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It is well known that over a left Notherian ring any direct sum of injecive
modules is again injective, and every injective module is a direct sum of inde-
composable modules. Faith [6] introduced Σ-injective modules as modules M
such that all direct sums of copies of M are injective. Cailleau [2] showed that a
Σ-injective module is a direct sum of indecomposable modules. The concept
of Σ-injective modules had several intersting developments and applications
(see e.g. Faith [7]). Also, some generalizations of Σ-injective modules, such
as Σ-quasi-injective modules (Cailleau-Renault [3]), or Σ-M-injecitve modules
(Albu-Nastasescu [1]), were studied. Of special interest are Σ-pure-injective
modules which were introduced and investigated extensively by W. Zimmermann
and B. Zimmermann-Huisgen [22, 23, 24, 25]. These modules include, be-
sides Σ-injective modules, also Π-projective modules (i.e., modules M such that
all direct products of copies of M are projective).

Harada [12] studies Σ-injectivity in the context of Grothendieck categories
and used it to characterize QF-categories. In this paper we continue the study
of Σ-injectivity in the general categorical setting. One of our motivations
comes from the fact that, by using the functor ring techniques of Gruson and
Jensen [10, 11], serveral decomposition properties of (Σ-) pure-injective modules
(over a ring with identity) can be obtained rather easily from the correspond-
ing properties of injective obejcts in a Grothendieck category.

In Section 1 we will work in a Grothendieck category <Jl with a family of
finitely generated generators {GΛ/αGΩ}. Our purpose is to study the basic
properties of Σ-injective objects, but sometimes we require just some weakened
forms of the injectivity. An object M^Jl is called CS [4] (or extending
[16, 17]) if every subobject of M is essential in a direct summand. Extending
Okado [16], we show that if M^JL is a CS object such that for each α E Ω , Gtf

has ACC on the subobjects {Ker///eHom(GΛ, M)}, then M is a direct sum of
indecomposable objects (Proposition 1.5). Consequently, any CS subobject of
a Σ-injective object in Jl is a direct sum of indecomposable objects (Corollary
1.6). Further, generalizing a result of Lawrence [14] on self-injective rings, we
show that if A and M are objects of JL and M is ^4-injective, and K is an in-
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finite cardianl such that | Horn (-4, M)\ <K, then any well-ordered ascending
chain of the subobjects of A of the form Π /eκ kerf with K ^Hom(A9 M) has
cardinality <K. In particular, if M is injective in Jl and |Hom(Gα}, M)\ <K0

for each αGΩ, then M is Σ-injective (Corollary 1.9). Next, we give a criterion
of 2-injectivity, inspired by Faith-Walker [8], that an injective object M^Jl
is 2-injective if and only if there exists an infinite cardinal m such that the in-
jective envelope of any direct sum of copies of M is a direct sum of m-generated
objects (Theorem 1.12). Finally, an application of this criterion is given for Σ-
CS objects.

In Section 2, we are concerned with Σ-pure-injective modules over rings
with identity. By using the functor ring techniques of Gruson and Jensen
[10, 11] (cf. Wisbauer [21]) and the results of Section 1, we are able to recover
(and extend) several known properties of 2-pure-injective modules which were
obtained in [22, 23, 24] by different methods.

1. Injective and CS objects in Grothendieck catgeories.

In this section, we will always assume that Jl is a locally finitely generated
Grothendieck category, with a family of finitely generated generators {GΛ/αGΩ}.
For the basic definitions and properties concerning Grothendieck categories we
refer to [19].

An injective object M in Jl is called Σ-injective if all direct sums of copies
of M are injective. Let A and M be any objects in Jl, then a subobject
B of A is called an M-annihilator if B— Π / e # Ker/ for some subset K of
Horn {A, M). M is called A -injective if every morphism from a subobject of
A to M can be extended to a morphism from A to M. The injective envelope
of an object M is denoted by E(M).

The following result was proved by Harada [12, Theorem 1] and gen-
eralizes the characterization of Σ-injective modules of Faith [6].

Lemma 1.1. Let M be an injective object in JL\ then the following conditions
are equivalent:

a) M is Σ-injective
b) M(N) is injective
c) For each a^ΓL}GΛ has ACC on M-annihilator subobjects.

