DISCRETE SPECTRUM OF SCHRÖDINGER OPERATORS WITH PERTURBED UNIFORM MAGNETIC FIELDS

Tetsuya HATTORI

(Received February 16, 1994)

1. Introduction

In this paper we study a Schrödinger operator with a magnetic field :

$$
\begin{equation*}
H=(-i \nabla-b(x))^{2}+V(x) \tag{1.1}
\end{equation*}
$$

defined on $C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$, where $V \in L_{l o c}^{2}\left(\boldsymbol{R}^{3}\right)$ is a scalar potential and $b \in C^{1}\left(\boldsymbol{R}^{3}\right)^{3}$ is a vector potential, both of which are real-valued, and $\vec{B}(x)=\nabla \times b$ is called the magnetic field. Let $x=\left(x_{1}, x_{2}, z\right) \in \boldsymbol{R}^{3}, \vec{\rho}=\left(x_{1}, x_{2}\right), r=|x|, \rho=|\vec{\rho}|$, and $\nabla_{2}=\left(\partial / \partial x_{1}\right.$, $\partial / \partial x_{2}$). Letting $T=-i \nabla-b(x)$, we define the quadratic form q_{H} by

$$
\begin{gathered}
q_{H}[\phi, \psi]=\int_{R^{2}}(T \phi \cdot \overline{T \psi}+V \phi \bar{\psi}) d x, \\
q_{H}[\phi]=q_{H}[\phi, \phi]
\end{gathered}
$$

for $\phi, \psi \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$. We assume that

$$
\begin{equation*}
V(x) \rightarrow 0 \text { as }|x| \rightarrow \infty . \tag{V1}
\end{equation*}
$$

Then H admits a unique self-adjoint realization in $L^{2}\left(\boldsymbol{R}^{3}\right)$ (denoted by the same notation H) with the domain

$$
D(H)=\left\{u \in L^{2}\left(\boldsymbol{R}^{3}\right) ;|V|^{1 / 2} u, T u, H u \in L^{2}\left(\boldsymbol{R}^{3}\right)\right\},
$$

which is associated with the closure of q_{H} (denoted by the same notation q_{H}) with the form domain

$$
Q(H)=\left\{u \in L^{2}\left(\boldsymbol{R}^{3}\right) ;|V|^{1 / 2} u, T u, \in L^{2}\left(\boldsymbol{R}^{3}\right)\right\},
$$

This fact can be proved in the same way as in the cases of the constant magnetic fields ([1] and [7]).

It is well known that, if $\vec{B}(x) \equiv 0$, then the finiteness or the infiniteness of the discrete spectrum of H depends on the decay order of the scalar potential V, of which the border is $|x|^{-2}([6])$. On the other hand, if $\vec{B}(x) \equiv(0,0, B), B$ being a positive constant, then the number of the discrete spectrum of H is infinite under
a suitable negativity assumption of the scalar potential, which is independent of the decay order of V. More precisely, the following result was proved by Avron-Herbst-Simon [2].

Theorem 0. ([2]) Let $\vec{B}(x)=\nabla \times b=(0,0, B), B$ being a positive constant. Suppose that $V \in L^{2}+L_{\varepsilon}^{\infty}$ and that V is non-positive, not identically zero and azimuthally symmetric. Then the number of the discrete spectrum of H is infinite.

Here a function $f(x)$ on \boldsymbol{R}^{3} is called azimuthally symmetric (in z-axis) if $f(x)$ depends only on ρ and z. Now a question arises: What occurs for the discrete spectrum when we perturb slightly the constant magnetic field? One may well imagine that the infiniteness or the finiteness of the discrete spectrum depends on both of the magnetic vector potential $b(x)$ and the scalar potential $V(x)$. This is certainly true. In fact, Mohamed [5] gave a sufficient condition for the existence of infinite discrete spectrum with long-range scalar potential $V(x)$ and suitable magnetic fields. The case of short-range scalar potential is also important since in this case the number of discrete spectrum turns to be infinite because of the presence of constant magnetic fields. The aim of this paper is to clearify the relation between $b(x)$ and $V(x)$ for H to have an infinite or a finite discrete spectrum.

To state the main theorem we make some preparations. We assume that

$$
\left\{\begin{array}{l}
V \text { is azimuthally symmetric, bounded above and there exists } \\
R_{0}>0 \text { such that } V \in C^{0}\left(|x| \geq R_{0}\right), V<0 \text { for }|x| \geq R_{0} . \tag{V2}
\end{array}\right.
$$

Let B be a positive constant and

$$
b_{c}(x)=B / 2\left(-x_{2}, x_{1}, 0\right)
$$

which satisfies $\nabla \times b_{c}=(0,0, B)$. For given $b \in C^{1}\left(\boldsymbol{R}^{3}\right)^{3}$, we put

$$
b_{p}(x)=b(x)-b_{c}(x)=\left(a_{1}(x), a_{2}(x), a_{3}(x)\right)
$$

By introducing the polar coordinate (ρ, θ) in \boldsymbol{R}^{2}, we define the set X by

$$
\begin{aligned}
X= & \left\{a \in C^{1}\left(\boldsymbol{R}^{3}\right) ; \text { there exists } N(a) \in \boldsymbol{N}\right. \text { such that } \\
& \left.\int_{0}^{2 \pi} a(\rho, \theta: z) e^{i k \theta} d \theta=0 \text { for }|k| \geq N(a), k \in \boldsymbol{Z}\right\} .
\end{aligned}
$$

We denote by $\sigma(H)$ the spectrum of H, by $\sigma_{d}(H)$ the discrete spectrum of H, by $\sigma_{e}(H)$ the essential spectrum of H and by $\# Y$ the cardinal number of a set Y. For two vector potentials $b_{1}, b_{2} \in C^{1}\left(\boldsymbol{R}^{3}\right)^{3}$, we denote $b_{1} \sim b_{2}$ when b_{1} is equivalent to b_{2} under a gauge transformation, namely, $b_{1}-b_{2}=\nabla \lambda$ for some $\lambda \in C^{2}\left(\boldsymbol{R}^{3}\right)$. Then our main result is the following theorem.

