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1. Introduction and results

This paper is concerned with the construction of acyclic affine surfaces
from plane algebraic curves.

Surfaces will always be connected, non-singular, quasi-projective, alge-
braic surfaces over the complex numbers. Let R be a subring of the rational
numbers. A surface V is called R-homology plane if H^V'^R)—0 for ί>0.

In the case R=Z we simply refer to this as a homology plane.

We investigate homology planes via their compactifications. The com-
pactifications give rise to an algorithmic construction of surfaces from curves
in the projective plane P2. If X is a projective surface and CdX a curve we
call (X, C) or X a compactification of any surface V which is isomorphic to the
complement X\C.

Ramanujam produced the first example of a homology plane. (See RAMANU-
JAM [1971]). His homology plane was in fact contractible and produced a
counterexample to the conjecture that a smooth contractible affine surface over
the complex numbers was the standard plane. Any smooth affine variety (over
the reals) is the interior of a smooth manifold with boundary. In the case of a
homology plane, it follows that the boundary is a homology sphere. When the
homology plane is contractible, this observation gives homology planes bounding
contractible manifolds—a point of interest in topology. It wasn't until 1987 that
other homology planes were found. Gurjar-Miyanishi (see GURJAR— MIYANISHI

[1987]) produced all homology planes of logarithmic Kodaira dimension 1. In
this paper they ask whether there are an infinite number of contractible homology

planes of Kodaira dimension 2. We announced the first affirmative solution to

this problem in TOM DIECK—PETRIE [1989]. Among the results of this paper

are the details of the announcement. Infinite families of homology planes of
Kodaira dimension 2 result from the main theorems A and B here. See (3.20)

and (3.21).
Another application of the main results here is the production of homo-

logy planes which have non trivial finite order automorphisms. These planes

and finite order automorphisms produce counterexamples to the conjecture that
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non trivial homology planes have no finite order automorphisms. This conjec-

ture appears in PETRIE [1989] where it is also shown that the contractible homo-

logy planes of Kodaira dimension 1 have no finite order automorphisms. See

TOM DIECK [1990a] and MIYANISHI-SUGIE [1991], [1991a] for the construction

of homology planes with automorphisms.

There is recent interest in the higher dimensional analogs of homology

planes, i.e. acyclic affine varieties of arbitrary dimension. Some are obtained as

products of homology planes with C*, see ZAIDENBERG [1991]. Others are pro-

duced as hypersurfaces in Cn in TOM DIECK—PETRIE [1990]. See also PETRIE

[1992], TOM DIECK [1992a], [1992b], DIMCA [1990], KALIMAN [1991]. These

analogs are related to the Abhyankar-Moh Problem: Is any hypersurface in C"
which is isomorphic to C"~l actually ambiently isomorphic to C"~l ? The point is

that it is possible to produce acyclic hypersurfaces in Cn but the question remains

whether they are isomorphic to C*~l and therefore potential negative responses to

the problem. One related question is: For which homology planes X can XχCh

be a hypersurface in C"? See TOM DIECK—PETRIE [1990] for the case »=3.

Perhaps the explicit homology planes produced from Theorems A and B will

yield answers to these problems.

In this paper we give a construction of all homology planes. This is the

content of Theorem A. The construction produces other affine surfaces as well.

Theorem B and Theorem 3.13 tell which among these are homology planes and

the Determinant Algorithm 4.27 gives an effective method of applying Theorems

B and 3.13. The results of the first 4 sections deal with the existence of homo-
logy planes. The constructions begin with a curve in a minimal projective

surface (which can be the projective plane). If there is one homology plane
associated to such a curve, there are infinitely many distinct homology planes as-
sociated with the same curve. It can even happen that the same homology

plane can be associated with different curves. Any classification of homology

planes must take this into account. In subsequent notes we illustrate this point

by using e.g. the group of birational automorphisms of the projective plane to

produce isomorphisms between some of the homology planes constructed here

and elsewhere.

Our first theorem explains the construction of homology planes from

curves. In order to state it we need some notation.

By an expansion p: X-*Y of Y we mean a composition

Λ. γ γ P*^ γ . . γ Fθ γ vp. Λ. = Λ.k+1 > Λ.k »•• > Λ.I > Λ0 = J ,

where each morphism pj blows up a single point. Blowing up a single point is

also called a σ-process. An expansion p: X-+Y of Y is called a contraction of

X. The exceptional set of any expansion p: X—> Y is
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Σ, = Σ(/>) = {y<=Y \p~\y) is not a point} .

The exceptional divisors of p are the components of p~\x) for x&Σp Let <£=
6(p) denote the set of exceptional divisors.

We now explain the basic setting for the whole paper. Let D=^Dl U ••• U

DndY be a curve in a minimal rational projective surface Y such that the Df

are rational and the (irreducible) components of D. There is a unique minimal

expansion π: X-+Y such that π~\D)=C has normal crossings (embedded
resolution of singularities). Minimal means that any other expansion with this

property factors over π.
Choose a partition £=<S0]1<S1 and define d\ <?-̂ {0, 1} by d~1(i)=βi. Let

D'=p$D denote the proper transform of D. Consider the curve (=reduced
effective divisor, additive notation) D(d) in X

(1.1)

Then D(d) is a normal crossing curve and has a dual graph TD(d) with vertex

set Γ0D(d) and edge set TlD(d). If Γ is a graph we set ί(Γ)=l— %(Γ),
where % denotes the Euler characteristic. If Γ is connected, then s(Γ) is the
number of its (independent) cycles. We refer to the beginning of section 2
for our terminology relating to graphs. In the case of Γ=Γ D(d) we set

(1.2) s(d) = l-X(ΓD(d)), r(d) = |£,| .

The function d: £->{0,l} is called a selection function for D, if the following

holds:

(1) Γ Did) is connected
(1.3) (b2 = second Betti number) .
V } (2) ^2 }

Affine varieties have a connected compactification divisor (1.3.1). The equality

(1.3.2) is basic for varieties of general type. This fact will be explained in the

proof of Proposition (2.3). The term 'selection function' simply refers to the
fact that one has in general a choice for such a function.

We want to cut the cycles of Γ D(d). We call ΦcΓx D(d) a cutting set for

(D, d) if the subgraph with vertex set Γ0 D(d) and edge set T1 D(d)\Φ is a tree.

(Thus I Φ| =s(d), provided (1.3.1) holds. The case Φ=0 is not excluded.)
Given (Z), dy Φ) we let B1(Z), d, Φ) denote the set (of isomorphism classes)

of expansions p: Z(p)-*X with the following properties (1.4). According to
our terminology in section 2, the set Φ is a set of points in X, so that the state-

ment (1.4.1) makes sense.

(1) Σ, = Φ.
(2) For each #eΦ the graph of Af(oe)[}B'(oe)\Jp"l(x) is a linear

(1.4) tree. Here A(x) and B(x) are the curves which intersect in x.
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(3) Each curve p~\x), #eφ, contains a unique component E0(x)

with self-intersection —1 (called (— l)-curve).

Expansions with these properties are referred to as standard. Later in this

paper these expansions are called subdivisional. This terminology is taken from
FUJITA [1982], (3.4) . Let

(1.5) B(p) = p-\D(d))- Σ E,(x) c Z(p) .
*eΦ

The family of surfaces

(1.6) V(p) = Z(p)\B(p),

is called the tower of surfaces belonging to (Z), d, Φ). If Φ is empty, the tower

consists of the single element X\D(d). Open surfaces V have a logarithmic
Kodaira dimension n(V}^{— °o, 0, 1,2}. It is known that homology planes

with n(V) e {~ oo, 0} don't exist.