A short exact sequence 0-»^4-».B->C->0 in Jl will be called a pure se-
quence when the induced morphism Horn (F, B)-+ Horn (JF, C) is an epimor-
phism for every finitely presented object F of JL. In this case A is called a pure
subobject of B. An object M e J is called FP-injective if it has the injecti-
vity property with respect to any short exact sequence 0-»y!-»B-»C->0 with
C finitely presented. We observe the following simple fact.
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Lemma 1.2. Let N be a subobject of an FP-injective object M in <Jl. Then
N is pure in M if and only if N is FΊ*-injective.

Proof. See e.g. Wisbauer [21, 35.1].

For the next two result we require that J be a locally finitely presented
Grothendieck category. In particular, the following proposition extends the
equivalence (a)<=>(c) of [21,28.7], while its proof follows partially the ideas in
[21, 28.4].

Proposition 1.3. Suppose that Jt has a family of finitely presented gen-
erators {GJa^Cί} and that M is an ¥V-ίnjectίve object of <Jl. Then M is Σ-
ίnjective if and only if for each a^Ω, GΛ has ACC on M-atlnίhίlator subobjects.

Proof. The necessity follows from Lemma 1.1. For the converse, by
Lemma 1.1 it is enough to show that M is injective, or equivalently, M is GΛ-
injective for each α E Ω (see [12, Lemma 1]).

Let αGΩ. We want to show that any morphism /: A->M with A^GΛ

can be extended to g: GΛ->M. First, the same argument of [21, 28.3 (i)] allows
us to deduce that there exists a finitely generated subobject Z^A such that for
any h: GΛ-^My we have that ZciKer h implies ^4<ΞKer h. Let us denote by U:
Z^>A and ω: A->GΛ the canonical inclusions, and consider the morphism f°u:
Z->M. Since GJZ is finitely presented and M is FP-injective, we have that
there is g: GΛ->M such that goωou=fouy that is, Ker (g°ω—f)Ώ.Z. We are
going to show thatgoω=f, so that£ extends/.

Suppose on the contrary that g°ω^rf. Then there is some finitely generat-
ed subobject Y^A such that (g°ω—f) (Y)φO. Clearly we may assume that
Z^Y. Now, since Y is finitely generated and M is FP-injective, there is some
h: GΛ-+M such that YcKer (hoω—/). If we now consider the morphism
g—h: GΛ-^M, we see that Z<ΞKer {g—h). By the above remark it follows that
AcΞ:K.er(g—h), that is, g°ω=hoω. But then Y<Ξ^K.er(goω—f)y a contradiction
which completes the proof.

Corollary 1.4. Suppose that Jl has a family of finitely presented generators
{GJa^Ω}, and let N be a pure subobject of a Σ-injective object M in Jl. Then
N is Σ-injectίve.

Proof. By Lemma 1.2, N is FP-injective. By Lemma 1.1, for each
GΛ has ACC on M-annihilator subobjects. But each iV-annihilator subobject
of GΛ is also an M-annihilator, thus GΛ has ACC on iV-annihilator subobjects.
It follows by Proposition 1.3 that N is Σ-injective.

An object M^Jl will be called CS if every subobject of M is essential in
a direct summand. This is the terminology of [4], while modules with this
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property are also called extending modules by many authors (e.g. [13, 16, 17]).
A family {Xf-//e/} of subobjects of an object M G J is called a local direct

summand of M if Σf e j X% is direct and Έ,i(ΞF X{ is a direct summand of M for
any finite subset F^L In the case that J,IeI X{ is a direct summand of M, we
say that the local direct summand is a direct summand.

The next result extends a theorem of Okado [16], and our proof uses a
modified version of his arguments.

Proposition 1.5. Let M be a CS object in JL, and assume that for each

α E Ω , GΛ has ACC on the subobjects {Ker///<Ξ Horn (GΛ, M)}. Then every local

direct summand of M is a direct summand, and M is a direct sum of indecomposa-

ble objects.

Proof. Let X=@iξΞIχ. be a local direct summand of M. Since direct
summands of CS objects are also CS, we may assume without loss of generality
that X is essential in M.

Suppose that I Φ M . Let £: M-^M/X bz the canonical projection, then
there is some αGΩ and a morphism g: GΛ->M such that £°gφθ. By. the hy-
pothesis, the set of kernels of the morphisms {g: Gα.-»M/£o£φ0} has a max-
imal element, say Ker/.

