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1. Introcution

Let H=(Q,F,, X,, {P.}.ex) be an m-symmetric Hunt process on state
space X, where X is a locally compact separable metric space and m is a Radon
measure on X which is strictly positive on each non-empty open set. We as-
sume that the Dirichlet space (&, &) associated with ¥ is Cy-regular and ir-
reducible. In this situation M. Fukushima [5] developed the stochastic calcu-
lus for additive functionals of 9. Using this stochastic calculus, we can
investigate the time change for ¥ in relation to the Dirichlet space.

Let A, be a positive continuous additive functional of # whose Revuz
measure is a positive Radon measure x charging no set of zero capacity. Denote
by Y the set {xe X; P,(4,>0 for any #>0)=1} which is called the fine support
of 4,. The time changed process of JH by 4, is given by M'=(Q, Z.,, X.,,
{P,} :e7), where 7,=inf {s>0; A,>¢}. Itis known that ¥ is a normal, right
continuous strong Markov process (M. Sharpe [17]), which is also symmetric
with respect to . When H is transient, M. Fukushima [5] characterized the
extended Dirichlet space associated with ¥’ in the framework of the extended
Dirichlet space of (€, F) (M. Silverstein [18]). Y. Oshima [15, 16] obtained
analogous results for recurrent cases. P.J. Fitzsimmons [3] extended those
characterizations to a general symmetric Borel right process without C-regularity
by making a reduction to the transient case. However none of the above men-
tioned articles treated an important question whether the Cy-regularity of the
Dirichlet space is preserved under the time change. Only recently, M. Fuku-
shima-Y. Oshima [8] gave an affirmative answer to this question under the con-
dition that X—Y is of zero capacity.

In this paper we show the Cj-regularity of the Dirichlet space associated
with (! in the present generality. Denote by Y the support of the measure .
It is known that Y includes ¥ except for an exceptional set and u(Y—Y)=0 ([5]).
In Section 3 we present a simple and direct way of characterizing the Dirichlet
space (€%, F%) on LAY ; u) associated with M' and prove its Cy-regularity.
Similarly as in Fitzsimmons [3], the subprocess of ¥ by the multiplicative func-
tional e™4 plays an important role in our approach. The Cy-regularity of
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(E¥%, F%) enables us to show in Section 4 that M is actually a Hunt [process
after a modification on an exceptional set.

M. Fukushima [5] raised a question in his book whether Y—¥ is of zero ca-
pacity or not in general. In the last section we give an example that Y—Y is
not of zero capacity in the class of birth and death processes.

The authors want to thank Professros M. Fukushima, N. Ikeda, Y. Oshima
and M. Takeda for helpful advice.

2. Potential theoretic properties related to the Feynman-Kac
formula

In this section we investigate some properties of the subprocess of a sym-
metric Hunt process. We use some notations as in Fukushima [5]. Let (&, &)
be a C,-regular Dirichlet space on L(X;m). Then we can consider the associ-
ated m-symmetric Hunt process H=(Q, ¥, F;, X;, P,) on the canonical path
space Q. The family of transition kernels of ¥ is denoted by {p,, >0}. In
this paper we use following notation. For a Borel measure ¥ on X and

Borel functions f and g on X, (f, g).,=S f(x) g(x) y(dx). We assume (&, F) is

irreducible, namely a Borel set ACX s:tisﬁes either m(A)=0 or m(X—A4)=0
whenever p,(I,4)=1,p;u, m-a.e. for all >0 and uEBj}(X), where I, is the
indicator function of a set 4 and Bj(X) denotes the family of all bounded non-
negative Borel functions on X. The capacity associated with (&, F) will be

called the &;-capacity; for any open set G,

(2.1) &-Cap(G) = inf {&(u, u); u€F, u>1 m-a.e. on G}
and, for any set ACX,

(2.2) &,-Cap(4) = inf {€,-Cap(G); ACG, open}.

A statement T depending on x4 is said to hold g.e. on 4 if there exists
a set N of zero &)-capacity such that T' is true for x€ A—N. The quasi-con-
tinuous function with respect to &;-capacity is called &£;-quasi-continuous.

Fix a non-trivial positive Radon measure x on X charging no set of zero
&y -capacity. Then g belongs to the class S of all smooth measures and there
exists a unique positive continuous additive functional (abbreviated to PCAF)

A, characterized by
t
(2.3) < f>=lim L B[{ f(X)d4)], feB(X),

where B*(X) denotes the family of all non-negative Borel functions on X and
{u, f denotes L f(x) u(dx). Ey denotes integration by P-,(dco)=$ P.(dw)y(dx)
X

for a Borel measure v on X. The measure y is called Revuz measure of
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A, (Fukushima [5]).

For each >0, we let H™*=(Q, Y,, Q,) be the subprocess of ¥ trans-
formed by the multiplicative functional e~*4:; namely, the transition function
¥ of SM™ is given by

(24) pi* flx) = Saf( V) dQ. = Efe4 f(X))], fE€B*X).