Theorem A. Let V be a homology plane of general type. Then there exists

a rational curve D in some minimal rational surface Y, a selection junction d for

D and a cutting set Φ for (D, d) such that V is isomorphic to V(p) for some

In fact, Y can always be chosen to be P2. But for some considerations other
minimal surfaces Y are more appropriate.

The homology planes with π=\ have been described by GURJAR— MIYAN-

ISHI [1987]. Therefore we concentrate on surfaces with κ=2, called of general

type.
General considerations suggest that an algorithm like Theorem A exists for

construction of homology planes. By compactification, a homology plane V is
Z\B where (Z, B) is a compactification of V. The exceptional divisors lying on

B can be contracted giving a new surface X and a curve Y such that V=X\Y.

Further considerations show in fact X can be a minimal rational surface and Y

rational. Still given a rational minimal surface X and a rational curve Fc^Γ,

it is not at all obvious if one can reverse this process and produce a homology
plane. Theorem A and its companions Theorems B and 4.27 give an effective
algorithm for deciding this.

By Poincarό duality the irreducible components of D or D(d) define elements

in H\Y) or H2(X). This is explained in the beginning of section 3. Using

this fact we state:

Addendum to Theorem A. Under τhe hypothesis of Theorem A the
irreducible components of D (resp. of D(d)) generate H2(Y) (resp. H2(X)).
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The next theorem tells us which surfaces V(p) in a tower are homology
planes. Suppose the edge x^Φ is an intersection of the components A(x), B(x)

of D(d), denoted d(x)= {A(x},B(x}}. Let mp(A(x)) denote the multiplicity of
EQ(X) in the total transform p*A(x) (pullback of A(x) as Cartier divisor, compare

Definition (3.6)). Then mp(A(x)) and mp(B(x)) are coprime positive integers.

Let Z(dx) denote the free abelian group with basis {A(x)> B(x)} . Let

mp& 0 Z(Qx)
jceΦ

be the element with ^-component mp(A(x)) A(x)+mp(B(x)) B(x). More gener-

ally a multiplicity function m for (Z), rf, Φ) assings to each #eΦ a pair of coprime

integers (m(A(x))y m(B(x)). We also denote by m the corresponding element in

Theorem B. Let D be a curve with rational components in a minimal ra-

tional protective surface Y. Let d be a selection function for D such that the com-

ponents of D(d) generate H\X). Let ΦΦ0 be a cutting set for (D,d). Then

there exists a multilinear function

such that:
(1) V(p), p^Rl(D, d, Φ), is a Q-homology plane if and only if Δ(mp) =j=0.

(2) V(p) is a Z-homology plane if and only if Δ(flfy)= ± 1.

(3) //Δ(ifi^)Φθ,ίA«ι \H\V(p) Z)\ = \

The function Δ(ΰ, d, Φ) will be called the discriminant of (D, rf, Φ). The dis-
criminant is defined up to sign.

The multiplicity functions can be used to parametrize elements in

B1(Z), rf, Φ). Using the notation set up so far we can state:

(1.7) Proposition. The assignment p\-*mp sets up a Injection between B1(D, dy Φ)

and the set Mul(D, d, Φ) of multiplicity functions for (Dy d, Φ).

The following elementary algebraic remarks use (1.7). By linearity, The-

orem B determines |Δ(m)| for each m^ ®Z(dx). Two bilinear maps Δi and

Δ2 which have the same absolute value | Δι(^) | = | Δ2(#0 1 for all arguments m

are equal up to sign. Therefore there exists up to sign at most one bilinear map

Δ which has the properties stated in Theorem B.

By elementary algebra we see that if Δ assumes the value 1, then it does

so for infinitely many arguments. Therefore if a tower contains homology

planes at all, then it contains an infinite family.

The proof of Theorem B will show that the discriminants is effectively com-

putable. We do not claim that members of a tower are always surfaces of gen-
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eral type. There are usually some degenerate cases in a tower. We shall see
examples later. Different towers may contain isomorphic varieties.

Theorem A is proved in section 2; Theorem B is proved in section 3. In
section 4 we prove the Addendum to Theorem A and Proposition (1.7). For an
annoucement and further information see TOM DIECK—PETRIE [1989].

2. Towers of surfaces

This section is devoted to the proof of Theorem A.
We begin by introducing some terminology. A graph Γ=(Γ0, I\) consists

of two sets Γ0, the set of vertices, and Γ\, the set of edges, and a map 9 which
assigns to each #eΓΊ a non empty set 9#CΓ0 of at most two elements. The
geometric realization of Γ is a one-dimensional CW-complex with 0-skeleton Γ0

and with a 1-simplex corresponding to each tf^Γj attached to Qx in the obvious
manner. We do not distinguish notationally between Γ and its geometric re-
alization and apply a geometric terminology to Γ, like: cycle, subdivision, Euler
characteristic, the edge x connects the points in dx etc.

A curve CdX is said to have normal crossings if its irreducible compo-
nents are non-singular, two components intersect in at most one point and such
a point is a transverse intersection, and there are no triple points. A normal
crossing curve C has a weighted dual graph (ΓC, w). The graph ΓC=(Γ0O, TiC)
has as vertex set Γ0C the set of irreducible components of C and as edge set
ΓXC the set of double points. An edge connects the vertices which intersect in
it, i.e. if A ΠB= {x}, then d(x)= {A, B}. Therefore ΓjC is also a set of points
in X, but the Γ-notation always refers to the graph. The weight function w:
TQO-*Z associates to A^T0C its self-intersect ion A A'm X. The intersection
matrix is Γ0CxΓ0C-»J?Γ, (A, B)ι->A B and its determinant is denoted
det (ΓC, w).

(2.1) Proposition. Suppose C is a normal crossing curve in the rational pro-
jectίve surface X. Then the following are equivalent:

(1) V=X\C is a Q-homology plane.
(2) The components of C are rational curves and ΓC is a tree. The in-

clusion CdX induces an isomorphism H2(C\ Q)->H2(X > Q).

Proof. We use co-homology with coefficients in Q. From the homologi-
cal structure of topological surfaces one deduces easily: 7/1(C)=0 if and only
if the components of C are 2-sρheres and ΓC is a tree.

We combine the exact homology sequence of (X, C) with Poincarό duality
H*-'(X, C)s*H,(V) and H*(A)cxH*(A) for the aprpopriate spaces A.

(l)-*(2) By hypothesis Ht(X, C)cχH*-'(V)e*0 for 0<*^3. The exact
sequence of (X, C) and H1(X)^Q implies /^(CJβO and the isomorphism H^C)
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(2)<=Φ(1) From the hypothesis and the remark at the beginning H^C)^
and H3(X)sgQ. The isomorphism H2(C)^H2(X) and the exact sequence of
(X, C) imply H2(X, O)^H3(X, C)^0 and hence H^V^H^V)^. Since C
is connected we obtain H3(V)^H4(V)sύQ from the exact sequence. Π

Let V be a homology plane of general type. By the rationality theorem of
GURJAR—SHASTRI [1989], there exists a rational projective surface Xl and a curve
DldXl such that V is isomorphic to Xι\Dlt By embedded resolution of sin-
gularities (BARTH—PETERS—VAN DE VEN [1984], 11(7.2)) we can assume that Dλ

has normal crossings. Let pλ: Xl-^Y be a contraction to a minimal rational
surface and set D=p1(D1). We can expand further by p2: Z-^X1 such that
(pιp2Ϊ~lD has normal crossings. Let π=πD: X=XD-^Y denote the minimal
expansion such that π~\D)=C has normal crossings. By minimality of π we
have a factorizationpιp2—πp with an expansion/): Z—>X. Let B=p21(D1). We
have VszZ\B by construction. We collect some properties of (p, B). For the
convenience of the reader we display the data above in the following diagram.

