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1. Introduction. Zariski constructed a method to calculate m(P?—C),
where P? is the complex projective plane and C is a curve on it. In this paper,
following the ideas of Zariski [5] and Van Kampen (4], we give a method to
calculate m(E—S), where E is a holomorphic line bundle over a complex
manifold M and S is a hypersurface of E under certain conditions. Applying our
method and the Reidemeister-Schreier method (see Rolfsen [3]), we can calculate
the fundamental groups of regular loci of certain normal complex spaces. We give
a few concrete examples in the final section.

This paper is a revised version of the author’s master thesis [1]. The author
would like to express his thanks to Professor M. Namba for his useful suggestions
and encouragements and to Professor M. Sakuma whose suggestions about Lemma
1 (see section 2) was a great help to prove Main Theorem. He also expresses his
thanks to the referee for useful comments.

2. Statement of Main Theorem. Let M be a connected -dimensional
complex manifold and ¢ : E—M be a holomorphic line bundle over M and S be
a hypersurface of £. We assume that £ and S satisfy the following conditions :

(1) p: S—M is a finite proper holomorphic map, where £ is the ristriction
of 1 to S(u'=puls).

(2) There is a hypersurfase B of M such that ¢|s—p-18: S—p (B)>M—B
is an unbranched covering of degree .

(3) (d)p: T(S—pu(B))s— T(M— B)uwp is isomorphic for every point p
eS—uY(B).

Then we have a following lemma whose proof is given in section 4.
Lemma 1. glp-s—us: E—S—u"'(B) is a continuous fiber bundle.
We denote a standard fiber od ¢ : E—M by F and that of ¢lg-s-u1m: E—S

—p Y(By>M—B by F. We assume that there is a continuous section & : M—FE
of 1: E—M such that E(M)NS=¢ (see Figure 1).
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Figure 1

REMARK. Such a continuous sectinuous does not always exist. For example,
if E is a negative line bundle and S is the image of the zero section, then there
exists no such a continuous section.

In order to describe Main Theorem, we must prepare some more symbols. We
choose FNE(*) as a base point & and we omit the base point hereafter. Since F°
can be identified with C —{» points}, m(F) is isomorphic to the 7-th free group
Frn=<y, -, va> (see Figure 2).

C - n points

Figure 2

Let Q be the kernel of the surjective homomorphism

Jx: 71'1(M—B)—>7z'1(M),

induced from the injection 7 : M —B=>M. We assume that @ has a finite presenta-
tion as follows :

Q=<p, -, B:|(0=1, -+, [0=1 (some relations) .
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Let 6 : m(M — B)— Ba be the braid monodromy representation of the contin-
uous fiber bundle #|z-s—» '3 in Lemma 1, where By is the #-th braid group :
Bn=<0'1, e, O'n—1|[0'z', Gj]=1(|i—j|22), didi+10i=0i+lai6i+l(i:1, e n—2)>.

We define a homomorphism ¢ : B,— Aut(m(F)) as follows :

o(0;)(7541)= Vi
(0(0}')(7%) = 7x(if k*j, j+1).

Then we have the following theorem of Zariski-Van Kampen type :

{(0(@')(7;‘) =7 7n17;

Main Theorem. If there is a continuous section & of p: E—M such that
EM)NS=¢, then

m(E—S)=<p, =+, ralri=@(0(BN7)1<j<n, 1<k<1)> X m(M).
(a semi-direct product)

Here pi, -+, Br» generate the kernel of the homomorphism jx: m(M
—B)—-m(M) and 7y, ‘-, vn generate the image of the homomorphism ix:
m(F)>m(E—S—p ' (B)), where ix is induced from injection i: F>E—@Q

-1
—u'(B).

REMARK. In Main Theorem, the relations 7,=@(8(8))(7;) are same as the
usual monodromy relations, so it is not essential to facter the homomorphism

m(M — By— Aut(m(F))
through the braid group.

Corollary. Under the same assumptions in Main Theorem, assume more-
over that M is simply connected (i.e.m(M)={1}), then

m(E—=S)=y, =, 7alri=e(0(Be))(7:)(A<j<n, 1<k<t)>.

3. Proof of Main Theorem. Since ¢: E—S—x (B)>M — B is a continu-
ous fiber bundle, there is the following exact sequence :

---—»nz(F)—wz(E S— /J—I(B))<—7l'2(M B)—»
S r(F)>m(E—S—u(B)y S m(M —B)—
—>m(F)—- (exact),

where ux and £x are the homomorphisms induced by ¢ and £ respectively.

px0Ex=1id | msm-p), since noE=1id|u-s. Therefore we have A=AopyoE4x=0.
On the other hand m(F)={1}, since F is connected. Hence we have the following
exact sequence :
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(1) 1~»m(F>3>m(E—S—wl(B)%MM—B)—d.