Theorem 2.1. (Oshima [16]) H™ is m-symmetric and the associated Dirich-
let space on LA X ; m) is given by

{9’“ — FNIXX; )

23) E™u, v) = E(u, v)+au, v)u, for u,veF*.

Furthermore (E™, F*) is Cyregular. Here ue FNLY X; p) means that its
&,-quasi-continuous version @ belongs to LA(X; u).

Proposition 2.2. (&%, F*) is irreducible and transient.

Proof. Suppose A€ B(X) is pi“-invariant, then for a fixed B€B(X) and
t>0, p¥* 1,05=1,p%" I3 m-a.e. Here B(X) is the Borel o-algebra of X. Since
P, (4,<o0,t<t)=1 q.e. x&€X (Fukushima [5]), it holds that p, I, =0 m-a.e.
on X—A. This statement is true with 4 replaced by X—A4. Hence p, I,05<
I,p Iy m-ae. and P, Iix_pynp<Iix—4)p: 14 m-a.e. Therefore p,I,np=1,p,Ip
m-a.e. for any BEB(X) and >0 and consequently 4 is p,-invariant. The
irreducibility of <#"* is proved. Next suppose (€*, F*) is non-transient, then it
is conservative by the irreducibility, p¥* 1(x)=EF,[e*4]=1 m-a.e. x€ X, t>0
(Oshima [16]). Hence P,(4,=0 for any t>0)=1 m-a.e. & X, contradicting to
the non-triviality of x. The proof is complete.

By these properties, the extended Dirichlet space (€™, F%) of (E™, F*) is
well-defined as the completion of F* by the £*-norm. Since an £**-Cauchy
sequence is an L*(X; u)-Cauchy sequence, " is a subspace of L% X; ). Since
F3* is independent of >0, we denote ¥ instead of Fe*.

By using £ instead of &), we can define the £*-capacity as in (2.1) and
(2.2).

Lemma 2.3. (i) For each a>0 and a subset N of X, &-Cap(N)=0
if and only if E™-Cap(N)=0.

(ii) For each a>0 and a function u on X. u is E)-quasi-continuous if and
only if u is E* -quasi-continuous.

Proof. The proof is the same as in Lemma 3.1.6, Theorem 3.1.5 of Fuku-
shima [5].

* Since each u€ F% has an £*-quasi-continuous modification #, we may and
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we shall assume that all elements of F% are &,-quasi-continuous by this lemma.

Theorem 2.4. For vE.S and PCAF B, of M, the following conditions are
equivalent to each other. If B, is associated with v by the Revuz correspondence
(2.3), then one of (and hence all of) the following conditions are satisfied.

(@) E,[S” e~2~%4; f(X,) dB,] is an E,-quasi-continuous modification of U*(fv) for
0

any p>0 and f € B*(X), such that fvE Sy(ET"), where S|(ET*) is the family
of all positive Radon measures of finite energy integrals with respect to E1* and
U3¥(fv) denotes the p-potential of fv

(ii) E,,,,,[r e~?s=%4s f(X,) dB,] = {fv, R} k), p>0, f, h& B*(X), where R3" is
0
thd resolvent kernel of ™.

(iif) E,,,,,[S: ¢4 f(X,) dB,] = S: o, p7 B ds, >0, f, he B+(X).

(iv) 1‘1_1;%1 —lt-E,,,,,[S: e~ f(X,) dB,] = {fv, h> for any p-excessive function h of
H* (p=0) and f € B*(X).

) 1lim % E,,,,,[S: ¢~7-24, f(X,) dB,)=< fv, k> for any p-excessive function h of
M (p=0) and f € B*(X).

(vi) 1 }]Lm” qE,,,,,[S: e~ ros-eds f(X ) dB,] = {fv, k) for any p-excessive function
h of H™ (p=0) and f = B*(X).

We prepare two lemmas to prove the above theorem.

Lemma 2.5. For any vE S, there exists a sequence K, of increasing compact
sets such that Iy vE S, with U,(Ix, v)E L™(X; m) and lim &,-Cap(K—K,)=0 for
n>o

any compact set K. In particular £,-Cap(X— QIK,,)=O. Here S, is the space of

all positive Radon measures of finite energy integrals with respect to &, and U,y
denotes its 1-potential of yE S,.

Proof. First we prove in case vE.S,. Then there exists a nest {F;} on X

such that (j:(;/)EC({Fk}). Choose compact sets E, increasing to X such that
E,cInt E,,, and put K,=F, N E,, where Int E, ., is the largest open set included
in E,;;. Then we have &,-Cap(K—K,)<&,-Cap (K—F,)+&,-Cap (K—E,)—0,
n—> oo, because K CE, for large n. Since (’Jr(v) is bounded on K, HUI(I:“ )|]e
is bounded by the same constant in view of Lemma 3.2.3 of Fukushima [5].
Next we prove in case v&S. By Theorem 3.2.3 of Fukushima [5], there exists
a sequence {K,} of increasing compact sets such that Iz v& S, and lim

nyoo

&,-Cap (K—K,)=0 for any compact set K. For each Iz, v there exists increasing
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pact set K, such that U(I!n gz, v)€L™(X; m) and lim &,-Cap(K—K;)=0 for
i>o
any compact set K. We put K,= U K*NK, Then K, satisfies the desired

assertion. The latter assertion is clear from &,-Cap(E,— U K))<&,-Cap(E,—
K;)—0, as [->c0. The proof is complete.