Take any X'=®i€ΞF X{ with F finite. We claim that X' Π I m / = 0 . Let
p: M->M\X' and π: MjX'-^MjX be the canonical projections. It is clear that

πop=£ and p splits, say^>oω=l. Hence ε°ω°p=πopoωop=πop=£, and if we
put h: GΛ->M as h=ω°pof then Ker/QKer h and £oh=£oωopof=£ofφO, so
that Ker/=KerA. But Ker h=f-\Ker(ωop))=f-\X'), so /"1(X /) = Ker/.
Thus clearly X' Π Im/=0.

But X is the sum of all the summands of the form © f e/? X{ with F finite.
Therefore we have -XTlIm/=0 which contradicts the fact that X is essential
in M. Thus we have X=M.

Now we use the just proved fact to show that M is a direct sum of inde-
composable objects. First we show that every nonzero direct summand D of
M contains a nonzero indecomposable direct summand. Without loss of gen-
erality we may assume that D=M. Let X be any nonzero finitely generated
subobject of M. By Zorn's lemma, there exists a local direct summand
{Ajlj^J} maximal with respect to the property that Θye/ A} does not contain
X. Put A=(BjejAj9 then M=Aξ£>N for some subobject N. Suppose that
N is not indecomposable, then N=N1£BN2, Nx and iV2 are nonzero. Now the
maximality of {Aj/j^J} implies that X^NX®A and X^N2ξ&A, hence X^A,
a contradiction. Now, again by Zorn's lemma, there exists a maximal local
direct summand consisting of indecomposable objects {£/λ/λ^Λ}, and clearly

Our following corollary extends Cailleau [2].
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Corollary 1.6. Let M be a Σ-injective object in <JL and N a CS subobject

of M. Then N is a direct sum of indecomposable objects. In particular, M is a

direct sum of indecomposable objects.

Proof. By Lemma 1.1, GΛ has ACC on Λf-annihilator subobjects, for each
αGΩ. Thus each GΛ has ACC on the subobjects {Ker///GHom(GΛ, ΛΓ)}.
Then apply Proposition 1.5.

For the next corollary we need to recall some definitions. An object
A^LJI is said to have finite rank if there are no infinite independent families of
subobjects of A (see e.g. [19, p. 126]). An object M^Jl is called nonsingular
if for any object N^Jl and any nonzero morphism f:N->M> K e r / i s not
essential in N. M is called singular if there exists an epimorphism g: N->M
with Ker£ essential in N.

Corollary 1.7. Let M be a nonsingular CS object in <Jl and suppose that

GΛ has finite rank for each a^Ω. Then M is a direct sum of indecomposable ob-

jects.

Proof. Consider any morphism / : GΛ->My and we claim that Ker/ is
essentially closed in GΛ, i.e. Ker/ has no proper essential extensions in GΛ.
Suppose it is not so, then Ker/ is essential in a subobject A of GΛ with

Then there exists Gλ, λ ^ Ω , and a morphism g: Gλ->A such that
Let e be the inclusion of A in GΛ, and put h=f°eogy h: Gλ-»M.

Then clearly AφO and Ker h is essential in Gλ, which contradicts the nonsingu-
larity of M. Hence Ker/is essentially closed in GΛ.

Suppose that there exists an infinite strictly ascending chain

Ker/jCKer/jC ••• c K e r / w C •••

where/-: GΛ->M. Then for each ny there is a nonzero subobject Cn of Ker/n + 1

such that CMΠKer/ n=0. It is clear that the family {Cn/n=l, 2, •••} is inde-
pendent which is a contradiction because GΛ has finite rank. Now it follows by
Proposition 1.5 that M is a direct sum of indecomposable objects.

Our next theorem generalizes a result of Lawrence [14] about the length
of well-ordered ascending chains of left annihilators in a left self-injective ring.
The proof below essentially follows Lawrence's idea, but our arguments allow
to drop the regularity hypothesis of the cardinal which was in fact needed
for Lawrence's proof of [14, Theorem 4] (see [15, Remark, ρ.9]).

If X is a set, then | X \ denotes the cardinality of X.