A c x',

(2.2) Proposition
lowing properties:

(1)
(2)

Let V be a Q-homology plane. The pair (p, B) has the fol-

(3) TBisa tree.

(4) I Γ0 (πp)-1 D\-\T0B\ = \ Γ0 D\ -b2(Y).

Proof. The equality (1) holds by construction.
(2) If x^Σ(πp)\D, thenp~\x)c:Z\B=V and at least one component of

p-\x) is a (-l)-curve E. Contract E to obtain V. Then H\V)^Z®H\V)
contradicting H\V\ Q)=Q.

(3) is given by (2.1).
(4) We have | Γo^)"1 D\ - \TQD\ =b2(Z)-b2(Y) as a general property
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of expansions and |Γ0 JB| =b2(Z) by (2.1). This yields the result. Π

The curve p(B) is contained in π~\D) but may be different from it. There

is a function d: <£(;r)->{0, 1} such thai p(B)=D(d), see (1.1).

(2.3) Proposition, d is α selection function for D.

Proof. We have to verify (1.3). Since V is a Q-homology plane, TB is a
tree, so the curve B is connected; hence so isp(B)=D(d) and therefore its weight-
ed dual graph ΓD(d).

In order to verify (1.3.2) we have to analyze in detail the passage from X
toZ.

We write p as a composition of σ-processes

P '. Z = Zjt+i » Zff —> —> Zl > ZQ = X .

The p-processp. blows up a point x}. to E(x}).
Let DjdZj denote the total transform of D(d)=: D0 and BjdZj the image

of B. Then BjdDj. The graphs Γfl;. and TDj+1 are related in either one of
the following ways:

(2.4) The process p. blows up a double point x. of Dj to E(XJ). Then Γ Dj+1

is obtained from ΓD;. by subdividing the edge x.^TiD.. This p. is called
subdivisionαl expansion.

*J

B A B

ΓD. =^ * ZΛ,+I

(2.5) The process p. blows up a regular point x. of D. in the component A.
Then TDj+ι is obtained from TD. by attaching a new edge to ΓZX at the
vertex A^T0Dj. This^>;. is called a sprouting expansion.

E(Xj)

TDJ+l

The graphs ΓB}. and Γ5y+ι are related in either one of the following ways:

(2.6) Bj+l is the total transform of Bj. In this case ΓJ5y+1 arises from TB.
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either by subdividing as in (2.4) or by sprouting as in (2.5).

(2.7) Bj+1 is the proper transform of Br If pj is subdivisional, then TBj+1 is

obtained from TB. by removing the edge Xj^TiBj. If pj is sprouting, then
TBj and rJ3y+1 are combinatorially isomorphic.

Of course, passage from Bj to Bj+1 changes the weights.

The geometric effect in (2.7) is the following. If pj in (2.7) is subdivisional,

then the edge x.^T^Bj must be contained in a cycle, for otherwise TBj+l and

hence TB would not be connected. Therefore in this case s(TBj+ι)=s(TBj)
— 1, i.e. the number of cycles decreases by one (see the notation introduced be-

fore (1.2)). If pj in (2.7) is sprouting, then TBj+1 and TBj are homeomorphic.

This shows:

Since TD(d) has s(d) cycles and TB is a tree there are exactly s(d) subdivi-

sional expansions (2.7).

The total number w= \ Γ0p~ l D(d) \ — \ T0B \ of expansions (2.7) is counted

as follows.

\T0(πp)-lD\-\T0B\ =

IT 0 (πpΓ l DI - IΓ0/r1 D(d)I + IIV)-1 D(d)\-\T0B\ =

\T0π'1D\-\TQD(d)\ + \T0p-1D(d)\-\T0B\ =

r(d)+w .

This uses the definition of r(d) in (1.2). From this string of equalities, (2.2.4)

and the previous paragraph we obtain

\T0D\-b2(Y) = r(d)+w > r(d)+s(d).

This is half of (1.3.2)

In order to prove equality we have to use the assumption that V is a surface
of general type. For if we would not have equality, then a sprouting expansion

pj would occur in (2.7). In that case E(x}) intersects Bj+1 in a single point and

E.=E(XJ)\E(XJ) Γ\Bj+1 is a carve in Zj+l\Bj+1 which is isomorphic to the affine

line C. The proper transform of this curve in V=Z\B is also isomorphic to C.

This contradicts a result of ZAIDENBERG [1988] and of MIYANISHI—TSUNODA
[1990], which asserts that a homology plane of general type does not contain

such a curve. Π

We use the discussion in the proof of (2.3) to state another fact. We call

the expansion p: Z-+X minimal if the following holds. Let pι\ Z^X be an

expansion and BlC.Zl a curve such that (2.2) holds for (pl9 Bλ) in place of (p, B).

Suppose moreover that ω: Z->ZX is an expansion such that ω~1(B1)=B and
pl ω=p. If in any such situation ω is an isomorphism, then (p, B) is called

minimal.
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(2.8) Proposition. If p: Z->X is minimal there are no sprouting expansions

(2.6) and (2.7).

Proof. In the proof of (2.3), by verifying (1.3.2), we have already seen that

there are no sprouting expansions (2.7). Suppose p. is a sprouting expansion
(2.6). Then E(Xj)dBj+1 is a (— l)-curve. It represents a vertex in T0BJ+1

which is not a branch point, i.e. is contained in at most two edges, and which
is not contained in a cycle. One now shows by induction that TBr for r>j-\-\

contains a vertex with weight — 1 which is not a branch point and which is not

contained in a cycle. The fact that Bj+l=B contains such a curve shows that
p: Z-*X is not minimal. Π

Using (2.8) it is now easy to verify by induction onj:

(2.9) Proposition. If p: Z-+X is minimal, then ΓDj is a subdivision of ΓDf,
i<j, and TBj is a subcomplex of ΓZ);.

Proof of Thoerem A. Let V be a homology plane of general type. In the
preceding discussion we have already obtained the following data: A minimal
rational surface Y, a rational curve D in Y, a selection function d for Z), an
expansion/*: Z-+X and a curve BC.Z such that V^Z\B.

If (/>, β) were not minimal we could pass to a minimal situation by suitable
contractions. So let us assume that (p, B) is minimal. This is then perhaps no
longer the expansion which appears in the diagram before (2.2), but (2.2) and

(2.3) still hold and therefore also (2.8) and (2.9).

We claim that Σp is a cutting set for (Z), d) and satisfies (1.4).
Property (1.4.2): This follows from (2.8).
Property (1.4.3): In geometric terms Σj>CΓ1Z)(rf) is precisely the set of

those edges which are subdivided when we pass from TD(d) to TDk+1. By

minimality of (p, JB), the curve B does not contain the (— l)-curves in p~l(x),
x&Σp. If p"\x) contains more than one (— l)-curve, then TB would not be
connected; the proof is similar to the proof of (2.8). Therefore (1.4.3) holds.

