Matsuno, T. Osaka J. Math. **32** (1995), 645-658

ON A THEOREM OF ZARISKI - VAN KAMPEN TYPE AND ITS APPLICATIONS

TAKANORI MATSUNO

(Received May 11, 1994)

1. Introduction. Zariski constructed a method to calculate $\pi_1(\mathbf{P}^2 - C)$, where \mathbf{P}^2 is the complex projective plane and C is a curve on it. In this paper, following the ideas of Zariski [5] and Van Kampen [4], we give a method to calculate $\pi_1(E-S)$, where E is a holomorphic line bundle over a complex manifold M and S is a hypersurface of E under certain conditions. Applying our method and the Reidemeister-Schreier method (see Rolfsen [3]), we can calculate the fundamental groups of regular loci of certain normal complex spaces. We give a few concrete examples in the final section.

This paper is a revised version of the author's master thesis [1]. The author would like to express his thanks to Professor M. Namba for his useful suggestions and encouragements and to Professor M. Sakuma whose suggestions about Lemma 1 (see section 2) was a great help to prove Main Theorem. He also expresses his thanks to the referee for useful comments.

2. Statement of Main Theorem. Let M be a connected -dimensional complex manifold and $\mu: E \rightarrow M$ be a holomorphic line bundle over M and S be a hypersurface of E. We assume that E and S satisfy the following conditions:

(1) $\mu: S \rightarrow M$ is a finite proper holomorphic map, where μ' is the ristriction of μ to $S(\mu'=\mu|s)$.

(2) There is a hypersurfase B of M such that $\mu'|_{s-\mu^{-1}(B)}$: $S-\mu^{-1}(B) \rightarrow M-B$ is an unbranched covering of degree.

(3) $(d\mu')_p$: $T(S-\mu^{-1}(B))_p \rightarrow T(M-B)_{\mu'(p)}$ is isomorphic for every point $p \in S-\mu^{-1}(B)$.

Then we have a following lemma whose proof is given in section 4.

Lemma 1. $\mu|_{E-S-\mu^{-1}(B)}: E-S-\mu^{-1}(B)$ is a continuous fiber bundle.

We denote a standard fiber of $\mu : E \to M$ by \widehat{F} and that of $\mu|_{E-S-\mu^{-1}(B)} : E-S - \mu^{-1}(B) \to M - B$ by F. We assume that there is a continuous section $\xi : M \to E$ of $\mu : E \to M$ such that $\xi(M) \cap S = \phi$ (see Figure 1).

Figure 1

REMARK. Such a continuous sectinuous does not always exist. For example, if E is a negative line bundle and S is the image of the zero section, then there exists no such a continuous section.

In order to describe Main Theorem, we must prepare some more symbols. We choose $F \cap \hat{\xi}(*)$ as a base point b_0 and we omit the base point hereafter. Since F can be identified with $C - \{n \text{ points}\}, \pi_1(F)$ is isomorphic to the *n*-th free group $F_n = \langle \gamma_1, \dots, \gamma_n \rangle$ (see Figure 2).

Figure 2

Let \widehat{Q} be the kernel of the surjective homomorphism

$$j_*: \pi_1(M-B) \rightarrow \pi_1(M),$$

induced from the injection $i: M - B \hookrightarrow M$. We assume that \hat{Q} has a finite presentation as follows:

$$Q = \langle \beta_1, \dots, \beta_t | \Box = 1, \dots, \Box = 1 \text{ (some relations) } \rangle.$$

646

Let θ : $\pi_1(M-B) \rightarrow B_n$ be the braid monodromy representation of the continuous fiber bundle $\mu|_{E-S-\mu^{-1}(B)}$ in Lemma 1, where B_n is the *n*-th braid group:

$$B_n = \langle \sigma_1, \cdots, \sigma_{n-1} | [\sigma_i, \sigma_j] = 1(|i-j| \ge 2), \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} (i=1, \cdots, n-2) \rangle.$$

We define a homomorphism $\varphi: B_n \rightarrow Aut(\pi_1(F))$ as follows:

$$\begin{cases} \varphi(\sigma_j)(\gamma_j) = \gamma_j^{-1}\gamma_{j+1}\gamma_j \\ \varphi(\sigma_j)(\gamma_{j+1}) = \gamma_j \\ \varphi(\sigma_j)(\gamma_k) = \gamma_k (\text{if } k \neq j, j+1) \end{cases}$$