Lemma 2.6. Let B, be the PCAF of M associated with ve S, with U,vE
L=(X;m) and let C, be the PCAF of M associated with yE S,.

lim E,,,,,[S ~C.dB]] = <v, k>, for any he BHX)N T .

>0 f

Proof. By Lemma 5.1.4 and Theorem 5.1.1 of Fukushima [5],
lim % Eu[Bi] = <», B>, heB*X)NF .
It suffices to show that
(2.6) lim % E,,,,,[S: (1—e=¢)dB] = 0, he BXX)N S .

Put ¢/(x)=E,[C,] and b(x)=E,[B,]. Since E,;,[C]=(h, ¢;)w<oo by (5.1.15) of
Fukushima [5] and ||b,]|.=¢ ||U, v||-, We have

E,,,,,[S (1—e- C)dB,]<E,,,,,[S C,dB] — E,,,,,[S (B,—B,) dC]
<E| B(6)dC]

lim 2‘6 Eyu[Bi(0s1m:) (Ciasrsmye— Caapmye)]

n> k=

lim k2=o Ey [ EL[Bi(0smie) | Fwrmre] (Carrmyr— Caamye)]

%>

. n=1
= !‘1_{3 = Ehu[b:(X(Hl/n)t) (Caxtimit—Cam)]

II/\

I\

= Ejy[lim :2;: b(Xau+1me) (Cawrrrm—Caamrr)] -
This is equal to
Bl 04 dc) = [ <bivp B> as,
because b, is £,-quasi-continuous. Hence we have, for sufficiently small £>0
L puf a—eyaBis L[ Gump i as

<<by 9, B>+1lbl<, |S AN
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<<by p, B>+el| Uy vl <'Y,I Lh—h|>,

where S,  denotes St p, kds. Since
0

11m<fy,| t h—k|><lim V&[T, U IW)V8(S‘h :j_iz B =0,

we arrive at (2.6). The proof is complete.

Proof of Theorem 2.4. The equivalence of (i) and (ii) is easy. The im-
plication (if)=>(iii)=> (iv) and (v)=>(vi)=>(ii) is also clear (Kim [13]). We first
show the implication (iv)=>(v). Suppose that (iv) is satisfied. We may assume
that the right hand side of (v) is finite by Lemma 2.5. We put

t
8(x) = E,,[So e f(X,) dB,], 1) = e (p5" B, gi)m -
Then ¢,(¢) is a subadditive function on [0, c0). We get

lim ‘i’:(t) = sup ¢:( ) {fo, et p* B <oo .

t>0 >0
Hence we have

S: o, e p B> ds — S lim ‘75'(”) ds = lim - S .(u) ds

0 u>0 u>0

— hm—~s (h, & p™ g.) ds
0

>0 Y

@.7) — lim L So By Zusa—gs)m s

u>0 Y

. 1
— lim L S (h, g2)m ds—lim = S (B, 2)n ds
t

u>0 Y
= (h,g)m = E;,,.[Su e~?o4 f(X,)dB,] .

Therefore

LBl eraf () aB] = L[ o ey as

= (< e pit > as p o, 1,00,

Next we prove (iii) by assuming that B, is associated with ». By the
uniqueness of the Revuz correspondence and Lemma 2.5, we may assume that
f=1,v€S8, with U,veL>(X;m). Using Lemma 2.6 and similar computation
of (2.7), we have
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E,,,,[S; ¢-*4s dB]| — S: o, p* B> ds, heBHX)NT .

Hence we get (iif) for h& B+(X) N L¥(X; m), because E[S: 4, dB] € IX(X; m).
Approximating h€ B¥(X) by h, & B*(X)N LY X; m) with k, /7/h. We can prove
(iii). The proof is complete.

We define the kernels % by
(23) Ref(s) = B[] en-etf(X))ad], feB(X).
RS is denoted by R,.

Corollary 2.7. For each feB*(X)NL X; u), the Radon measure fu on
X is of finite 0-order energy integral with respect to (€™, F%) and for each p=0,
Ri f is &,-quasi-continuous modification of U*(fu). In particular the following
duality relation holds

(2.9) (Rof,8)m=(f, R g f.gEB*(X).

Proof. The first assertion is clear from

f |v|>§-\-/-%ufnm VEF(Tol, To]) 2T NCHX).