Theorem 1.8. Let A and M be any objects in Jl such that M is A-injective,
and let K be an infinite cardinal such that |Hom(^4, M ) | <K. Then any well-
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ordered ascending chain of M-annihίlator subobjects of A has cardinality less than

K.

Proof. We may assume without loss of generality that Hom(yl, M)=

iφsjδ G Λ}, where Λ is an infinite ordinal and | Λ | = K. Suppose now that there

exists a well-ordered strictly ascending chain { L 8 / S E Λ } of M-annihilator

subobjects L8 of A.

Let X a ={/eHom(i4,M)/L δ cKer/}. Then for each δ, L8=ΓifξΞXB

Ker/, and clearly {Jδ/δGΛ} forms a strictly descending chain of subgroups of

Horn(Ay M). Now we claim that for each ordinal S G Λ , there exists a morphism

/ δ GHom(i , M) satisfying the following properties

(1) I f/?<δ, thenL, + 1 eKer(/ δ -/ , ) ;

(2) L8+1 is not contained in Ker(/δ—φδ).

We shall prove our claim by transfinite induction. For δ=0, we know that

Xo cannot be included in φo-\-Xu and hence we may choose fo^Xo such that

fo—φo^Xly thus/0 satisfies (1) and (2). Now suppose that we have proved our

claim for all ordinals less than δ, for some δ6Λ. Define K= \J β<8Lβ+1^L8.

For each β<8, let us denote by fβ the restriction of fβ to Lβ+1. Since the Lβs

from a direct system and fβ: Lβ+1->M is a system of compatible morphisms, there

exists a morphism/': K-+M which extends all the fβ with β<8 (note that if δ

is a successor ordinal, say δ = γ + l , then K=L8 and/' coincides with/y on Lδ).

Now, by the -4-injectivity of M, / ' can be extended to a morphism f: A-+M.

Since Xδ/Xδ+1Φθ, we have that X8 is not included in (φ8— / ) + X δ + i , so there

exists g^X8 such that g<ζ(φ8—f)+X8+1, hence g+f—φ8&X8+i. If we put

ft=g-\-fy then (f8—φ8) (L8+1) Φ0 which shows condition (2) of the claim. Since

g(L8)=0,f8 coincides with / on Lδ and therefore with/^ on Lβ+ι for any /5<δ

(in particular, if δ=y- |- l ,/ δ coincides with/γ on L8). Thus/δ satisfies condition

(1), which proves our claim.

Let B—{J δ e Λ ^ δ As above, we can define a morphism W \ B-^M such

that h' coincides with fβ on Lβ+1 for every /3eΛ. Since M is ^4-injective, h'

can be extended to a morphism h: A->M. But we have h=φ8 for some δGΛ.

Since h coincides with f8 on L8+1, it follows that (f8—φ8) (L8+1)=0 which is a

contradiction. This completes our proof.

Corollary 1.9. Let M be an injective object in <JL, and suppose that

I Horn(Gβ, M) I <K o for each α G ί l . Then M is ^-injective.

Proof. It follows by Theorem 1.8 that GΛ has ACC on M-annihilator

subobjects for each α ^ Ω . Thus M is Σ-injective by Lemma 1.1.

Recall that an object M G c i is called a cogenerator of <Λ if every object

A of <JL can be embedded into a product of copies of M. It is easy to see that

if M and K are objects of Jl and L is a subobject of K, then K/L is embedded

into a product of copies of M iff L is an Λf-annihilator subobject of K.



DECOMPOSITION PROPERTIES 101

Corollary 1.10. Suppose that Jl has an injectίve cogenerator M such that

I Hom(GΛ, M) I <X0 f
or e a c n oc^Ω. Then Jl is locally Noetheran.

Proof. By theorem 1.8, GΛ has ACC on M-annihilator subobjects. Since

M is a cogeneiator, each sub object of GΛ is an M-annihilator, so GΛ is Noetherian

for each αEΞΩ. Thus Jl is locally Noetherian.

Now we are going to prove a criterion of Σ-injectivity which is essentially

motivated by Faith-Walker [8]. We first give a categorical definition of m-

generated objects, for an infinite cardinal m. Let M be an object of JL and

m an infinite cardinal, then we say that M is m-generated if there exists an

exact sequence φ ί e / A{->M->Q, where each A{ is finitely generated and | / | < m .

