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l Introcution

Let <3H = (Ω,3!tyXt, {Px}x<=χ) be an /^-symmetric Hunt process on state
space X, where X is a locally compact separable metric space and m is a Radon

measure on X which is strictly positive on each non-empty open set. We as-

sume that the Dirichlet space (6, 3) associated with <_5K is C0-regular and ir-
reducible. In this situation M. Fukushima [5] developed the stochastic calcu-
lus for additive functionals of <3tt. Using this stochastic calculus, we can
investigate the time change for <3K in relation to the Dirichlet space.

Let At be a positive continuous additive functional of <3A, whose Revuz

measure is a positive Radon measure μ charging no set of zero capacity. Denote
by Ϋ the set {x^X\ Px(At>Q for any t>0)=l} which is called the fine support

of At. The time changed process of <3& by At is given by JK'=(Ω, 3rt,Xrt,

{P,}*e?)> where Tf=inf {ί>0; As>t}. It is known that <3W is a normal, right
continuous strong Markov process (M. Sharpe [17]), which is also symmetric
with respect to μ. When JM is transient, M. Fukushima [5] characterized the
extended Dirichlet space associated with <3W in the framework of the extended

Dirichlet space of (β, 3) (M. Silverstein [18]). Y. Oshima [15, 16] obtained

analogous results for recurrent cases. PJ. Fitzsimmons [3] extended those

characterizations to a general symmetric Borel right process without Co-regularity
by making a reduction to the transient case. However none of the above men-

tioned articles treated an important question whether the Co-regularity of the
Dirichlet space is preserved under the time change. Only recently, M. Fuku-

shima-Y. Oshima [8] gave an affirmative answer to this question under the con-

dition that X— Ϋ is of zero capacity.

In this paper we show the Co-regularity of the Dirichlet space associated

with JM* in the present generality. Denote by Y the support of the measure μ.

It is known that Y includes Ϋ except for an exceptional set and μ( Y— Ϋ)=Q ([5]).

In Section 3 we present a simple and direct way of characterizing the Dirichlet

space (£γ,3γ) on L\Y\ μ) associated with <3W and prove its Co-regularity.

Similarly as in Fitzsimmons [3], the subprocess of c5K by the multiplicative func-

tional e~A* plays an important role in our approach. The Co-regularity of
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(<?r, 3γ) enables us to show in Section 4 that JM* is actually a Hunt ^process
after a modification on an exceptional set.

M. Fukushima [5] raised a question in his book whether Y—Ϋ is of zero ca-

pacity or not in general. In the last section we give an example that Y—Ϋ is

not of zero capacity in the class of birth and death processes.

The authors want to thank Professros M. Fukushima, N. Ikeda, Y. T)shima
and M. Takeda for helpful advice.

2. Potential theoretic properties related to the Feynman-Kac
formula

In this section we investigate some properties of the subprocess of a sym-
metric Hunt process. We use some notations as in Fukushima [5]. Let (<?, 3)
be a C0-regular Dirichlet space on L\X\ m). Then we can consider the associ-
ated m-symmetric Hunt process <3tt=(£l, £?«,, 3tJ Xty Px) on the canonical path
space Ω. The family of transition kernels of JM is denoted by {pty t>0}. In

this paper we use following notation. For a Borel measure γ on X and

Borel functions / and g on X, (f,g)γ= \ f ( x ) g ( x ) j(dx). We assume (<?, 3) is

irreducible, namely a Borel set AC.X satisfies either m(A)=Q or m(X— A)=0

whenever pt(IA

u)—lAptu> m-a>e> for all t>0 and u^Bf(X)y where IA is the
indicator function of a set A and B£(X) denotes the family of all bounded non-
negative Borel functions on X. The capacity associated with (<?, 3) will be
called the ^-capacity; for any open set G,

(2.1) £rCap(G) = inf {β^u, u)\ u^3y u> 1 m-a.e. on G}

and, for any set AdX,

(2.2) eι-C*p(A) = inf {£rCap(G) A c G, open} .

A statement Γ depending on x€ΞA is said to hold q.e. on A if there exists
a set Λf of zero (S^-capacity such that Γ is true for x^.A — N. The quasi-con-
tinuous function with respect to ^-capacity is called <5ι-quasi-continuous.

Fix a non-trivial positive Radon measure μ on X charging no set of zero
<?!-capacity. Then μ belongs to the class S of all smooth measures and there
exists a unique positive continuous additive functional (abbreviated to PCAF)
At characterized by

(2.3) </ί j/>=lim|

where B+(X} denotes the family of all non-negative Borel functions on X and

<X/> denotes I f(x)μ(dx). EΊ denotes integration by Pv(dω)=\ P^dω^dx)
J x J x

for a Borel measure γ on X. The measure μ is called Revuz measure of



DIRICHLET SPACE THEORY 849

At (Fukushima [5]).