Property (1.4.1): The edge x^T^B. of a subdivisional expansion (2.7) is
contained in an edge of TD(d) and this edge is contained in a cycle of TD(d).
Conversely, each edge in Σpc:T1D(d) contains exactly one edge belonging to a
sudivisional expansion (2.7). Since TB is a tree, 2^ must be a cutting set. Π

A detailed description of expansions together with their weighted dual
graphs will be given in section 4.

We add the following remark. Let P= { p j \ j ^J(x)} be the set of expan-
sions whose exceptional divisor is mapped to x^Σp. There is a unique expan-
sion of type (2.7) in P and this ispj with maximal j^J(x).



HOMOLOGY PLANES AND ALGEBRAIC CURVES 865

3. The discriminant

This section is devoted to the proof of Theorem B. We need a computa-
tion of H2(V) in terms of multiplicities. Cohomology with integral coefficients
will be used. We think of V as being one of the surfaces in a tower.

We begin by recalling some general facts. A curve A in a projective surface
X defines an element (A}€ΞH2(X). There are two ways of explaining this fact.
Firstly, if AdX is an irreducible curve, then A is the continuous image under
/: A->X of an oriented closed 2-manifold A. The fundamental class of A has
an image %A^H2(X) and (A)>^H2(X) corresponds to ZA under Poincare duality.
Secondly, the divisor A defines an element in the Picard group Pic(-X") and <yl)>
is its image under the first Chern class homomorphism Pic(X)-*H2(X).

If 6 is a set of irreducible curves in X we let Z(6) denote the free abelian

group on the elements of β. We thus have a homomorphism

(3.1)

which maps A e 6 to
The following Proposition collects some general facts about expansions.

(3.2) Proposition. Let p : X-* Y be an expansion with set of exceptional divisors
6 p. Then the following holds :

(1) If Be. Y is any curve and B'=p%B denotes its proper transform, then
p*<β>—<βfy=a(εp) (y)for a unique element m(B):=y^Z(δp).

(2) The element m(B), written as a linear combination of the basis elements

E^Qy has non-negative coefficients.
(3) The homomorphism

<P*, «(£,)>: H\Y)@Z(εp] - H\X), (x,y) ^p*(x)+a(y)

is an isomorphism.

Proof. Suppose p is a σ-process. Then (3) follows from the Mayer- Vie-
toris sequence in cohomology by using the fact that a σ-process is the connected
sum with a projective plane. Using this, (1) and (2) follow from HARTSHORNE
[1977], V(3.6). The general case is now a straightforward induction on the
number of σ-processes involved in the expansion. Π

By linear extension the elements m(B) in (3.2.1) yield a homomorphism

(3.3) m: Z(T0D) -» Z(€t)

for any curve DdY and any expansion p: X-*Y. We also use the elements
m(Λ) in the next definition.

(3.4) Definition. If A^TQD and m(A)= Σ m(A,E)E, then
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is called the multiplicity of E in the total transform p*^A) of A.

(3.5) Proposition. Let p: X-*Y be an expansion with set of exceptional divi-

sors 8p. Let Ac:Y be an irreducible curve. The multiplicity m(AίE)ίE^Sp>

is non-zero if and only if p(E)dA.

Proof. This follows by induction on the number of σ-processes from

HARTSHORNE [1977], V(3.5.2), (3.6). D

After this recollection we turn to the cohomological study of complements

of curves.

(3.6) Assumptions. Let C be a curve in the rational projective surface X

with the following properties:

(1) The components of C are rational.
(2) ^(C)=0.
(3) H2(C) is free abelian. A basis is given by the fundamental classes of

the components of C.

(4) IΓ 0CI =b2(X). (Γ0C=set of components).

We do not assume that C has normal crossings.

(3.7) Proposition. Suppose (X, C) satisfies (3.6). Let j: V=X\C-*X denote

the inclusion. Then the following holds:

(1) The sequence

<x(T C) /*
) V ° > H2(X) ^U H2(V) > 0

is exact.
(2) V is a Z- (resp. Q-) homology plane if and only if H2(V) is zero (resp.

finite).

Proof. Consider the diagram

— H2(X, C) < H2(X) < H2(C).

The maps P are Poincarά duality isomorphisms. The bottom row shows part

of the homology sequence of (X, C). By (3.6.3) we can identify H2(C)=Z(T0C)

and then P'W* becomes α(Γ0C). Thus (3.7.1) follows.
The exact homology sequence of the pair (X, C), the assumptions (3.6) and

the fact that H1(X)^H3(X)^0 for a rational projective surface imply: The

groups Hf(X, C) are zero for 0<i<3 if and only if H2(C)-*H2(X) is an isomor-

phism. By Poincarό duality this implies: JΪ*(F)=0 if and only if H2(C)->
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H2(X) is an isomorphism. This holds for integral or rational coefficients.

Since H2(C) and H2(X) have the same rank (3.6.4), the assertions of the
last paragraph are easily translated into the statment (3.7.2). Π

We set L(O)=image α(Γ0C) and obtain under the hypothesis of (3.7) an
isomorphism H2(V)^H2(X)IL(C).

We consider a pair (X, C) that arises from (Y, D) in a particular way:

(3.8) Data and assumptions on (p: X-+Y, D, C).
(1) p: X-^Y is an expansion.
(2) Z)C Y is a curve with rational components.
(3) Σ,cZ).
(4) β: =S(p)=£Q U <?ι disjoint union.

(5) C^D'+Σse^E- (D'=P* D)
(6) C satisfies (3.6).
(7) a(TQD) is surjective and has kernel R.
(8) m0: Z(T0D)-*Z(£0) is the composition of m in (3.3) with the canonical

projection Z(δ)-*Z(S0).

(3.9) Proposition. Suppose data and assumptions (3.8) are given. Then

H*(V) ^ H2(X)/L(C) ^ Z(δ0)lmQ(R) .

Proof. Diagram chasing in the following commutative diagram.

H\X) «Ξ_ L(C)

j <>*,«(£)>

H*(Y)®Z(ff)

a(T0(D))φid

1
R

The map δ is defined as δ '̂,^)^*, y— m(x)).

We express (3.9) more explicitly for the cases of interest. Let R^ t

be a basis for Λ=kernel #(Γ0D), called relation basis. Then

k= \T0D\-b2(Y), b2(Y)+\β\ =b2(X)= |ΓβC| = lΓoDI + 1^1,

whence k= |<?0| . Consider the elements of Γ0ί> as a basis for Z(Γ0D). Then
RJ is an integral linear combination

(3.10) R.
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For A^TQD the element m0(A), see (3.8.8), is an integral linear combination

(3.11) m0(A)= Σ m(A,E)E.
E<EΞ£O

From (3.10) and (3.11) we obtain an equality of the following type

(3.12) mQ(Rj)= ΣJ

The coefficients a(j,E) constitute a (&, &)-matrix A=(\(j, £)), called multi-
plicity relation matrix, or MR-matrix for short.

Now (3.9) can be reformulated as follows.

(3.13) Theorem. Suppose data and assumptions (3.8) are given. Then V=
X\C is a Q-homology plane if and only if the MR-matrix Λ=(λ(j, E)) has non-
zero determinant. T/detΛΦO, then \H2(V)\ = |det Λ | . The surface V is a
homology plane if and only if \ det Λ | = 1 . Π

Proof of Theorem B. We apply (3.13) to (p: Z(p)-*XyD(d),B(p)) for
/>eBl(Z>, d, Φ) in place of (p : X-* Y, Dy C). We have to check (3.8). We have
assumed that a(TQD(d)) is surjective. It only remains to check that B(p) satis-
fies (3.6). Part (3.6.1) holds by construction; (3.6.2) and (3.6.3) follow from
(3.6.1) and because TB(p) is a tree.