We denote ixm(F) by K, Exm(M—B) by H and m(E—S—x"'(B)) by G. The
short exact sequence means that :

G=K X H (a semi-direct product).

Now let B=B;U---U B, be the irreducible decomposition of B and «; be the
meridian of B; (see Figure 3).

Figure 3

REMARK. Here we assume that B has a finite irreducible decomposition for
simplecity. But even if B has an infinite irreducible decomposition the following
argument is the same.

From a theorem of Van Kampen [4] (see also Namba [2] Cor.1.2.8), we have
the following exact sequence :

]._’<<a’1, st [l/z>>nl(M_B)—’7T1(M—B)—’HH(M)—’l

where Q=< a, ..., @:>™™~® is the smallest normal subgroup of m(M — B) which
contains a1, -, Q..
£~ '(B) is a hypersurface of E, which has the irreducible decomposition

pH(B)=p(B)U-Uu"(By).

Ex(a;) is a meridian of ¢ (B;), for £: E—M is a line bundle and so du:
ToM— TupM is surjective. Then, from the theorem of Van Kampen again, we
have the folloing exact sequence :

=< E&x(m), ..., Ex(@)>— G- m(E—S)—1,
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where <&x(@), ..., Ex(@)>C is the smallest normal subgroup of G which contains
5*(0'1), ey 5*(&/1)-

We denote <<{-'*(a/1), veny 5*((11)>>G by N, E*(<<aq, ceey az>>’”“”“”) by Q and
KN by R.

Then we can easily check that
(2) NNH=Q and RNNH=N.
Consider the natural exact sequence
1— R/N— G/N— G/R—1.
Note that, by (1) and (2),
G/R=KH/R=(KN)(NH)/R=R(NH)/R=(NH)/(RN(NH))=(NH)/N.
Hence, we have the exact sequence
3) 1 RIN— GIN->(NH) IN—1.
The homomorphism ¢ : (NH)/N— G/N defined by
g: nh(modN) —h(modN)nEN, heH)

is well-defined and satisfies f°g= the identity. Hence the exact sequence (3) splits,
$O

G/N=(R/N) > (NH/N) ( a semi-direct product).
We can easily check that
KNN=<La'qaq |a€K, q= Q>

where <a'qaq '|aEK, g€ Q> is the smallest normal subgroup of K which
contains {¢"'qaq '|laE K, ¢< Q). Furthermore, note that if K and  are respec-
tively generated by {a, ..., an} and {q, ..., q:}, then

KNN=<Kai'qra;qgi'1<j<n, 1<k<t>*
We assume that <a, ..., @:>"¥® has a finite presentation as follows :
La, .y DM B=ZB,, ., B|[0=1, ..., [(J=1 (some relations)>.
Since K=ixm(F) is isomorphic to the #-th free group <71, ..., 72>, we have:
KNN=Lyi x(Br) 7:€x(Br) 1<j<m, 1<k<t>*.
Thus,
K/(KNN)=<p, oy 7al75 (B 7:€x(Be) ' =11<j<m, 1<k<?)).

Since G/N is isomorphic to m(E—S), R/N is isomorphic to K/(KNN) and
NH/N=H/(NNH)=H/®Q is isomorphic to m(M), we have:
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m(E—S)=(K/(KNN)) >} m(M) (a semi-direct product).
Now useing ¢ and @ (defined in section 2), we have :

Ex(Br)7:Ex(Br) = 0(6(Br))(7,) (see Figure 4).

Hence,
K/(KNN)=<n, oy 72l 5= 0(0(B) (7)< <m, 1< k< 1))

This completes the proof of Main Theorem.

braid

B

Figure 4

4. Proof of Lemma 1. (Due to M.Sakuma): For a given point gEM — B,
we can take a neiborhood U of ¢ such that
i 2 (U) = 2 Udp: USU) We write ()N U:={3.).

homeomorphic

(ii) The following diagram is commutative.

p(Uy>UxC
uNQ APy (where Pr: (p, 2) —p)
U

Here we define a map 7 : U~ C as follows :

hi: U—p N (U)=UxC — C.

projection

Then we can write U, as follows :
U:={(x, hix)}€UX Clxe U}.

We write z;=/h:(J:), then there exists a positive number € >0 such that

(1) Imhk: C Int(De(z2:)), where De(2:) is an e-disk whose center is 2; and Int
(De(z:)) is the interior of De(z:).

(2) De(z1), ..., De(2n) are disjoint each other. .

From Lemma 2 bellow, there exists a fiber preserving homeomorphism @ such
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that O(U.)=U x {x}.

v ()=Uxcluxc
,u\ﬂl P1O/P1
U

So we can take local coordinates of 1: E—S— " '(B)>M — B. This shows
Lemma 1.

