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0. Introduction

In this paper we consider the following integrodifferential equation

d2u (t)+dψu(t)+dφu(t)+ Γ a(t—s) dφu(s)ds=> f(t, u(t))
Jo

(0.1)

in a real Hubert space H. Here ty and φ are lower semicontinuous proper con-
vex functions from H to [0, oo], and 9ψ and dφ are the subdifferentials of ̂
and φ respectively. The functions a( ) and /( , ) are continuous from [0, Γ]
to (— oo, oo) and from [0, T] xH to H.

Our purpose here is to prove the existence of a global solution on [0, T~\ of
the initial value problem (0.1). In the case of a(t) = Q K. Maruo [3] proved
the existence of a solution to the above equation under some restrictions. More-
over, we showed that this class of equations contains vibrating string equations
with unilateral constraints which were deeply investigated by M. Schatzman
[4], A. Bamberger and M. Schatzman [1] and C. Citrini and L. Amerio in [5].
We will extend the result ol [3] to the equation containing a delay term
which corresponds to vibrating string with not only a unilateral constraint but
also a memory (see the example of section 4). In a general situation it seems
to be difficult to solve the above initial value problem (0.1). Hence we will seek
a solution which satisfies (0.1) in some generalized sense as in [3].

The outline of the present paper is as follows. In section 1 we list the
notations and state the assumptions and theorem. In section 2 we obtain an
energy estimate to Yosida approximate solutions of the initial value problem
(0.1). In section 3 we prove our theorem. In section 4 we show an example.

The auther would like to express his hearty gratitude to the referee for
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kind and helpful advices.

1. Assumptions, theorem and notations.

We list some notations which will be used throughout the paper. Let Xly

X2 and V be real Banach spaces and F* the dual space of V. We use the same
notation ( , ) as the inner product of H to denote the pairings between Xl9 V

and their corresponding duals. We denote the norm of a Banach space S by

I Is and use the usual notations 1 (̂0, Γ; S), C([0, Γ]; S) etc. to denote variable
spaces of functions with values in S. By dφλ and φλ( ) we denote Yosida ap-
proximations of dφ and φ( ) respectively, i.e dφλx=\~\x—J%x) and φλ(χ)=

(2X)-11 x—JlxIH+φ(Jlx) where Jφ

λ=(\+\dφ)-\ The notations d^/dt denote

the left and right derivatives of u in H.

Next we state the assumptions and theorem.

The Banach spaces F, Xly H and X2 hold the following properties.

(A-l) The following inclusion relations hold:

V C X! C H C X2 and X2 C {the dual space X£

where each inclusion mapping is continuous. Moreover, Xl is separable, the

imbedding mapping V~^Xl is compact, and V is reflexive and dense in H.

We introudce the assumptions of ψ ( ) (see [2]).
A-2) -v/τ( ) is a lower semicontinuous, convex function from Domain

D(^jr)=V to [0, oo ] and the subdifferential dψ* of -v^(-) is single valued and
bounded from V to V*. Moreover they satisfy the following conditions.

(1) The function ψ is coercive in the sense that
lim ψ(x)/1 x I v= oo.
\*\r+™

(2) Suppose we are given a sequence of functions {un} C PFU(0, Γ; //)
ΠΛoo(0, Γ F) such that

z/Λ-^w in C([0, Γ];fl),
MM—>w in the weak star topology of Z,oo(0, T; F).
Then a subsequence {w^} can be extracted so that d^unft-^d^u in

the weak star topology of Loo(0, T\ V*).

REMARK. In view of the coerciveness condition (1) ψ is lower semicon-

tinuous also in the topology of H.

Next we state the assumptions of φ.
A-3) There exists #e V scuh that, for any
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where C1 and C2 are positive constants independent of x and λ.

The function /(ί, x) from [0, T]xH to H satisfies the following conditions.
A-4)
(1) For each x^H /(•, x) is continuous in H in [0, T].
(2) The following inequalities hold :

\f(t,x)-f(t,y)\ff<C\x-y\ffy

\f(ΐ,x)\H<C{l+\x\H}
for any x,y^H and any £e[0, T] where C is a constant independent
of x, y and t.

Let k(t) be the solution of the following integral equation

(1.1) k(t) = a+(t)-{ a-(s)k(t-s)dsy

where a+(t)=Max{a(t), 0} and a~(t)=Min{a(t), 0}. As is easliy seen the solu-
tion k(t) exists, is unique and nonnegative.