In order to verify | TQB(p) \ =b2(Z) we note:

b2(X)-b2(Y)= \T^1D\-\TQD\

^ I

and the definition of s(d) imply

= \T0D(d)\-s(d) .

Moreover we have

b2(Z)-b2(X) = I !>-' D(d) I - 1 Γ0Z>(</) I

= \T0B(p)\+s(d)-\Γ0D(d)\.

The two relations imply the desired equality.
The MR-matrix is again computed from (3.10) and (3.11) which reads in

this case

R^^ Σ^c^A
and

χ-ϊ „,/ Λ J? f^\\ 17 />vt\
' i "*γ * ") W.II -"Ov / *
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The MR-matrίx therefore has the entries

= Σ c)(A)m(A,E,(x)).
'

(3.14)

By (3.5) and (1.4.1) there are exactly two A^Γ0D(d) with m(A, E0(x))^Q, name-
ly the elements called A(x) and B(x) before the statement of Theorem B. Thus
mp(A(x))=m(A(x), E0(x)) and similarly for B(x). From (3.14) we see now that
the ^-column of the MR-matrix Λ is a vector of the form

) mpA(x)+c.(B(x)) mpB(x)) .

Since the Cj(A) only depend on the choice of the relation basis they are inde-
pendent of p. The discriminant Δ(D,p, Φ) is now defined to be the determi-
nant of Λ, viewed formally as a function in the variables (mpA(x), mpB(x)), x^Φ.

Statements (1)— (3) in Theorem B are finally a restatement of (3.13). Π

Theorem (3.13) is more general than Theorem B and allows calculation of
the discriminant without passing to a normal crossing curve. An example of
this type is given in (3.15).

(3.15) The Ramanujam tower. The first non-trivial example of a contract-
ible homology plane was published by RAMANUJAM [1971]. The starting point
was a curve D= R(J S in P2. It consists of a cuspidal cubic R<Σ.P2 and a
regular quadric SdP2 with intersection pattern R S=PJr5Q. Let p: Z(p}~-+
P2 be a standard expansion (1.4) with ΣP={P} We consider the tower con-
sisting of surfaces V(p)=Z(p)\B(p). Then (Z(p),B(p)) satisfies (3.6) and

(p: Z(p)-*P2, D, B(p}) satisfies (3.8) with £0 the (-l)-curve E in p~\P). We
have H2(P2)=Z and α(Γ0Z>): aR+bS\-^3a—2b is surjective with relation
basis given by R1=2R—3S. The expansion p is determined by the multiplici-
ties m(R, E), m(S, E) and m0(R1)=(2m(Ry E)-3m(S, E)) E. Hence 2m(R, E)-
3m(S, E) is the value of the discriminant. The case m(R, E)=m(S> E)—l was
the example given by Ramanujam. The surface with m(R, E)=2, m(S, E)=ί

can be shown to be isomorphic to an example in GURJAR— MIYANISHI [1987].
In the systematic treatment (i.e. in the tower algorithm of Theorem B) we

would first pass to the minimal resolution π: X-+P2 of D. The weighted dual

graphof τr-1(Z))=Cis

-3

-2 -1 -2 (c) -1 -2 -2 -2 -2

It has a single cycle. A selection function must have constant value one. There
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are three cutting sets, consisting of the edges (#), (έ), or (c).

The (— l)-curve 5" can be contracted giving π f : X'-+P2 and (π')~\D) has

weighted dual graph

-3

(a)

-2 -1 1 0 -2 -2 -2

(Dual graphs can obviously be defined, more generally, when all singularities are

ordinary double points.) Because of symmetry of the graph one expects that the

cutting sets (a) and (β) lead to isomorphic towers. This is indeed the case be-
cause one can show that the situation carries an involution which interchanges

(a) and (β). The tower of the last graph contains surfaces which are not con-
tained in the Ramanujam tower, e.g. cut the cycle at a or β with multiplicities

(1, 1). The resulting tree is not minimal and can be contracted to

-2 -1 3

It belongs to a surface with £= —oo. By contraction of the part with negative

weights we see that the surface is isomorphic to the complement of a cuspidal

cubic in P2.

(3.16) Four Lines in general position. Let Llf L2, L3, L4dP2 be four lines
in general position. Then D=Lλ U L2 U L3 U L4 is already a normal crossing
curve. The dual graph T(D) is the 1-skeleton of a 3-simρlex. Up to symmetry
there are two cutting sets Φ and Ψ, as indicated in the next figure.

Φ - {α, δ, c} Ψ = {a, b, d}
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The discriminant in case Ψ is computed in TOM DIECK—PETRIE [1989], (2.10).
We illustrate the computation in terms of the present algorthm. Since <L,.>

is a generator of H2(P2) a relation basis is

(3.17) R, = L,~L2ί R2 = Lt-Lt, R3 = L,-L,.

The indexing of the lines is chosen so that with respect to the figures above

da={Ll,Li} Qb={L2,L<}
( ' ' dc={LltL2} dd={LltL3}.

We use the following notation for the multiplicities: m(L^ E0(x))=Xj. The
values (3.14) are then by (3.17)

λ(l,#) = xl—x2

λ(2, x) = x^Xz

λ(3, x) = #!—#4.

In case Φ only a1? #4, b2, &4, c±, c2 are non-zero. Therefore in this case Φ

(3.19) Λ =
^2 ^ 1 ^

0 c,

Since the multiplicities are positive integers we see that the discriminant never
has the value one. The tower does not contain homology planes. The simplest
element in this tower arises when all multiplicities are 1. This amounts to blow-
ing up the points α, ά, c once. The resulting tree has 4 vertices, a central one
with weight 1 and three edges attached to it with terminal weights — 1. By con-
tracting the three (—l)-curves one arrives at a single curve with weight 4 in P2.
This must be a quadric.

A similar computation in case Ψ yields the discriminant

(3.20) Λ = (b2-b,) 4 ̂ +(^-4) b2 a,.

This tower contains infinitely many homology planes. They are actually con-

tractible: The next Proposition shows that they are simply-connected, and a

simply-connected acyclic manifold is contractible by the Whitehead-Theorem of

algebraic topology.

(3.21) Proposition. Surfaces in the towers of the Four Lines arrangement have

abelian fundamental group.

Proof. The fundamental group of any surface V in the tower is a quotient
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of the fundamental group of P\\jLj=W, since W is obtained from V by re-
moving a submanifold of real codimension two. It is well known that the fun-
damental group of W is abelian. Π

In many interesting cases the selection function must have constant value
one. In this case we can state :

(3.22) Proposition. If a(TQD) is surjective, then a(TQD(d)) is surjective.

Proof. The proof will also show how to obtain a relation basis for a(Γ0D(d))
from a relation basis for α(Γ0Z>). We have

D(d) = C = π~\ϋ) = D'\JiE\Ef=βJ .

We construct a commutative diagram with horizontal isomorphisms

H\X)

α(ΓβC)

From (3.4) we have »*<0;>=<flJ>+α(£) (yf) for suitable y^Z(β^ In or-
der to make the diagram commutative we have to define σ by o (Dj)=(Djίyj)
and σ(E)=E for E^S*. The map σ sends a relation basis to a relation
basis. Π

4. The weighted graph

A basic invariant of a homology plane or any other variety in a tower is
the weighted dual graph. This section collects some facts about graphs and

trees which are related to the tower algorithm:
1. The computation of the weighted dual tree from multiplicities and vice

versa.
2. The computation of the discriminant from the weighted trees.