For each α>0, we let Jίf μ=(Ω, Yt, Qx) be the subprocess of <3ft trans-
formed by the multiplicative functional e~*A*\ namely, the transition function
p*1* of <3HΛμ> is given by

(2.4) p"Sf(X) = Jg/( Yt) dQx = E,[

Theorem 2.1. (Oshima [16]) c3ίΛμ is m-symmetric and the associated Dirich-
let space on L2(X\ m) is given by

(9* =
( ' J " v) = 6(u, v)+a(u, v)μ , for u,

Furthermore (£*μ, £?μ) is CQ-regular. Here uG3?Γ\L2(X] μ) means that its
6ι-quasi-continuous version u belongs to L2(X\ μ).

Proposition 2.2. (£**> 3*) is irreducible and transient.

Proof. Suppose A&B(X) is ^-invariant, then for a fixed B^B(X) and

ί>0, pT IA HB=IA PT IB m-a.e. Here B(X) is the Borel σ-algebra of X. Since
Px(At<oo,t<ζ)=l q.e. x^X (Fukushima [5]), it holds that ptIAt\ B=® m-a.e.
on X—A. This statement is true with A replaced by X— A. Hence pt IA(\B^*

IApt IB m-a.e. and pt I(X-A)t\B<>I(x-A)Pt IA m-a.e. Therefore pt IA^B=IApt IB

m-a.e. for any B^B(X) and ί>0 and consequently A is ^-invariant. The

irreducibility of <_5J/μμι is proved. Next suppose (βΛμt

y ffμ) is non-transient, then it

is conservative by the irreducibility, p*1* ί(x)= Ex\e~*A*] = I m-a.e. x^X, t>0

(Oshima [16]). Hence Px(At=Q for any f>0)=l m-a.e. x^X, contradicting to
the non-triviality of μ. The proof is complete.

By these properties, the extended Dirichlet space (£Λμ, £?Γ) of (£Λμ, 3*) is
well-defined as the completion of £P by the (S^-norm. Since an c^^-Cauchy
sequence is an L\X /^)-Cauchy sequence, £?*μ is a subspace of L\X\ μ). Since
3T is independent of α>0, we denote 3"? instead of £?Γ

By using 6** instead of βly we can define the incapacity as in (2.1) and
(2.2).

Lemma 2.3. (i) For each α>0 and a subset N of X, <f?rCap(ΛΓ)=0

if and only if <eβlμ-Cap(Λ/)=0.

(ii) For each α>0 and a function u on X. u is 6ι-quasί-continuous if and

only if u is 8*μ '-quasi-continuous.

Proof. The proof is the same as in Lemma 3.1.6, Theorem 3.1.5 of Fuku-

shima [5].

Since each u^3* has an <?*μ-quasi-continuous modification ώ, we may and
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we shall assume that all elements of £?£ are ^-quasi-continuous by this lemma.

Theorem 2.4. For v^S and PCAF Bt of <3tt, the following conditions are
equivalent to each other. If Bt is associated with v by the Revuz correspondence
(2.3), then one of (and hence all of) the following conditions are satisfied.

500
e~ps~"Λ*f(Xs) dB9] is an & \- -quasi-continuous modification of U*p

μ(fv)for

anyp>Qandf(ΞB+(X), such that/v^S^ffF), where S0(#?μ) is the family
of all positive Radon measures of finite energy integrals with respect to 81* and
Uy*(fv) denotes the p-potential offv

(ϋ) Ehn[Γ e-**-«A*f(Xs) dBs] = <>, R? A>, p>0, /, h*=B+(X), where R? is
Jo

thd resolvent kernel of JM*1*.

(iii) £„„[(' e-Λ f(X.) dBt\ = Γ <fv,pT A> ds, t>0,/, h^B+(X).
Jo JO
1 f /

(iv) lim — Ehm[\ e~*Λ*f(Xt) dBt] = <(/z>, Λ)> for any p-excessive function h of
t+o t Jo
3tf» (p^O) andf(ΞB+(X).

1 ft

(v) t lim — Ekm[\ e~ps-*A*f(XΪ) dBt]=<fv, hy for any p-excessive function h of
t+o t Jo
*̂" (ί^O) andf(=B+(X).

(vi) t lim qEhm[{°° e-u*1*-**'/^.) dBt] = <>, K> for any p-excessive function
?->•«» Jo

* of JTμ (ί^O) andf<ΞB+(X}.

We prepare two lemmas to prove the above theorem.