A-5) The function a(t) is real valued and belongs to Cl([Q, T]).

Furthermore, we assume the following condition either A-6) or A-7).

A-6) The function #(•) belongs to C2([0, T]) and the following inequali-

ties hold:

Max Γ {k(t-s) (S a+(ξ)dξ-a-(s)}ds<l and Γ k(ήds<l .
o^/^r Jo Jo Jo

In addition to A-3) we assume that
A-7) For any positive £ there exists a constant Cε such that

\(Qψx, oc-y)\<te^(y)+Cs(^(x)+l) for any x,

REMARK. If Γ | a(s) \ ds< 1 and a( ) e C2([0, T]) then the assumption A-6)
Jo

is satisfied. Indeed, integrating both sides of (1.1) over [0, T] and noting that
a+(t)= I a(t) I +a~(t) we have

(Tk(s)ds^(T \a(s)\ds+(Ta-(s)ds-(Ta-(s)ds (* k(s)ds ,
Jo Jo Jo Jo Jo

which implies

[Tk(s)ds<l.
Jo

Therefore

('{A(f-j) (' a+(ξ)dξ-a-(s)}ds<(T \a(ξ)\dξ<\ .
Jo Jo Jo
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With regard to the type of the initial value problem (0.1) we consider solu-
tions in the following sense.

DEFINITION. We say that a function u e C([0, T] X^ Π Wl(Q, T\ H) is the
solution of the initial value problem (0.1) if the following conditions are satisfied:

1) φ(u(t))+ I u(t) I v is bounded in [0, T].
2) There exists a linear functional F on C([0, T] Xλ) such that

*X0-tt)£ f Tφ(v(s))ds- [Tφ(u(s))ds
Jo Jo

for any 0<=C([0, 71]; ̂ ) and

= Γ A,)f ̂ ,))Λ+ fJo tfί rfί J

αr

for any *€=C([0, Γ]; ̂ ) 0^(0, Γ; F) Π W\(0, Γ; //).

3) The initial conditions are satisfied in the following sense

,
dt

where 7^ is the closure of the effective domain of φ, Iκ is the indicator
function of K and dlκ is the subdifferantial of Iκ.

Now we state our theorem.

Theorem. Let the initial values a and b be given so that

a£ΞVΓ(D(φ) and b^H .

Then under the assumptions A-l), A-2), A-3), A-4) and A-6) or A-l), A-2), A-3),
A-4), (A-5) and A-7) we have at least one solution to the initial value problem (0.1).

2. Approximate solutions.

To begin with we prove some lemmas concerning the properties of the
sub differential 9ψ. Throughout this paper we assume the conditions stated in
our Theorem.

Lemma 1. Let g be a continuous mapping from C([0, T] H) to L2(0, Γ; H)
such that the following inequality holds :
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for any v,w<= C([0, Γ] H) and t <Ξ [0, T].
Then there exists a solution ι*eL«(0, Γ; F) ΓΊ ϊΓi(0, Γ; H) Π PFi(0, T; F*) o/
the following equation

(2.1)
dt2

«(0) = β,

on[0,

du

Moreover the solution satisfies the following energy inequality

2-ud*.

(2.2)
dt x '

J 0
/or ««J * e(0, Γ).

Proof. We consider the following approximate equation to the inital
value problem (2.1), for any μ,>0,

(2.3)
dt2

«μ(0) = a,

, = *(βμ) on[0,T]xV*,

dt
Wμ(0) = b .

Here ψ> is the Yosida approximation of -ψ considered as a convex function on
H which is lower semicontinuous also in the topology of H (Remark after A-2)).
Taking the inner products of both sides of (2.3) with (d/dt)uμ.(t) and integrating
the resultant equality over [0, t], we have

d
2->|^«μ(*)l*at

for

Using GronwalΓs lemma and the assumptions of the lemma we see that the
functions | (d/dt)uμ,(t) \ H and ^rμ.(uμ.(£)) are uniformly bounded on [0, T]. Then
using (1) in A-2) we see that | J^Uμ.(t) \ v are uniformly bounded on [0, T]. From
A-l) we know that {J^Uμ,(t)}μ. is relatively compact in H for each fixed t. Com-
bining the uniform boundedness of | (d/dl)uμ,(t) \ H and the above result and using
Ascoli-Arezela's theorem we obtain that there exists a subsequence of {
such that

«μy(ί) = κ(*) in C([0,T];H).

