ON A THEOREM OF ZARISKI - VAN KAMPEN TYPE AND ITS APPLICATIONS

Takanori MATSUNO

(Received May 11, 1994)

1. Introduction. Zariski constructed a method to calculate $\pi_{1}\left(\boldsymbol{P}^{2}-C\right)$, where \boldsymbol{P}^{2} is the complex projective plane and C is a curve on it. In this paper, following the ideas of Zariski [5] and Van Kampen [4], we give a method to calculate $\pi_{1}(E-S)$, where E is a holomorphic line bundle over a complex manifold M and S is a hypersurface of E under certain conditions. Applying our method and the Reidemeister-Schreier method (see Rolfsen [3]), we can calculate the fundamental groups of regular loci of certain normal complex spaces. We give a few concrete examples in the final section.

This paper is a revised version of the author's master thesis [1]. The author would like to express his thanks to Professor M. Namba for his useful suggestions and encouragements and to Professor M. Sakuma whose suggestions about Lemma 1 (see section 2) was a great help to prove Main Theorem. He also expresses his thanks to the referee for useful comments.
2. Statement of Main Theorem. Let M be a connected -dimensional complex manifold and $\mu: E \rightarrow M$ be a holomorphic line bundle over M and S be a hypersurface of E. We assume that E and S satisfy the following conditions :
(1) $\mu: S \rightarrow M$ is a finite proper holomorphic map, where μ^{\prime} is the ristriction of μ to $S\left(\mu^{\prime}=\mu \mid s\right)$.
(2) There is a hypersurfase B of M such that $\left.\mu^{\prime}\right|_{s-\mu-1(B)}: S-\mu^{-1}(B) \rightarrow M-B$ is an unbranched covering of degree .
(3) $\left(\mathrm{d} \mu^{\prime}\right)_{p}: T\left(S-\mu^{-1}(B)\right)_{p} \rightarrow T(M-B)_{\mu^{\prime}(p)}$ is isomorphic for every point p $\in S-\mu^{-1}(B)$.

Then we have a following lemma whose proof is given in section 4.
Lemma 1. $\left.\mu\right|_{E-S-\mu^{-1}(B)}: E-S-\mu^{-1}(B)$ is a continuous fiber bundle.
We denote a standard fiber od $\mu: E \rightarrow M$ by \widehat{F} and that of $\left.\mu\right|_{E-S-\mu-1(B)}: E-S$ $-\mu^{-1}(B) \rightarrow M-B$ by F. We assume that there is a continuous section $\xi: M \rightarrow E$ of $\mu: E \rightarrow M$ such that $\xi(M) \cap S=\phi$ (see Figure 1).

Figure 1
Remark. Such a continuous sectinuous does not always exist. For example, if E is a negative line bundle and S is the image of the zero section, then there exists no such a continuous section.

In order to describe Main Theorem, we must prepare some more symbols. We choose $F \cap \xi(*)$ as a base point b_{0} and we omit the base point hereafter. Since F can be identified with $C-\{n$ points $\}, \pi_{1}(F)$ is isomorphic to the n-th free group $F_{n}=\left\langle\gamma_{1}, \cdots, \gamma_{n}\right\rangle$ (see Figure 2).

Figure 2
Let \widehat{Q} be the kernel of the surjective homomorphism

$$
j_{*}: \pi_{1}(M-B) \rightarrow \pi_{1}(M),
$$

induced from the injection $i: M-B \hookrightarrow M$. We assume that \hat{Q} has a finite presentation as follows:

$$
\left.\hat{Q}=\left\langle\beta_{1}, \cdots, \beta_{t}\right| \square=1, \cdots, \square=1 \text { (some relations) }\right\rangle
$$

Let $\theta: \pi_{1}(M-B) \rightarrow B_{n}$ be the braid monodromy representation of the continuous fiber bundle $\left.\mu\right|_{E-s-\mu^{-1}(B)}$ in Lemma 1, where B_{n} is the n-th braid group :

$$
B_{n}=\left\langle\sigma_{1}, \cdots, \sigma_{n-1} \mid\left[\sigma_{i}, \sigma_{j}\right]=1(|i-j| \geq 2), \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}(i=1, \cdots, n-2)\right\rangle .
$$