Lemma 2.5. For any v^S, there exists a sequence Kn of increasing compact
sets such that Iκ v^S0 with U^I^ v)^L°°(X\ m) and lim GΓCap(K— Kn)=0 for

* " Λ^09oo

any compact set K. In particular £ΓCap(X— \JKΛ)=0. Here SQ is the space of
»=1

all positive Radon measures of finite energy integrals with respect to β1 and Uι γ
denotes its \-potential of

Proof. First we prove in case v^SQ. Then there exists a nest {Fk} on X

such that ί71(z/)eC({jFA}). Choose compact sets En increasing to X such that
En C Int En+l and put Kn=Fn Π Eny where Int En+1 is the largest open set included

in En+1. Then we have ^-Cap^-^^^^-Cap^-F^+^-Cap^-E^-^O,
• "̂ ^ ' /^^/

#-»oo, because Kc.En for large n. Since t/ι(z>) is bounded on Kn, \\Ul(IKn v)\\oo
is bounded by the same constant in view of Lemma 3.2.3 of Fukushima [5].
Next we prove in case v^S. By Theorem 3.2.3 of Fukushima [5], there exists
a sequence {K.n} of increasing compact sets such that 1% v e S0 and lim

* » >°»
(K— fZn)=Q for any compact set K. For each IKΛ v there exists increasing
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pact set Kl

n such that *Λ(^n£Λ v)<=L~(X\ m) and lim (?rCap(^— Kl

n)=b for

any compact set K. We put Kn= L) ^ΓlJζ. Then X"rt satisfies the desired
CO

assertion. The latter assertion is clear from SrCap(En— U Kί)^δ1-
KI)-*O, as /->oo. The proof is complete.

Lemma 2.6. Let Bt be the PCAF of <5M associated with v^S0 with

L~(X\ m) and let Ct be the PCAF of JH associated with γeS0.

lim — £UΓ e~c* dBt] = <j>, A> , for any h(=B+(X) Π 3 .
t+o t Jo

Proof. By Lemma 5.1.4 and Theorem 5.1.1 of Fukushima [5],

lim -L Ekm[Bt] - <v, %>, h(=B+(X) n 3 .
/->o t

It suffices to show that

(2.6) lim — EhjK (l-e-c ) dBs] = 0, htΞB+(X) n 3 .

Put ct(x)=Ex[Ct] and bt(x)=Ex[Bt]. Since Ehm[Ct]=(h, ct)M<<*> by (5.1.15) of
Fukushima [5] and ||i,||oo^£f HL^ i/IU, we have

B.-B.) dC,]
o Jo

Bt(θ.)dCJ

«->.oβ k = 0

n-1

^lim Σl £λι»[£*[ βf

= lim Σ J
n-^ oα fc = o

»-l

This is equal to

because ό, is (^-quasi-continuous. Hence we have, for sufficiently small
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where St h denotes I pΛ has. Since
Jo

(Utf, Uff) V £(— h-K,^-ft-ft) = 0,
' t t

we arrive at (2.6). The proof is complete.

Proof of Theorem 2.4. The equivalence of (i) and (ii) is easy. The im-
plication (ii) =$> (iii) ==> (iv) and (v) =Φ (vi) =Φ (ii) is also clear (Kim [13]). We first
show the implication (iv)=Φ(v). Suppose that (iv) is satisfied. We may assume
that the right hand side of (v) is finite by Lemma 2.5. We put

gl(X) = E,[ e-»-Λ f(X.) dBt] , φs(t) = e-»(pΓ h, gt)m .
Jo

Then φ9(t) is a subadditive function on [0, oo). We get

lim MI = sup
* >o t '>o t

Hence we have

' <>, e-»pr fί> ds = { lim * ̂  ώ - lim — Γ φju) ds
o Jo *-> o tί w ̂ ° ίί Jo

(2.7) =lim
«->o

1 ft+u J Λ»

= lim — \ (A, g,)m ds-lim — I (A, gs)m ds
«->0 ί/ Jί κ-M) ^ Jθ

Therefore

= - Γ <fi>, ^PSPT h> &t Jo

= Γ <>, β^'ίff A> Λ/»O, h>,t\0.
Jn

Next we prove (iii) by assuming that Bt is associated with v. By the
uniqueness of the Revuz correspondence and Lemma 2.5, we may assume that
/=!, z>G*S0 with Uι v^L°°(X\ m). Using Lemma 2.6 and similar computation
of (2.7), we have
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= Γ <v,pT %> ds , h<ΞB+(X) Π 3 .
Jθ

Hence we get (iii) for h^B+(X) ΐ\L\X\ m), because Ex[(* e~«A* dBs]^L\X\ m).

Approximating h e B+(X) by hn e B+(X) ΓΊ L\X\ m) with /*„/* h. We can prove

(iii). The proof is complete.

We define the kernels fίί by

(2.8) R>f(x) = £,[Γ e-»-+ f(Xt) dAt] , /e ̂ (JΓ) .
Jo

RΛ is denoted by RΛ.