Weighted graphs and trees are convenient for practical computations. They
can be used to illustrate the theory. Finally they are useful as a heuristic tool.

Many of the results of this section are known, but there seems to be no con-
venient reference for our purposes.

The weighted graphs of standard expansions are obtained from the multi-
plicities by a continued fraction algorithm. Therefore we recall some facts

about continued fractions. The symbol [cl9 •••,£,] f°r a continued fraction is
defined inductivley by [£j=£ι and

(4.1) [cl9 —, c,] = ^—fe, — , c,]-1 .

If 1 ̂ q<.p are coprime integers, there is a unique ontinued fraction expansion
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(4-2) ^=|ft.-,*r]

with integers ct >2. The determinant of the (r, r)-matrix (αίy) with aii=ci

and aij= — 1 if |i— j |=l is denoted D(cly * ,cr). The intersection matrix of
the weighted tree

—cι -c2 —cr

• - ••• ................... -

is the negative of the matrix just considered. Expanding the determinant with
respect to the first row yields for r>3

(4.3) D(cly - cJ^CiD

We compare this with (4.1) and obtain by induction on r>2

(4.4) [*ι, ,*r]

The relation (4.3) can be used to prove by induction on r>3 the following
identity

(4.5) D(cl9 .-, £r-0 D(c2, ..., c,)-D(cl9 -, cr) D(c2, -, c^) = 1 .

This relation shows that the right hand side of (4.4) is a quotient of coprime
integers. It also shows what happens, if continued fractions are turned around.
Namely:

lfp/q= fa, ••-,£,], ϊ ϊ* = lmodjp, and

Our aim is to characterize standard expansions by weights and multiplicities.
We use the following notation. Let M0(A.) and MQ(A+) be a pair of coprime

integers. We set

Associated to these data and to two further integers a-, a+ is the following weight-

ed linear tree.

(4.8)
AL E.(r.l} E_, E0 E, Es^ Af,

Suppose A- and A+ are irreducible curves in a projective surface X and x^A Π B
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is a regular point of transverse intersection of A and B (=an ordinary double
point of A U B). Although it is not necessary to assume at this point that A, and
A+ belong to a normal crossing curve, we use the graph notation and illustrate
this situation by (4.9).

A. A+

Here — a±=A+ A± are the weights. We may think of (4.9) as being an edge
in some larger weighted graph. An expansion p: Z-+X with exceptional set
{x} is called standard if it has the following properties (compare (1.4)).

(4.10)
(1) The dual graph of p~\x) is a linear tree.
(2) p~\x) contains a unique (— l)-curve E0.

(3) If p~\x) φ£Ό> then P ~\χ] has two terminal components. One of them
intersects A- transversely and is disjoint from A+ and the other one
intersects A+ transversely and is disjoint from A,.

We denote, in accordince with (4.8), the exceptional divisors of a standard
expansion p by EJ9 —r<j<s, and assume that Ei Π-EyΦO if and only if
\ί—j\ <1. Finally let Ar

± denote the proper transform of A± and assume that

AL Π £-(r-ι) Φ 0 and A'+ Π £",-1 Φ 0. Forgetting about points in A Π B which dif-
fer from Λ?, the intersection pattern of AL \J p~\x) U A+ is codified by a weighted

graph of the shape (4.8), called the ngraph of A'_ U p~\x) U A +. More generally
the ngraph of a normal crossing curve is the weighted graph obtained from the
weighted dual graph by changing the signs of the weights. That the weights
are actually given by a continued fraction algorithm (4.7) is the partial content
of the next Theorem.

(4.11) Theorem. Let p: Z-*X be a standard expansion with exceptίoanl set
{x} dAΓ\B and use the notation introduced above. Let M0(A±) denote the mul-
tiplicity of E0 in p*(A±) . Then the following holds :

(1)

If r— 1 or s=l} then the corresponding multiplicities are 1.

(2) The multiplicities MQ(A_) and M0(A+) are coprime integers and the ngraph of

AL U p~l(x) (J A'+ is (4.8) with weights determined by (4.7).

Given the curves A+ and xt the standard expansion with exceptional set x is uniquely

determined by the pair (M0(A-.), M0(A+)) and any pair of coprime positive integers

arises from some such standard expansion.
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Proof. We already know from (3.2) that there exists a relation of the tpye

(4.12) p*(A±) = A'± + ̂  Σ_υ M,.(A±) E, .

(We let Ej denote the cohomology class determined by this curve. One can also
read (4.12) as an equality of Cartier divisors.) By induction over the number of
σ -processes involved in p one shows :

(4.13) Ml.l(A.) = l, M.(r.ϋ(A+)=l.

In order to simplify the exposition we assume r>2, s>2 and leave the cases
r= 1 or s= 1 to the reader.

Denote the intersection pairing by <— , — >. For any expansion/): Z-*X
the relation <£*C, Dy=(C,p*Dy holds for divisois C in X and D in Z(see

HARTSHORNE [1977], V(3.2)). In cohomological terms, p%, is the Hopf Umkehr
homomorphism associated to p. This relation implies in our case

(4.14) <P*(A+\ E,y = 0 .

Let

From (4.14) we conclude

(4.15) <α+, £_!> = -Moμ+), <α+,^> = 0 for -

This can be viewed as a linear system for the unknown M.(A+\ — r</<0.
With the help of Cramer's rule we compute

(4.16) M0(A+) - M-(r-u(A+) D(α.(f.1)f -, α_0 .

Thus (4.13) and (4.16) yield the first assertion of (4.11.1).
We intend to show (4.11.2) by induction on the number of σ-processes in

p. We leave it to the reader to check that the induction starts correctly. Giv-
en the expansion^, a further σ-process has to blow up either EQΓ\El or EΌfl^-i.
This follows from the fact that we only allow standard expansions. Let us treat
the case that E0 Π E1 is blown up. Denote the new multiplicities by the letter N.
Then we have

(4.17)
For the induction step we have to show
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We use the identity

(4.19) MQ(A+) M^-MoίΛL) M^A*} = -1 .

This identity is shown by induction on the number of σ-processes by using
(4.17). Instead of verifying the first identity in (4.18) we use (4.6) and verify
(with N±=N0(A±) etc.)

(420) N++N- = ι+M++M-
^ } N* M* '

From (4.17) and (4.19) we calculate

(M++M-) N--(N++N-) M- = -I

and this implies easily using (4.6) and (4.17)

(4.21) M* = M1++M^ = N* .

Then (4.17) and (4.21) yield (4.20). The second identity in (4.18) requires the
verification of

_ M* .

it uses (M++M_)N+-(N++N-)M+=l and ΛΓ*=M++M_, M*=M+-Ml+

+M-— M!_. This finishes the inductive proof of (4.11.2).
Once we know the multiplicities M0(A±) of the expansion p we know by

(4.11.2) the weigths. The weights, on the other hand, determine uniquely the
inverse contraction, because p, being a standard expansion, has a unique (— 1)-
curve at every step in the iteration of σ-processes (proof by induction). Hence
p is uniquely determined by the weights.