Theorem 1. Assume (V1), (V2) and that $a_{j}(x) \in X(j=1,2,3)$. Suppose
that there exist $R_{1}>0$ and positive constants $c_{j}(j=1,2,3)$ such that

$$
\left\{\begin{array}{l}
\left|a_{j}(x)\right| \leq c_{1} \min \left\{|V(x)|^{1 / 2},|V(x)| \rho\right\}(j=1,2), \tag{1.2}\\
\left|\nabla_{2} a_{j}(x)\right| \leq c_{2}|V(x)|(j=1,2), \\
\left|a_{3}(x)\right| \leq c_{3}|V(x)|^{1 / 2}
\end{array}\right.
$$

for $|x| \geq R_{1}$,

$$
\begin{equation*}
2\left(c_{1}^{2}+c_{2}\right)+c_{3}^{2}+\sqrt{2} c_{1}<1, \tag{1.3}
\end{equation*}
$$

and also suppose that

$$
\begin{equation*}
\partial a_{3} / \partial z \rightarrow 0 \text { as }|x| \rightarrow \infty . \tag{1.4}
\end{equation*}
$$

Then $\sigma_{e}(H)=[B, \infty)$ and

$$
\begin{equation*}
\# \sigma_{d}(H)=+\infty . \tag{1.5}
\end{equation*}
$$

Remark 1.1. Let V be as in Theorem 1. If $W \in L_{l o c}^{2}\left(\boldsymbol{R}^{3}\right)$ satisfies (V1) and $W \leq V$, then $\# \sigma_{d}\left(T^{2}+W\right)=+\infty$ by the min-max principle. Thus we can apply the above theorem to potentials which are not azimuthally symmetric or not continuous on $|x| \geq R_{0}$.

Remark 1.2. The above theorem of course holds if we replace the vector potential by an equivalent one.

As an example we consider the perturbation of the constant magnetic field on a compact set.

Proposition 1.3. If there exists $R_{2}>0$ such that

$$
\vec{B}(x)=(0,0, B) \text { for }|x| \geq R_{2},
$$

then one can replace the magnetic vector potential $b(x)$ by an equvalent one satisfying (1.2), (1.3) and (1.4).

Proof of Proposition 1.3. It is easy to see that

$$
\nabla \times\left(b-b_{c}\right)=0 \quad\left(|x| \geq R_{2}\right) .
$$

Hence, there exist $\lambda \in C^{2}\left(\boldsymbol{R}^{3}\right)$ such that

$$
b-b_{c}=\nabla \lambda \quad\left(|x| \geq R_{2}\right) .
$$

We put

$$
\tilde{b}=b-\nabla \lambda \text { on } \boldsymbol{R}^{3} .
$$

Then $\widetilde{b} \sim b$ and $\widetilde{b}-b_{c}=0$ for $|x| \geq R_{2}$. For this $\widetilde{b},(1.2),(1.3)$ and (1.4) are always
satisfied.

Let us compare our result with that of Mohamed [5]. Roughly speaking, supposing that $V(x)=O\left(|x|^{-\alpha}\right)$, he studied the case $0<\alpha<2$. In this case our result is weaker than his, however, our method can also treat the case $\alpha \geq 2$. We shall also construct examples which show that our condition (consequently the condition of Mohamed) is almost optimal to guarantee the infiniteness of the discrete spectrum when lies in an interval $(2-\varepsilon, 2]$. These examples also show that some nonconstant magnetic fields decrease the number of bound states in spite of the fact that if $\vec{B}(x) \equiv 0$ and $0<\alpha<2$ the number of the discrete spectrum is infinite ([6]).

2. Proof of Theorem 1

We first recall the following facts.

$$
\begin{align*}
\inf \sigma_{e}(H) & =\sup _{E: \text { compact }} \inf \left\{(H \phi, \phi)_{L_{2}} ; \phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{3} \backslash E\right),\|\phi\|_{L_{2}}=1\right\} \tag{2.1}\\
& =\lim _{R \rightarrow \infty} \inf \left\{(H \phi, \phi)_{L_{2}} ; \phi \in C_{0}^{\infty}(|x| \geq R),\|\phi\|_{L_{2}}=1\right\} . \tag{2.2}
\end{align*}
$$

They can be proved in the same way as in [1]. We devide the proof of Theorem 1 into three steps.

Step 1. We prove that, if $\left|b_{p}(x)\right| \rightarrow 0$ as $|x| \rightarrow \infty$, then

$$
\Sigma(H) \equiv \inf \sigma_{e}(H)=B
$$

In fact, letting

$$
T_{c}=-i \nabla-b_{c},
$$

we have, for any $\phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ and any $\varepsilon>0$,

$$
\begin{aligned}
|T \phi|^{2} & =\left|T_{c} \phi-b_{p} \phi\right|^{2} \\
& =\left|T_{c} \phi\right|^{2}+\left|b_{p}\right|^{2}|\phi|^{2}-2 R e T_{c} \phi \cdot b_{p} \bar{\phi} \\
& \geq(1-\varepsilon)\left|T_{c} \phi\right|^{2}+\left(1-\varepsilon^{-1}\right)\left|b_{p}\right|^{2}|\phi|^{2} .
\end{aligned}
$$

Hence, letting M be the operator of multiplication by the function $\left|b_{p}(x)\right|^{2}$, we have

$$
T^{2} \geq(1-\varepsilon) T_{c}^{2}+\left(1-\varepsilon^{-1}\right) M
$$

in the form sense. By using (2.2) and the fact that $\left|b_{p}(x)\right| \rightarrow 0$ as $|x| \rightarrow \infty$, we have

$$
\Sigma\left(T^{2}\right) \geq(1-\varepsilon) \Sigma\left(T_{c}^{2}\right)=(1-\varepsilon) B .
$$

Similarly one can show

$$
\Sigma\left(T^{2}\right) \leq(1+\varepsilon) B .
$$

Hence we have

$$
\Sigma\left(T^{2}\right)=B
$$

so, by using (2.2) again, we have

$$
\Sigma(H)=B
$$

Step 2.

Proposition 2.1. If $\left|b_{p}(x)\right| \rightarrow 0$, $\left|\operatorname{div} b_{p}(x)\right| \rightarrow 0$ as $|x| \rightarrow 0$, then $\sigma_{e}(H)=[B$, $\infty)$.