Osofsky [18] defined the concept of m-generated objects for any Abelian category

with exact direct limits, and it is easy to ckeck that her definition coincides

with the above definition in the case of locally finitely generated Grothendieck

categories.

We observe some elementary properties of m-generated objects.

Lemma 1.11. Let m be an infinite cardinal, then the following hold:

1) If M is m-generated in Jl and M e 0 . e / Nh then there exists Γ^I with

\Γ\<m such that Me0. e / /ΛΓ..

2) There exists a cardinal c (depending on m) such that for any m-generated

object M of Jly the set of all the subobjects of M has cardinality <c.

Proof. 1) Straighforward.

2) Let G= ΘajeQ GΛ, then G is a generator of Jl. If M is any m-generat-

ed object of Jly then there is an exact sequence G(m)->M->0. Let c be the car-

dinality of the set of all the subobjects of G ( m ), then it is clear that the set of

all the subobjects of M has cardinality <c.

We are now able to prove the following result.

Theorem 1.12. Let M be an ίnjectίve object in Jl. Then M is Σ-injective

if and only if there exists an infinite cardinal m such that the injectiυe envelope of

any direct sum of copies of M is a direct sum of m-generated objects.

Proof. Suppose first that M is Σ-injective. By Corollary 1.6, M and

hence all direct sums of copies of M are direct sums of indecomposable injective

objects. But an indecomposable injective object L is the injective envelope of

any nonzero finitely generated sub object of L. Thus the class of all indecompos-

able injective objects of Jl is a set. Therefore there exists a cardinal m such

that each indecomposable injective object in Jl is m-generated which proves the

necessity.

For the converse, by Lemma 1.1 it is enough to show that M w is injective.
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Without loss of generality, we may assume that M is m-generated. By Lemma

1.11, there is a cardinal c such that the set of all the subobjects of any m-

generated object in Jl has cardinality <c. Let M^M for all i^I, \I\ =2c>cy

and let 2?=E(® i e / M{). By the hypothesis, we have E=®j(=j Ejy where each

Ej is m-generated. Take any i^I and consider Miχ. By Lemma 1.11, there

exists JiCj with | Jx \ <m such that M ^ c φ ^ Es. Then clearly ®y e / l Ej is

m-generated, so θye/j Ej n a s ^ ^ subobjects. Suppose that M{ Π (θyeΛ <Ey)=f=O

for all ί e / , then θye/j 2?y must contain 2C independent subobjects, a contradic-

tion. Thus there is z 2 e/ such that Mh Π (θye/i Z?y)=O. Then M, 2 is isomor-

phic to a subobject M£2 of (BJ<=J\J1 Ej. Repeating the above argument, we have

/2EJ with J2^J\Ji and \J2\ <m. Similarly, there exists iz^I with

By induction, we get an infinite sequence Jlf J2y •••,/„,••• of subsets of/

such that/,„ Π/«=0 for mΦn, and (BjejuEj contains an isomorphic copy of M.

Thus M(N) is isomorphic to a direct summand of φy e i r Ej, where i^=/i U / 2 U

•••, hence M{N) is injective, so M is Σ-injective.

We proceed now with an application of Theorem 1.12. Since CS objects

generalize injective objects, it is natural to introduce the following concept.

DEFINITION. An object M of Jl is called 2-CS if all direct sums of copies

of M are CS.

There are some reasons which motivate our interest towards the Σ-CS

concept. Goodearl [9] studied the left nonsingular rings whose nonsingular

left modules are projective, and it is easily seen that these are precisely the

left nonsingular rings R such that RR is Σ-CS (in fact these are Artinian serial

hereditary rings). Arbitrary 2-CS rings were studied by Oshiro (e.g. [17]), and

they form an interesting class of Artinian rings (they are also called Harada

rings). However, very little seems to be known about the structure of Σ-CS

objects (or Σ-CS modules) in the general case. The next result relates Σ-

CS objects to Σ-injectivity in some particular cases.

Proposition 1.13. Let M be a Σ-CS object in Jl. Suppose that M satis-

fies one of the following conditions:

a) M is nonsingular and M generates the injective envelope of any direct

sum of copies of M.

b) M is projective and M generates the injective envelope of any direct

sum of copies of M.

Then E (M) is Σ-ίnjectίve and M is a direct sum of indecomposable objects.

