NONSTANDARD REPRESENTATIONS OF GENERALIZED SECTIONS OF VECTOR BUNDLES

HIROSHI AKIYAMA

(Received January 17, 1994)

Introduction

In terms of nonstandard analysis, Todorov ([8], [9]) showed that every Schwartz distribution on \mathbb{R}^n can be represented by a *-integral with ${}^*C^{\infty}$ internal kernel function without the necessity of saying, "up to an infinitesimal" (for the case n=1, see also [5]). From the differential-geometric viewpoint, it would be desirable to obtain nonstandard representations of generalized sections of vector bundles in an intrinsic manner.

The main purpose of this note is to prove in a simple way that every generalized section (see §1 or [2]) T of a C^{∞} vector bundle E over a σ -compact manifold M can be represented by a *-integral in the sense that there exists a ${}^*C^{\infty}$ internal section β_T of the nonstandard extension *E of E such that $T(u) = \int_{{}^*M} \beta_T {}^*u$ for every compactly supported C^{∞} section u of $E^{\dagger} \otimes | \bigwedge_M |$, where E^{\dagger} is the dual bundle of E and $| \bigwedge_M |$ stands for the density bundle over M.

After devoting §1 to some notational preliminaries, we obtain in §2 non-standard representations of linear maps from the space of C^{∞} sections of E with compact support and then the desired representations of generalized sections. In § 3 we get a result on nonstandard representations of linear maps either from the space of C^k sections of E or from its subspace consisting of compactly supported sections.

As for nonstandard analysis, see, e.g., [1], [3], or [4]; we work with a sufficiently saturated nonstandard model.

1. Notational preliminaries

Throughout the paper we let K be either R (the real numbers) or C (the complex numbers). Furthermore, let N be the (strictly) positive integers and N_{∞} the infinite elements in N.

By a vector bundle $\pi_E : E \to M$ we mean a C^{∞} vector bundle with typical fiber K^p (for some $p \in N$) over a σ -compact C^{∞} manifold M with dim $M \in N$. For each

 $x \in M$, we write $E_x := \pi_E^{-1}(x)$, the fiber of E over x. The dual bundle of E is denoted by E^{\dagger} . For $k \in \{0\} \cup N \cup \{\infty\}$, let $\Gamma^k(E)$ be the space of all C^k sections of E and $\Gamma_0^k(E)$ the space of C^k sections of E with compact support.

The K-line bundle of densities over M is denoted by $| \wedge_M |$. Given a C^{∞} Riemannian metric g on M, we let $dv_g \in \Gamma^{\infty}(| \wedge_M |)$ be the Riemannian volume density associated with g (see [7]). A generalized section of a vector bundle $E \to M$ is defined as a continuous linear functional on the space $\Gamma_0^{\infty}(E^{\dagger} \otimes | \wedge_M |)$ (endowed with the canonical LF-topology); cf. [2].

For two vector bundles $E \rightarrow M$ and $F \rightarrow N$, we denote by $E \boxtimes F$ the vector bundle over $M \times N$ such that $(E \boxtimes F)_{(x,y)} = E_x \otimes F_y$ for every $(x, y) \in M \times N$. We will write \otimes and \boxtimes for $*\otimes$ and $*\boxtimes$, respectively.

2. Nonstandard representations of generalized sections of vector bundles

Let E o M be a vector bundle. Choose a C^{∞} Riemannian metric g on M. By the saturation principle, there exists a hyperfinite-dimensional vector subspace V of the internal vector space $*(\Gamma_0^{\infty}(E))$ such that ${}^{\sigma}(\Gamma_0^{\infty}(E)) := \{*s : s \in \Gamma_0^{\infty}(E)\}$ is an external subset of V. Take a C^{∞} fiber metric h in E and pick $\psi_i \in V$ $(i=1, 2, \ldots, \eta)$ with $\eta = *\dim V \in *N_{\infty}$ such that

(2.1)
$$\int_{M}^{*} h(\psi_{i}, \psi_{j}) * dv_{g} = \delta_{ij} \text{ (Kronecker delta)}; i, j=1, 2, ..., \eta.$$