Proof of Proposition 2.1. We have only to prove $[B, \infty) \subset \sigma_{e}(H)$. For $\lambda \geq$ 0 , we define $\psi_{m}(x)$ by

$$
\psi_{m}(x) \equiv \psi_{m, \lambda}(x)=e^{i \lambda z} \eta_{m}(z) \phi_{0}(\vec{\rho})(m \in N, m \gg 1)
$$

where

$$
\begin{aligned}
& \phi_{0}(\vec{\rho})=B^{1 / 2}(2 \pi)^{-1 / 2} e^{-B \rho 2 / 4}, \\
& \eta_{m}(z)=2^{-(m-1) / 2} \eta\left(2^{-(m-1)} z\right)
\end{aligned}
$$

for some fixed $\eta \in C_{0}^{\infty}(1 \leq|z| \leq 2)$. We remark that

$$
\begin{gathered}
\left\|\phi_{0}\right\|_{L^{2}\left(R^{2}\right)}=\left\|\eta_{m}\right\|_{L^{2}\left(R^{3}\right)}=\left\|\psi_{m}\right\|_{L^{2}\left(R^{3}\right)}=1, \\
\quad\left(\psi_{j}, \psi_{k}\right)_{L^{2}}=0(j \neq k),
\end{gathered}
$$

$$
\begin{equation*}
\left\{T_{c}^{2}-\left(-\partial^{2} / \partial z^{2}\right)\right\} \phi_{0} \equiv\left\{\left(-i \partial / \partial x_{1}+B x_{2} / 2\right)^{2}+\left(-i \partial / \partial x_{2}-B x_{1} / 2\right)^{2}\right\} \phi_{0}=B \phi_{0} \tag{2.3}
\end{equation*}
$$

To prove $[B, \infty) \subset \sigma_{e}(H)$ it is sufficient to show that

$$
\begin{equation*}
\left(H-\left(B+\lambda^{2}\right)\right) \psi_{m} \rightarrow 0 \text { strongly in } L^{2}\left(\boldsymbol{R}^{3}\right) \text { as } m \rightarrow \infty . \tag{2.4}
\end{equation*}
$$

By using (2.3) and $T^{2}=T_{c}^{2}+\left(i \operatorname{div} b_{p}+\left|b_{p}\right|^{2}\right)-2 b_{p} \cdot T_{c}$, we have

$$
\begin{equation*}
T^{2} \psi_{m}=B \psi_{m}-\partial^{2} \psi_{m} / \partial z^{2}+\left(i \operatorname{div} b_{p}+\left|b_{p}\right|^{2}\right) \psi_{m}-2 b_{p} \cdot T_{c} \psi_{m} \tag{2.5}
\end{equation*}
$$

We compute

$$
-\partial^{2} \psi_{m} / \partial z^{2}=\lambda^{2} \psi_{m}+(\text { I })+(\text { II })
$$

where

$$
\begin{aligned}
& (\mathrm{I})=-2 i \lambda e^{i \lambda z}{\eta^{\prime}}_{m}(z) \phi_{0}(\vec{\rho}), \\
& (\mathrm{II})=-e^{i \lambda z \eta^{\prime \prime}{ }_{m}(z) \phi_{0}(\vec{\rho}) .} .
\end{aligned}
$$

By the change of variable: $\xi=2^{-(m-1)} z$, we have

$$
\begin{aligned}
& \|(\text { I })\left\|_{L^{2}}^{2} \leq \lambda^{2} 4^{2-m}\right\| \eta^{\prime} \|_{L^{2}\left(\boldsymbol{R}^{\prime}\right) \rightarrow 0}^{2} \text { as } m \rightarrow \infty, \\
& \|(\text { II })\left\|_{L^{2}}^{2} \leq 16^{1-m}\right\| \eta^{\prime \prime} \|_{L^{2}\left(\boldsymbol{R}^{\prime}\right)} \rightarrow 0 \text { as } m \rightarrow \infty .
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
-\partial^{2} \psi_{m} / \partial z^{2}-\lambda^{2} \psi_{m} \rightarrow 0 \text { strongly in } L^{2}\left(\boldsymbol{R}^{3}\right) \text { as } m \rightarrow \infty \tag{2.6}
\end{equation*}
$$

Since $\left\|T_{c} \psi_{m}\right\|_{L^{2}}^{2}=\left(T_{c}^{2} \psi_{m}, \psi_{m}\right)$ and $T_{c}^{2}=\left(B+\lambda^{2}\right) \psi_{m}+($ I $)+($ II $)$, there exists a constant $c_{0}>0$ independent of m such that

$$
\begin{equation*}
\left\|T_{c} \psi_{m}\right\|_{L^{2}}<c_{0}<+\infty \tag{2.7}
\end{equation*}
$$

Using the assumption on b_{p} and the fact that

$$
\text { supp } \psi_{m} \subset\left\{x \in \boldsymbol{R}^{3} ; 2^{m-1} \leq|z| \leq 2^{m}\right\}
$$

gives

$$
\begin{equation*}
\left(i \operatorname{div} b_{p}+\left|b_{p}\right|^{2}\right) \psi_{m} \rightarrow 0 \text { strongly in } L^{2}\left(\boldsymbol{R}^{3}\right) \text { as } m \rightarrow \infty . \tag{2.8}
\end{equation*}
$$

By (2.7) we also have

$$
\begin{equation*}
2 b_{p} \cdot T_{c} \psi_{m} \rightarrow 0, V \psi_{m} \rightarrow 0 \text { strongly in } L^{2}\left(\boldsymbol{R}^{3}\right) \text { as } m \rightarrow \infty \tag{2.9}
\end{equation*}
$$

By (2.5), (2.6), (2.8) and (2.9), we obtain (2.4).
By the assumption of Theorem 1, the condition in Proposition 2.1 is fulfilled. Hence we have $\sigma_{e}(H)=[B, \infty)$.

