can be proved similarly. We assume that an element

$$
x=\iota_{2 m-1}^{\alpha_{0}} * Q_{1}\left(\iota_{2 m-1}\right)^{\alpha_{1}} * \cdots * Q_{I_{l}}\left(\iota_{2 m-1}\right)^{\alpha} / *[s]
$$

of type (5.17) has degree greater than or equal to $k(2 m-1)$. As x is an element of $H_{*}\left(F_{k}^{*}\left(S^{2}, \boldsymbol{C P} P^{m}\right)\right.$, we have the following fact.

$$
\begin{equation*}
s+\alpha_{0}+2 \alpha_{1}+\cdots+2^{l} \alpha_{l}=k \tag{5.19}
\end{equation*}
$$

As deg $x \geq k(2 m-1)$, we have the following fact. We write M for $2 m-1$.

$$
\begin{equation*}
\alpha_{0} M+\alpha_{1}(2 M+1)+\alpha_{2}(4 M+3)+\cdots+\alpha_{l}\left(2^{l} M+2^{l}-1\right) \geq k M . \tag{5.20}
\end{equation*}
$$

Combining (5.19) and (5.20), we see

$$
\begin{align*}
& \alpha_{0} M+\alpha_{1}(2 M+1)+\alpha_{2}(4 M+3)+\cdots+\alpha_{l}\left(2^{l} M+2^{l}-1\right) \tag{5.21}\\
& \quad \geq s M+\alpha_{0} M+2 \alpha_{1} M+\cdots+2^{l} \alpha_{l} M
\end{align*}
$$

(5.21) is equivalent to

$$
\begin{equation*}
\alpha_{1}+3 \alpha_{2}+\cdots+\left(2^{l}-1\right) \alpha_{l} \geq s M \tag{5.22}
\end{equation*}
$$

By (5.19), we have the following inequality.

$$
\begin{equation*}
\alpha_{1}+3 \alpha_{2}+\cdots+\left(2^{l}-1\right) \alpha_{l} \leq k-s \tag{5.23}
\end{equation*}
$$

Combining (5.22) and (5.23), we see $k-s \geq s M$. Hence

$$
\begin{equation*}
k \geq s(M+1)=2 m s \tag{5.24}
\end{equation*}
$$

Note that we assumed $m \geq k+1$. Hence we see $s=0$ by (5.24). This is a contradiction. This completes the proof of the first half of Lemma 5.18.

We write ζ_{i} for $Q_{I_{i}}\left(l_{2 m-1}\right)$. Then by Lemma 5.18, the elements of $\underset{q \geq k(2 m-1)}{\oplus}$ $H_{q}\left(X_{k}\right)$ constructed by loop sums and iterated operations correspond to ${ }^{q \geq k(2 m-1)}$

$$
\begin{equation*}
\left\{\zeta_{0_{0}^{o}}^{\alpha} \zeta_{1}^{a_{1}} \cdots \zeta_{l}^{a_{l}} ; \alpha_{i} \geq 0, \alpha_{0}+2 \alpha_{1}+\cdots+2^{l} \alpha_{l}=k\right\} \tag{5.25}
\end{equation*}
$$

(Note that the elements of (5.25) are linearly independent by Theorem 2.2).
Next we shall study the elements of $H_{*}\left(\widetilde{C}_{k} / \Sigma_{k}\right) \otimes H_{k(2 m-1)}\left(\left(S^{2 m-1}\right)^{k}\right) . \quad H_{*}$ $\left(\widetilde{C}_{k} / \Sigma_{k}\right)$ is described in [3]. We follow the notation of [3].

Proposition 5.26. $H_{*}\left(\tilde{C}_{k} / \Sigma_{k}\right)=\boldsymbol{Z}_{2}\left[\xi_{j}\right] / I$.
Where $\operatorname{deg} \xi_{j}=2^{j}-1$ and I is the two sided ideal generated by $\left(\xi_{j_{1}}\right)^{k_{1}} \cdots\left(\xi_{j_{t}}\right)^{k_{t}}$, here $\sum_{i=1}^{i} k_{i} 2^{j_{i}}>k$.