Moreover, since both functions \(d/dt)uμ,(t)\H and \J$Uμ(t)\v are uniformly
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bounded it follows that u(t)SΞWl (0, T; H) nL~ (0, Γ; V). Noting the equa-
tion (2.3), (2) in A-2) and the above resultants we know that u belongs to
Wl(Q, T\ V*). Thus we complete the proof.

We consider the Yosida approximate equations of (0.1) with φλ in place
of φ:

(2.4)

We set

d2

-
at

Γ1 a( —s)dφλuλ(s)ds = f( , «λ) ,
Jo

«λ(0) = «, (̂0) = fc.

- a(t-s)Qφ>μ(ήds+f(t, u(t)) .
O

From the assumption A-4) and the Lipschitz continuity of dφλ it follows that
the mapping £ satisfies the hypothesis of Lemma 1. Hence we have the fol-

lowing lemma.

Lemma 2. For each λ>0 there exists a solution of the equation (2.4)
in V*. Moreover the following energy inequality holds:

(2.5)

dt

Ί*ll

-('(Sa(S-ξ)(dφ,(uλ(ξ)),^-
Jo Jo ds

foranyt<=(0, T).

Next we show that the functions | (d±/dt)uλ(t) \ Hy φ^(uλ(ί)) and ψ(uλ(t)) are
uniformly bounded in t and λ.

For a while we assume the assumtion A-6).

We set

10 ® = Γ a±(t-s)(dφλuλ(s)y uλ(t)-u(s))ds ,
Jo

where (ά)(t)=da(t)/dt.

Lemma 3. There exists a constant M such that
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(2.6)

Jo Jo

where k(i) is ihe function in the assumption A-6). Furthermore

(2.7) w-(ί)> Γ a-(t-s) {φλ(uλ(t))-φλ(uλ(ή)}ds .
Jo

Proof. Inductively we define functions hn(t) as follows:

(2.8) ktf) = a+(t) , hn+1(t) = £ -a-(s)ha(t-s)ds

where n— 1, 2, 3, . Then we have

(2.9)

where M=Max | a(s) \ .
Oζs^T

From (2.8) we know

Σ hΛ(t) = a+(t)+ -a~(s) Σ hn(t-s)ds .

In view of the uniqueness of the solution of the integral equation (1.1) we have

Λ(0=ΣΓ-ιAι (0 Moreover from (2.8) we see that the functions k(t) and (d\
dί)k(t—s) are uniformly bounded in 0^ί<Γ.
For any natural number n we set

(2.10) wn(t) = Γ hn(t-s)(dφ,uλ(s)y uλ(t)-uλ(s))ds,
Jo

/ϊ(ί) =

fl(t) =

and

/SW = ('*•(*-*)(- ('^-^(β^λUλU), Uλ(μ)-Uλ(s))dμds.
Jo Jo

From (2.4) we see
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d2
Γ

, ttλ)— 1 a+( -μ)dφλUλ(μ)dμ
Jo

— \ <*~( —μ)d<PλUλ(μ)dμ.
Jo

Substituting this in (2.10), noting (2.8) and using Fubini's theorem we get

V>n(t] = Σ /?(*)+ Γ ̂ (t-S^
i — l Jo

In view of (2.9) we see

Thus it follows that

Ί(f) = Σ Σ /?

Set L ί(ί)=Σ/?(0>^1>2>3>4>5> and ^(0=ΣA (0 Solving the above in-

tegral equation we get the following equality

(2.11) Wl(ί) = L(t)+

where 3?(ί) is a positive continuous function in 0<s^t<T. With the aid of
an integration by parts we get

Ll(t) = k(t)(b,»k(t)-a)

+ (' (dlds)k(t-s)((dlds)uλ(ή,
Jo

-['*(«-*) I (rf/ΛXW I !A.
Jo

Noting that

we obtain

(2.12) I Lλ(t) I < C - *λ « Λ - « λ H
Jo

Using the assumption A-4) and Schwarz's inequality we see

(2.13) \L3(t)\<C (' (\uλ(t)-uλ(s)\2

H+ \uλ(s)\2

a+l)ds .
Jo
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The definition of the subdifferential yeilds