In case that p>0, the second assertion follows from by Theorem 2.4 (ii). We
show this in the case p=0. For f, g€ B*(X)NL*X; u), we have
(Rof, @) = lim (RS, g)u = lim {gu, US(fu)>
= 1}5} EHMU(fu), Us*(gn)) = 1}!}; fus UH(gu)>
= lim (f, Rig)w = (f, Rug)w
>0
and

1R fllzton = lim [1R8 o< 1| il

Hence R, can be extended to a symmetric contractive resolvent operator
G, on L¥X; p) which is strongly continuous and Markovian. Especially R, f
belongs to LY X; u) for any f€ B*(X)N LY X; u). For ¢>p>0 and feB*(X)
NLAX; p),

E™RLf—Rif, RLf—RLf)<EMRLF—RLf, RL f—Rif)

SEMRLS, REf) 26 (RS, Raf)+EF(RL S, Rif)—(q—p) (Rif, Rif)n

=< fu, REf>—2{ fuu, Raf>+< fu, Raf>

= <fl‘u Rgf>_<fl"" R$f> .

The last term tends to zero as ¢, p—>0. Hence {R% f},5, is an £*-Cauchy se-
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quence and R2f increase to R, f as p\\0. Therefore R, f belongs to the ex-
tended Dirichlet space F* and R2 f converges to K, fin £&. Hence we get for
each vE€ T N Cy(X),

E™R, f,v) = I:LIOI E™RLf,v)
= lim EMRLT, v)—lim 2(RLf, 0)m
=< fu, o> = EM(U™(fu), v),
P(RLS, v) = pE3(RLS, R )
SPVemBf R f)VET R v, R 0)
=p \/<fﬂu R V (v, R§* v)y
S VPV fu, Rufy V(@ 0)n

Thus we have R, f=U"(fu) m-a.e., because F N Cy(X) is dense in F%. Since
R, f is an excessive function with respect to H™, R, f is finely continuous q.e.
with respect to H*. By Theorem 4.3.2 of Fukushima [5] and Lemma 2.3,
U™ (fu) is also finely continuous q.e. with respect to ™. Since R, f=U"(f )
m-a.e., we get R,f=U"(fu)E¥-q.e. by Lemma 4.2.5 of Fukushima [5].
We have that R, f is £,-quasi-continuous. The proof is complete.

because

3. Time changed regular Dirichlet space

In this section, we shall construct a C,-regular Dirichlet space on LA Y; u)
associated with the time changed process H* of <H on ¥, where Y is the support
of 4 and ¥ is the fine support of 4;; Y={x&X -N; P(4,>0, for any t>0)=
1}, IV being an exceptional set for A4,.

We let F¥x_y={usF*; u=0 q.e. on Y}. This is a closed subspace of F%
and the Hilbert space (6™, &%) admits the orthogonal decomposition

3.1) Gt = Ty DAY,
where (3" is the orthogonal complement of F%x_y with respect to £*. Denote
by &** the orthogonal projection on 43". For fEFE, u=P* f if and only if

uc 4 and u=f q.e. on ¥. Note that the space A3 is independent of a@>>0.
Indeed for any u€ 45" and 8>0,

EP (1, v) = E*(u, v)+(B—a) (u,v)u =0, vEF 3,

because (X—¥)=0 (Fukushima [5]). Hence u€4(%. Consequently P™ is
also independent of @>0. Hereafter A3 (resp. P**) will be denoted by i3
(resp. P*). We notice that, if 4, vE F% and u=v q.e. on ¥, then P* u=P" v,
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Lemma 3.1. If u,v€F" and u=v p-a.e on Y, then u=v q.e. on ¥ and
consequently P* u=P* v.

Proof. We put w,=|u—v| An, then w,=0 p-a.e. By virtue of the duality
relation (2.9), we get

<m, B, w,>=<w, u, R¥*1>=0.

Thus we have that R, w,=0 m-a.e. Since R, w, is an excessive function of
U™, it is finely continuous q.e. with respect to H**. By Lemma 4.2.5 of
Fukushima [5], we get R, w,=0 q.e. By &,-quasi-continuity of w,,

w,(x) = lim E[S: ae*4 w,(X,) dA] = 0, ge. x€Y,

which implies #=v g.e. on ¥. The proof is complete.
Define a symmetric bilinear form on L*Y; u) by

Y= {ucsL¥Y; u);u=v|y u-a.e. on 'Y for some ve Ft}
Y(u, u) = E(P* v, P*v), forucsFy, veFyst. u=v|y p-ae.,

(3.2) {

where v |y is the restriction of function v to Y.

By Lemma 3.1 this is well-defined. Furthermore, (€%, ’;) is a closed
symmetric form on L*Y; u). Indeed, suppose that {u,} CF¥ is an &% ,-Cauchy
sequence, then there exists v, &Y such that u,=v,|, p-a.e. and {P* v,} is an
&**-Cauchy sequence in H%. Since H4 is a closed subspace of F¥, there exists
vE Y such that P* v, converge to P*v in as n—>oco. We put u=v|y, then
uegy. We get

lim &% (u—u,, u—u,) = lim E**(P*(v—v,), P*(v—v,)) =0,
which implies the closedness of (&%, F¥).