We define a homomorphism $\varphi: B_{n} \rightarrow \operatorname{Aut}\left(\pi_{1}(F)\right)$ as follows :

$$
\left\{\begin{array}{l}
\varphi\left(\sigma_{j}\right)\left(\gamma_{j}\right)=\gamma_{j}^{-1} \gamma_{j+1} \gamma_{j} \\
\varphi\left(\sigma_{j}\right)\left(\gamma_{j+1}\right)=\gamma_{j} \\
\varphi\left(\sigma_{j}\right)\left(\gamma_{k}\right)=\gamma_{k}(\text { if } k \neq j, j+1)
\end{array}\right.
$$

Then we have the following theorem of Zariski-Van Kampen type :
Main Theorem. If there is a continuous section ξ of $\mu: E \rightarrow M$ such that $\xi(M) \cap S=\phi$, then

$$
\pi_{1}(E-S) \cong\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid \gamma_{j}=\varphi\left(\theta\left(\beta_{k}\right)\right)\left(\gamma_{j}\right)(1 \leq j \leq n, 1 \leq k \leq t)\right\rangle \rtimes \pi_{1}(M) .
$$

(a semi-direct product)
Here $\beta_{1}, \cdots, \beta_{k}$ generate the kernel of the homomorphism $j_{*}: \pi_{1}(M$ $-B) \rightarrow \pi_{1}(M)$ and $\gamma_{1}, \cdots, \gamma_{n}$ generate the image of the homomorphism i_{*} : $\pi_{1}(F) \rightarrow \pi_{1}\left(E-S-\mu^{-1}(B)\right)$, where i_{*} is induced from injection $i: F \hookrightarrow E-Q$ $-\mu^{-1}(B)$.

Remark. In Main Theorem, the relations $\gamma_{j}=\varphi\left(\theta\left(\beta_{k}\right)\right)\left(\gamma_{j}\right)$ are same as the usual monodromy relations, so it is not essential to facter the homomorphism

$$
\pi_{1}(M-B) \longrightarrow A u t\left(\pi_{1}(F)\right)
$$

through the braid group.
Corollary. Under the same assumptions in Main Theorem, assume moreover that M is simply connected (i.e. $\pi_{1}(M)=\{1\}$), then

$$
\pi_{1}(E-S) \cong\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid \gamma_{j}=\varphi\left(\theta\left(\beta_{k}\right)\right)\left(\gamma_{j}\right)(1 \leq j \leq n, 1 \leq k \leq t)\right\rangle .
$$

3. Proof of Main Theorem. Since $\mu: E-S-\mu^{-1}(B) \rightarrow M-B$ is a continuous fiber bundle, there is the following exact sequence:

$$
\begin{aligned}
& \quad \cdots \rightarrow \pi_{2}(F) \stackrel{i_{*}}{\underset{i}{i}} \pi_{2}\left(E-S-\mu^{-1}(B)\right) \stackrel{\mu_{*}}{\stackrel{\mu_{*}}{\rightleftarrows}} \pi_{2}(M-B) \xrightarrow{\Delta} \\
& \quad \rightarrow \pi_{1}(F) \xrightarrow[\rightarrow]{\rightarrow} \pi_{1}\left(E-S-\mu^{-1}(B)\right) \stackrel{\xi_{*}}{\rightarrow} \pi_{1}(M-B) \rightarrow \\
& \quad \rightarrow \pi_{0}(F) \rightarrow \cdots(\text { exact }),
\end{aligned}
$$

where μ_{*} and ξ_{*} are the homomorphisms induced by μ and ξ respectively.
$\mu_{*} \circ \xi_{*}=\left.i d\right|_{\pi_{2}(M-B)}$, since $\mu^{\circ} \xi=\left.i d\right|_{M-B}$. Therefore we have $\triangle=\triangle \circ \mu_{*} \circ \xi_{*}=0$. On the other hand $\pi_{0}(F)=\{1\}$, since F is connected. Hence we have the following exact sequence :

$$
\begin{equation*}
1 \rightarrow \pi_{1}(F) \stackrel{i_{*}}{\longrightarrow} \pi_{1}\left(E-S-\mu^{-1}(B) \underset{\xi_{*}}{\stackrel{\mu_{*}}{\rightleftarrows}} \pi_{1}(M-B) \rightarrow 1\right. \tag{1}
\end{equation*}
$$

We denote $i_{*} \pi_{1}(F)$ by $K, \xi_{*} \pi_{1}(M-B)$ by H and $\pi_{1}\left(E-S-\mu^{-1}(B)\right)$ by G. The short exact sequence means that :

$$
G \cong K \rtimes H \text { (a semi-direct product). }
$$

Now let $B=B_{1} \cup \cdots \cup B_{l}$ be the irreducible decomposition of B and α_{j} be the meridian of B_{j} (see Figure 3).