Finally, we show by induction that any pair of coprime positive integers
arises as the pair of multiplicities for some standard expansion. Given such in-
tegers MQ(AJ) and M0(A+) we can formally write donw the ngraph (4.8). By
properties of continued fractions, either a^1=2> #1>2 or tf_!>2, ^=2. Sup-
pose ai=2. Then we can formally contract the (— l)-curve and arrive at a tree
with weights

(4.22)

These weights arise again from a continued fraction expansion. Namely, if

U+V „ , ,, U+V r ,— — = [2, *„ ..-, br], —r- = [Cl,.», cs],

then
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\J ΓΊ Ί ι LJ r ι T

Now turn the continued fractions around (4.6). By induction we know that
(4.22) is realizable. This finishes the proof of (4.1 1). Q

For completeness, we determine all multiplicities in terms of weights.

(4.23) Proposition. Under the hypothesis of (4.11) the multiplicities Mj(A±)
in (4.12) are given as follows:

(1) Mj(A+) = D(as-ly α.-!,

(2) M.(A+) = />(*-(,-!>, -.., *_

(3) M.μ_) = D(α-r-l, *_<,_!

(4) M/(^.) = D(nf-1,...,αy+1)

Proof. The proofs for (2) and (4) are similar to the proof in the casey=0.
Let us prove (1) by downward induction ony. We have

This starts the induction. The induction step follows from

0 = </>* A+, E.y = M + ι + )-M^ + )

by using (4.3), with M.+1(A+) replaced by 1 in case/=ί— 1.
We mention the special case that one of the multiplicities MQ(A±) equals

1. This case was left to the reader in (4.11) and (4.23). If MQ(A+)=1 and
MQ(A-)=n, then (4.8) has the form (4.24).

1 2 2 a++l
(4.24) - - * ............. -

A' E0 E, En^ A',

Our next task is the computation of the discriminant in terms of weights.

(4.25) Theorem. Let p: Z(ρ)-*X, B(p) be an object in a tower (1.6),
Bl(D, d, Φ). Denote by D(p) the determinant dtt(TQB(p), w) of the weighted dual
graph B(p) (see section 2) and by Δ the discriminant of the tower (see Theorem B).
Then \D(p)\ = \Δ(mp)\2.

The proof of this Theorem is based on some general topological facts which
we recall first.

(4.26) Lemma. Let B be a compact, connected, oriented ^-manifold with
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boundary S—dB. Suppose H*(B; Q)=0. Then S is a Q-homology 3-sphere,
H2(S; Z)=0 and

I H,(S Z) I = I kernel * : H,(B Z) -»• H^B, S; Z)\2 .

Proof. By Poincare duality H2(B, S; Q)^H2(B;Q)=0. The exact ho-
mology sequence of (B, S) yields H^S; Q)=0. Since H^S, Z) is a torsion
group we obtain from duality and universal coefficients

H2(S) at H\S) at Horn (£,(£), Z) = 0 .

For similar reasons we have a commutative diagram

H2(E) -̂ » H2(B, S) -̂ * Ext(^(B, S), Z)

H2(B,S)-^> H\B) - Ex^H^B), Z) .

By algebra, cokernel z*es kernel z. The exact sequence

0 -> cok i* -> jy^S; Z) -> ker ί -> 0

yields the last assertion of (4.26).

Proof of (4.25). We apply the preceding Lemma in the following situation.
Let Z) be a normal crossing curve in the projective surface Z. Let UdZ be a
closed tubular neighbourhood of D in Z, diffeomorphic to the manifold which
is obtained by plumbing the normal disk bundles of the components of D. Then
the interior of B—X\U° is diffeomorphic to V and B is a manifold with bounda-
ry dB=S. If V=Z\D is a Q-homology plane in a rational projective surface
Z, then the exact homology sequence of (Z, D) implies H^Z, D)=0. because
H1(Z)=0 and D is connected. By excision and the homotopy equivalence
Z)— U we obtain H^B, S^H^Z, U^H^Z, D)=Q. Therefore (4.26) yields in
this case

1 (̂5, Z)| = 1^(7^)1'.

We know already that \Hl(V, Z)\ = |Δ(%)| for V=Z(ρ)\B(ρ). It remains
to be shown that | H^S, Z)\ = \ D(p) \ . This uses the fact that S=dU. Since
H2(S)=Oy H1(U)=0 we have an exact sequence

0 - > H2(U) -^ H2(U, S) — > H^S) - * 0

and by duality and universal coefficients, H2(U, S)^H2(U)^Rom(H2(U), Z),
the map p is transformed into the adjoint H2(U)-*Hom(H2(U), Z) of the inter-
section pairing H2(U)χH2(U)-*Z. By the very construction of U this inter-
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section pairing is specified by the intersection matrix of Γ0jB. Hence

I cok p| is the absolute value of the determinant of the intersection matrix. Π

(4.27) The Determinant Algorithm.

We use (4.25) to derive an algorithm which yields a computation of the dis-
criminant as a multilinear function from the data (fl, d, Φ) which specify a tower.

Suppose x is an edge in the weighted dual graph of D(d) which belongs to
Then the ngraph of D(d) looks like:

(4.28)
A+

(The dots illustrate the fact that x is part of a larger graph.) We have to "cut
the cycle at x". The first step in the algorithm removes the edge x and replaces
the adjacent weights in (4.28) formally by

(4.29) v ":.

The weights a+ are now formal expressions

in indeterminates M0(A±), called multiplicity variables. Having applied this

process successively to all edges #eΦ we obtain a tree where some of the weights

are no longer integers but rational functions in the multiplicity variables. Nev-

ertheless, we still have the determinant of the weighted tree. Multiply the
resulting determinant by the product of all multiplicity variables.

(4.30) Proposition. The rational function, resulting from the preceding algo-

rithm, is (up to sign) the square of the discriminant Δ(A d, Φ).

Proof. The proof is a generalization of the continued fraction algorithm

(4.4) for the computation of the determinant of a linear tree. Namely, consider

the determinants of the weighted trees T and 7" which are related in the follow-

ing manner: There is an edge in T with weights b and c at its boundary ver-

tices. The vertex with weight b is a terminal vertex of T. Remove this edge

and replace the weight c by c—b~l and call the resulting weighted tree T'. Then
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(4.31)

The proof is the same as for (4.3). The ngraph of B(p) is obtained by replacing
an edge (4.9) by (4.8) and then removing the vertex E0 and the adjacent edges.
The wighted dual graph is obtained by reversing signs of weights in the ngraph.
Now use (4.31) and induction on the length r, s of the continued fractions. Π

(4.32) Example. We apply (4.27), (4.30) to find the weighted dual graph
D(d) for the D and Ψ in (3.16). We obtain the following weighted dual graph:

(i)

( 1 ) = 3 _ _
a v

•M)

(2)
(3) = 2-

(4) = 3-

X

a+b

(4) (3)

((l)-(4) show the actual weights and not their negatives. The labeled dotted
lines indicate the "cuts" and their multiplicity variables.) The reader may wish
to compute the determinant and check the result against (3.20).

(4.33) Remark. The algorithm (4.27) can be applied to each connected
weighted graph and leads to a rather curious combinatorial problem. Cutting
cycles always yields a quadratic form in the multiplicity variables. In the geo-
metric case this form is the square of a linear form. Simple examples show
that this is not always the case. Which graphs have the property, that all pos-
sible cycle cuttings yields squares of linear forms ?