Theorem 3.2. (E%, F%) is the Dirichlet space on L*(Y'; u) associated with
the time changed process M of M. (E¥%, F¥) is Cy-regular.

Proof. The resolvent operator G, in the proof of Corollary 2.7 can be
regarded to be defined on L Y; u) because u(X—Y)=0. G, is the L2-resolvent
of the p-symmetric Markov process “M‘. For the first statement it is enough
to show that, for uc LY Y; u) and vEFY,

G, ucTFy
(3.3) {

E4 oGy u, v) = (4, v)u .

We may assume u€B*(Y)NLAY; ). For any Borel extention # of # on X,
G,u=R, u|; y-ae. By Corollary 2.7 and the definition of F%, G, u belongs to
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G%. Let © be an element of &% such that v=9|, u-a.e. Noting that P* f=f
p-a.e. for each fEeFE,

4 (G, u,v) = 4G, u, v)+ (G, u, v)u
= E&(P* R, u, P*0)+a(R,n,0).
= SO P+ R, a, P+ 0) = E*( R,, u, P* 0)
= (@, P" O)u = (4, V).

Next we shall show that (&%, F¥) is Cy-regular. For each u€C(Y), there
exists v & Cy(X) such that u=v|y by virtue of Tietze’s extention theorem. Since
(&, &) is Cy-regular, there exists {v,} CF N Cy(X) which converge to v uniformly
on X. By definition of F%, u,=v, |y belongs to not only F% but C(Y), because
Y is closed. Hence we have that u is approximated by elements of &F% N Cy(Y)
uniformly on Y. Next for each u&F¥, there exists v&FY such that u=v|y
w-a.e. By virtue of Cy-regularity of (£**, &%), we have that for soune {v,} CF
N Cy(X), ]i_’mm E*(v—v,, v—ov,)=0. Then u,=v,|y belongs to F¥ NCy(Y) by

the same reason as above. Therefore,
lim &% (u—u,, u—u,) = lim E**(P*(v—wv,), P*(v—1,))

< lim &*(v—v,, v—v,) =0,

n->oo

which means that F¥ N C(Y) is dense in F%¥. The proof is complete.

4. Time changed Hunt process

On account of the Cy-regularity of (€%, F¥), we can consider a y-symmetric
Hunt process MY =(.(A), E?"”, Eﬁ“,, X, 15,) on the state space Y associated with
(&%, F¥) (Theorem 6.2.1 of Fukushima [5]). In this section we investigate a
relation between (¥ and the time changed process M.

Lemma 4.1. For a Radon measure v on X such that v(X—Y)=0, v is of
0-order finite energy integral with respect to (E**, F%) if and only if v|y is of a-
order finite energy integral with respect to (E%, Fy), where v|y is the restriction of
vioY.

Proof. Suppose that v is of 0-order finite energy integral with respect to
(&, F¥). For each ue G4 N C(Y), there exist vE FY and we Cy(X) such that
u=9|y p-a.e. and u=w|,. By Lemma 3.1, v=w q.e. on ¥, that is, u=P* v
qe. on Y. We get

[, 11w 1) = {19 o) 1o (dx) < const v/ E5 (@7, o)

= const /&% o, u) -
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Conversely, suppose that »|y is of a-order finite energy integral with re-
spect to (8%, F%). For each veF N C(X), u=v|y belongs to Fy N C(Y). We
have

Sx |v(x) | v(dx) = SY [u(x)|v |y (dx) < const \/E¥ (u, u)
= const \/ &**(P*v, P*v)=const v E™(v,v) -

The proof is complete.

Similary as in Section 1 we can define the notion of &%;-capacity on Y,
¥1-q.e. and &%,-quasi-continuous functions.

Theorem 4.2. For a Borel set BCY,
&4,-Cap(BNY) =0 ifand only if E**-Cap(BNY)=0.

Proof. &%,-Cap(BNY)=0 is equivalent to »(B N Y}j=0 for any » € Sy(€%,),
where v € S(EY,) is the family of all positive Radon measures on Y of a-order
finite energy integral with respect to (€%, ¥%). By the above lemma, this is
equivalent to (BN Y)=0 for any s Sy(E**), where Sy(£**) is the family of all
positive Radon measures on X of 0-order finite energy integral with respect to
(&, F¥). This is equivalent to £**-Cap(BNY)=0. The proof is complete.

Lemma 4.3. If u is an &E,-quasi-continuous function on X, then uly is
E¥ 4-quasi-continuous on Y.