Lemma 2. Let D be an e-disk of C whose center is the origin. Let U be
the neiborhood of q as above. Let h: U— Int(D) be a continuous map such that
1(q)=0, where Int(D) is the interior of D. Put U={(x, h(x))E U X Int(D)|xE
U}C U X Int(D). Then there exists a homeomorphism ¥ : UXD—>U XD such
that

@) w(0)=U x{0}.

(i1) U is fiber preserving. (i.e. the folloing diagram is commutative.)

UxDoUXD
N
U

(iii) Ulysap: UXOD—UXAD is the identity map.

Proof of Lemma 2. First we define a homeomorphism Hx: D—D for each
point xE U as follows :

(i)  Hx(h(x))=0.

(i)  Hoo =id|o.
(iii)  Hx is extended to D with radial extention (see Figure 5).

A
X N

h(x)

D D
Figure 5

Second we define a homeomorphism ¥ : UXD—>UXD as follows :
U(x, z)=¥(x, Hx(2)).

¥ satisfies the above conditions. (g.e.d.)
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5. Case of Trivial Line Bundle. In Main Theorem, we assumed the exis-
tence of a continuous section &€ such that £&(M)NS=¢. In the case of the trivial
line bundle we can prove the following proposition :

Proposition 1. Let M be a connected complex manifold and 1. E—M be
a trivial line bundle on M(i, e, E=M X C and 1(p, z)=p for every point (p, z)
EMXC). Let £, ..., /» be holomorphic functions on M and S be the hypersurface
of E defined by

S={(p, 2)EE|z"+ /i(p)z" "+ + fo()=0}.
Then there is a continuous section & of u: E—M such that E(M)NS=¢.

Proof. We define a continuous function %#: M— C by
WD) =D+ +fa(D)| +1.
We define a section £&: M—FE by
£(0)=(p, h(p)).

One can easily see that this section & of y satisfies £(M)NS=¢. In fact, if there
is a point pE M such that £(p)E S, then

(RO} + ADHR(P)}* 4+ + fal ) =0.
Since #(p)>1

1= [(p) __ f(p) f(0)

) () T {np)}™

Hence

1AM | 1AB] 1fa(p)
=20 Toyr T T )

Since {#(p)}* = h(p)(k=1, 2, ...),

A 1A . (D)
=500 T nle) T )

_ A+ A+ AR
A+ + /o) +1 =

A contradiction. (g.e.d.)

Let #: C™"'—C™ be the trivial line bundle on C™ defined by
w: (21, oy Zmy Zne)— (21, .., Zm).

Let S be the hypersurface of C™*' defined by
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S={(Z1, ooy Rmy Zm+1)E Cm+1|2m+1n+fl(2)2m+1n_l+"'+fn(2)=0}"'(1),
where 2=(z1, ..., 2n) and fi(2), ..., /2(2) are polynomials.
By Corollary to Main Theorem and Proposition 1, we have
Theorem 1. Let S be the hypersurface of C™*' defined by (1). Then,
m(C™ ' =8)=Ln, .., 7alri=0(0(B))7:), 1<j<n, 1<k<t)>.
Furthermore, let (Xo: Xi: - : Xn+1) be homogeneous coordinatss of P™*!

such that (Xi1/Xo, =, Xn+1/X0)=(21, ..., Zns1)E C™* and S be the closure of S in
P, Then we have the following theorem of Zariski :

Theorem 2(Zariski [5]). ~
Suppose that p-=(0: --+: 0: 1) is not contained in S. Then

7[1(Pm+1—’§)
=0y e ValPa¥n-ren=1, 7,=0(0(B))(7s), A<j<n, 1<k<t)>.

Proof. Let H. be the hypersurface of P"*' defined by Ho={Xo=0}, (i.e.
hyperplane at infinity) and @ be a meridian of Hw in P™*'—S — H., (see Figure 6).

P m+l

Figure 6

From the theorem of Van Kampen [4], we have the following exact sequence :
1-><La>™" 95 n(C™ — S) > m(P™'— S)—1 (exact).

We can take @ as (¥27n-1-"71)"" in C™"'—S (see Figure 7).
Thus,

71'1(Pm+1 - 5‘); ﬂ'1(Cm+l_ S)/<< YnYn-1""" 71>>”'<CM75).

This shows Theorem 2.
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RS o=0Y, - 'Y2'Yl)'1

Figure 7

REMARK. A similar theorem to Theorem 1 holds for x: B™(e)X
B'(¢’)>B™(¢), where B™(¢) is a m-dimensional complex ball ; B"(e)={(z, ...,
2n)E C™||21)*+ -+ +|zn|*< €%}. In this case, the existence of continuous section with
a similar conditions to Theorem 1 is obvious.