Then we have the following theorem of Zariski-Van Kampen type:

Main Theorem. If there is a continuous section ξ of $\mu: E \rightarrow M$ such that $\xi(M) \cap S = \phi$, then

 $\pi_1(E-S) \cong \langle \gamma_1, \cdots, \gamma_n | \gamma_j = \varphi(\theta(\beta_k))(\gamma_j)(1 \le j \le n, 1 \le k \le t) \rangle \rtimes \pi_1(M).$ (a semi-direct product)

Here β_1, \dots, β_k generate the kernel of the homomorphism $j_*: \pi_1(M - B) \rightarrow \pi_1(M)$ and $\gamma_1, \dots, \gamma_n$ generate the image of the homomorphism $i_*: \pi_1(F) \rightarrow \pi_1(E - S - \mu^{-1}(B))$, where i_* is induced from injection $i: F \rightarrow E - Q - \mu^{-1}(B)$.

REMARK. In Main Theorem, the relations $\gamma_j = \varphi(\theta(\beta_k))(\gamma_j)$ are same as the usual monodromy relations, so it is not essential to facter the homomorphism

$$\pi_1(M-B) \longrightarrow Aut(\pi_1(F))$$

through the braid group.

Corollary. Under the same assumptions in Main Theorem, assume moreover that M is simply connected (*i.e.* $\pi_1(M) = \{1\}$), then

$$\pi_1(E-S) \cong \langle \gamma_1, \cdots, \gamma_n | \gamma_j = \varphi(\theta(\beta_k))(\gamma_j)(1 \le j \le n, 1 \le k \le t) \rangle.$$

3. Proof of Main Theorem. Since $\mu : E - S - \mu^{-1}(B) \rightarrow M - B$ is a continuous fiber bundle, there is the following exact sequence:

where μ_* and ξ_* are the homomorphisms induced by μ and ξ respectively.

 $\mu_* \circ \xi_* = id|_{\pi_2(M-B)}$, since $\mu \circ \xi = id|_{M-B}$. Therefore we have $\triangle = \triangle \circ \mu_* \circ \xi_* = 0$. On the other hand $\pi_0(F) = \{1\}$, since F is connected. Hence we have the following exact sequence : T. MATSUNO

(1)
$$1 \to \pi_1(F) \xrightarrow{i_*} \pi_1(E - S - \mu^{-1}(B) \underset{\xi_*}{\stackrel{\mu_*}{\rightleftharpoons}} \pi_1(M - B) \to 1.$$

We denote $i_*\pi_1(F)$ by K, $\xi_*\pi_1(M-B)$ by H and $\pi_1(E-S-\mu^{-1}(B))$ by G. The short exact sequence means that:

 $G \cong K \rtimes H$ (a semi-direct product).

Now let $B = B_1 \cup \cdots \cup B_i$ be the irreducible decomposition of B and α_j be the meridian of B_j (see Figure 3).

Figure 3

REMARK. Here we assume that B has a finite irreducible decomposition for simplecity. But even if B has an infinite irreducible decomposition the following argument is the same.

From a theorem of Van Kampen [4] (see also Namba [2] Cor.1.2.8), we have the following exact sequence :

$$1 \rightarrow \ll \alpha_1, \dots, \alpha_l \gg^{\pi_1(M-B)} \rightarrow \pi_1(M-B) \rightarrow \pi_1(M) \rightarrow 1$$

where $\hat{Q} = \ll \alpha_1, ..., \alpha_l \gg^{\pi_1(M-B)}$ is the smallest normal subgroup of $\pi_1(M-B)$ which contains $\alpha_1, ..., \alpha_l$.

 $\mu^{-1}(B)$ is a hypersurface of E, which has the irreducible decomposition

$$\mu^{-1}(B) = \mu^{-1}(B_1) \cup \cdots \cup \mu^{-1}(B_l).$$

 $\xi_*(\alpha_j)$ is a meridian of $\mu^{-1}(B_j)$, for $\mu: E \to M$ is a line bundle and so $d\mu: T_p M \to T_{\mu(p)} M$ is surjective. Then, from the theorem of Van Kampen again, we have the folloing exact sequence:

$$1 \rightarrow \ll \xi_*(\alpha_1), ..., \xi_*(\alpha_l) \gg^G \rightarrow G \rightarrow \pi_1(E-S) \rightarrow 1,$$

648

where $\langle \xi_*(\alpha_1), ..., \xi_*(\alpha_l) \rangle^G$ is the smallest normal subgroup of G which contains $\xi_*(\alpha_1), ..., \xi_*(\alpha_l)$.