Proof, a) We observe that the class of all the nonsingular objects of Jl

is closed under taking essential extensions and direct sums. Suppose that M

is m-generated, for some infinite cardinal m. Let N be the injective envelope
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of a direct sum of copies of E(M), then N is nonsingular, Also, it is clear that
N is the injective envelope of a direct sum of copies of M, so N is generated
by M by [21, 17.9(2)]. Thus there is a short exact sequence

where M^M for all ί e j . But θ ^ / M ; is CS, so A is essential in a direct
summand D of Φ ί e / M x . Thus D/̂ 4 is isomorphic to a subobject of iV which
implies that DIA=0, i.e. D=A. Thus iV is isomorphic to a direct summand of
θfe/Λf,.. By the generalized Kaplansky's theorem, N is a direct sum of in-
generated objects. Thus by Theorem 1.12, Έ(M) is Σ-injective. By Coro-
llary 1.6, M is a direct sum of indecomposable objects.

b) Similarly as in the proof of (a), it is enough to show that if L is a direct
sum of copies of M, and N=Έ(L)> then N is a direct summand of a direct sum
of copies of M. Again by [21, 17.9(2)], there is a short exact sequence

with M^M for all / e J. Then N=Nx®By where iVj is a direct summand of
θ/e/M,- and 2? is singular. Let zr: Nι®B->Nι be the canonical projection. Let
7? be the restriction of π to L. Since L is CS, Ker a is essential in a direct
summand of L, hence L=Lλ®C such that Ker?? is essential in C. Then
^(L)=^(L1)0τr(C), and τr(C) is singular. It follows that C^π(C)@B. But C
is projective and π(C)®B is singular, so clearly C=0, hence Ker 7?=0. But L
is essential in N> so it implies that Ker zr=O, i.e. Z?=0 which proves (ά).

We end this section by the following open question which arises naturally
in view of Corollary 1.6 and Proposition 1.13.

QUESTION. Let M be any Σ-CS object of Jt. Is M a direct sum of inde-
composable objects?

2. 2-ρure-injective modules.

Throughout this section, unless otherwise stated, we consider associative
rings with identity and unitary left modules.

For a ring R> pure exact sequences are denned as in Section 1. A module
M is called pure-injective if for any module A and any pure submodule B of
Ay any homomorphism /: B-+M extends to a homomorphism g: A-+M. If
N is a pure submodule of M, then M is a pure-essential extension of N if there
are no nonzero submodules X^M with Xf]N=0 and (N-\-X)/X pure in
MjX. A module M is a pure-injective envelope of N if N is a pure submodule
of M, N is pure-essential in M and Λf is pure-injective. By [20, Proposition
6], pure-injective envelopes exist and are unique up to isomorphism. We
denotes the pure-injective envelope of M by PE(M).



104 J.L. GARCIA AND N.V. DUNG

A module M is called Σ-pure-injective if all direct sums of copies of M
are pure-injective. Σ-pure-injective modules were studied by W. Zimmer-
mann and B. Zimmermann-Huisgen ([22, 23, 24, 25]), by using the equivalence
of pure-injectivity and algebraic compactness (see [20, Theorem 2]) and matrix
subgroup techniques. In this section, by applying Gruson and Jensen [10, 11]
and the results in Section 1, we are able to recover and extend several decom-
position properties of Σ-pure-injective modules which were obtained in the
above-mentioned works.

Let us recall briefly the functor ring techniques of Gruson and Jensen
[10, 11]. Let R be a ring and {C/λ/λ^Λ} a set containing one isomorphic
copy of each finitely presented right i?-module. Set ί 7 / ? = φ λ e Λ Uλ and define

S= if: UR-+URlf(Uλ)=0 for all but a finite number of λGΛ}.
Then S is a ring with enough idempotents, i.e. there is a set of orthogonal

idempotents {eji^l} in S such that S=φieJSei=®ieIeiS.
Let £-Mod be the category of all the unitary left iS-modules (note that

SM is unitary iff for every x^M there exists e=e2^S such that x=ex). Then

S*S is a projective generator of *S-Mod, and clearly 5-Mod is a locally finitely
presented Grothendieck category.

Since U is a End(ί7^)-i?-bimodule, if RM is any left ϋ-module then U®RM
is a left End(UR)-module and hence a unitary *S-module. Thus we have a
functor

U®R—: i?-Mod -> S-Mod

which has a right adjoint

Hom5([/, - ) : S-Mod -> R-Mod.