By Proposition 5.26, the basis of $H_{*}\left(\tilde{C}_{k} / \Sigma_{k}\right)$ is given as follows.

$$
\begin{equation*}
\left\{\xi_{1}^{k_{1}} \xi_{\left.2^{2} \cdots \xi_{l}^{k} ; k_{t} \geq 0,2 k_{1}+4 k_{2}+\cdots+2^{l} k_{l} \leq k\right\} . . . ~}^{\text {and }}\right. \tag{5.27}
\end{equation*}
$$

Let $\left[\left(S^{2 m-1}\right)^{k}\right]$ be the fundamental class of $\left(S^{2 m-1}\right)^{k}$. Then by (5.27), the elements of $H_{*}\left(\tilde{C}_{k} / \Sigma_{k}\right) \otimes H_{k(2 m-1)}\left(\left(S^{2 m-1}\right)^{k}\right)$ correspond to

$$
\begin{equation*}
\left\{\xi_{1}^{k_{1}} \xi_{2^{2} \cdots \xi_{l}^{k}}^{\left.k^{l} \otimes\left[\left(S^{2 m-1}\right)^{k}\right] ; k_{i} \geq 0,2 k_{1}+4 k_{2}+\cdots+2^{l} k_{l} \leq k\right\} ~}\right. \tag{5.28}
\end{equation*}
$$

We see that (5.25) and (5.28) correspond to each other. This completes the proof of Proposition 5.15 and, consequently, of Theorem D.

6. Proof of Theorem \mathbf{C}

In order to prove Theorem C , the case we need to consider is $F_{3}^{*}\left(S^{2}, C P^{2}\right)$ and $F_{3}^{*}\left(S^{2}, C P^{3}\right)$ by virtue of Theorem D. We shall prove the former. The latter can be proved similarly. Note that in degrees greater than or equal to 9 , the elements constructed by loop sums and iterated operations in $H_{*}\left(F_{3}^{*}\left(S^{2}, C P^{2}\right)\right)$ are given by ι_{3}^{3} and $\iota_{3} * Q_{1}\left(\iota_{3}\right)$ (which are non-trivial by Theorem 2.2). Hence it will be enough to show the following proposition in order to prove Theorem C in the case $F_{3}^{*}\left(S^{2}, C P^{2}\right)$.

Proposition 6.1. $\quad H_{q}\left(F_{3}^{*}\left(S^{2}, C P^{2}\right)\right)=\left\{\begin{array}{cl}\boldsymbol{Z}_{2} & q=9,10 \\ 0 & q \geq 11 .\end{array}\right.$
We filter $F_{3}^{*}\left(S^{2}, C P^{2}\right)$ as given in $\S 3$. Then by the same argument as the proof of Lemmas 4.2 and 4.3, we see the following lemmas.

Lemma 6.2. $\quad X_{1}$ is homotopically equivalent to S^{3}.
Lemma 6.3. $X_{2}-X_{1}$ is homotopically equivalent to $\left(S^{3}\right)^{2} \times S^{1}$.
Lemma 6.4. $\quad X_{3}-X_{2}$ is homotopically equivalent to $\left(S^{3}\right)^{3} \times \widetilde{\Sigma}_{3}$.
Note that $\operatorname{dim}_{R} X_{3}=18, \operatorname{dim}_{R} X_{2}=16$ and $\operatorname{dim}_{R} X_{1}=14$. First we compute $H_{c}^{*}\left(X_{2}\right)$.

Lemma 6.5. $H_{c}^{q}\left(X_{2}\right)=\left\{\begin{array}{cc}Z_{2} & q=9 \\ 0 & q \leq 8 .\end{array}\right.$
Proof. By Lemma 6.2 and the Poincaré duality, we see

$$
\begin{equation*}
H_{c}^{q}\left(X_{1}\right)=0 \quad \text { for } \quad q \leq 10 \tag{6.6}
\end{equation*}
$$

By Lemma 6.3 and the Poincaré duality, we see

$$
H_{c}^{q}\left(X_{2}-X_{1}\right)=\left\{\begin{array}{cc}
Z_{2} & q=9 \tag{6.7}\\
0 & q \leq 8
\end{array}\right.
$$

Hence Lemma 6.5 follows from the compact support cohomology exact sequence of the pair (X_{2}, X_{1}).

Next we compute $H^{*}\left(X_{3}-X_{2}\right)$. Note that $X_{3}-X_{2}$ is homotopically equivalent to $\left(S^{3}\right)_{\Sigma_{3}}^{3} \times \tilde{C}_{3}$ by Lemma 6.4. In order to compute $H^{*}\left(\left(S^{3}\right)^{3} \times \tilde{\Sigma}_{3}\right)$, we decompose the covering space

$$
\begin{equation*}
\Sigma_{3} \rightarrow\left(S^{3}\right)^{3} \times \tilde{C}_{3} \rightarrow\left(S^{3}\right)^{3} \times \tilde{\Sigma}_{3} \tag{6.8}
\end{equation*}
$$

into the following two covering spaces. We embed \boldsymbol{Z}_{3} in Σ_{3} as the alternating group. Note that the following extension holds.

$$
\begin{equation*}
1 \rightarrow Z_{3} \rightarrow \Sigma_{3} \rightarrow Z_{2} \rightarrow 1 \tag{6.9}
\end{equation*}
$$

Then (6.8) is decomposed as follows.

