A REMARK ON FINITE POINT TRANSITIVE AFFINE PLANES WITH TWO ORBITS ON I_{∞}

CHIHIRO SUETAKE

(Received October 4, 1991)

In this note for the most part we shall use the notations of [1]. Let $\mathscr{P} = \pi \cup l_{\infty}$ be the projective extension of an affine plane and G a collineation group of \mathscr{P} . If p is a point of \mathscr{P} and l is a line of \mathscr{P} , then G(p, l) is the subgroup G consisting of all perspectivities in G with center p and axis l. If m is a line of \mathscr{P} , then G(m, m) is the subgroup of all elations in G with axis m.

In [3] the author proved the following theorem on Kallaher's conjecture (See [1]).

Theorem 1. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π . Suppose that G has two orbits of length 2 and n-1 on l_{∞} . Then π is a translation plane and the group G contains the group of translations of π , except in the following case:

(*) $|G(l_{\infty}, l_{\infty})| = n = 2^{m}$ for some $m \ge 1$, $G(p_{1}, l_{\infty}) = G(p_{2}, l_{\infty}) = 1$ and $|G(p, l_{\infty})| = 2$ for all $p \in l_{\infty} - \{p_{1}, p_{2}\}$, where $\{p_{1}, p_{2}\}$ is a G-orbie of length 2 on l_{∞} .

The case (*) actually occurs when π is a desarguesian plane of order 2. Maharjan [2] studied the planes with property (*) under the condition that $n \leq 4$. The purpose of this note is to prove the following.

Proposition 2. Assume (*). Then n=2 and G is a cyclic group of order 4.

Maharjan [2] proved the proposition under the condition that $n \leq 4$. The proposition, together with Theorem 1, gives the following.

Theorem 3. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π . If G has two orbits of length 2 and n-1 on l_{∞} , then one of the following statements holds:

(i) The plane π is a tanslation plane and the group G contains the group of translations of π .

(ii) n=2 and G is a cyclic group of order 4.

In the rest of the note, we prove Proposition 2. Set $T=G(l_{\infty}, l_{\infty})$ and $L=G_{P_1,P_2}$. Then |G:L|=2. Let O be an affine point of π . Set $l=P_1O$. Sup-

pose that G_l is transitive on the points of l. Since 2|n, there exists an involution σ in the center of a Sylow 2-subgroup of G_l . By Corollary 3.6.1 of [1], σ is a perspecitivity. Theorfore σ is an elation with the center P_l . On the other hand $G_l \cap T=1$. Thus $G(P_l, l) \neq 1$. This yields $P_2^{C_l} \neq P_2$, a contradiction. Hence we have the following.

(1) G_l is not transitive on the points on l.

As G leaves $\{P_1, P_2\}$ invariant, $G_{P_1} = L$. Hence, by Theorem 4.3 of [1], we have (2) L is transitive on the lines through P_1 .

Since |G: L| = 2, (1) and (2) imply that L has exactly two orbits Ω_1 and Ω_1 on the points of π such that $|\Omega_1| = |\Omega_2|$. Hence,

(3) $|\Omega_1| = |\Omega_2| = n^2/2.$

Therefore $L_l(=G_l)$ has exactly two orbits Γ_1 and Γ_2 on the points of l. It follows from (2) and (3) that $\Gamma_1=\Omega_1\cap l$, $\Gamma_2=\Omega_2\cap l$ and $|\Gamma_1|=|\Gamma_2|=n/2$. Also we get $L_0 \leq L_l$, $|G: L_0| = |G: L| \times |L: L_l| \times |L_l: L_0| = 2 \cdot n \cdot n/2 = n^2$.

Suppose that $n-1 \neq 1$. Let p be a prime such that p|(n-1) and A a p-Sylow subgroup of L_0 . Then since $n-1=|l_{\infty}-\{P_1,P_2\}|||G|$ and $|G:L_0|=n^2=2^{2m}$, A also is a Sylow p-subgroup of G and $A \neq 1$. Since (n-1, n/2)=1, $|Fix(A) \cap l| \geq 2$. Assume that $N_G(A) \leq L$. Then since $L \leq G$ and A is a p-Sylow subgroup of L, $LN_G(A)=G$ and so L=G, a contradiction. Therefore $N_G(A) \leq L$. Let $\tau \in N_G(A)$ -L. Then l^{τ} is through P_2 . Hence there exists a point Q on l such that A fixes Q. Since A fixes P_1, O, Q, P_2, O^{τ} and Q^{τ}, A is a planar collineation group. In particular, $Fix(A) \cap (l_{\infty} - \Delta) \neq \phi$. This yields that G is not transitive on $l_{\infty} - \Delta$ by Theorem 3.6 of [1], a contradiction. Thus n-1=1 and so n=2.

We may assume that $\pi = PG(2, 2)^{l_{\infty}}$, where $l_{\infty} = \langle (1, 0, 0) \rangle \langle (0, 1, 0) \rangle$. Let $P_1 = \langle (1, 0, 0) \rangle$ and $P_2 = \langle (0, 1, 0) \rangle$. Then, by direct computation, $G = \langle \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \rangle$. Clearly |G| = 4. Thus Proposition 2 follows.

References

- [1] M.J. Kallaher: Affine planes with transtive colleneation groups, North Holland, New York-Amesterdam-Oxford, 1982.
- [2] H.B. Maharjan: Personal communication.
- [3] C. Suetake: On finite point transitive affine planes with two orbits on l_{∞} , Osaka J. Math. 27 (1990), 271–276.

Amagasakiminami High School Amagasaki, Hyogo 660 Japan