Regard $\psi_j^h := {}^*h(\cdot, \psi_j)$ as an element of ${}^*(\Gamma_0^{\infty}(E^{\dagger}))$ in a natural manner. Define an internal section $\Psi \in {}^*(\Gamma_0^{\infty}(E^{\dagger} \boxtimes E))$ by

(2.2)
$$\Psi(x, y) := \sum_{i=1}^{\eta} \psi_i^h(x) \otimes \psi_i(y) \ (x, y \in {}^*M).$$

Moreover, define $\widetilde{\Psi} \in {}^*(\Gamma_0^{\infty}((E^{\dagger} \otimes | \bigwedge_M |) \boxtimes E))$ by

(2.3)
$$\widetilde{\varPsi}(x, y) := \sum_{i=1}^{\eta} (\psi_i^h(x) \otimes *dv_g(x)) \otimes \psi_i(y) (x, y \in *M).$$

Proposition 2.1. Given a vector bundle $E \rightarrow M$ and a C^{∞} Riemannian metric g on M, let Ψ and $\widetilde{\Psi}$ be as in (2.2) and (2.3), respectively.

(1) For every $s \in \Gamma_0^{\infty}(E)$ and every $y \in {}^*M$,

(2.4)
$$*s(y) = \int_{x \in *M} *s(x) \cdot \widetilde{\Psi}(x, y).$$

[The map $*M \times *M \ni (x, y) \mapsto *s(x) \cdot \widetilde{\Psi}(x, y) \in *(| \bigwedge_M | \boxtimes E)_{(x,y)}$ gives an element of $*(\Gamma_0^{\infty}(| \bigwedge_M | \boxtimes E))$ obtained from $*s(x) \otimes \widetilde{\Psi}(x, y)$ by the canonical pairing between $*E_x := *(\pi_E)^{-1}(x)$ and $*E_x^{+}$.]

(2) For every x, $z \in M$,

(2.5)
$$\int_{y \in {}^*M} \Psi(x, y) \cdot \Psi(y, z) \otimes {}^*dv_g(y) = \Psi(x, z).$$

Proof. Since every $*s \in {}^{\sigma}(\Gamma_0^{\infty}(E))$ is expressed as

(2.6)
$$*s = \sum_{j=1}^{\eta} c_j(*s) \psi_j \text{ with } c_j(*s) = \int_{*M} *s \cdot \psi_j^h * dv_g,$$

we have (2.4). Formula (2.5) follows immediately from (2.1). \square

Proposition 2.2. Let $E \rightarrow M$ and $F \rightarrow N$ be vector bundles. Let $\widetilde{\Psi} \in {}^*(\Gamma_0^{\infty}((E^{\dagger} \otimes | \bigwedge_M|) \boxtimes E))$ be as in (2.3). For a K-linear map $L: \Gamma_0^{\infty}(E) \rightarrow \Gamma^{\infty}(F)$, define $\Psi_L \in {}^*(\Gamma^{\infty}((E^{\dagger} \otimes | \bigwedge_M|) \boxtimes F))$ by

$$\Psi_L(y, z) := (I_{{}^*\!(E^*\otimes | \wedge_{\pmb{u}}|)_{\pmb{v}}} \otimes {}^*L)(\widetilde{\Psi}(y, \cdot))(z) = \sum_{i=1}^{\eta} (\phi_i^{\hbar}(y) \otimes {}^*dv_g(y)) \otimes {}^*L(\phi_i)(z)$$

for $y \in M$ and $z \in N$, where $I_{(E' \otimes | \wedge_M|)}$, is the identity transformation of $(E^{\dagger} \otimes | \wedge_M|)_y$. Then L is represented as

*
$$(L(s))(z) = \int_{y \in {}^*M} {}^*s(y) \cdot \Psi_L(y, z) \ (s \in \Gamma_0^{\infty}(E), z \in {}^*N).$$

Proof. Let $s \in \Gamma_0^{\infty}(E)$ and $z \in N$. By the expression (2.6),

$$*(L(s))(z) = *L(*s)(z) = *L(\sum_{i=1}^{\eta} c_i(*s)\psi_i)(z)$$

$$= \sum_{i=1}^{\eta} c_i(*s)*L(\psi_i)(z) = \int_{y \in *M} *s(y) \cdot \Psi_L(y,z).$$

We can now represent every generalized section of E by a *-integral.