Corollary 2.7. For βέw A f^B+(X) Γ(L2(X\ μ), the Radon measure fμ on

X is of finite Q-order energy integral with respect to (βΛμι, 3*) and for each pί^Q,

Raf is Si-quasi-continuous modification of C/*μ(/μ). In particular the following

duality relation holds

(2.9) (Rtf,g). = (f,Krg)>

Proof. The first assertion is clear from

<fμ, M>£-J=

In case that />>0, the second assertion follows from by Theorem 2.4 (ii). We

show this in the case p=0. For f,geB+(X) Γ\l?(X; μ), we have

= lim (Rίf, g)μ = lim <gμ, UT(fμ)>
p+o ί w ^^

= lim er(UT(fμ), U?(gμ)) = lim <fμ,
p->Q p +Q

and

Hence β̂ can be extended to a symmetric contractive resolvent operator

GΛ on L2(JY"; /*) which is strongly continuous and Markovian. Especially RΛf

belongs to L\X; μ) for any feB+(X) f) L\X\ μ). For q>p>Q andf(=B+(X)

^<fμ, Rίf>-2<Jμ,

= <fμ, RP«f>-<fμ, R««f>

The last term tends to zero as q,p-* Q. Hence {Raf}p>0 is an Saμ-Cauchy se-
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quence and Rp

Λf increase to RΛf as p\0. Therefore RΛf belongs to the ex-

tended Dirichlet space £?£ and Rp

Λf converges to RΛfίn β**. Hence we get for
1_ _. ,— f~7T r\ /"t ί ~V\

p+O

, v)-limp(Rp

af> «0
p+0

because

Rί

Thus we have RΛf=U*μ(fμ) w-a.e., because ίff l C0(X) is dense in £??. Since
J?Λ/is an excessive function with respect to cίK ,̂ ^Λ/is finely continuous q.e.
with respect to JHΛμι. By Theorem 4.3.2 of Fukushima [5] and Lemma 2.3,

UΛμ>(fμ) is also finely continuous q.e. with respect to JKΛμ. Since RΛf= UΛμ>(fμ)

w-a.e., we get RΛf= UΛμ>(fμ) ίΓ-q.e. by Lemma 4.2.5 of Fukushima [5].

We have that Jδ^/is ^-quasi-continuous. The proof is complete.

3. Time changed regular Dirichlet space

In this section, we shall construct a C0-regular Dirichlet space on Z/2(Y; μ)

associated with the time changed process JM* of <3tt on Ϋ, where Y is the support

of μ and Ϋ is the fine support of At; Ϋ= {x^X -JV; P^^O, for any ί>0) =

1}, N being an exceptional set for At.

We let 3*eχ-γ— {we£?£; u=0 q.e. on Ϋ}. This is a closed subspace of £??

and the Hubert space (<?Λμ, £??) admits the orthogonal decomposition

(3.1) 3g = 3*eX-.Y 0 My ,

where SC^ is the orthogonal complement of £?"£*_? w^h respect to β*μ. Denote

by SΛV> the orthogonal projection on c#~\ For /e£Fμ, u=9?*μ'f if and only if

u^M0-1 and u=f q.e. on F. Note that the space ̂ ^ is independent of .

Indeed for any u^M°^ and

because ^(JY"-F)-0 (Fukushima [5]). Hence u^M%. Consequently 3* is

also independent of a>0. Hereafter £l"~ (resp. 5)Λμ>) will be denoted by <4ί~

(resp. 5 )̂. We notice that, if u, v e £F? and M=V q.e. on Ϋ, then ̂  u=S>lί v.
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Lemma 3.1. If uy v^3^ and u=v μ-a.e on Yy then u=v q.e. on Ϋ and
consequently 5>μ u=

Proof. We put wn= \ u—v \ Λ n, then wn=Q μ-a.e. By virtue of the duality
relation (2.9), we get

Thus we have that RΛwn=Q w-a.e. Since RΛwn is an excessive function of
«_3/*μ, it is finely continuous q.e. with respect to Jli**. By Lemma 4.2.5 of
Fukushima [5], we get RΛ wn=0 q.e. By ^-quasi-continuity of wn>

wn(x) = lim EX[Γ ae~*A* wn(Xt) dAt] = 0, q.e. x
Λ->°» Jp

which implies u=v q.e. on Ϋ. The proof is complete.

Define a symmetric bilinear form on L\Y\ μ) by

(3$ = {u<=L2(Y\ μ)-, u=v \ Y μ-a.e. on Y for some v

\ £γ(u, u) = β(SP v, £" v), for u(Ξ3γ, i efff s.t. u = v\γ μ-a.e.

where v \ γ is the restriction of function v to Y.
By Lemma 3.1 this is well-defined. Furthermore, (<?£, £?£) is a closed

symmetric form on L2( Y\ μ). Indeed, suppose that {un} d3γ is an 6γ >αΓCauchy
sequence, then there exists vn^3* such that un=vn\γ μ-a.e. and i&μvn} is an

^^-Cauchy sequence in <%?. Since <%,γ is a closed subspace of £??, there exists
*e such that 5>μ^n converge to Q^v in as n-^oo. We put u=v\Yί then

We get

lim εtJlμ-Un, u-un) = lim 5 (̂̂ (e;-̂ n), £»(V-VΛ)) = 0 ,
«->o° »->•«>

which implies the closedness of (6Y, 3Y}.