Step 3. We can assume that $R_{1} \geq R_{0}$. To prove that $\# \sigma_{d}(H)=+\infty$, by using the Rayleigh-Ritz method ([6]), it is sufficient to construct $\left\{\Phi_{m}\right\}_{m=1}^{\infty} \subset Q(H)$ such that

$$
\left\{\begin{array}{l}
\left\|\Phi_{m}\right\|_{L^{2}}=1,\left(\Phi_{j}, \Phi_{k}\right)_{L^{2}}=0(j \neq k), \tag{2.10}\\
q_{H}\left[\Phi_{j}, \Phi_{k}\right]=0(j \neq k), \\
q_{H}\left[\Phi_{m}\right]<B .
\end{array}\right.
$$

We define ψ_{m}^{s} by

$$
\psi_{m}^{s}(x)=h_{s}(z) \phi_{m}(\vec{\rho})(0<s \ll 1, m \in N, m \gg 1)
$$

where in terms of (ρ, θ)-coordinates

$$
\begin{gather*}
\phi_{m}(\vec{\rho})=\alpha_{m} e^{i m \theta} \rho^{m} e^{-B \rho^{2} / 4}=\alpha_{m}\left(x_{1}+i x_{2}\right)^{m} e^{-B \rho^{2 / 4}} \quad([3]), \tag{2.11}\\
\alpha_{m}=(\pi m!)^{-1 / 2}(B / 2)^{(m+1) / 2} \tag{2.12}\\
h_{s}(z)=\sqrt{s}^{-s|z|} .
\end{gather*}
$$

They satisfy the following relations.

$$
\begin{align*}
&\left\|\phi_{m}\right\|_{L^{2}\left(R^{2}\right)}=\left\|h_{s}\right\|_{L^{2}\left(R^{2}\right)}=\left\|\psi_{m}^{s}\right\|_{L^{2}\left(R^{3}\right)}=1, \psi_{m}^{s} \in Q(H), \\
&\left(\psi_{j}^{s}, \psi_{k}^{t}\right)_{L^{2}}=0(j \neq k), \\
&\left\{T_{c}-\left(-\partial^{2} / \partial z^{2}\right)\right\} \phi_{m}=\left\{\left(-i \partial / \partial x_{1}+B x_{2} / 2\right)^{2}+\left(-i \partial / \partial x_{2}-B x_{1} / 2\right)^{2}\right\} \phi_{m} \tag{2.13}\\
&=B \phi_{m} .
\end{align*}
$$

We first show that

$$
\begin{align*}
\left\|T \psi_{m}^{s}\right\|_{L^{2}}^{2}= & B+s^{2}+\int\left(-\sin \theta \nabla_{2} a_{1}+\cos \theta \nabla_{2} a_{2}\right) \cdot \vec{\rho} \rho^{-1}\left|\psi_{m}^{s}\right|^{2} d x \tag{2.14}\\
& +\int\left\{\rho^{-2}\left(-x_{2} a_{1}+x_{1} a_{2}\right)+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right\}\left|\psi_{m}^{s}\right|^{2} d x
\end{align*}
$$

On one hand, by (2.13) and a straightforward calculation,

$$
\begin{aligned}
\left\|T \psi_{m}^{s}\right\|_{L^{2}}^{2}= & \left\|T_{c} \psi_{m}^{s}\right\|_{L^{2}}^{2}+\int\left\{-2 \operatorname{Im}\left(\nabla \psi_{m}^{s} \cdot b_{q} \overline{\psi_{m}^{s}}\right)+\left(\left|b_{p}\right|^{2}+2 b_{c} \cdot b_{p}\right)\left|\psi_{m}^{s}\right|^{2}\right\} d x \\
= & B+s^{2}-2 m \int \rho^{-2}\left(-x_{2} a_{1}+x_{1} a_{2}\right)\left|\psi_{m}^{s}\right|^{2} d x \\
& +\int\left\{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+B\left(-x_{2} a_{1}+x_{1} a_{2}\right)\right\}\left|\psi_{m}^{s}\right|^{2} d x .
\end{aligned}
$$

On the other hand, passing to the cylindorical coordinates and integrating by parts in ρ, we have

$$
\begin{align*}
& (2 m+1) \int \rho^{-2}\left(-x_{2} a_{1}+x_{1} a_{2}\right)\left|\psi_{m}^{s}\right|^{2} d x \tag{2.15}\\
= & \int\left(\sin \theta \nabla_{2} a_{1}-\cos \theta \nabla_{2} a_{2}\right) \cdot \vec{\rho} \rho^{-1}\left|\psi_{m}^{s}\right|^{2} d x+\int B\left(-x_{2} a_{1}+x_{1} a_{2}\right)\left|\psi_{m}^{s}\right|^{2} d x
\end{align*}
$$

By using (2.15) and a simple manipulation, we have (2.14) which implies

$$
\left\|T \psi_{m}^{s}\right\|_{L^{2}}^{2} \leq B+s^{2}+\int\left(\left|\nabla_{2} a_{1}\right|+\left|\nabla_{2} a_{2}\right|+\rho^{-1} \sqrt{a_{1}^{2}+a_{2}^{2}}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left|\psi_{m}^{s}\right|^{2} d x
$$

Here we use the assumption (1.2) to see that

$$
\begin{aligned}
\left\|T \psi_{m}^{s}\right\|_{L^{2}}^{2} \leq B+s^{2} & +\int_{|x|<R_{1}}\left\{2\left(c_{1}^{2}+c_{2}\right)+c_{3}^{2}+\sqrt{2} c_{1}\right\}\left|V(x) \| \psi_{m}^{s}\right|^{2} d x \\
& +\int_{|x|<R_{1}}\left(c_{4}+c_{5} \rho^{-1}\right)\left|\psi_{m}^{s}\right|^{2} d x
\end{aligned}
$$

for some constants $c_{4}, c_{5}>0$. Since $V<0$ for $|x| \geq R_{1}$, by letting $\delta=1-\left\{2\left(c_{1}^{2}+c_{2}\right)\right.$ $\left.+c_{3}^{2}+\sqrt{2} c_{1}\right\}>0$, we have

$$
\left\|T \psi_{m}^{s}\right\|_{L^{2}}^{2} \leq B+s^{2}+(1-\delta)+\int_{|x|<R_{1}}(-V(x))\left|\psi_{m}^{s}\right|^{2} d x+\int_{|x|<R_{1}}\left(c_{4}+c_{5} \rho^{-1}\right)\left|\psi_{m}^{s}\right|^{2} d x
$$

We add $\left(V \psi_{m}^{s}, \psi_{m}^{s}\right)_{L^{2}}$ to the both side, noting that V is bounded from above by assumption (V2), we have

$$
\begin{equation*}
q_{H}\left[\psi_{m}^{s}\right] \leq B+s^{2}+\delta \int_{|x| \geq R_{1}} V(x)\left|\psi_{m}^{s}\right|^{2} d x+\int_{|x|<R_{1}}\left(c_{6}+c_{5} \rho^{-1}\right)\left|\psi_{m}^{s}\right|^{2} d x \tag{2.16}
\end{equation*}
$$

for some constant $c_{6}>0$. Let

$$
\begin{aligned}
& \Omega_{1}=\left\{(\vec{\rho}, z) \in \boldsymbol{R}^{3} ; 2 R_{1} \leq \rho \leq 3 R_{1}, 0 \leq|z| \leq 1\right\}, \\
& \Omega_{2}=\left\{(\vec{\rho}, z) \in \boldsymbol{R}^{3} ; 0 \leq \rho \leq R_{1}, 0 \leq|z| \leq R_{1}\right\} .
\end{aligned}
$$