Proof of the Addendum to Theorem A. If V(p)=Z(p)\B(p) is a homology
plane, then by (3.7.1) the map <x(Γ0B(p)) is surjective. There is a commutative
diagram
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where q maps a component L of B(p) to p*(L) this is either a component of

D(d) or zero. Since p* is surjective too, so is a(ΓQD(d)). Π

5. Birational maps

A fixed homology plane V can be contained in towers arising from different
pairs ( Y, D), D a curve in the minimal rational surface Y. We want to study
this ambiguity more closely. This section only indicates some examples. A

systematic investigation will be published elsewhere.
We call D a plane divisor of V in case Y=P2 and otherwise a minimal di-

visor of V. Plane divisors which are arrangements of lines are classified in TOM

DIECK [1990].
If D is a plane or minimal divisor of a homology plane in a tower, it is the

plane or minimal divisor of every homology plane in the tower : so it is a function
of the tower. It generally happens that some homology planes in a tower with

plane or minimal divisor D are isomorphic to homology planes with another

plane or minimal divisor.

Suppose the surfaces X\C^ and X2\C2 are isomorphic. An isomorphism is
a birational map φ: X1-^X2 which can be written as a2 aϊl with expansions a{:

Z-^Xf having their exceptional sets Σ(α, ) in C, . Then C=aT1(Ci) and <x{ in-
duces an isomorphism

Let φ=cc2 OLΪI YI* - Z - > Y2 be a birational isomorphism and let Did Y1

be a curve such that ^(a^dD^ Let p^. X1 ^>Y1 be a contraction, CίdXl a
curve and D1=p1(C1). Then there exist expansions/,^), and p2 such that the

following diagram is commutative

**/!>"*!'•

Let C2=/~1(C1), so that / induces an isomorphism X2\C2^Xι\Cl and set
D =p2(C2). Then D2da2aΐl(Ό^, but equality does not hold in general. In

particular, if Yl and Y2 are minimal rational surfaces and Xι\Cι is a homology

plane with minimal divisor Dly then the same homology plane has minimal divisor

D2. In order to deal with this in practice one has to understand the way in

which D2 differs from a2 αf^A )
We will use the following notation: If p: Z-+Y is an expansion and PeΣ^,

then E(P) denotes the exceptional divisor in the first blow up of P occuring in

the expansion^.
To see how D2 differs from a2 a.T\D) in genearl it suffices to see what hap-
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pens in two simple cases: φ=aϊ1 or φ=a2 and a.{ is a single σ-process. The

case φ—cc2 is trivial, because then D2=a2(D^).
Let &! blow up the point x^D^ There are two cases: #eΣ(j£>ι) or

If Λ?φ2(/>ι) we have a diagram

IP

and / blows up the "same" point as aλ does. In this case j>/"1(C1)=αΓ1(A)
If ^eΣ(^>ι) we have a factorization p1=oc1p

X2

and the exceptional curve .E^^αf^Λ?) may or may not be contained in

p(Cι)=p(C2)9 so that D2 is either the total or the proper transform of D^ There-
fore this case depends on the properties of (/>, CΊ).

Now we consider a quadratic transformation

φ(S) = a2(S) a^S)-1: P2 - P2

It is specified by 3 points S={xlf x2, x3} cDjCP2 which are not collinear:
The points are blown up, ctι(S): Z-*P2, and the proper transforms of their
connecting lines are contracted, az(S): Z-+P2, see HARTSHORNE [1977], V(4.2.3).

(5.1) Proposition. If φ(S) is a bίrational map of this type, ίhen the compo-

nents of D2 are given as follows:
(1) The φ(S) images of those components of D± which are different from the

connecting lines of S (if present in D^.
(2) The a2(S) images of those exceptional curves E(xi) of the contraction

&i(S) which are components ofp(C2).

Thus D2 may have more or fewer components than Dλ.

Proof. This follows immediately from the discussion of the special situa-

tions above. Π

(5.2) Five Lines. Let DC P2 be a configurations of five lines Z/, Lί9 L2, L3, L4,

where the Li are in general position and L passes through two double points P
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and Q of U ί.i L,.
Blow up the points P and Q and contract teh proper transform of L. Then

one arrives at a configuration of 6 lines in PlxP1, up to isomorphism
P1X {0, 1, 00} (j {0, 1, 00} χpl. For further information about this confgu-

ration see MiYANisπi-SuGiE [1991] and ZAIDENBERG [1991]. This configuration

has to be used if the proper transform of the exceptional curves E(P) and E(Q)
are contained in the compactification divisor of the homology plane having

L U LI U ••• U L4 as plane divisor.
If this is not the case, say E(P) is missing, apply the quadratic transforma-

tion with S= {P, Q,R}, where R is a further double point of U l-i L{. The
resulting curve has the form M1U M2 U M3 U Λf4, where Mt CP2 are lines, and
MU M2y M3 have a common point. This arrangement has been used (essentially)

by GuRjAR-MiYANiSHi [1987] to construct homology planes with /e=l.
Homology planes which are in towers of Four Lines (3.16) are contained

in towers of Five Lines. In order to see this apply again a quadratic trans-
formation with S= {P, Q, R}. But this time assume that the curve E(R) is not
contained in the compactification divisor. Then, by applying (5.1), we see that

Four Lines result.

(5.3) Contractible surfaces with /e—1. In TOM DIECK-PETRIE [1990] a sim-

ple construction of contractible homology planes with κ=\ was given. We

showed indirectly that our surfaces were isomorphic to those of GURJAR-
MIYANISHI [1987]. Here is a direct proof by birational maps. Let C(n, b)dP2

denote the curve given by xn=yb zn~b, (n, b) coprime positive integers. Let Lz

be the line z—0. Blow up a regular point of C(n, b) and let V(n, b) denote the

complement of the proper transform C'(n, b)\jL'2. This was the way we defin-

ed the homology planes V(nyb). Now add the lines Lx, x~0, and Ly, y—Q
and consider D=C(n,b)\jLx\jLy\jLz. Resolve singularities and get a normal
crossing curve with weighted dual graph (see TOM DIECK-PETRIE [1990], (2.7) for

the computation)

-w(-r) -w(-l) -1

-1 .0 -1.

• 1

•L,

—w(s) — zυ(l) —1 —w(—l) —w(-

using the continued fraction expansions

nib = [w(s), -, w(l)], n/fl - [w(-r), -, w(-l)]

with a=n—b, 2a>n. It is now easy to see that this graph can be contracted
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to the Gurjar-Miyanishi configuration of four lines: Begin the contraction

with the left and right most (— l)-curves.

(5.4) An arrangement of Miyanishi-Sugie [1988]. They have considered

the follgwing curve Dl\jD2dP2: The curve Dl has degree n and a single sin-

gularity (cup) of multiplicity n— 1; the curve D2 is a line which intersects Z^

in two regular points P, Q with multiplicities D1 D2=(n—m)P+mQ. They
show that such arrangements lead to homology planes and, for ι»=l, to contract-

ible surfaces. We demonstrate that their surfaces arise from Five Lines (4.2).
This shows, incidentally, that they are contractible.

Resolving the singularities of the Miyanishi-Sugie curve gives the following
graph (in brackets: the number of (—2)-curves in a string).

-2 (ro-i) -2 -1

Add (formally) connection of type

—n

-1

— 1 —2 (ιι-m-1) —2

between AE, EC and BD. Then

the resulting graph can be (formally) contracted to the graph of the six lines in
P1XP1 (5.2). Now reverse the procedure to show existence and our claim si-
multaneously. The three (—l)-curves which are used to cut the cycles cor-
respond after contraction to three lines which have to be added to the Miyanishi-
Sugie curve. We leave it as a small exercise for the reader to figure out the

position of these lines.
We finally mention without proof:

(5.5) The Ramanujam tower. The tower (3.15) is contained in towers aris-
ing from a quadric with three tangents. The Ramanujam surface itself is con-

tained in a tower of Five Lines.
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