Theorem 3.2. (£f , 3$) is the Diήchlet space on L\Y\ μ) associated with
the time changed process ̂  of <3H. (6γ, 3γ) is C^regular.

Proof. The resolvent operator GΛ in the proof of Corollary 2.7 can be
regarded to be defined on L\Y\ μ) because μ(X— Y)=0. GΛ is the ZΛresolvent
of the μ-symmetric Markov process <3M. For the first statement it is enough
to show that, for u^L\Y\ μ) and

We may assume u&B+(Y)Γ\L2(Y; μ). For any Borel extention U of u on X,
GΛ u=RΛ U \ Y μ-a.e. By Corollary 2.7 and the definition of £?£, GΛ u belongs to
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3Y. Let ϋ be an element of £?£ such that v=v\γ μ-a.e. Noting that 3>μf=f

μ-a.e. for each/ef??,

uy

Next we shall show that (££, 3Y) is C0-regular. For each u^C0(Y), there
exists v e C0(-X) such that ί/=τ; | r by virtue of Tietze's extention theorem. Since
(<?, 3) is Co-regular, there exists {vn} c£F Π C0(Jί) which converge to v uniformly
on X. By definition of 3$, un=vn\ γ belongs to not only 3$ but O0(Y), because
Y is closed. Hence we have that u is approximated by elements of 3γ Π C0( Y)
uniformly on Y. Next for each u^3Yj there exists v^3^ such that u=v\γ

μ-a.e. By virtue of Co-regularity of •(<?*'*, SF?1), we have that for some {vn} c£F
Π C0(^), lim β »(v-vn, v-vn)=0. Then un=vn \ γ belongs to 3Y Π C0(F) by

»->«»*
the same reason as above. Therefore,

lim βYe6(u-un, u-un} = lim fi ̂ a^ίv-^), S*(ι>-0.))
»->«» «->«»

^ lim GΛV>(v—vn) v—vn) = 0 ,
«•>«>

which means that £Ff Π C0(y) is dense in 3Y. The proof is complete.

4. Time changed Hunt process

On account of the Co-regularity of (<Sγ, 3Y), we can consider a /^-symmetric

Hunt process JMY=(Ω, 3^ 3t, ̂ , Px) on the state space Y associated with
(βYί 3Y) (Theorem 6.2.1 of Fukushima [5]). In this section we investigate a
relation between JMr and the time changed process

Lemma 4.1. For a Radon measure v on X such that v(X—Ϋ)=Q, v is of
Q-order finite energy integral with respect to (S**, £?£) if and only if v\γ is of a-
order finite energy integral with respect to (gγ, 3Y}3 where v\γ is the restriction of
vtoY.

Proof. Suppose that v is of 0-order finite energy integral with respect to
(δ*μ, ff f ). For each u e 3Y Π C0( F), there exist v e £F? and w e C0(^Γ) such that
u=v\γ ^-a.e. and u=w\γ. By Lemma 3.1, v=w q.e. on F, that is, u=S>μ'v
q.e. on Ϋ. We get

\u(x)\v\γ(dx} = J? 1 3>μ φ) I z; (ώ?) ̂  const V e

= const V6tΛ(u, u)
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Conversely, suppose that v \ γ is of of-order finite energy integral with re-
spect to (££, 3Y). For each v e 3 Γ\ CΓ(X)y u=v\γ belongs to 3Y Π C0( Y). We
have

K*) I *(<&)= r \u(x)\v\γ (dx) ̂  const %/£?,(«, it)

— const x/ Q**^ v,&*v)^ const

The proof is complete.

Similary as in Section 1 we can define the notion of (^-capacity on Y,
<?y!-q.e. and <?£ i-quasi-continuous functions.

Theorem 4.2. For a Borel set

5?Λ-Cap(ΰnF)-0 if and only if β**-C&p(B Π F) = 0 .

Proof. 5^-CapCB ΓΊ F)=0 is equivalent to z;(JS Π P)=0 for any z/€Ξ 50(<??Λ),
where v^SQ(<SYgt) is the family of all positive Radon measures on Y of α-order
finite energy integral with respect to (βYy 2γ). By the above lemma, this is

equivalent to p(J3ΓlF)=0 for any peS0(έΓ*μ), where 50(<?Λμ) is the family of all
positive Radon measures on X of 0-order finite energy integral with respect to

(£*μ, 3*}. This is equivalent to £*μ-Cap(5 Π F)=0. The proof is complete.

Lemma 4.3. If u is an Q ̂ quasi-continuous junction on X, then u\γ is
QY ̂ quasi-continuous on Y.