We denote $\ll \xi_*(\alpha_1), ..., \xi_*(\alpha_l) \gg^G$ by $N, \xi_*(\ll \alpha_1, ..., \alpha_l \gg^{\pi_1(M-B)})$ by Q and KN by R.

Then we can easily check that

$$N \cap H = Q \text{ and } R \cap NH = N.$$

Consider the natural exact sequence

$$1 \rightarrow R/N \rightarrow G/N \rightarrow G/R \rightarrow 1.$$

Note that, by (1) and (2),

$$G/R = KH/R = (KN)(NH)/R = R(NH)/R \cong (NH)/(R \cap (NH)) = (NH)/N.$$

 $1 \rightarrow R/N \rightarrow G/N \xrightarrow{f} (NH)/N \rightarrow 1.$

Hence, we have the exact sequence

The homomorphism $g: (NH)/N \rightarrow G/N$ defined by

$$g: nh(modN) \mapsto h(modN)(n \in N, h \in H)$$

is well-defined and satisfies $f \circ g =$ the identity. Hence the exact sequence (3) splits, so

 $G/N \cong (R/N) \rtimes (NH/N)$ (a semi-direct product).

We can easily check that

$$K \cap N = \ll a^{-1}qaq^{-1}|a \in K, q \in Q \gg^{\kappa},$$

where $\ll a^{-1}qaq^{-1}|a \in K$, $q \in Q \gg^{K}$ is the smallest normal subgroup of K which contains $\{a^{-1}qaq^{-1}|a \in K, q \in Q\}$. Furthermore, note that if K and Q are respectively generated by $\{a_1, ..., a_n\}$ and $\{q_1, ..., q_t\}$, then

$$K \cap N = \ll a_j^{-1} q_k a_j q_k^{-1} | 1 \le j \le n, \ 1 \le k \le t \gg^K$$

We assume that $\ll \alpha_1, ..., \alpha_l \gg^{\pi_1(M-B)}$ has a finite presentation as follows:

$$\ll \alpha_1, ..., \alpha_l \gg \pi_1(M-B) = <\beta_1, ..., \beta_t | \square = 1, ..., \square = 1 \text{ (some relations)} > .$$

Since $K = i_* \pi_1(F)$ is isomorphic to the *n*-th free group $\langle \gamma_1, ..., \gamma_n \rangle$, we have:

$$K \cap N \cong \ll \gamma_j^{-1} \xi_*(\beta_k) \gamma_j \xi_*(\beta_k)^{-1} | 1 \le j \le n, \ 1 \le k \le t \gg^K.$$

Thus,

$$K/(K \cap N) \cong \langle \gamma_1, ..., \gamma_n | \gamma_j^{-1} \xi_*(\beta_k) \gamma_j \xi_*(\beta_k)^{-1} = 1 (1 \le j \le n, 1 \le k \le t) \rangle.$$

Since G/N is isomorphic to $\pi_1(E-S)$, R/N is isomorphic to $K/(K \cap N)$ and $NH/N \cong H/(N \cap H) = H/Q$ is isomorphic to $\pi_1(M)$, we have:

T. MATSUNO

 $\pi_1(E-S)\cong (K/(K\cap N)) \rtimes \pi_1(M)$ (a semi-direct product).

Now useing φ and θ (defined in section 2), we have :

$$\xi_*(\beta_k)\gamma_j\xi_*(\beta_k)^{-1} = \varphi(\theta(\beta_k))(\gamma_j)$$
 (see Figure 4).

Hence,

$$K/(K \cap N) \cong \langle \gamma_1, ..., \gamma_n | \gamma_j = \varphi(\theta(\beta_k))(\gamma_j)(1 \le j \le n, 1 \le k \le t) \rangle.$$

This completes the proof of Main Theorem.