Theorem 2.3. Let $E \rightarrow M$ be a vector bundle, and let $\widetilde{\Psi}$ be as in (2.3). For each generalized section T of E, define $\beta_T \in {}^*(\Gamma_0^{\infty}(E))$ by

$$\beta_T(y) := (*T \otimes I_{E_i})(\widetilde{\Psi}(\cdot, y)) = \sum_{i=1}^{\eta} *T(\phi_i^h \otimes *dv_g)\phi_i(y) \ (y \in *M).$$

Then

$$T(u) = \int_{^{\bullet}M} \beta_T \cdot ^{\bullet} u, \ u \in \Gamma_0^{\infty}(E^{\dagger} \otimes |\wedge_M|).$$

Proof. Apply Proposition 2.2 to the **K**-linear map $L_T: \Gamma_0^{\infty}(E^{\dagger} \otimes | \wedge_M |) \ni u \mapsto L_T(u) \in \Gamma^{\infty}(M \times K)$ defined by $L_T(u)(z) = (z, T(u))$ for $z \in M$. \square

REMARK. If there exists a section $s \in \Gamma_0^{\infty}(E)$ such that $T(u) = \int_M s \cdot u$ for all $u \in \Gamma_0^{\infty}(E^{\dagger} \otimes | \wedge_M |)$, then $T(\psi_i^h \otimes dv_g) = c_i(*s)$ (see (2.6)) and thus $\beta_T = *s$.

EXAMPLE. Given a σ -compact C^{∞} Riemannian manifold (M, g), we obtain a "nonstandard delta function" with respect to *dv_g using the above results. In fact,

820 H. AKIYAMA

let $C^{\infty}(M; K)$ denote the space of K-valued C^{∞} functions on M and let $C_0^{\infty}(M; K) := \{ f \in C^{\infty}(M; K) : \operatorname{supp}(f) \operatorname{compact} \}$. Let V_0 be a hyperfinite-dimensional vector space over *R such that

$$^{\sigma}(C_0^{\infty}(M; \mathbf{R})) := \{ *f : f \in C_0^{\infty}(M; \mathbf{R}) \} \subset V_0 \subset *(C_0^{\infty}(M; \mathbf{R})).$$

Pick $\varphi_i \in V_0$ $(i=1, 2, ..., \nu)$ with $\nu = \text{*dim } V_0$ such that $\int_{M} \varphi_i \varphi_j * dv_g = \delta_{ij}$ $(i, j=1, 2, ..., \nu)$ and define an internal function $\delta \in (C_0^{\infty}(M \times M; \mathbf{R}))$ by $\delta(x, y) := \sum_{i=1}^{\nu} \varphi_i(x) \varphi_i(y)$ $(x, y \in M)$. Noting that $C_0^{\infty}(M; \mathbf{C}) = C_0^{\infty}(M; \mathbf{R}) + \sqrt{-1}C_0^{\infty}(M; \mathbf{R})$, for $x, y, z \in M$ we have:

- (1) $\delta(x, x) \ge 0$, $\delta(x, y) = \delta(y, x)$, and $(\delta(x, y))^2 \le \delta(x, x)\delta(y, y)$.
- (2) $^*f(x) = \int_{y \in ^*M} \delta(x, y)^* f(y) * dv_g(y) \text{ for } f \in C_0^{\infty}(M; C).$
- (3) $\int_{y \in *_M} \delta(x, y) \delta(y, z) * dv_g(y) = \delta(x, z).$
- (4) If $T: \mathcal{D} = C_0^{\infty}(M; C) \to C$ is a Schwartz distribution on M, then $T(f) = \int_{y \in *M} *f(y)\gamma_T(y) *dv_g(y) (f \in \mathcal{D})$, where $\gamma_T \in *(C_0^{\infty}(M; C))$ is defined by $\gamma_T(y) := *T(\delta(\cdot, y)) = \sum_{i=1}^{\nu} *T(\varphi_i)\varphi_i(y) (y \in *M)$.
 - 3. Nonstandard representations of linear maps from $\Gamma^{k}(E)$ or $\Gamma^{k}(E)$ to $\Gamma^{r}(F)$