We estimate the integral of the right-hand side as follows.

$$
\begin{aligned}
\int_{\Omega_{1}}\left|\psi_{m}^{s}\right|^{2} d x & =2 \int_{0}^{1} s e^{-2 s z} d z \int_{0} 2 \pi d \theta \int_{2 R_{1}}^{3 R_{1}} \alpha_{m}^{2} \rho^{2 m+1} e^{-B^{o z / 2}} d \rho \\
& \geq 2 s e^{-2 s} \cdot 1 \cdot 2 \pi \alpha_{m}^{2}\left(2 R_{1}\right)^{2 m+1} e^{-B\left(3 R_{1}\right)^{2 / 2}} \cdot R_{1} .
\end{aligned}
$$

Therefore there exists a constant $c\left(R_{1}\right)>0$ independent of m and s such that

$$
\begin{align*}
\delta \int_{|x| \geq R_{1}} V(x)\left|\psi_{m}^{s}\right|^{2} d x & \leq \delta \int_{\Omega_{1}} \sup _{x \in \Omega_{1}} V(x)\left|\psi_{m}^{s}\right|^{2} d x \tag{2.17}\\
& \leq-c\left(R_{1}\right) s \alpha_{m}^{2}\left(2 R_{1}\right)^{2 m} .
\end{align*}
$$

We also have by a similar calculation

$$
\begin{align*}
\int_{|x| \leq R_{1}}\left(c_{6}+c_{5} \rho^{-1}\right)\left|\psi_{m}^{s}\right|^{2} d x & \leq \int_{\Omega_{2}}\left(c_{6}+c_{5} \rho^{-1}\right)\left|\psi_{m}^{s}\right|^{2} d x \tag{2.18}\\
& \leq c^{\prime}\left(R_{1}\right) s \alpha_{m}^{2} R_{1}^{2 m}
\end{align*}
$$

for some constant $c^{\prime}\left(R_{1}\right)>0$ which is independent of m and s. Hence, by (2.16), (2.17) and (2.18),

$$
q_{H}\left[\psi_{m}^{s}\right] \leq B+s^{2}+s \alpha_{m}^{2} R_{1}^{2 m}\left(c^{\prime}\left(R_{1}\right)-c\left(R_{1}\right) 4^{m}\right)
$$

There exists $m_{1}>0$ such that

$$
c^{\prime}\left(R_{1}\right)-c\left(R_{1}\right) 4^{m} \leq-1 \text { for } m \geq m_{1}
$$

so we have

$$
q_{H}\left[\psi_{m}^{s}\right] \leq B+s\left(s-\alpha_{m}^{2} R_{1}^{2 m}\right) \text { for } m \geq m_{1}
$$

Let

$$
s=s(m)=1 / 2 \alpha_{m}^{2} R_{1}^{2 m}, \Phi_{m}=\psi_{m}^{s(m)}
$$

Then the above inequality implies

$$
\begin{equation*}
q_{H}\left[\Phi_{m}\right] \leq B-\left(1 / 2 \alpha_{m}^{2} R_{1}^{2 m}\right)^{2}<B \text { for } m \geq m_{1} . \tag{2.19}
\end{equation*}
$$

Next, by the assumption of Theorem 1 , there exists $N_{1} \in \boldsymbol{N}$ such that each $a_{j}(x)(j=1,2,3$,$) is a linear combination of \left\{e^{i l \theta}\right\}_{|l| \leq N_{,}, l \in \boldsymbol{z}}$ as a function of θ with coefficients depending on ρ and z. We show that

$$
\begin{equation*}
q_{H}\left[\Phi_{j}, \Phi_{k}\right]=\iiint G(\rho, \theta, z) e^{i(j-k) \theta} d \rho d \theta d z \tag{2.20}
\end{equation*}
$$

where

$$
G(\rho, \theta, z)=\sum_{|l| \leq 2 N_{1}+2} e^{i l \theta} G_{l}(\rho, z), G_{l}(\rho, z) \in L^{1}((0, \infty) \times \boldsymbol{R}) .
$$

In fact, we examine each term of the expression

$$
q_{H}\left[\Phi_{j}, \Phi_{k}\right]=\int\left\{\nabla \Phi_{j} \cdot \nabla \overline{\Phi_{k}}+i\left(\nabla \Phi_{j} \cdot b \overline{\Phi_{k}}-\nabla \overline{\Phi_{k}} \cdot b \Phi_{j}\right)+\left(|b|^{2}+V\right) \Phi_{j} \overline{\Phi_{k}}\right\} d x
$$

Since V is azimuthally symmetric, it is easy to see (2.20). Then we have

$$
q_{H}\left[\Phi_{j}, \Phi_{k}\right]=0\left(|j-k| \geq 2 N_{1}+3\right) .
$$

Therefore by choosing a subsequence of $\left\{\Phi_{m}\right\}$ which we denote again by $\left\{\Phi_{m}\right\}$, one can assume that

$$
\begin{equation*}
q_{H}\left[\Phi_{j}, \Phi_{k}\right]=0(j \neq k) \tag{2.21}
\end{equation*}
$$

Summing up, we have obtained $\left\{\Phi_{m}\right\}$ satisfying (2.10). Hence

$$
\# \sigma_{d}(H)=+\infty
$$

This completes the proof of Theorem 1.

3. Examples

In this section we illustrate some examples showing that the conditions in Theorem 1 are almost optimal. For the sake of convenience, we strengthen slightly the conditions in Theorem 1 as follows.

