A REMARK ON FINITE POINT TRANSITIVE AFFINE PLANES WITH TWO ORBITS ON I_{∞}

Chiniro SUETAKE

(Received October 4, 1991)

In this note for the most part we shall use the notations of [1]. Let $\mathscr{P}=$ $\pi \cup l_{\infty}$ be the projective extension of an affine plane and G a collineation group of \mathscr{P}. If p is a point of \mathscr{P} and l is a line of \mathscr{P}, then $G(p, l)$ is the subgroup G consisting of all perspectivities in G with center p and axis l. If m is a line of \mathscr{P}, then $G(m, m)$ is the subgroup of all elations in G with axis m.

In [3] the author proved the following theorem on Kallaher's conjecture (See [1]).

Theorem 1. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π. Suppose that G has two orbits of length 2 and $n-1$ on l_{∞}. Then π is a translaiton plane and the group G contains the group of translations of π, except in the following case:
(*) $\left|G\left(l_{\infty}, l_{\infty}\right)\right|=n=2^{m}$ for some $m \geq 1, G\left(p_{1}, l_{\infty}\right)=G\left(p_{2}, l_{\infty}\right)=1$ and $\left|G\left(p, l_{\infty}\right)\right|=2$ for all $p \in l_{\infty}-\left\{p_{1}, p_{2}\right\}$, where $\left\{p_{1}, p_{2}\right\}$ is a G-orbie of length 2 on l_{∞}.

The case (*) actually occurs when π is a desarguesian plane of order 2. Maharjan [2] studied the planes with property (*) under the condition that $n \leq 4$. The purpose of this note is to prove the following.

Proposition 2. Assume (*). Then $n=2$ and G is a cyclic group of order 4.
Maharjan [2] proved the proposition under the condition that $n \leq 4$.
The proposition, together with Theorem 1, gives the following.
Theorem 3. Let π be a finite affine plane of order n with a collineation group G which is transitive on the affine points of π. If G has two orbits of length 2 and $n-1$ on l_{∞}, then one of the following statements holds:
(i) The plane π is a tanslation plane and the group G contains the group of translations of π.
(ii) $n=2$ and G is a cyclic group of order 4 .

In the rest of the note, we prove Proposition 2. Set $T=G\left(l_{\infty}, l_{\infty}\right)$ and $L=$ $G_{P_{1}, P_{2}}$. Then $|G: L|=2$. Let O be an affine point of π. Set $l=P_{1} O$. Sup-
pose that G_{l} is transitive on the points of l. Since $2 \mid n$, there exists an involution σ in the center of a Sylow 2-subgroup of G_{l}. By Corollary 3.6.1 of [1], σ is a perspecitivity. Theorfore σ is an elation with the center P_{1}. On the other hand $G_{l} \cap T=1$. Thus $G\left(P_{1}, l\right) \neq 1$. This yields $P_{2}^{G} l \neq P_{2}$, a contradiction. Hence we have the following.
(1) G_{l} is not transitive on the points on l.

As G leaves $\left\{P_{1}, P_{2}\right\}$ invariant, $G_{P_{1}}=L$. Hence, by Theorem 4.3 of [1], we have
(2) L is transitive on the lines through P_{1}.

Since $|G: L|=2$, (1) and (2) imply that L has exactly two orbits Ω_{1} and Ω_{1} on the points of π such that $\left|\Omega_{1}\right|=\left|\Omega_{2}\right|$. Hence,
(3) $\left|\Omega_{1}\right|=\left|\Omega_{2}\right|=n^{2} / 2$.

Therefore $L_{l}\left(=G_{l}\right)$ has exactly two orbits Γ_{1} and Γ_{2} on the points of l. It follows from (2) and (3) that $\Gamma_{1}=\Omega_{1} \cap l, \Gamma_{2}=\Omega_{2} \cap l$ and $\left|\Gamma_{1}\right|=\left|\Gamma_{2}\right|=n / 2$. Also we get $L_{0} \leq L_{l},\left|G: L_{0}\right|=|G: L| \times\left|L: L_{l}\right| \times\left|L_{l}: L_{0}\right|=2 \cdot n \cdot n / 2=n^{2}$.

Suppose that $n-1 \neq 1$. Let p be a prime such that $p \mid(n-1)$ and A a $p-$ Sylow subgroup of L_{0}. Then since $n-1=\left|l_{\infty}-\left\{P_{1}, P_{2}\right\}\right|| | G \mid$ and $\left|G: L_{0}\right|=$ $n^{2}=2^{2 m}, A$ also is a Sylow p-subgroup of G and $A \neq 1$. Since $(n-1, n / 2)=1$, $|\operatorname{Fix}(A) \cap l| \geq 2$. Assume that $N_{G}(A) \leq L$. Then since $L \unlhd G$ and A is a p Sylow subgroup of $L, L N_{G}(A)=G$ and so $L=G$, a contradiction. Therefore $N_{G}(A) \nsubseteq L$. Let $\tau \in N_{G}(A)-L$. Then l^{τ} is through P_{2}. Hence there exists a point Q on l such that A fixes Q. Since A fixes $P_{1}, O, Q, P_{2}, O^{\tau}$ and Q^{τ}, A is a planar collineation group. In particular, $\operatorname{Fix}(A) \cap\left(l_{\infty}-\Delta\right) \neq \phi$. This yields that G is not transitive on $l_{\infty}-\Delta$ by Theorem 3.6 of [1], a contradiction. Thus $n-1=1$ and so $n=2$.

We may assume that $\pi=P G(2,2)^{l_{\infty}}$, where $l_{\infty}=\langle(1,0,0)\rangle\langle(0,1,0)\rangle$. Let $P_{1}=\langle(1,0,0)\rangle$ and $P_{2}=\langle(0,1,0)\rangle$. Then, by direct computation, $G=\left\langle\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)\right\rangle$.
Clearly $|G|=4$. Thus Proposition 2 follows.

References

[1] M.J. Kallaher: Affine planes with transtive colleneation groups, North Holland, New York-Amesterdam-Oxford, 1982.
[2] H.B. Maharjan: Personal communication.
[3] C. Suetake: On finite point transitive affine planes with two orbits on l_{∞}, Osaka J. Math. 27 (1990), 271-276.