$$
\begin{align*}
& Z_{3} \rightarrow\left(S^{3}\right)^{3} \times \widetilde{C}_{3} \rightarrow\left(S^{3}\right)^{3} \times \tilde{Z}_{3} \tag{6.10}\\
& Z_{2} \rightarrow\left(S^{3}\right)^{3} \times \tilde{Z}_{3} \tag{6.11}
\end{align*}
$$

As for (6.10), we see

$$
\begin{equation*}
H^{*}\left(\left(S^{3}\right)_{Z_{3}}^{3} \times \tilde{C}_{3}\right) \simeq H^{*}\left(\left(S^{3}\right)^{3} \times \widetilde{C}_{3}\right)^{Z_{3}} \tag{6.12}
\end{equation*}
$$

In order to compute (6.12), we need to know $H^{*}\left(\widetilde{C}_{3}\right), \quad H^{*}\left(\tilde{C}_{3}\right)$ is described in [3]. We follow the notation of [3].

Proposition 6.13.

(1) $H^{1}\left(\tilde{C}_{3}\right)=\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ and a basis is $\left\{\alpha_{11}^{*}, \alpha_{21}^{*}, \alpha_{22}^{*}\right\}$.
(2) $H^{2}\left(\widetilde{C}_{3}\right)=\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ and a basis is $\left\{\alpha_{11}^{*} \alpha_{21}^{*}, \alpha_{11}^{*} \alpha_{22}^{*}\right\}$.
(3) $\alpha_{21}^{*} \alpha_{22}^{*}=\alpha_{11}^{*}\left(\alpha_{21}^{*}+\alpha_{22}^{*}\right)$.
(4) Let $\sigma=(23)(12)$ be the generator of $\boldsymbol{Z}_{3} . \quad$ Then $\sigma^{*} \alpha_{11}^{*}=\alpha_{22}^{*}, \sigma^{*} \alpha_{21}^{*}=\alpha_{11}^{*}$ and $\sigma^{*} \alpha_{22}^{*}=\alpha_{21}^{*}$.
(5) $H^{q}\left(\tilde{C}_{3}\right)=0$ for $q \geq 3$.

Now by using (6.12) and Proposition 6.13, we have the following
Lemma 6.14. $H^{q}\left(\left(S^{3}\right)^{3} \times \boldsymbol{Z}_{3}\right)= \begin{cases}\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2} & q=8 \\ \boldsymbol{Z}_{2} & q=9,10 \\ 0 & q \geq 11 .\end{cases}$
Let $\left(\mathcal{G}_{1}\right)$ be the Gysin exact sequence of (6.11) and let $\left(\mathcal{G}_{2}\right)$ be the compact support cohomology exact sequence of the pair (X_{3}, X_{2}). By inspecting (G_{1}) and $\left(G_{2}\right)$, we shall prove Proposition 6.1. We write X for $X_{3}-X_{2}$.

Step 1. $H^{q}(X)=0$ for $q \geq 11$.
In fact by the fact $H^{q}\left(\left(S^{3}\right)^{3} \times \tilde{C}_{3}\right)=0$ for $q \geq 11$ (Lemma 6.14), we see $H^{q}(X)$ $\simeq H^{11}(X)$ for $q \geq 11$ by $\left(G_{1}\right) . \mathrm{As}^{Z_{3}} X$ is a finite dimensional manifold, Step 1 holds.

Step 2. $H^{q}\left(X_{3}\right)=0$ for $q \geq 11$.
In fact we see $H_{c}^{q}(X)=0$ for $q \leq 7$ by Step 1 and the Poincare duality. Note that $H_{c}^{q}\left(X_{2}\right)=0$ for $q \leq 8$ (Lemma 6.5). Hence we see $H_{c}^{q}\left(X_{3}\right)=0$ for $q \leq 7$ by $\left(\mathcal{G}_{2}\right)$. By the Poincaré duality, we see $H^{q}\left(X_{3}\right)=0$ for $q \geq 11$.

In order to complete the proof of Proposition 6.1, it will be enough to determine $H^{9}\left(X_{3}\right)$ and $H^{10}\left(X_{3}\right)$ by virtue of Step 2.

Step 3. $H^{10}(X)=Z_{2}$ and $H^{9}(X) \rightarrow H^{10}(X)$ is surjective in $\left(G_{1}\right)$.
In fact by the fact $H^{11}(X)=0$ (Step 1) and $H^{10}\left(\left(S^{3}\right)_{Z_{3}}^{3} \times \tilde{C}_{3}\right)=Z_{2}$ (Lemma 6.14), we can write $\left(\mathcal{G}_{1}\right)$ in the following form.

$$
\rightarrow H^{9}(X) \rightarrow H^{10}(X) \rightarrow Z_{2} \rightarrow H^{10}(X) \rightarrow 0
$$

By the exactness, Step 3 follows.
Before we proceed to Step 4, we shall state a fact about $H^{8}\left(X_{3}\right)$.