4. Proof of Lemma 1. (Due to M.Sakuma): For a given point $q \in M-B$, we can take a neiborhood U of q such that

(i) $\mu'^{-1}(U) \approx \coprod_{i \text{ nomeomorphic}} \coprod_{i=1}^n \tilde{U}_i(\mu: \tilde{U}_i \xrightarrow{\sim} U)$ We write $\mu^{-1}(q) \cap \tilde{U}_i = \{\tilde{q}_i\}.$

(ii) The following diagram is commutative.

$$\mu^{-1}(U) \xrightarrow{\sim} U \times C \mu \searrow \bigcirc \nearrow P_1 \text{ (where } P_1 \colon (p, z) \mapsto p) U$$

Here we define a map $h_i: \tilde{U}_i \rightarrow C$ as follows:

$$h_i: \tilde{U}_i \rightarrow \mu^{-1}(U) \cong U \times C \xrightarrow{}_{projection} C.$$

Then we can write \tilde{U}_i as follows :

$$\tilde{U}_i = \{ (x, h_i(x)) \in U \times C | x \in U \}.$$

We write $z_i = h_i(\tilde{q}_i)$, then there exists a positive number $\varepsilon > 0$ such that (1) Im $h_i \subset \text{Int}(D_{\varepsilon}(z_i))$, where $D_{\varepsilon}(z_i)$ is an ε -disk whose center is z_i and Int $(D_{\varepsilon}(z_i))$ is the interior of $D_{\varepsilon}(z_i)$.

(2) $D_{\varepsilon}(z_1)$, ..., $D_{\varepsilon}(z_n)$ are disjoint each other.

From Lemma 2 bellow, there exists a fiber preserving homeomorphism Φ such

650

that $\Phi(\tilde{U}_i) = U \times \{x\}.$

$$\mu^{-1}(U) \cong U \times C \xrightarrow{\phi} U \times C$$
$$\mu \searrow \bigcirc \downarrow P_1 \bigcirc \nearrow P_1$$
$$U$$

So we can take local coordinates of $\mu: E - S - \mu^{-1}(B) \rightarrow M - B$. This shows Lemma 1.

Lemma 2. Let D be an ε -disk of C whose center is the origin. Let U be the neiborhood of q as above. Let $h: U \rightarrow Int(D)$ be a continuous map such that h(q)=0, where Int(D) is the interior of D. Put $\tilde{U}=\{(x, h(x))\in U\times Int(D)|x\in U\}\subset U\times Int(D)$. Then there exists a homeomorphism $\Psi: U\times D \rightarrow U\times D$ such that

(i)
$$\Psi(\tilde{U}) = U \times \{0\}.$$

(ii)
$$\Psi$$
 is fiber preserving. (i.e. the folloing diagram is commutative.)

$$U \times D \xrightarrow{\Psi} U \times D$$
$$\searrow \mathbb{Q} \nearrow$$
$$U$$

(iii) $\Psi|_{U \times \partial D}$: $U \times \partial D \to U \times \partial D$ is the identity map.

Proof of Lemma 2. First we define a homeomorphism $H_x: D \rightarrow D$ for each point $x \in U$ as follows:

(i)
$$H_x(h(x)) = 0.$$

(ii) $H_x|_{\partial D} = id|_{\partial D}$.

(iii) H_x is extended to D with radial extention (see Figure 5).

Figure 5

Second we define a homeomorphism $\Psi: U \times D \xrightarrow{\sim} U \times D$ as follows:

$$\Psi(x, z) = \Psi(x, Hx(z)).$$

 Ψ satisfies the above conditions. (q.e.d.)

5. Case of Trivial Line Bundle. In Main Theorem, we assumed the existence of a continuous section ξ such that $\xi(M) \cap S = \phi$. In the case of the trivial line bundle we can prove the following proposition :

Proposition 1. Let M be a connected complex manifold and $\mu: E \to M$ be a trivial line bundle on $M(i, e, E = M \times C \text{ and } \mu(p, z) = p$ for every point $(p, z) \in M \times C$. Let f., ..., f_n be holomorphic functions on M and S be the hypersurface of E defined by

$$S = \{(p, z) \in E | z^n + f_1(p) z^{n-1} + \dots + f_n(p) = 0\}.$$

Then there is a continuous section ξ of $\mu: E \rightarrow M$ such that $\xi(M) \cap S = \phi$.