Proof. Suppose that u is ^-quasi-continuous. By Lemma 2.3 u is 5*μ-
quasi-continuous. Hence there exists an increasing sequence {Fn} of closed sets
such that u\F is continuous and lim β*μ'-Ca.p(X—Fn)=Q. Let e% be an <?r* »-><»
quasi-continuous version of an equilibrium potential of X—Fn with respect to
(£**, ff?). Since # | γ= 1 q.e. on Y- Y Π Fn> we have

- Y Π Fu)£εtΛ(δS \ γ, e«n \ γ) = β^S" ft, &» eΐ)

which implies M | γ is 5^-quasi-continuous on Y. The proof is complete.

Theorem 4.4. ££rCaρ(Y— Ϋ)=0. In particular Y—Ϋ is an exceptio-

nal set o

Proof. Let &Λ be the resolvent kernel of c5Kf. Then

&Λf = RΛf jit-a.e. on Y for each

by definition of GΛ. By Corollary 2.7 and Lemma 4.3 RΛ f is 5yrquasi-
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continuous on Y. We get

(4.1) &af= Rj, for any «>0, έ^-q.e. on Y,f<=B+( Y) Γ\L2(Y; μ) .

Let σy(ω)=inf {ί>0; Xt^Ϋ} be the first hitting time of Ϋ. Then we have for

/(*) = lim nftnf(x) = lim «#„/(*) = E,(f(X,~)] #rq.e. x<= Y ,
«->oβ «->«»

because o ?(ω)=Λ(ω)=inf {ί>0; ^f(ω)>0}(Oshima [16]). We put

) IB(x) = Et[IA(Xy~)} 5^-q.e. *€= 7} ,

then Si is a Dynkίn class which contains all open sets of Y. W ehave <ίtt=

Owing to the finely closedness of Ϋ (Oshima [16]),

.~)] = 0 ££rq.e

which implies <??1-Caρ( Y— ?)— 0. The proof is complete.

Next we show that the time changed process JK'=(Ω, 5?T/, JiT,, fPJ *e?)
can be realized as a Hunt process if its state Ϋ is modified. Let Δ be an extra
point such that YΔ is a one point compactification of Y. When Y is already
compact, Δ is adjoined as an isolated point. We call a Borel set Bc.Ϋ is
JK'-invariant if Px(Xrt^B± for any t^0)=l for any x^B and a Borel set
5c y is ̂ -invariant if Px(£t^B± for any ί^O, ^_eBΔ for any ί>0)=l for
any

Lemma 4.5. For any set NdΫ with <Sγet-Ca.p(N)=Q, there exists a Borel
set N such that Nn(Y-Ϋ)c:Nc: Y, μ(N)=Q and Ϋ-N=Y-N is not only
Jttγ-invariant but also tSW -invariant. In particular β$

Proof. By Theorem 4.4 and Theorem 4.2.1 of Fukushima [5] we can first
find a Borel set Nλ such that N Π ( Y-Ϋ) cΛΓjC Y9 μ(Nl)=0 and Ϋ-N^ Y-N,
is cίϊ/r-invariant. By Theorem 4.2 we can find a properly exceptional set jff2 of
JH such that N, Π Ϋc.ff2. Put N2=ff2 Γ\ Ϋ. Then Ϋ-N2 is an cίK'-invariant
set and Ϋ—N^Ϋ—N^ Similarly we can find a Borel set N3 such that N2\J
(Y-Ϋ)<Σ.N3, μ(N3)=Q and Ϋ-N3=Y-N3 is c^?-invariant and Ϋ-N3dΫ-
N2. Hence we have a sequence {Nk} of Borel sets such that

,,.! Π ?c7V2tc Ϋ, Ϋ-N2tc Ϋ-NΛ-! (te 1)

and Ϋ— ΛΓa_! (resp. ?— Λ^) is c5Ky-invariant (resp. JK'-invariant) for each
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k^ί (resp. k^O). Put N= U Nk. Then N satisfies the desired assertion, be-
* = 0

cause countable intersection of c^f-invariant set (resp. Jϊf -invariant set) is <3Hγ-
invariant (resp. ^/'-invariant). The proof is complete.

We put

Ω = {ωe Y[£ °°] ω( ) is right continuous on [0, oo) ,

ω(oo) = Δ, ώ(s) = Δ implies ω(ί) = Δ , for any t^s} ,

Xt(&)=&(t), ωeΩ, 3>i=σ{-Xt; je[0, oo]}, 30

t=σ{Xg] ,ep), ί]>. Define maps

H: Ω-*Ω and Π2: Ω-»Ω by

Π!(Δ) (ί) = ^(ω), ΔeΩ, ίe[0, oo] ,

Π2(ω) (ί) = XrM(ω), ωGΩ, ίe[0, oo] .