Theorem 1*. Assume (V1), (V2) and that $a_{j}(x) \in X(j=1,2,3)$. Suppose that

$$
\left\{\begin{array}{l}
a_{j}(x)=o\left(\min \left\{|V(x)|^{1 / 2},|V(x)| \rho\right\}\right)(j=1,2) \tag{3.1}\\
\nabla_{2} a_{j}(x)=o(|V(x)|)(j=1,2) \\
a_{3}(x)=o\left(|V(x)|^{1 / 2}\right) \\
\partial a_{3} / \partial z=o(1)
\end{array}\right.
$$

as $|x| \rightarrow \infty$. Then $\sigma_{e}(H)=[B, \infty)$ and

$$
\# \sigma_{d}(H)=+\infty
$$

We give the above mentioned examples in the following form.

$$
\begin{equation*}
b=f(r)\left(-x_{2}, x_{1}, 0\right) \tag{3.2}
\end{equation*}
$$

where $f \in C^{1}([0, \infty)), f^{\prime}(0)=0$ and f is real-valued. In this case $a_{1}(x)=-(f(r)$ $-B / 2) x_{2}, a_{2}(x)=(f(r)-B / 2) x_{1}, a_{3}(x)=0$, so the assumption that $a_{j} \in X(j=1,2$, 3 ,) is satisfied. We assume that $V(x)$ is a function of $r=|x|$. Then (3.1) is equivalent to the following

$$
\left\{\begin{array}{l}
|f(r)-B / 2|=o\left(\min \left\{|V(x)|^{1 / 2 r-1},|V(x)|\right\}\right) \tag{3.3}\\
\left|f^{\prime}(r)\right|=o\left(|V(x)| r^{-1}\right)
\end{array}\right.
$$

Now we put $V=-r^{-\alpha}(\alpha>0)$ for $|x| \geq 2$, then (3.3) is equivalent to

$$
\left\{\begin{array}{l}
|f(r)-B / 2|=o\left(r^{\min \{-1-\alpha / 2,-\alpha\}}\right) \tag{3.4}\\
\left|f^{\prime}(r)\right|=o\left(r^{-1-\alpha}\right)
\end{array}\right.
$$

Before showing the examples, we prepare the following proposition.

Proposition 3.1. For $\phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$, we have the following inequality.

$$
\begin{equation*}
\int|T \phi|^{2} d x \geq \int\left(\partial b_{2} / \partial x_{1}-\partial b_{1} / \partial x_{2}\right)|\phi|^{2} d x \tag{3.5}
\end{equation*}
$$

where $b=\left(b_{1}(x), b_{2}(x), b_{3}(x)\right)$.
Cororally. In the case of (3.2) we have

$$
\int|T \phi|^{2} d x \geq \int\left(f^{\prime}(r) \rho^{2} r^{-1}+2 f(r)\right)|\phi|^{2} d x \text { for } \phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)
$$

In particular, if $f^{\prime}(r) \leq 0$, then

$$
\begin{equation*}
\int|T \phi|^{2} d x \geq \int F_{f}(r)|\phi|^{2} d x \text { for } \phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right) \tag{3.6}
\end{equation*}
$$

where $F_{f}(r)=r f^{\prime}(r)+2 f(r)$.
Proof of Proposition 3.1. We put

$$
A_{1}=\partial / \partial x_{1}+b_{2}, A_{2}=\partial / \partial x_{2}-b_{1}, A=A_{1}+i A_{2} \text { and } P=\partial / \partial z-i b_{3}
$$

Then by a straightforward calculation,

$$
\begin{aligned}
A^{*} A= & -\partial^{2} / \partial x_{1}^{2}-\partial^{2} / \partial x_{2}^{2}+2 i\left(b_{1} \partial / \partial x_{1}+b_{2} \partial / \partial x_{2}\right)+i\left(\partial b_{1} / \partial x_{1}+\partial b_{2} / \partial x_{2}\right) \\
& +\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}-\partial b_{2} / \partial x_{1}+\partial b_{1} / \partial x_{2}, \\
P^{*} P= & -\partial^{2} / \partial z^{2}+2 i b_{3} \partial / \partial z+i \partial b_{3} / \partial z+\left|b_{3}\right|^{2} .
\end{aligned}
$$

Therefore we have

$$
P^{*} P+A^{*} A=T^{2}-\left(\partial b_{2} / \partial x_{1}-\partial b_{1} / \partial x_{2}\right)
$$

Hence, for $\phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$,

$$
\begin{aligned}
\int|T \phi|^{2} d x & =\left(\left(P^{*} P+A^{*} A\right) \phi, \phi\right)_{L_{2}}+\int\left(\partial b_{2} / \partial x_{1}-\partial b_{1} / \partial x_{2}\right)|\phi|^{2} d x \\
& \geq \int\left(\partial b_{2} / \partial x_{1}-\partial b_{1} / \partial x_{2}\right)|\phi|^{2} d x .
\end{aligned}
$$

Example 1. We first take $\alpha=2$, namely, let

$$
V(x)= \begin{cases}-r^{-2} & \left(r \geq e^{1 / 2}\right) \\ 0 & \left(r<e^{1 / 2}\right)\end{cases}
$$

If $f(r)-B / 2=r^{-\beta}$ for $r \geq e^{1 / 2}(\beta>2)$, the condition (3.4) is fulfilled, hence \# $\sigma_{d}(H)$ $=+\infty$. We next see what occurs when this condition is violated. We define $f(r)$ by

$$
f(r)= \begin{cases}B / 2+r^{-2} \log r & \left(r \geq e^{1 / 2}\right) \\ B / 2+1 /(2 e) & \left(r<e^{1 / 2}\right)\end{cases}
$$

Then $f \in C^{1}([0, \infty)), f^{\prime}(0)=0, f^{\prime}(r) \leq 0$, and

$$
F_{f}(r)=\left\{\begin{array}{l}
B+r^{-2}\left(r \geq e^{1 / 2}\right), \\
B+e^{-1}\left(r<e^{1 / 2}\right)
\end{array}\right.
$$

Hence, by using (3.6),

$$
\begin{equation*}
(H \phi, \phi)_{L^{2}} \geq \int\left(F_{f}(r)+V\right)|\phi|^{2} d x \geq B\|\phi\|_{L^{2}} \text { for } \phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right) \tag{3.7}
\end{equation*}
$$

By Proposition 2.1, it is easy to see that $\sigma_{e}(H)=[B, \infty)$. Hence, by (3.7), we have

$$
\# \sigma_{d}(H)=\emptyset .
$$

Example 2. To consider the case of $0<\alpha<2$ we use the almost same but slightly complicated method.