$$
\begin{equation*}
H^{8}\left(X_{3}\right)=0 . \tag{6.15}
\end{equation*}
$$

((6.15) is easily proved by using Theorems 2.1 and 2.2.)
Step 4. $H_{c}^{10}(X)=\boldsymbol{Z}_{2}$. Hence $H^{8}(X)=\boldsymbol{Z}_{2}$.
In fact by the fact $H^{8}\left(\left(S^{3}\right)^{3} \times \tilde{Z}_{3}\right)=\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{2}$ (Lemma 6.14), we see $H^{8}(X) \neq 0$ by $\left(\mathcal{G}_{1}\right)$. Hence $H_{c}^{10}(X) \neq 0$ by the Poincare duality. Note that $H_{c}^{9}\left(X_{2}\right)=Z_{2}$ (Lemma 6.5). Note also that $H_{c}^{10}\left(X_{3}\right)=0$ ((6.15) and the Poincare duality). Hence we see $H_{c}^{10}(X)=\boldsymbol{Z}_{2}$ by $\left(\mathcal{G}_{2}\right)$. By the Poincare duality, $H^{8}(X)=\boldsymbol{Z}_{2}$.

Step 5. $\quad H_{c}^{8}(X) \simeq H_{c}^{8}\left(X_{3}\right), H_{c}^{9}(X) \simeq H_{c}^{9}\left(X_{3}\right)$.
In fact as $H_{c}^{7}\left(X_{2}\right) \simeq H_{c}^{8}\left(X_{2}\right)=0$ (Lemma 6.5), we see $H_{c}^{8}(X) \simeq H_{c}^{8}\left(X_{3}\right)$ by $\left(\mathcal{G}_{2}\right)$. In $\left(\mathcal{G}_{2}\right)$, we see $H_{c}^{9}\left(X_{2}\right) \rightarrow H_{c}^{10}(X)$ is an isomorphism by Step 4. Hence we see $H_{c}^{9}(X) \simeq H_{c}^{9}\left(X_{3}\right)$ by $\left(\mathcal{G}_{2}\right)$.

Step 6. $\quad H^{10}\left(X_{3}\right)=Z_{2}$.
In fact by the fact $H^{10}(X)=\boldsymbol{Z}_{2}$ (Step 3), we see $H_{c}^{8}(X)=\boldsymbol{Z}_{2}$ by the Poincare duality. Hence we see $H_{c}^{8}\left(X_{3}\right)=\boldsymbol{Z}_{2}$ by Step 5. Then we see $H^{10}\left(X_{3}\right)=\boldsymbol{Z}_{2}$ by the Poincare duality.

Step 7. $H^{9}\left(X_{3}\right)=Z_{2}$.
In fact by the fact $H^{8}(X)=Z_{2}$ (Step 4), $H^{9}\left(\left(S^{3}\right)_{Z_{3}}^{3} \times \tilde{C}_{3}\right)=Z_{2}$ (Lemma 6.14), $H^{10}(X)=Z_{2}$ and $H^{9}(X) \rightarrow H^{10}(X)$ is surjective in $\left(G_{1}\right)$ (Step 3), we can write $\left(G_{1}\right)$ in the following form.

$$
\rightarrow Z_{2} \rightarrow H^{9}(X) \rightarrow Z_{2} \rightarrow H^{9}(X) \rightarrow Z_{2} \rightarrow 0
$$

By the exactness, we see $H^{9}(X)=\boldsymbol{Z}_{2}$. Hence $H_{c}^{9}(X)=\boldsymbol{Z}_{2}$ by the Poincare duality. Then $H_{c}^{9}\left(X_{3}\right)=\boldsymbol{Z}_{2}$ by Step 5 so $H^{9}\left(X_{3}\right)=\boldsymbol{Z}_{2}$ by the Poincare duality. This completes the proof of Proposition 6.1 and, consequently, of Theorem C in the case $F_{3}^{*}\left(S^{2}, \boldsymbol{C} P^{2}\right)$.

References

[1] S. Araki and T. Kudo: Topology of H_{n}-spaces and H-squaring operations, Mem. Fac. Sci. Kyushu Univ. Ser. A 10 (1956), 85-120.
[2] C.P. Boyer and B.M. Mann: Monopoles, non-linear σ models, and two-fold loop spaces, Commun. Math. Phys. 115 (1988), 571-594.
[3] F.R. Cohen, T.J. Lada and J.P. May: The homology of iterated loop spaces, Lect. Notes in Math. 533, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[4] Y. Kamiyama: The modulo 2 homology groups of the space of rational functions, Proc. Japan Acad. Ser. A 66 (1990), 93-95.
[5] G. Segal: The topology of rational functions, Acta Math. 143 (1979), 39-72.

Department of Mathematics
University of Tokyo
Hongo, Tokyo 113, Japan