Then we get ΠΓ1 ff? c ̂ , ΠΓ1 ffi c SΌo and ΠF1 £F? c ffτι, ΠF1 3i c ff «. In
particular ΠΓ^-XieJB} = {^eB}, Π^ί-X eJB} = {XTt e 5} for a Borel set

Be Y. Therefore we can define probability measures P™ on (Ω, £FSL) (i=l, 2)
by

where ωΛ(ί)=Λ? for any £^[0, oo).

Theorem 4.6. 7%m? β^wίί Λ 5or^/ set Nd Y such that μ(ft)=Q and Ϋ—N
is JMγ-invariant and 3ffi '-invariant and

(4.2) P™ = Ppon9*. for any x(ΞΫ-N .

Proof. Denote by βt and pt the transition kernel of <3Hγ and <5M* respecti-
vely. By (4.1) and the uniqueness of Laplace transformation, we get for each
/eC0(Y),

(4.3) £/(*) = &/(*) , for any ί>0, £?rq.e.

Using the separability of C0(Y), there exists a Borel set NcY with
=0 such that

^,(Λ?, JS) = $t(x, B) , for any ί>0, Borel set Be Y, and x&Ϋ—N .

By Lemma 4.5 there exists a Borel set ΛfcF such that μ(N)=Q and F— TV is
Jftίr-invariant and Jϊf -invariant and
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βt(x, B) = pt(x, B) , for any f>0, Borel set B C 7, and x&Ϋ—N .

Due to the Markov property of <3Hγ and JK', we then easily see that the finite
dimentional distributions of Pφ rnd P(P coincide for x^Ϋ—N. Therefore

pw=PP on φ ̂ o ̂  ̂ e Ϋ—N, namely, JK? | ?-# and JHt \ ?_# induce the same

law on (Ω, £Fi). On the other hand, <3$ί \ ?_# is again a Hunt process because
Ϋ— N is c^ίίy-invariant. Hence we arrive at

Corollary 4.7. <3W \ γ-% is a Hunt process on Ϋ—N.

5. Fine support of a PCAF

In this section we give an example related to birth and death processes
where ^-capacity of the set Y — Ϋ is positive. By a birth and death process
on the non-negative integers, we mean a time homogeneous Markov process

with transition function Pf ; (£)" such that

Moreover

where λ, (/=0, 1, 2, 3, •••), /ί,
We let

= μ,t+θ(t) (<-*0),

z=l, 2, 3, •••) are positive constants and

XΛ =

λ0

v _
*• ~

We change the state space of the birth and death process from non-negative
integers to X={xi}7^. The transition function is w-symmetric: Pij(t)mi=
Pji(t) mr We assume that
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(Al) The boundary #«> = lim xn is regular: x00<ooy Σ #&,<oo .
»-*<» 1=0

(A2) Σ^Vλ;<^,^<λ,., (i= 0,1,2,-)-

We fix three positive numbers />x, ̂ 2> .Ps such that Pι+p2+p3=l and we define the
mass Woo on x^ by m00=p3/p2, then the extended wι is a positive Radon measure
on the compact space X=X U {#«»} which is endowed with the relative topology
of R. Let us introduce a symmetric bilinear form on L2(X ffo) by

3 =

£(κ, «0 = Σ tt+(

where tt+(̂ .) - "C^+i)""1*^) (,'=0, 1, 2, •••).
l xi

Lemma 5.1. (<?, S7) is an irreducible transient C^regular Diήchlet space on

Proof. It is clear that every normal contraction operates on (<?, 9"). To
show the closedness, let {un}^ιd3 be an <?rCauchy sequence. Then wίe
L\X\ s) converges to some f^L\X\ s) in L2(X\ s) where ί is a point measure
on X such that s({xi})=xi+l—xi. un converges to some u^L\X; m) in L2(X\ m).
From this and the inequality:

are equiuniformly-continuous and equibounded, Hence we conclude
that there exists a subsequence {nk} such that unft converges to a continuous fun-
ction u on X uniformly. Obviously u=u. Moreover

= lim « » ι + ι - ^ = Um ̂  (Λ|)

X{ **" Λ?ί+i— Λ?ί **"

which implies that w+eL2(JY"; ί). Hence u^3 and WΛ is ^-convergent to u.
Next we prove that (£, £?) is C0-regular. Since 3 is contained in C(-X^), we

have only to show that 3 is uniformly dense in C(A). For any u^C+(X)y we
put WH^/^^...^} w, then un belongs to 3. By Dini's theorem, we have that un

converges to u uniformly on A. To show the irreducibility, consider a non-
empty Borel set B of X such that Bc=X—B^φ and^ IBu=IBρtu for any £>0
and u^Bϊ(X). We may assume that x^^B. Then B should contain some
other point than #<», because otherwise 3 contains the f unction &/{*j=/{,j
^ /{jj which is not continuous for small £>0. Therefore there exists

such that xi e ̂ — B. We have
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Pt(Xi, {*,•+:}) = 'P, /fa,+l)(*ι) = A(Jj» *{*,+,)) (*<)

and

)' '(W- P* 7<w)» = 0 ,
ί ^O i

which contradicts <?(/{*.}, ^u/+1j)=λί>0.