Let $E \to M$ and $F \to N$ be vector bundles. For $s \in \Gamma^0(E)$, define $T_s: \Gamma_0^\infty(E^{\dagger} \otimes | \bigwedge_M |) \to K$ by

$$T_s(u) = \int_M s \cdot u, \quad u \in \Gamma_0^{\infty}(E^{\dagger} \otimes |\wedge_M|).$$

Furthermore, for $k \in \{0\} \cup N \cup \{\infty\}$, let U_E^k be either $\Gamma^k(E)$ or $\Gamma_0^k(E)$.

We first note that if s_1, s_2, \ldots, s_m $(m \in \mathbb{N})$ are linearly independent in U_E^k , then there exist m elements $\sigma_i \in \Gamma_0^{\infty}(E^{\dagger} \otimes | \bigwedge_M |)$ such that $T_{s_i}(\sigma_j) = \delta_{ij}$ $(i, j = 1, 2, \ldots, m)$. Indeed, T_{s_1}, \ldots, T_{s_m} are linearly independent in the vector space $\{T_s : s \in U_E^k\}$ over K. Therefore there exist m elements $\tau_i \in \Gamma_0^{\infty}(E^{\dagger} \otimes | \bigwedge_M |)$ $(i = 1, 2, \ldots, m)$ such that the $m \times m$ matrix $A = (T_{s_i}(\tau_j))_{1 \le i,j \le m}$ is nonsingular; for a simple nonstandard proof (in a more general setting), see [6, Lemma 1.1]. Then we have only to put $\sigma_j = \sum_{i=1}^m b_{ij} \tau_i$ where (b_{ij}) is the inverse of the matrix A.

Now, for $r \in \{0\} \cup N \cup \{\infty\}$, let $\mathcal{G}^r[\text{resp. } \mathcal{G}_0^r]$ be the internal set of all $\zeta \in *(\Gamma^r((E^{\dagger} \otimes |\wedge_M|)\boxtimes F))$ of the form

(3.1)
$$\zeta(x, y) = \sum_{i=1}^{\nu} u_i(x) \otimes v_i(y) \quad (x \in M, y \in N)$$

for some $\nu \in {}^*N$, $u_i \in {}^*(\Gamma_0^{\infty}(E^{\dagger} \otimes | \wedge_M |))$, $v_i \in {}^*(\Gamma^r(F))$ [resp. $v_i \in {}^*(\Gamma_0^r(F))$] $(i = 1, 2, ..., \nu)$.

Theorem 3.1. Let $k, r \in \{0\} \cup N \cup \{\infty\}$ be fixed. Let U_E^k be as above. Suppose that $L: U_E^k \to \Gamma^r(F)$ is a K-linear map. Then there exists an element $\Phi_L \in \mathcal{G}^r$ such that

*
$$(L(s))(y) = \int_{x \in {}^*M} {}^*s(x) \cdot \mathcal{O}_L(x, y) \ (s \in U_E^h, y \in {}^*N).$$

Moreover, if $L(s) \in \Gamma_0^r(F)$ for all $s \in U_E^k$, then Φ_L can be chosen from \mathcal{G}_0^r .

Proof. For $s \in U_E^k$, define an internal map $G_s : \mathcal{G}^r \to {}^*(\Gamma^r(F))$ by

$$G_s(\zeta)(y) := \int_{x \in M} *s(x) \cdot \zeta(x, y) = \sum_{i=1}^{\nu} (*(T_s)(u_i)) v_i(y) \ (y \in N),$$

where $\zeta \in \mathcal{G}^r$ is as in (3.1). Let \mathcal{B}_s be the internal set

$$\mathcal{B}_s := \{ \zeta \in \mathcal{G}^r : G_s(\zeta) = *(L(s)) \}.$$

We shall show that the family $\{\mathcal{B}_s : s \in U_E^k\}$ has the finite intersection property. To do this, let P(m) $(m \in N)$ be the following proposition:

For $s_i \in U_E^k$, $i=1, 2, \ldots, m$, the system of equations

(3.2)
$$G_{s_i}(\zeta) = *(L(s_i)) \ (i=1, 2, ..., m)$$

has a solution ζ in \mathcal{G}^r .