Let

$$
V(x)= \begin{cases}-r^{-\alpha} & (r \geq 2), \quad 0<\alpha<2, \\ 0 & (r<2) .\end{cases}
$$

If $f(r)-B / 2=($ constan $) \cdot r^{-\beta}$ for $r \geq 2(\beta>1+\alpha / 2)$, the condition (3.4) is fulfilled, hence $\# \sigma_{d}(H)=+\infty$. When $\beta=\alpha(<1+\alpha / 2), H$ does not always have infinitely many bound states, although the difference $(1+\alpha / 2)-\alpha \rightarrow 0$ as $\alpha \rightarrow 2$. In fact, We define $f(r)$ by

$$
f(r)=\left\{\begin{array}{l}
B / 2+r^{-\alpha} /(2-\alpha)(r \geq 2), \\
B / 2+\left\{2^{-\alpha}+2^{-\alpha-2} \alpha r(2-r)\right\} /(2-\alpha)(1<r<2), \\
B / 2+2^{-\alpha-2}(4+\alpha) /(2-\alpha)(r \leq 1) .
\end{array}\right.
$$

Then $f \in C^{1}([0, \infty)), f^{\prime}(0)=0, f^{\prime}(r) \leq 0$, and

$$
F_{f}(r)=\left\{\begin{array}{l}
B+r^{-\alpha}(r \geq 2), \\
B+2^{-\alpha-1}\left\{-2 \alpha r^{2}+3 \alpha r+4\right\} /(2-\alpha)(1<r<2), \\
B+2^{-\alpha-2}(4+\alpha) /(2-\alpha)(r \leq 1),
\end{array}\right.
$$

so

$$
F_{f}(r)+V(x) \geq B(0<r<\infty)
$$

Hence, by using (3.6), we have

$$
(H \phi, \phi)_{L^{2}} \geq B\|\phi\|_{L^{2}}^{2} \text { for } \phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right) .
$$

So, in the case of $1<\alpha<2$, by the same reasoning as before, we have $\sigma(H)=\sigma_{e}(H)$ $=[B, \infty)$, hence

$$
\sigma_{d}(H)=\emptyset
$$

In the case of $0<\alpha \leq 1$, we need another proof that $\sigma_{e}(H)=[B, \infty)$, which is due to [4] (pl17).

Proof. We have only to prove $[B, \infty) \subset \sigma_{e}(H)$. Since $f(r)-B / 2 \rightarrow 0$ as $r \rightarrow$ $+\infty$, there exist $\left\{x_{n}\right\}_{n \in N} \subset \boldsymbol{R}^{3}$ such that

$$
\left\{\begin{array}{l}
x_{n}=\left(0,0, z_{n}\right), z_{n}>0, \tag{3.8}\\
z_{n} / n^{2} \rightarrow+\infty \text { as } n \rightarrow+\infty \text { and } \\
\sup \left\{|f(r)-B / 2| \rho^{2} ;\left|z-z_{n}\right| \leq n, \rho \leq n\right\} \leq n^{-1}
\end{array}\right.
$$

For $\lambda \geq 0$, we define $\Psi_{n}(x)$ by

$$
\Psi_{n}(x) \equiv \Psi_{n, \lambda}(x)=e^{i \lambda z} \xi_{n}(z) \phi_{0}(\vec{\rho})(n \in N),
$$

where $\phi_{0}(\vec{\rho})$ is in the proof of Proposition 2.1 and

$$
\xi_{m}(z)=n^{-1 / 2} \xi\left(\left(z-z_{n}\right) / n\right)
$$

for some fixed $\xi \in C_{0}^{\infty}(|z| \leq 1)$. We remark that

$$
\begin{equation*}
\left\|\phi_{0}\right\|_{L^{2}\left(\boldsymbol{R}^{2}\right)}=\left\|\xi_{n}\right\|_{L^{2}\left(\boldsymbol{R}^{1}\right)}=\left\|\Psi_{n}\right\|_{L^{2}\left(\boldsymbol{R}^{3}\right)}=1 . \tag{3.9}
\end{equation*}
$$

To prove $[B, \infty) \subset \sigma_{e}(H)$ it is sufficient to show that

$$
\left\{\begin{array}{l}
\left(H-\left(B+\lambda^{2}\right)\right) \Psi_{n} \rightarrow 0 \text { strongly in } L^{2}\left(\boldsymbol{R}^{3}\right) \text { as } m \rightarrow \infty \text { and } \tag{3.10}\\
\left(\Psi_{j}, \Psi_{k}\right)_{L^{2}}=0(j \neq k) .
\end{array}\right.
$$

Since $\operatorname{div} b=\operatorname{div}\left(f(r)\left(-x_{2}, x_{1}, 0\right)\right)=0$, we have

$$
T^{2}=T_{c}^{2}+2 i b_{p} \cdot \nabla+\left(2 b_{c} \cdot b_{p}+\left|b_{p}\right|^{2}\right)
$$

Moreover, since Ψ_{n} is independent of θ,

$$
b_{p} \cdot \nabla \Psi_{n}=(f(r)-B / 2)\left(-x_{2}, x_{1}, 0\right) \cdot\left(\left(\partial \Psi_{n} / \partial \rho\right) \rho^{-1} x_{1},\left(\partial \Psi_{n} / \partial \rho\right) \rho^{-1} x_{2}, \partial \Psi_{n} / \partial z\right)=0
$$

Hence we have

$$
\begin{equation*}
T^{2} \Psi_{n}=T_{c}^{2} \Psi_{n}+\left(2 b_{c} \cdot b_{p}+\left|b_{p}\right|^{2}\right) \Psi_{n}(n \in \boldsymbol{N}) \tag{3.11}
\end{equation*}
$$

By a simple calculation,

$$
\begin{aligned}
\left|\left(2 b_{c} \cdot b_{p}+\left|b_{p}\right|^{2}\right) \Psi_{n}\right| & =\left|(f(r)-B / 2)(f(r)+B / 2) \rho^{2} \Psi_{n}\right| \\
& \leq d_{1}|f(r)-B / 2| \rho^{2}\left|\Psi_{n}\right|
\end{aligned}
$$

for some constant $d_{1}>0$. By using the above inequality,

$$
\begin{aligned}
\int_{R^{2}}\left|\left(2 b_{c} \cdot b_{p}+\left|b_{p}\right|^{2}\right) \Psi_{n}\right|^{2} d x & \leq d_{1}^{2} \int_{R^{\circ}}\left(|f(r)-B / 2| \rho^{2}\right)^{2}\left|\Psi_{n}\right|^{2} d x \\
& \leq d_{1}^{2}\left\{\int_{\rho \leq n}+\int_{\rho>n}\right\}\left(|f(r)-B / 2| \rho^{2}\right)^{2}\left|\Psi_{n}\right|^{2} d x .
\end{aligned}
$$