(2.14) L2(t)> Γ k(t-s)ψ(uλ(s))ds- Γ k(t-s
Jo Jo

(2.15) Lt(t) <, Γ Γ k(t-ήa+(s-
Jo Jo

(2.16) L5(t)> - Γ Γ k(t-S)a-(s-μ)φ(U,(μ))dμds
Jo Jo

+ 1 \ k(t—s)a-(s—μ)φ(uλ(s))dμds.
Jo Jo

Combining (2.11), (2.12), (2.13), (2.14), (2.15), (2.16) and the assumption A-6)
we obtain (2.6). The equlity (2.7) is a direct consequence of the difinition of

the subdifferential.

Noting Lemma 3 and using the argument of the proof of Lemma 3 we

can establish the following lemma, where k(t) is the solution of

k(t) = -(ά)-(f)+ Γ -a-(s)k(t-s)ds .
Jo

Lemma 4. There exists a constant M such that

W+ (t) > -M Γ { I 4- "λ(*) I H
Jo as

-Γ ~k(t-s)d
JO

Moreover

Proposition 5. Under the assumptions A-l), A-2), A-3), A-4) and A-6) the
functions \(dldt)uλ(t)\ffj φ\(u^(t)) and ψ(uλ(t)) are uniformly bounded in λ and t.

Proof. Using Fubini's theorem and the integration by parts we see

o J o
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Combining the inequality (2.5), Lemma 3, Lemma 4 and the above equality and
using the assumption A-6) and GronwalΓs inequality we complete the proof.

Proposition 6. Under the assumptions of Proposition 5 there exists a cons-
tant M independent of \ and t such that

Proof. We set

y(t) = Γ (dφλ(uλ(s)), uλ(s)-z)ds
Jo

where z is the element in the assumption A-3).

In view of (2.4) we get

y® = o as

Mtf), «λW-«λ(f )) dξds

dξds

x(f )-*) dξds

= /l+/,+/S+/4+/5

Using the integration by parts, the definition of the usbdifferential and the as-
sumption A-4) we get

/,<Ξ Γ {|4- «χ(*) I l+l+^(M
Jo rfί

From the difinition of the subdifferential it follows

J ί

W^
0

Lemma 3 and Proposition 5 we see /2^ Constant.
Using the integration by parts we see

I,= -\[a-(t-ξ)y(ξ)dξds.

Then we get
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y(t)<,Const— Γ a'(t— s)y(s)ds .
Jo

Combining the assumption A-3) and Proposition 5 \ve know that ( y(t)+N) is
a positive function on [0, T] where N is some large positive number. Then
using GronwalΓs lemma and the above inequality we get

onst.

Using a similar method to the proof of lemma 3 of [3] and combining the above
inequality and Proposition 5 we complete the proof.

Next we assume the assumption A-5) and A-7).

We define wn(t, ξ) by

*. 0 = (' "(*-ζ)-u^ds and

(2.18)

wn+1(t, ζ) = —a(s—ζ)wn(t, s)ds inductively .

Lemma 7. We have the following inequalities

where ,4= Max KOI , L=Max|— a(t)\ and
0<(<Γ dt

Proof. With the aid of the integation by parts we see

The remaing part can be established by induction.

REMARK. From Lemma 2 we know wn(t, )eLTO(0, T; V) for each t, n=
1,2,3,-.

We set, forw=l, 2, 3, •••,

,2(0 = - Γ (».(ί, r),
Jo

and

Lemma 8. We get the following equality
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Γ Γ «(ί-r) (9<z>rf), ^-uκ(s))dζds = Σ Fn(t)
Jo Jo as »=l

F.(t)= {/..ι(ί)+Λ.1(ί)+/..J(<)}

Proof. Using the equation (2.5) and Fubini's theorem we get

Γ (wa(t, ξ),
Jo

Noting that

S a(sΓ
J o J o

Jo

and Lemma 7 we can prove this lemma.

Lemma 9. jΓAe^ ixώfc a constant C independent of λ and t such that

/or »==!, 2, 3, — , a Aβr^ ̂  wί (At)"ll(— 1)1 = 1.