Proof. Suppose that u is &€;-quasi-continuous. By Lemma 2.3 u is &**-
quasi-continuous. Hence there exists an increasing sequence {F,} of closed sets
such that #|_ is continuous and lim &*-Cap(X—F,)=0. Let & be an &;-

n>oo

quasi-continuous version of an equilibrium potential of X—F, with respect to
(E™, F%). Since &5|y=1 q.e. on Y—Y N F,, we have

Eb-Cap(Y—Y N F,)SEL(E%] 5, 85| y) = (P &%, P &2)
<&*(82, %) = E*-Cap(X—F,),

which implies |y is £%,-quasi-continuous on Y. The proof is complete.

Theorem 4.4. &%,-Cap(Y—Y)=0. In particular Y—Y is an exceptio-
nal set of M.

Proof. Let R, be the resolvent kernel of H%. Then for f&€ B*(Y)N
LXY; u)

}%‘,f: R,f p-ae.onY foreach a>0,
by definition of G,. By Corollary 2.7 and Lemma 4.3 R, f is £¥,-quasi-
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continuous on Y. We get
(41) R,f=R,f, foranya>0,E%-qe. onY,fEB*(Y)NLI Y; ).

Let o3(w)=inf {£>0; X,EY} be the first hitting time of Y. Then we have for
FECi(Y)

f(x) = lim nR, f(x) = lim nR, f(x) = E[f(X.5)] Erqe. 2 Y,

because o#(w)=R(w)=inf {t>0; A,(w)>0}(Oshima [16]). We put
I = {AeB(Y); I)(x) = Ex[IA(Xa-y)] &i-q.e. x€Y},

then 4 is a Dynkin class which contains all open sets of Y. W ehave J=B(Y).
Owing to the finely closedness of ¥ (Oshima [16]),

I"—‘?(x) = Ez[IY—P(Xo'y)] =0 8':,}1-(1.6. x€Y ,
which implies £%,-Cap(Y—Y)=0. The proof is complete.

Next we show that the time changed process M'=(Q, F.,, X,,, {P.}:e?)
can be realized as a Hunt process if its state ¥ is modified. Let A be an extra
point such that Y, is a one point compactification of Y. When Y is already
compact, A is adjoined as an isolated point. We call a Borel set BC Y is
M-invariant if P,(X, B, for any t=0)=1 for any x€B and a Borel set
BCY is M¥-invariant if P,(X,EBA for any £=0, X,_€B, for any t>0)=1 for
any xEB.

Lemma 4.5. For any set NCY with £%,-Cap(N)=0, there exists a Borel
set N such that NN(Y—Y)cNCY, w(N)=0 and Y—N=Y—N is not only
M¥y-invariant but also M'-invariant. In particular £%,-Cap(N)=0.

Proof. By Theorem 4.4 and Theorem 4.2.1 of Fukushima [5] we can first
find a Borel set N, such that NN (Y—Y)CN,C Y, u(N;)=0and Y—N=Y—N,
is M%-invariant. By Theorem 4.2 we can find a properly exceptional set NV, of
M such that NyNY N, Put N,=N,NY. Then ¥Y—N, is an H’-invariant
set and ¥Y—N,cY—N,. Similarly we can find a Borel set N, such that N,U
(Y-Y)CN,, u(N;)=0 and ¥—N,=Y—N; is H4-invariant and ¥—N,c¥—
N,. Hence we have a sequence {N,} of Borel sets such that

No = N ’
NuU(Y—Y)CNyyCY, ¥—NyyC Y—N,, (k=0),
Ny-N YN, ¥, Y —Nyc Y—N,, (k1)

and Y—N,,_, (resp. Y—N,) is M4-invariant (resp. H'-invariant) for each
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k=1 (resp. k20). Put N= U N,. Then N satisfies the desired assertion, be-
k=0

cause countable intersection of J{¥-invariant set (resp. <H'-invariant set) is Hy-

invariant (resp. SM‘-invariant). The proof is complete.

We put

Q = {8 Y~; &(+) is right continuous on [0, o),
&(0) = A, &(s) = A implies &(t) = A, for any t=s} ,

X(&)=d(), 89, Fo=c{X,; s€[0, o]}, F=c{X,; s€[0, t]}. Define maps
II,: Q-0 and I,: Q-0 by

I1,(6) (2) = Xy(w), 6€4, t[0, ],

IIy(o) (2) = X;yw(0), 0EQ, tE]0, o] .
Then we get IIi* g‘,’cg,, O cF. and O3t G0 c“,, II;? FcF.. In
particular II7'{X,€B} = {X, € B}, II;{X, € B} = {X,,€ B} for a Borel set
BCY. Therefore we can define probability measures P on (Q, F2) (i=1, 2)
by

Py, xe¥,Redl
WAR)y=1"* ’ ) t
POA) {8{&;,}(7&), xeY-7, Aeg’,

P,Mm;'A)), xe¥, Ked
@R — a
PE®) [8{5,}(K), x€Y-Y,Reg?,

where &,(f)=x for any t &[0, o).

Theorem 4.6. There exists a Borel set NCY such that u(N)=0 and ¥ —N
is My-invariant and M:-invariant and

4.2) PO =PP on G’ forany x€¥—N.