We collect in the following lemma some basic properties of these functors
(for more details see e.g. Wisbauer [21]).

Lemma 2.1. Let R be a ring. With the above notations, the following
statements hold:

a) For any βMGiί-Mod, RM is pure-injective if and only if U®RM is
injective in iS-Mod.

b) f/®/?- and }Homs{U, —) preserve direct sums.
c) C/®/?- preserves pure short exact sequences.
d) 7/"ΛMei2-Mod, then RM is indecomposable if and only if U®RM is

indecomposable in jS-Mod.
e) Let RM be in-generated for some cardinal m>K0. Then U®RM is in-

generated in /S-Mod.
/) For any RM<=R-Mod, U®R?Έ(M)^Έ(U®RM).

Proof, a) and d) are [21, 52.3 (6) and 52.3 (7)], while c) follows also from
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[21, 52.3 (3)].
b) is clear, because SU is finitely generated and projective; in fact, U^Se

for an idempotent e^S.
e) Clearly, if RM is m-generated, there exists an epimorphism of *S-Mod

f/o»)-> U®R M. Since 5 U is finitely generated, t/® Λ M is m-generated.
f) follows from [5, p. 385].

Corollary 2.2. (W. Zimmermann [22]). Let R be a ring and M a left
R-module. Then M is Σ-pure-injective if and only if M(N) is pure-injective.
In this case, M is a direct sum of indecomposable modules and every pure submodule
of M is also Σ-pure-injective.

Proof. By Lemma 2.1, M is Σ-pure-injective iff U®RM is Σ-injective in
*S-Mod. Thus, the first assertion follows from Lemma 1.1. That M is a direct
sum of indecomposable modules follows by Corollary 1.6 and Lemma 2.1.
Now, suppose that M is Σ-pure-injective and N is a pure submodule of M. By
Lemma 2.1, U®RN is a pure subobject of U®RM, and U®RM is Σ-injective.
It follows by Corollary 1.4 that U®RN is Σ-injective in S-Mod, hence N is Σ-
pure-injective.

Corollary 2.3. (W. Zimmermann [23, Proposition 3]). Let R be any ring
and M a countable pure-injective left R-module. Then M is Σ-pure-injective.

Proof. As above, let {ί7λ/λ^Δ} be a set of representatives of the isomor-
phism classes of finitely presented right i?-modules, U=®λ^AUλf and let eλ

denote the canonical projection of U onto Uλ,eλ^S. Then {&λ/λEΛ} is a
family of finitely presented generators of the category *S-Mod. Now, we have
for each λ ^ Λ an epimorphism of Mod-i? i?w->ί7λ, and an epimorphism
of abεlian groups Mn—>Uλ®RM. Since M is countable, we deduce that
I Uk®RM\ <K0. Consider now, for any α ^ Λ , the set Aΰύ:=Homs(Seoi,
U®RM). We have isomorphisms of abelian groups AΛ^eβ(U®RM)^(BλξΞA

eΛ(Uλ®RM). But for λ Φ α , eΛ annihilates Uλ and so we have Aoύ^eΛ(Uoύ®RM)y

from which it follows that \Aΰύ\<\ UΛ®RM\ <K0. Therefore, each AΛ is at
most countable, and by Corollary 1.9, U®RM is Σ-injective in xS-Mod. By
Lemma 2.1, RM is Σ-pure-injective.

Theorem 2.4. Let Rbe a ring and M a pure-injective left R-module. Then
M is Σ-pure-injective if and only if there exists an infinite cardinal m such that the
pure-injective envelope of any direct sum of copies of M is a direct sum of m-
generated modules.