Consider first the case m=1. If $s_1=0$, any $\zeta \in \mathcal{G}_0^r$ satisfies (3.2) for m=1. If $s_i \neq 0$, then there exists an element $\tau \in \Gamma_0^{\infty}(E^{\dagger} \otimes |\bigwedge_M|)$ with $T_{s_1}(\tau) \neq 0$ and thus we can choose $\sigma \in \Gamma_0^{\infty}(E^{\dagger} \otimes |\bigwedge_M|)$ such that $T_{s_1}(\sigma)=1$; therefore, if we let

$$\zeta(x, y) = \sigma(x) \otimes (L(s_1))(y) \ (x \in M, y \in N),$$

then $\zeta \in \mathcal{G}^r$ and moreover this ζ satisfies (3.2) for m=1, since $*(T_{s_1})(*\sigma) = T_{s_1}(\sigma) = 1$. Hence P(1) is true.

Next, assume that m>1 and that P(m-1) is true. If s_1, \ldots, s_m are linearly dependent in U_E^k , then we may assume that $s_m = \sum_{i=1}^{m-1} a_i s_i$ $(a_i \in K)$ without loss of generality, so that the system (3.2) is equivalent to the system of equations for $i=1, 2, \ldots, m-1$. If s_1, \ldots, s_m are linearly independent, then, as noticed earlier, we can choose $\sigma_i \in \Gamma_0^\infty(E^\dagger \otimes | \bigwedge_M |)$ such that $T_{s_i}(\sigma_j) = \delta_{ij}$ $(i, j=1, \ldots, m)$; so, if we let

$$\zeta(x, y) = \sum_{j=1}^{m} {}^*\sigma_j(x) \otimes {}^*(L(s_j))(y) \ (x \in {}^*M, y \in {}^*N),$$

then ζ belongs to \mathcal{G}^r and satisfies (3.2). Thus P(m-1) implies P(m).

Hence P(m) is true for all $m \in \mathbb{N}$. Then, by the saturation principle, the intersection $\mathcal{B} = \bigcap_{s \in Ut} \mathcal{B}_s$ is nonempty; accordingly, there exists an element $\Phi_L \in \mathcal{B}$

If $L(s) \in \Gamma_0^r(F)$ for all $s \in U_E^k$, then by replacing \mathcal{G}^r with \mathcal{G}_0^r in the above

discussion,	we	see	that	$\mathbf{\Phi}_{L}$	can	be	chosen	from	9 6.	

References

- [1] S. Albeverio, J.E. Fenstad, R. Høegh-Krohn and T. Lindstrøm: Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, New York, 1986.
- [2] V. Guillemin and S. Sternberg: Geometric Asymptotics, rev. ed., Mathematical surveys and monographs No. 14, Amer. Math. Soc., Providence, R.I., 1990.
- [3] A.E. Hurd and P.A. Loeb: An Introduction to Nonstandard Real Analysis, Academic Press, New York, 1985.
- [4] T. Kawai: Nonstandard analysis by axiomatic method, in "Southeast Asian Conference on Logic" (ed. by C.-T. Chong and M.J. Wicks), Proc. Logic Conf., Singapore, 1981, Elsevier (North-Holland), Amsterdam, 1983, pp. 55-76.
- [5] A. Robinson: Non-Standard Analysis, North-Holland, Amsterdam, 1966; 2nd ed., 1974.
- [6] M. Saito: On the non-standard representation of linear mappings from a function space, Comment. Math. Univ. St. Pauli 26 (1977), 165-185.
- [7] S. Sternberg: Lectures on Differential Geometry, 2nd ed., Chelsea, New York, 1983.
- [8] T. Todorov: A nonstandard delta function, Proc. Amer. Math. Soc. 110 (1990), 1143-1144.
- [9] T. Todorov: Pointwise kernels of Schwartz distributions, Proc. Amer. Math. Soc. 114 (1992), 817 -819.

Department of Applied Mathematics Faculty of Engineering Shizuoka University Hamamatsu 432, Japan