Proof. Denote by p, and B, the transition kernel of % and .M respecti-
vely. By (4.1) and the uniqueness of Laplace transformation, we get for each

fECO( Y)7
(4.3) p.f(x) = B, f(x), for any t>0, E%-q.e. xEY .

Using the separability of Cy(Y), there exists a Borel set NCY with
&E¥,-Cap(N)=0 such that

pi(x, B) = B(x, B), for any >0, Borel set BCY, and x€¥ —N.

By Lemma 4.5 there exists a Borel set NCY such that u(¥N)=0 and ¥—N is
My-invariant and H‘-invariant and
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pi(x, B) = B(x, B), for any £>0, Borel set BC Y, and x&€¥—N .
Due to the Markov property of My and M, we then easily see that the finite

dimentional distributions of P rnd P® coincide for x&Y—N. Therefore

PO=p@ on Q, F°), x€ ¥ —N, namely, | 7_5 and H,| 7w induce the same
law on (ﬁ, %7%). On the other hand, M¥|7_# is again a Hunt process because
Y —Nis M4-invariant. Hence we arrive at

Corollary 4.7. !|y_w is a Hunt process on ¥ —N.

5. Fine support of a PCAF

In this section we give an example rclated to birth and death processes
where &,-capacity of the set Y—Y is positive. By a birth and death process
on the non-negative integers, we mean a time homogeneous Markov process
with transition function P;(t) such that

Py(1)20, 33 Pu(n)=<1.

Pyj(t45) = 33 Pau(t) Pas(s) -

PO =8;=1 .
’ ! 0 2.
Moreover
Piia(t) = Nt+o(2) (t—>0)
Py(t) = 1—(N\+pi) tHo(t) (¢ —0)
Pyi\(t) = pit-o(?) (t—>0),

where A,;(:=0, 1, 2, 3, ), p(7=1, 2, 3, -++) are positive constants and u,=0.
We let

x,=0,
i
1 7\,0 ’
P 1 i) Gy ,
AoA1t Ny
my = l,m”ZRM:l’ n=1.

M1z fon

We change the state space of the birth and death process from non-negative
integers to X={x;}7.,. The transition function is m-symmetric: P, (f) m;=
P;(t)ym;. We assume that
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(A1) The boundary x., = lim #, is regular: x.<<oo, f} m;<<oo .
n-»o i=0

(A2) Sm VA <o <N, (= 0,1,2, ).

We fix three positive numbers p,, p,, p; such that p,+p,+p,=1 and we define the
MAass M. ON X DY Me=7ps/py, then the extended 72 is a positive Radon measure
on the compact space X=X U {x..} which is endowed with the relative topology
of R. Let us introduce a symmetric bilinear form on Lz(X ; M) by

F = fueCX); X ut(®)(xin—x)<oo}
(5.1) o
Eu,v) = :4_:; w* (o) v (%) (Ria— %) D1 [P3 (Keo) V(Keo) Moy U, VEF

where u*(x,) = w(;41) —%(%;) (=0, 1,2, ---).
Xi1—%;

Lemma 5.1. (&, &) is an irreducible transient Cy-regular Dirichlet space on

LHX; ).

Proof. It is clear that every normal contraction operates on (&, &F). To
show the closedness, let {u,}r.iC< be an &,-Cauchy sequence. Then u}E
L*(X; s) converges to some f&L*X;s) in L*X;s) where s is a point measure
on X such that s({x;})=x;,,—;. u, converges to some & L X; m) in L*(X; m).
From this and the inequality:

() () S (x—5;) Ey 4)  wEF(0Si<j <o),

u, €S are equiuniformly-continuous and equibounded, Hence we conclude
that there exists a subsequence {n;} such that u,, converges to a continuous fun-
ction % on X uniformly. Obviously #=u. Moreover

u+(x'.) E= 1_‘_(&*‘_1):2(""_’_) = lim uﬂp(xiﬂ)_unk(xi) —

lim g (x;) = f(x) ,
X1 —%; ke Xiy—X; hyeo

which implies that u* € L*X;s). Hence u€ < and u, is &£,-convergent to u.

Next we prove that (€, &) is Cy-regular. Since F is contained in C(X), we
have only to show that & is uniformly dense in C(X). For any u€C*+(X), we
put #,=1I,, ., ..., %, then u, belongs to F. By Dini’s theorem, we have that u,
converges to % uniformly on X. To show the irreducibility, consider a non-
empty Borel set B of X such that B°=X—B=¢ and p, Iyu—Ip,u for any >0
and u€ By (X) We may assume that x,&B. Then B should contain some
other point than x., because otherwise & contains the function p, I\, ;=1I|, )
b: I,y which is not continuous for small £>0. Therefore there exists x;,,EB
such that x; e X—B. We have
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Pi(i {%i0a}) = P L, 0(%) = Dedpe Lis, ) (%) = Tpe(:) P Loy (%) = 0
and

.1
Eizps Lisy,p) = lim 5 Tizas Ly y =P Lty o ))m = 0,

i1
which contradicts E(isy, Iis,, ))=2>0.