Using (3.8) and the fact that $\operatorname{supp} \xi_{n} \subset\left\{\left|z-z_{n}\right| \leq n\right\}$ gives

$$
\int_{\rho \leq n}\left(|f(r)-B / 2| \rho^{2}\right)^{2}\left|\Psi_{n}\right|^{2} d x \leq n^{-2} \int_{\rho \leq n}\left|\Psi_{n}\right|^{2} d x \leq n^{-2} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

On the other hand, by using (3.9),

$$
\int_{\rho>n}\left(|f(r)-B / 2| \rho^{2}\right)^{2} \rho^{4}\left|\Psi_{n}\right|^{2} d x \leq d_{2} \int_{n}^{\infty} \rho^{5} e^{-B \rho^{2} / 2} d \rho \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Therefore we obtain

$$
\begin{equation*}
\left(2 b_{c} \cdot b_{p}+\left|b_{p}\right|^{2}\right) \Psi_{n} \rightarrow 0 \text { strongly in } L^{2}\left(\boldsymbol{R}^{3}\right) \text { as } n \rightarrow \infty \tag{3.12}
\end{equation*}
$$

By a similar argument as in the proof of Proposition 2.1, we also have

$$
\begin{equation*}
\left(T_{c}^{2}-\left(B+\lambda^{2}\right)\right) \Psi_{n} \rightarrow 0 \text { strongly in } L^{2}\left(\boldsymbol{R}^{3}\right) \text { as } n \rightarrow \infty \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
V \Psi_{n} \rightarrow 0 \text { strongly in } L^{2}\left(\boldsymbol{R}^{3}\right) \text { as } n \rightarrow \infty . \tag{3.14}
\end{equation*}
$$

By (3.11), (3.12), (3.13) and (3.14), we obtain

$$
\left(H-\left(B+\lambda^{2}\right)\right) \Psi_{n} \rightarrow 0 \text { strongly in } L^{2}\left(\boldsymbol{R}^{3}\right) \text { as } n \rightarrow \infty .
$$

Using (3.8) and choosing a subsequence of $\left\{\Psi_{n}\right\}$ (denoted by the same notation $\left\{\Psi_{n}\right\}$), one can assume that

$$
\left(\Psi_{j}, \Psi_{k}\right)_{L^{2}}=0(j \neq k)
$$

Thus we obtain (3.10).
We next show that the negativity assumption (V2) is necessary for the infiniteness of the discrete spectrum under the situation that V is bounded above.

Example 3. Let

$$
f(r)=\left\{\begin{array}{l}
B / 2(r \geq 2) \\
B / 2+\exp (1 /(r-2))(3 / 2 \leq r<2) \\
B / 2+2 e^{-2}-\exp (-1 /(r-1))(1 \leq r<3 / 2) \\
B / 2+2 e^{-2}(0 \leq r<1)
\end{array}\right.
$$

Then we have $f \in C^{1}([0, \infty)), f^{\prime}(0)=0, f^{\prime}(r) \leq 0$, and

$$
F_{f}(r)=\left\{\begin{array}{l}
B(r \geq 2) \\
B+4 e^{-2}(0 \leq r \leq 1)
\end{array}\right.
$$

Now we define $V(x)$ by

$$
V(x)=\left\{\begin{array}{l}
0(r \geq 2) \\
\max \left(0, B-F_{f}(r)\right)(1<r<2) \\
v(r)(0 \leq r \leq 1)
\end{array}\right.
$$

where $|v(r)| \leq 4 e^{-2}$. We remark that, in this case, (3.3) is satisfied but $V(x)$ does not satisfy (V2). We also have

$$
(H \phi, \phi)_{L^{2}} \geq \int\left(F_{f}(r)+V\right)|\phi|^{2} d x \geq B\|\phi\|_{L^{2}}^{2}
$$

$$
\sigma_{e}(H)=[B, \infty), \sigma_{d}(H)=\emptyset
$$

Finally we show an example of the magnetic bottle (see [2]) which means a magnetic Schrödinger operator without the static potential term having a nonempty discrete spectrum.

Example 4. Let

$$
\begin{equation*}
\beta=\inf \left\{(-\Delta \phi, \phi)_{L^{2}} ; \phi \in C_{0}^{\infty}(|x| \leq 1),\|\phi\|_{L}^{2}=1\right\} \tag{3.15}
\end{equation*}
$$

We pick up $f \in C^{1}([0, \infty))$ such that

$$
f(r)=\left\{\begin{array}{l}
0(0 \leq r \leq 1) \\
(\beta+1) / 2(r \geq 2)
\end{array}\right.
$$

Then it follows from Proposition 2.1 that $\sigma_{e}\left(T^{2}\right)=[\beta+1, \infty)$, so by (3.15) it is easy to see that

$$
\inf \sigma\left(T^{2}\right) \leq \beta<\inf \sigma_{e}\left(T^{2}\right)
$$

which implies $\sigma_{d}\left(T^{2}\right) \neq \emptyset$.

References

[1] S. Agmon : Bounds on Exponential Decay of Eigenfunctions of Schrödinger Operators, in Schrödinger Operators, ed. by S. Graffi, Lecture Note in Math. 1159, Springer, 1985.
[2] J. Avron, I. Herbst, B. Simon : Schrödinger Operators with Magnetic Fields I, General Interactions, Duke Math. J. 45 (1978), 847-883.
[3] J. Avron, I. Herbst, B. Simon : Schrödinger Operators with Magnetic Fields III, Atoms in Homogeneous Magnetic Field, Comm. Math. Phys. 79 (1981), 529-572.
[4] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon: Schrödinger Operators with Application to Quantum Mechanics and Global Gemetry, Texts and Monographs in Physics, Springer-Verlag, New York/Berlin, 1987.
[5] A. Mohamed: Quelques remarques sur le spectre de l'opérateur de Schrödinger avec un champ magnétique, Comm. in Partial Differ. Eq. 13 (1988), 1415-1430.
[6] M. Reed, B. Simon : Methods of Modern Mathmatical Physics IV, Analysis of Opetators, Academic Press, 1978.
[7] H. Tamura : Asymptotic Distribution of Eigenvalues for Schrödinger Operators with Homogeneous Magnetic Fields II, Osaka J. Math. 26 (1989), 119-137.

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560
Japan