Proof. We define a continuous function $h: M \rightarrow C$ by

$$h(p) = |f_1(p)| + \dots + |f_n(p)| + 1.$$

We define a section $\xi: M \rightarrow E$ by

$$\xi(p) = (p, h(p)).$$

One can easily see that this section ξ of μ satisfies $\xi(M) \cap S = \phi$. In fact, if there is a point $p \in M$ such that $\xi(p) \in S$, then

$${h(p)}^n + f_1(p){h(p)}^{n-1} + \dots + f_n(p) = 0.$$

Since $h(p) \ge 1$

$$1 = \frac{f_1(p)}{h(p)} - \frac{f_2(p)}{\{h(p)\}^2} - \dots - \frac{f_n(p)}{\{h(p)\}^n}.$$

Hence

$$1 \leq \frac{|f_1(p)|}{h(p)} + \frac{|f_2(p)|}{\{h(p)\}^2} + \dots + \frac{|f_n(p)|}{\{h(p)\}^n}.$$

Since $\{h(p)\}^k \ge h(p)(k=1, 2, ...),$

$$1 \le \frac{|f_1(p)|}{h(p)} + \frac{|f_2(p)|}{h(p)} + \dots + \frac{|f_n(p)|}{h(p)}$$
$$= \frac{|f_1(p)| + \dots + |f_n(p)|}{|f_1(p)| + \dots + |f_n(p)| + 1} < 1.$$

A contradiction.

Let $\mu: C^{m+1} \rightarrow C^m$ be the trivial line bundle on C^m defined by

$$\mu: (z_1, ..., z_m, z_{m+1}) \rightarrow (z_1, ..., z_m).$$

Let S be the hypersurface of C^{m+1} defined by

(q.e.d.)

$$S = \{(z_1, ..., z_m, z_{m+1}) \in C^{m+1} | z_{m+1}^n + f_1(z) z_{m+1}^{n-1} + \dots + f_n(z) = 0\} \cdots (1),$$

where $z=(z_1, ..., z_m)$ and $f_1(z), ..., f_n(z)$ are polynomials.

By Corollary to Main Theorem and Proposition 1, we have

Theorem 1. Let S be the hypersurface of C^{m+1} defined by (1). Then, $\pi_1(C^{m+1}-S) \cong \langle \gamma_1, ..., \gamma_n | \gamma_j = \varphi(\theta(\beta_k))(\gamma_i), (1 \le j \le n, 1 \le k \le t) \rangle.$

Furthermore, let $(X_0: X_1: \dots: X_{m+1})$ be homogeneous coordinates of P^{m+1} such that $(X_1/X_0, \dots, X_{m+1}/X_0) = (z_1, \dots, z_{m+1}) \in C^{m+1}$ and \bar{S} be the closure of S in P^{m+1} . Then we have the following theorem of Zariski:

Theorem 2(Zariski [5]).

Suppose that $p_{\infty} = (0 : \cdots : 0 : 1)$ is not contained in \overline{S} . Then

$$\pi_{1}(\boldsymbol{P}^{m+1}-\bar{S})$$

$$\cong \langle \gamma_{1}, ..., \gamma_{n} | \gamma_{n}\gamma_{n-1}...\gamma_{1}=1, \gamma_{j}=\varphi(\theta(\beta_{k}))(\gamma_{j}), (1 \leq j \leq n, 1 \leq k \leq t) \rangle.$$

Proof. Let H_{∞} be the hypersurface of \mathbf{P}^{m+1} defined by $H_{\infty} = \{X_0 = 0\}$, (*i.e.* hyperplane at infinity) and α be a meridian of H_{∞} in $\mathbf{P}^{m+1} - \overline{S} - H_{\infty}$ (see Figure 6).

From the theorem of Van Kampen [4], we have the following exact sequence :

$$1 \rightarrow \ll \alpha \gg^{\pi_1(C^{m+1}-S)} \rightarrow \pi_1(C^{m+1}-S) \rightarrow \pi_1(P^{m+1}-\bar{S}) \rightarrow 1 \text{ (exact)}.$$

We can take α as $(\gamma_n \gamma_{n-1} \cdots \gamma_1)^{-1}$ in $C^{m+1} - S$ (see Figure 7). Thus,

$$\pi_1(\boldsymbol{P}^{m+1}-\bar{S})\cong \pi_1(\boldsymbol{C}^{m+1}-S)/\ll \gamma_n\gamma_{n-1}\cdots\gamma_1\gg^{\pi_1(\boldsymbol{C}^{m+1}-S)}$$

This shows Theorem 2.