Suppose (£, F) is non-transient, then it is recurrent by irreducibility.
Hence it is conservative, namely p, 1=1 #-a.e. (Oshima [16]). Since 1 belongs
to L¥X; M), we have &(1,1)= lir? (1—p,1,1)4=0, which contradicts that

s

&1, 1) =Pty —P1>0. The proof is complete.
bs b,

Remaek. Let 4 be the self-adjoint operator on Lz(X ; ) corresponding to
the Dirichlet space (€, F) on L¥X; ). Then

(52) D) = weC(); 5 (L= )y ooy

m;

ur(xg) o
To (#=0)

W)~ (®in) (1<ico0)

(53)  Au(x) =1

_ D1 (%) Pp 87 (%0)
D

The last equation in (5.3) can be regarded as a boundary condition:
D)+ 8 (%) +P5 Au(x) = 0 (p+po+p3 =1, 9,>0,i=1,2,3)
(Feller [2], Ito-McKean [11, 12]).

(= o) (¥ (*=) = limu*(x,)).

Let M=(Q, X,, P,) be the #M-symmetric Hunt process associated with
(&, F) on X. Denote by MR H=(Q,X,, P,) the direct product process on
Xx X with its transition probability p,. Then 2,(/i®f)=72:/iQp:fof:E
B*(X). Hence 3, is M@m-symmetric. Let (&, &) be the Dirichlet space on
LZ(X x X, M®) associated with the process HQQ M. If f,€F,i=1,2, then
we have /1Q ,€F and E(AR fo i® L)=E(fis 1) (fo f)A+E(f f) (1 f)a. Tt
is known that (&, F) is an irreducible transient regular Dirichlet space on
LY X x X, m@r) (Oshima [16]). Thus we have
(54) E-Cap ({(xs, x)})<4min, (k=0,1,2,).
In fact '

E-Cap ({(%4 %4)}) = inf {E(u, u); u€ F,, u=1m@M-a.e. on (x, x,)}
SEL ey e Licspsp)
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= 28"(I(,,,, Iiey) Hteps Tisp)s
=2 Z‘- (L)) (1 —; )+ 2 (I 1) (¥=2))?) 12,
=2m, 2 (L (501) — L1 (5 ))

Xir1— X4

Zm,,( 1, 1 )(1§k<oo)

Xp—Xp—1  Xpr1—Xp

1

X1—Xg

2m,

(k= 0).

The last term is dominated by the right hand side of (5.4) because (x,—ax;-,)—

— ) =1k B (1—— '"‘") which is positive by (A2
(%p41—23) = Mo A gy e P y (A2).

Theorem 5.2. Let A be the diagonal set of Xx X. Then (Xeoy Xe0) 75 27~
regular for A— {(%«, )} with respect to JHR M.

Proof. It is enough to show that
(5.5) g P s (0t <o0)< oo,

where & ((z;, ziy=Iinf {t>0;X,=(x,-, x;)}, In fact, by Borel-Cantelli lemma, we
have then a stronger assertion

P,,_ ., (w; there exists an integer n(w) such that X,(«)
does not hit (x;, x;) for any i=n(w)) = 1.

Denote by 2 (%, 5f)=§‘=° Dy(Z, ¥)dt the Green function of HQH. Then
0

0o) = S &((Fer 32), (1, %))
EP(, 2 (Pl <®) = 2 ((x;, %), (%;, %))

Since p,(%, ¥)<v/ 5%, %) vV 243, 3) the right hand side is estimated by

B(%er 22), (B 82)) o
2w, G ) NV E-Cap({(ray w)}) 28 ¥ E-Cap({(a, %))

1
S Ve 2 2 Ve

The proof is complete.
Now put ;1,=IA_((,“,,N))W1®WL Then w is a positive Radon measure on

X'x X charging no set of zero &;-capacity and its topological support is given by
Y=Supp [u]=A because (¥, %) is an accumulation point of A— {(¥w, ¥«)}.
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Let A, be the associated PCAF with u with respect to H@ H. Then 4,=

S’ Li (s e n(X)ds. By the last theorem, the fine support of 4, is given by Y=
0

Supp [4,]=A—{(¥w, ¥-)}. Hence we have

process.

&,-Cap(Y—T) = &,-Cap ({(¥w, %)} ) =m%:>0 .

Remarks. (i) By (5.6) and (LA X, M))CF, we know that H is a Feller

Hence HMQ®H is so. Therefore its Ray topology is equal to the ori-

ginal one by (9.27) of Sharpe [17] (Getoor [9]). Hence this also gives a counter
example for &,-Cap(Y"—Y)=0, where Y” is the Ray topological support of .

(i) K. Th. Strum [19] obtained another example that &-Cap(Y—Y¥)>0

for d-dimentional Brownian motion B,(d=2) by investigation of the fine to-
pological structure of B;.
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