6. Calculations of Fundamental Groups of Finite Branched Coverings

EXAMPLE 1.
Let X be the surface in C? defined by

X={4, x, )€ C¥ly*=x(x—1)(x—A)}.

X has two isolated singular points at (0,0,0) and (1,1,0). Hence X is normal. Let
7. X— C? be the projection map defined by

74, x, v)=(4, x).

Then 7 is a double branched covering of C?. The branch loucus S of 7 is a
curve in C? and is written as:

S={(4, x)€ C?x(x—1)(x—A)=0}.

According to Theorem 1, we can calculate m(C?*—S). Let ¢ : C?>— C be the trivial
line bundle on C defined by

w(A, x)=A.

The branch locus B of y is {0, 1}C C and m(C — B) is isomorphic to the free
group <p1, B2>, where 51 and f: are its generators and can be considered as the
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X X=A

A
x=1

C 2 /
x=0
m A
C . . . - A
0 172 1
Figure 8

meridians of {0} and {1}, respectively. We may take CIO=% as a reference point of

m(C—B). In this case the standerd fiber F of |c-s-,, is C—{3-points}. We

define 71, 72 and 73 as the meridians of <%, 1),(%, %) and (%—, 0), respectively.

The image of 81 and B2 by 0 : m(C —B)— B; are of and 63, respectively. Then we
have

m(C*—=S)=<n, 7, rslri=0(0(B))7:), 1=1, 2, 3, k=1, 2>
=, 72 7’3|7’27’3=7’372, NY2= Y2 Y1),

By using the Reidemeister- Schreier method (c.f. Rolfsen [3] P.315-P.316), we
can calculate m(RegX ), where RegX is the set of regular points of X. Since m(C?
— B) is generated by three elements and since 7 is a double branched covering, we
take the 3-th free group F3 and the 5-th free group Fs. As in Figure 9, we take their
generators {71, 72, vs} and {b1, ba, bs, bs, bs}, respectively, wherezr™'(y1)={x1, x2},
77 (r)={y, y2}, 77(7s)={a, 2}, and

b=yuxi!
bz=x1yzxz‘1x1‘1
bs=zx1"
ba=x120005 " 1"
bs=x1%3.

Then we transfer the relation of m(C*—S)y2737:'73'=1 in the words of Fs .

Vi2oVs 20 = b1babsbs b2 bit =1
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(LT )

l TU : double cyclic covering

Y2

if

Figure 9

X1Y22197 25 X7 = babsbsbi b5 byt =1.
In a similar way, we transfer the relation 717271 '72'=1 in the words of Fs:

X1y2x7 YT = babs b5 b =1
X1Xe X1 s T i =bs b1 b5 b =1.

We also transfer the relations y¥=1, y¥3=1, ¥4=1 since the ramification index
of each irreducible component of S is equal to 2:

X1X2=— b5:1
nye=b1bbs=1
R1R2— b3b4b5:1.

Putting a1=0b: and @»= b4, we have
m(Reg X)=La, wlat=1, (m)’=1>
=(Z/2Z) % (Z/2Z )(free product).
EXAMPLE 2.
Let X be the hypersurfaces of C* defined by
X={(x, v, 2z, w)€ C|lw"=2"—xy*}(n=>2).

The singular locus of X is the line {(x, v, 2, w)E X|y=z=w=0}. Hence X is
normal. Let 7: X— C? be the projection map defined by :

n(x, v, z, w)=(x, y, 2).

Then 7 is a cyclic branched covering of C®. The branch locus S of 7 is a
surface in C® and is written as :
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S={(x, v, 2)€ C*|z2*—xy*=0} (the Cartan umbrella).
According to Theorem 1, we can calculate m(C®*—S). The result is
m(C*—S)=<y>(the free group).
From the Reidemeister-Schreier method again, we have :
m(RegX)={ie. RegX is simply connected).
EXAMPLE 3.
Let X be the hypersurface of C™** defined by
X={(21, ..., 2ns2)€ C"**| 2012+ 2011+ 9(21, ..., 2m)=0)},

where g is a polynomial which is not constant. The singular locus of X is at most
(m—1)-dimensional. Hence X is normal. Let 7: X— C™"" be the projection map
defined by :

(21, ., Zms1, Zme2)=(21, ..., Zms1).

Then 7 is a branched covering of C™*'. The branch locus S of 7 is a hypersurface
in C™"' and is written as:

S={zhn+g(a, .., 2n)=0}.
By Theorem 1, m(C™"'—S) can be written as:
m(C"'—=S)={n, r/d=1, .., O=D.
From the Reidemeister-Schreier method again, we have:

{1} or
m(RegX)=Z/qZ(AgqEZ) or
VA

(i.e. m(RegX) is isomorphic to a cyclic group).
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