Suppose (5,3") is non-transient, then it is recurrent by irreducibility.
Hence it is conservative, namely A 1=1 f^-a.e. (Oshima [16]). Since 1 belongs
to L2(&;ifa)y we have <?(!, l) = lim (1— pt 1, 1)A = 0, which contradicts that

<£?(!, 1) = £L m« =^>0. The proof is complete.

REMAEK. Let A be the self-adjoint operator on L\&; tfi) corresponding to
the Dirichlet space (€, 3) on L\t\ rti). Then

. - fu+ιx \-u+(x U2

(5.2) 3XA) = {«e C(X) Σ ( w; w"ϊj) m<00} ,
<=ι \ mί /

(5.3)

A
(l =0o) («-(̂ ) = l

JL 3

The last equation in (5.3) can be regarded as a boundary condition:

A K*-)+A «"(*-)+A ̂ Φ-) = 0 (A+A+A = 1, A>0, ί - 1, 2, 3)

(Feller [2], Itό-McKean [11, 12]).

Let <5f=(fl, -3 ,̂ Px) be the /^-symmetric Hunt process associated with

(<?, 9") on A. Denote by <3H®<3tt=(Ω, JLf, fx) the direct product process on
Xxit with its transition probability pt. Then A(/ι®Λ)==:A/ι®AΛ>/<e

J?+(^). Hence A is ^®^-symmetric. Let (<?, £?) be the Dirichlet space on
L2(ΛX j£, Λ®/^) associated with the process <SH®3H. Iff^S, i=l, 2, then

we have/^Λeff and 5(/1®/,,/1®/1)=6?(/1>/1) (ΛΛ)A+έ?(/,,/2) (/ι,/ι)ft. It
is known that (<§, ff ) is an irreducible transient regular Dirichlet space on

L\±X jfc, ^® ̂ ) (Oshima [16]). Thus we have

(5.4) £-Gφ({(*t,*»)})2£4«ϊλ» (A = 0,1, 2,-.).
In fact

= inf {β(u, «); «eff., ί/^ 1 ̂ ®^-a.e. on (xk,
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= 2( Σ (/

= 2mt f] ( ( ^ ) ; .

—

l X0

The last term is dominated by the right hand side of (5.4) because (xk— xk-^—

ι-Xk)=μιμ2'"μ"~l ί1-— which is P°sitive by (A2).

Theorem 5.2. Let Δ be the diagonal set of Aχ&. Then (x^x*) is ir-
regular for Δ— {(tfco, #00)} with respect to

Proof. It is enough to show that

(5.5) Σ ^{χ00,,

where d ((XίtX^)=inf {t>0'yJ^t=(xiy #,-)}, In fact, by Borel-Cantelli lemma, we
have then a stronger assertion

A*oo.*oo) (ω' ̂ ere exists an integer n(ω) such that Xt(ω)

does not hit (xiy x{) for any i^n(ω)) = 1 .

Denote by g(%, $)= (°° pt(%, 5>)dt the Green function of <3tt®<M. Then
Jo

flβ ,/fl.,,
^J •» U00,ϊ=«l\σ((*.

~• =o

Since ]>t(X, 3>)^V fit(S£, %) \/^(j», j>)> the right hand side is estimated by

* * y *-
_ _ _=__

,̂ , *,), (*„ **)) -̂Cap({(*., *.)» •- V<5-CaP«(^ . *ι)»

The proof is complete.

Now put μ=lΔ-{(Xoo,χ00)}rfl®'βl Then μ is a positive Radon measure on

j£χ it charging no set of zero ^-capacity and its topological support is given by
Y=Supp[μ]=Δ because (#«,, #00) is an accumulation point of Δ— {(#«>, #«,)}.
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Let At be the associated PCAF with μ with respect to <$ί®JM. Then At=

$ ^Δ- {(*«,,*«,)} (%,)ds. By the last theorem, the fine support of At is given by Ϋ=
Q CO. 00

Supp [At]=Δ— {(#00, #00)}. Hence we have

<?rCap(Y-F) = (Si-Cap ({(*„, *..)})^mi>0 .

REMARKS, (i) By (5.6) and ρt(L2(£, /&)) C2s we know that <^ is a Feller

process. Hence c5K®c5K is so. Therefore its Ray topology is equal to the ori-
ginal one by (9.27) of Sharpe [17] (Getoor [9]). Hence this also gives a counter
example for βΓCap(Yr—Ϋ)=0, where Yr is the Ray topological support of μ.

(ii) K. Th. Strum [19] obtained another example that £rCap(F— F)>0
for rf-dimentional Brownian motion Bt(d^2) by investigation of the fine to-
pological structure of Bt.
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