Figure 7

REMARK. A similar theorem to Theorem 1 holds for $\mu: B^m(\varepsilon) \times B^1(\varepsilon') \to B^m(\varepsilon)$, where $B^m(\varepsilon)$ is a *m*-dimensional complex ball; $B^m(\varepsilon) = \{(z_1, ..., z_m) \in C^m ||z_1|^2 + \cdots + |z_m|^2 < \varepsilon^2\}$. In this case, the existence of continuous section with a similar conditions to Theorem 1 is obvious.

6. Calculations of Fundamental Groups of Finite Branched Coverings

EXAMPLE 1. Let X be the surface in C^3 defined by

$$X = \{\lambda, x, y\} \in C^3 | y^2 = x(x-1)(x-\lambda) \}.$$

X has two isolated singular points at (0,0,0) and (1,1,0). Hence X is normal. Let $\pi: X \rightarrow C^2$ be the projection map defined by

$$\pi(\lambda, x, y) = (\lambda, x).$$

Then π is a double branched covering of C^2 . The branch loucus S of π is a curve in C^2 and is written as:

$$S = \{(\lambda, x) \in \mathbb{C}^2 | x(x-1)(x-\lambda) = 0\}.$$

According to Theorem 1, we can calculate $\pi_1(C^2 - S)$. Let $\mu : C^2 \rightarrow C$ be the trivial line bundle on C defined by

$$\mu(\lambda, x) = \lambda.$$

The branch locus B of μ is $\{0, 1\} \subset C$ and $\pi_1(C-B)$ is isomorphic to the free group $\langle \beta_1, \beta_2 \rangle$, where β_1 and β_2 are its generators and can be considered as the

meridians of {0} and {1}, respectively. We may take $q_0 = \frac{1}{2}$ as a reference point of $\pi_1(C-B)$. In this case the standerd fiber F of $\mu|_{C-S-\mu^{-1}(x)}$ is $C-\{3\text{-points}\}$. We define γ_1 , γ_2 and γ_3 as the meridians of $(\frac{1}{2}, 1), (\frac{1}{2}, \frac{1}{2})$ and $(\frac{1}{2}, 0)$, respectively. The image of β_1 and β_2 by θ : $\pi_1(C-B) \rightarrow B_3$ are σ_1^2 and σ_2^2 , respectively. Then we have

$$\pi_1(\mathbf{C}^2 - S) \cong \langle \gamma_1, \gamma_2, \gamma_3 | \gamma_j = \varphi(\theta(\beta_k))(\gamma_j), j = 1, 2, 3, k = 1, 2 \rangle$$
$$\cong \langle \gamma_1, \gamma_2, \gamma_3 | \gamma_2 \gamma_3 = \gamma_3 \gamma_2, \gamma_1 \gamma_2 = \gamma_2 \gamma_1 \rangle.$$

By using the Reidemeister- Schreier method (c.f. Rolfsen [3] P.315-P.316), we can calculate $\pi_1(\text{Reg}X)$, where RegX is the set of regular points of X. Since $\pi_1(C^2 - B)$ is generated by three elements and since π is a double branched covering, we take the 3-th free group F_3 and the 5-th free group F_5 . As in Figure 9, we take their generators $\{\gamma_1, \gamma_2, \gamma_3\}$ and $\{b_1, b_2, b_3, b_4, b_5\}$, respectively, where $\pi^{-1}(\gamma_1) = \{x_1, x_2\}$, $\pi^{-1}(\gamma_2) = \{y_1, y_2\}, \pi^{-1}(\gamma_3) = \{z_1, z_2\}$, and

$$b_1 = y_1 x_1^{-1}$$

$$b_2 = x_1 y_2 x_2^{-1} x_1^{-1}$$

$$b_3 = z_1 x_1^{-1}$$

$$b_4 = x_1 z_2 x_2^{-1} x_1^{-1}$$

$$b_5 = x_1 x_2.$$

Then we transfer the relation of $\pi_1(C^2-S)\gamma_2\gamma_3\gamma_2^{-1}\gamma_3^{-1}=1$ in the words of F_5 .