Proof. Suppose first that M is Σ-pure-injective. By Corollary 2.2, M and
hence all direct sums of copies of M are direct sums of indecomposable pure-
injective modules. Let L be any indecomposable pure-injective left i?-module.
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By Lemma 2.1, U®RL is indecomposable injective in /S-Mod. Also, if
ll®RL^UξZ)RL' for some left ϋ-module I/, then L^Hom s(ί7, U®RL)^
Hom5(ί7, U®RL')^Lf. Since the isomorphism classes of indecomposable in-
jective objects in iS-Mod constitute a set, we have that the indecomposable pure-
injective left Λ-modules form also a set. Thus, there exists a cardinal /ra>K0

such that each indecomposable pure-injective left i?-module is m-generated.
Conversely, let us put A: — U®RM. Then A is injective in iS-Mod by

Lemma 2.1. Let / be any index set and A^A, M{^My for all i^I. By the
hypothesis, PE(®/e/Mt.)==©ye/JVy, where each Nj is /n-generated. Now, by
Lemma 2.1 we have Έ(θi^iAi)^U®R'PE(®ieIMi)^U®R(φjejNj)^®jej
(U®RNj). By Lemma 2.1 (e)y U®RNj is /n-generated in xS-Mod. Thus, by
Theorem 1.12, A is Σ-injective in ίS-Mod, which implies that M is Σ-pure-
injective in i?-Mod.

Corollary 2.5. (Zimmermann-Huisgen [24, Corollary 1]). Let R be a ring
and M a pure-injective left R-module. Then M is Σ-pure-ifljective if and only

if any direct product of copies of M is a direct sum of indecomposable modules.

Proof. Suppose that M is Σ-pure-injective. Then, any direct product of
copies of M is again 2-ρure-injective, so the condition follows from Corollary
2.2. Conversely, let / be any index set and take M^M for all i^L It is
well-known that @i<=IMi is a pure submodule of Π^M,- (see, e.g. [2], 33.9]), so
by [20, Proposition 6] P E ( 0 , e / M t ) is isomorphic to a direct summand of
Π e/M,-. Since the class of indecomposable pure-injective modules -up to
isomorphism- is a set, there exists an infinite cardinal m (not depending on /)
such that Πίe/M,. is a direct sum of /n-generated modules. By Kaplansky's
theorem, PE(Φ t S /M t ) is a direct sum of m-generated modules. It follows from
Theorem 2.4 that M is Σ-ρure-injective.

It is clear that, for a ring R, every projective left 72-module is pure-
injective if and only if RR is 2-pure-injective. These rings are semiprimary
with ACC on left annihilators; we refer to [22, 23, 24, 25] for more informa-
tions. As an application of Theorem 2.4, we prove the following result.

Corollary 2.6. Let R be a ring such that the pure-injective envelope of

every projective left R-module is projective. Then YΈ{RR) is ^-pure-injective and

R has ACC on left annihilators.

Proof. Since ΐΈ(RR) is projective, any direct sum of copies of VΈ(RR)
is also projective, so that its pure-injective envelope is again projective by the
hypothesis. By Kaplansky's theorem, every projective module is a direct sum
of countably generated modules. Thus FΈ(RR) is Σ-pure-injective by Theorem
2.4. The latter assertion follows by [22, Satz 6.2].

REMARKS. (1) Similar arguments to those used in the proofs of Theorems
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1.12 and 2.4 yield the following generalization of Theorem 2.4: Let

be a family of pure-injective modules. Then M = φ , e / M t is Σ-pure-injective

if and only if there exists an infinite cardinal m such that the pure-injective

envelope of any direct sum of copies of M is a direct sum of m-generated

modules.

(2) Corollaries 2.2 and 2.5 were crucial for Zimmermann-Huisgen's proof

in [24] of the important fact that if all the left i?-modules are direct sums of

indecomposable modules then all left i?-modules are pure-injective (or, equi-

valently, all left i?-modules are direct sums of finitely generated modules).

Indeed, let M be any left i?-module; then M is isomorphic to a pure submodule

of some pure-injective module N (see [20, Corollary 6]). By Corollary 2.5 and

the hypothesis, N must be Σ-pure-injective; thus it follows from Corollary 2.2

that M is pure-injective.
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Note added in proof.

After having completed this paper, Professor R. Wisbauer pointed out to us that a
stronger form of Proposition 1.13 does hold. Namely, one would have the following
result:
Let M be a 5)-CS object in A. Suppose that M satisfies one of the following conditions:
a) M is nonsingular in the category σ [M] of all the objects of the category A which are
subgenerated by M; or
b) M is projective in σ[M].
Then the injective envelope of M in the category σ [M] is Σ-injective, and M is a direct
sum of indecomposable objects.
In particular, if M is a X-CS object which is either nonsingular or projective, then M is
a direct sum of indecomposable objects.
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