Proof. In view of Lemma 7 and the assumption A-4) we find

(2.19) |

On the other hand there exist a constant K independet of λ and t such that

(2.20)

The desired result on/n 3(£) follows from (2.19) and (2.20). Using the integra-
tion by parts and noting w^t, t)=0 we see

I /ι,ι W I < I »ι(ί, 0) U I b \H+ Γ I α(0) I I -f«λ W I πds
Jo t/ί

Noting Lemma 7, (2.20) and choosing a constant M so large that M>((LT+
A)T+(K+AT)\b\H) we get the required inequality for /^(t). Noting the
following equalities
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and lemma 7 we have

I ^«.(ί,*)lι

where n>2.
On the other hand it follows

o ' ~cΓW"^ ^'a' ~d~U^' ̂  '

Then using Lemma 7, the above two inequalities and (2.20) we know

n-2)\{AT\b\a+(A+LT) (' |-f^(*)lj
Jo as

*l(n-2) ! {1+ | (̂*) I id*}
Jo rfί

where M is a positive large number independent of X, ί and n. Our required

inequalities for fnl(t) are obtained.

Lemma 10. For any £>0, fair* ^Λ?ώ^ a constant Kz independent of n

and t such that

Jo

Proof. From (2.18) we see that the functions wn(t, ξ) are equal to

where d§n=dξn-1dξn-2~ dξ1 and w=l, 2, •••.
From (2.18) we have the following equality

_!)- Γ έ
J * w — I

where ά=(d/dt)a(t).
Using the above two lemmas and the assumption A-7) and noting

we obtain the following inequalities
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Γ - Γ (
J« J*»-l

Then it follows

Y(ιt- 1) ! -

i) (fcί) -γ(n-l)!

Γ ψ(«λJoJo

Therefore the proof of the lemma is complete.

Combining Lemmas 8, 9 and 10 and the inequality (2.5), choosing £ suffi-

cently small and using GronwalΓs lemma we get the following proposition.

Proposition 11. Under the assumptions A-l), A-2), A-3), A-4), A-7) the

functions \ — uλ(t) \ H) φκ(uλ(t)) and ty(ux(t)) are uniformly bounded in λ and t.
dt

Noting the above proposition and using a similar argment to the proof of
Proposition 6 we have the following lemma.

Proposition 12. Under the assumptions of Proposition 11 there exists a

constant M independent of λ and t such that

3. Proof of Theorem.

We set

=
J (8?w)> «(*))* for

o

From the definition of Fλ and Fubini's theorem we get the following lemma.

Lemma 13. We have the following equality

Γ \ζa(ζ~s) (dφλuλ(ή, v(ζ))dsdζ = FΛTa(ζ-.)v(ζ)dζ) .
Jo Jo J.

Combining Propositions 5, 6 and lemma 13 or Proposition 11, 12 and

Lemma 13 and using the argument of the proof of Theorem in [3] we obtain
our theorem.
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4. Example, (see the example in [3])

Put H=L2(Q, 1), -XΊ=C([O, 1]), X2=Ll(Q, 1) and 7= (̂0, 1). Then from
Sobolev's imbedding theorem the assumption A-l) follows.

We consider the following symmetric sesqulinear form a(u, v) defined on
VxV.

1) a(u,u)>S\u\2

v

2) \a(u,v)\£K\u\v\v\γ

for any uy v^V where δ and K are some positive constants. We put ψ>(u)=
a(u, u). Then it is easy to prove that ψ ( ) satisfies the assumption A-2). More-
over we know that it satisfies the assumption A-7).

Set

K= {/e£2(0, 1);/(*)>K*) ^Λ?e[0, 1]}

where r(Ξθ([0, 1]) and r(0), r(l)<l.
Let φ=Iκ be the indicator function of K. Then we show that the Yosida ap-
proximation of Qφ satisfies the assumption A-3). We choose a function 0€Ξ

C^fO, 1]) such that 0(0)=0(1)=0 and θ(x)-r(x)>σ>0 for any *e[0, T]. In
the assumption A-3) we define #, GI and cz as θ, σ and 0 respectively.
Since

/™ = l° ίf f

φ^J(X) \\-\f(X)-r(X)) if /

and/(Λ?)<r(Λ?) implies

we have

Therefore we have the assumption A-3).
Now we can consider the term dφu as a unilateral constraint and the integral
term in the equation (0.1) as a memory term. Then we can regard the initial
value problem (0.1) as the vibrating equations with a unilateral constraint and a

memory term.
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