$$y_1 z_2 y_2^{-1} z_1^{-1} = b_1 b_4 b_5 b_5^{-1} b_2^{-1} b_3^{-1} = 1$$

Figure 9

$$x_1y_2z_1y_1^{-1}z_2^{-1}x_1^{-1} = b_2b_5b_3b_1^{-1}b_5^{-1}b_4^{-1} = 1.$$

In a similar way, we transfer the relation $\gamma_1 \gamma_2 \gamma_1^{-1} \gamma_2^{-1} = 1$ in the words of F_5 :

$$x_1 y_2 x_2^{-1} y_1^{-1} = b_2 b_5 b_5^{-1} b_1^{-1} = 1$$

$$x_1 x_2 y_1 x_1^{-1} y_2^{-1} x_1^{-1} = b_5 b_1 b_5^{-1} b_2^{-1} = 1.$$

We also transfer the relations $\gamma_1^2 = 1$, $\gamma_2^2 = 1$, $\gamma_3^2 = 1$ since the ramification index of each irreducible component of S is equal to 2:

$$x_1 x_2 = b_5 = 1$$

$$y_1 y_2 = b_1 b_2 b_5 = 1$$

$$z_1 z_2 = b_3 b_4 b_5 = 1$$

Putting $\alpha_1 = b_1$ and $\alpha_2 = b_4$, we have

$$\pi_1(\operatorname{Reg} X) \cong \langle \alpha_1, \alpha_2 | \alpha_1^2 = 1, (\alpha_1 \alpha_2)^2 = 1 \rangle$$

$$\cong (\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z}) (\text{free product}).$$

EXAMPLE 2. Let X be the hypersurfaces of C^4 defined by

$$X = \{(x, y, z, w) \in C^4 | w^n = z^2 - xy^2\} (n \ge 2).$$

The singular locus of X is the line $\{(x, y, z, w) \in X | y = z = w = 0\}$. Hence X is normal. Let $\pi : X \to C^3$ be the projection map defined by:

$$\pi(x, y, z, w) = (x, y, z)$$

Then π is a cyclic branched covering of C^3 . The branch locus S of π is a surface in C^3 and is written as:

$$S = \{(x, y, z) \in C^3 | z^2 - xy^2 = 0\}$$
 (the Cartan umbrella).

According to Theorem 1, we can calculate $\pi_1(C^3-S)$. The result is

 $\pi_1(C^3-S) \cong \langle \gamma \rangle$ (the free group).

From the Reidemeister-Schreier method again, we have :

 $\pi_1(\operatorname{Reg} X) \cong \{i.e. \operatorname{Reg} X \text{ is simply connected}\}.$

EXAMPLE 3.

Let X be the hypersurface of C^{m+2} defined by

$$X = \{(z_1, ..., z_{m+2}) \in C^{m+2} | z_{m+2}^2 + z_{m+1}^2 + g(z_1, ..., z_m) = 0\},\$$

where g is a polynomial which is not constant. The singular locus of X is at most (m-1)-dimensional. Hence X is normal. Let $\pi : X \to C^{m+1}$ be the projection map defined by :

$$\pi(z_1, ..., z_{m+1}, z_{m+2}) = (z_1, ..., z_{m+1}).$$

Then π is a branched covering of C^{m+1} . The branch locus S of π is a hypersurface in C^{m+1} and is written as:

$$S = \{z_{m+1}^2 + g(z_1, ..., z_m) = 0\}.$$

By Theorem 1, $\pi_1(C^{m+1}-S)$ can be written as:

$$\pi_1(\boldsymbol{C}^{m+1}-S)\cong \langle \gamma_1, \gamma_2|\Box=1, ..., \Box=1\rangle.$$

From the Reidemeister-Schreier method again, we have :

$$\pi_{1}(RegX) \cong \begin{cases} \{1\} \text{ or} \\ \mathbf{Z}/q\mathbf{Z}(\exists q \in \mathbf{Z}) \text{ or} \\ \mathbf{Z} \end{cases}$$

(*i.e.* $\pi_1(RegX)$ is isomorphic to a cyclic group).

References

- [1] T. Matsuno: Normal singularities and fundamental groups, Osaka Univ. master theses (in Japanese).
- M. Namba : Branched coverings and algebraic functions, Pitman Res. Notes Math. Ser., Vol.161, Longman Sci. Tech., Harlow, 1987.
- [3] D. Rolfsen: Knots and links, Publish or Perish, Berkeky, 1976.
- [4] van Kampen: On the fundamental group of an algebraic curves, Amer.J.Math. 55 (1933), 255-260.
- [5] O. Zariski: Collected Papers Vol 3, MIT Press, Cambridge, 1973.

T. MATSUNO

Department of Mathematics Faculty of Science Osaka University Toyonaka, Osaka 560, Japan