Figure 3
Remark. Here we assume that B has a finite irreducible decomposition for simplecity. But even if B has an infinite irreducible decomposition the following argument is the same.

From a theorem of Van Kampen [4] (see also Namba [2] Cor.1.2.8), we have the following exact sequence :

$$
1 \rightarrow \ll \alpha_{1}, \cdots, \alpha_{l} \gg{ }^{\pi_{1}(M-B)} \rightarrow \pi_{1}(M-B) \rightarrow \pi_{1}(M) \rightarrow 1
$$

where $\hat{Q}=\ll \alpha_{1}, \ldots, \alpha_{l}>^{\pi_{1}(M-B)}$ is the smallest normal subgroup of $\pi_{1}(M-B)$ which contains $\alpha_{1}, \cdots, \alpha_{l}$.
$\mu^{-1}(B)$ is a hypersurface of E, which has the irreducible decomposition

$$
\mu^{-1}(B)=\mu^{-1}\left(B_{1}\right) \cup \cdots \cup \mu^{-1}\left(B_{l}\right)
$$

$\xi_{*}\left(\alpha_{j}\right)$ is a meridian of $\mu^{-1}\left(B_{j}\right)$, for $\mu: E \rightarrow M$ is a line bundle and so $d \mu:$ $T_{p} M \rightarrow T_{\mu(p)} M$ is surjective. Then, from the theorem of Van Kampen again, we have the folloing exact sequence:

$$
1 \rightarrow \ll \xi_{*}\left(\alpha_{1}\right), \ldots, \xi_{*}\left(\alpha_{l}\right)>^{G} \rightarrow G \rightarrow \pi_{1}(E-S) \rightarrow 1
$$

where $<\xi_{*}\left(\alpha_{1}\right), \ldots, \xi_{*}\left(\alpha_{l}\right)>^{G}$ is the smallest normal subgroup of G which contains $\xi_{*}\left(\alpha_{1}\right), \ldots, \xi_{*}\left(\alpha_{l}\right)$.

We denote $<\xi_{*}\left(\alpha_{1}\right), \ldots, \xi_{*}\left(\alpha_{l}\right)>^{G}$ by $N, \xi_{*}\left(\ll \alpha_{1}, \ldots, \alpha_{l}>^{\pi 1(M-B)}\right)$ by Q and $K N$ by R.

Then we can easily check that

$$
\begin{equation*}
N \cap H=Q \text { and } R \cap N H=N . \tag{2}
\end{equation*}
$$

Consider the natural exact sequence

$$
1 \rightarrow R / N \rightarrow G / N \rightarrow G / R \rightarrow 1
$$

Note that, by (1) and (2),
$G / R=K H / R=(K N)(N H) / R=R(N H) / R \cong(N H) /(R \cap(N H))=(N H) / N$.
Hence, we have the exact sequence

$$
\begin{equation*}
1 \rightarrow R / N \rightarrow G / N \stackrel{f}{\rightarrow}(N H) / N \rightarrow 1 . \tag{3}
\end{equation*}
$$

The homomorphism $g:(N H) / N \rightarrow G / N$ defined by

$$
g: n h(\bmod N) \mapsto h(\bmod N)(n \in N, h \in H)
$$

is well-defined and satisfies $f \circ g=$ the identity. Hence the exact sequence (3) splits, so

$$
G / N \cong(R / N) \rtimes(N H / N) \text { (a semi-direct product). }
$$

We can easily check that

$$
K \cap N=\ll a^{-1} q a q^{-1} \mid a \in K, q \in Q>^{K},
$$

where $<a^{-1} q a q^{-1} \mid a \in K, q \in Q>^{K}$ is the smallest normal subgroup of K which contains $\left\{a^{-1} q a q^{-1} \mid a \in K, q \in Q\right\}$. Furthermore, note that if K and Q are respectively generated by $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{q_{1}, \ldots, q_{t}\right\}$, then

$$
K \cap N=\ll a_{j}^{-1} q_{k} a_{j} q_{k}^{-1} \mid 1 \leq j \leq n, 1 \leq k \leq t>^{K}
$$

We assume that $<\alpha_{1}, \ldots, \alpha_{l}>^{\pi_{1}(M-B)}$ has a finite presentation as follows:

$$
\ll \alpha_{1}, \ldots, \alpha_{l}>^{\pi_{1}(M-B)}=<\beta_{1}, \ldots, \beta_{t} \mid \square=1, \ldots, \square=1 \text { (some relations) }>
$$

Since $K=i_{*} \pi_{1}(F)$ is isomorphic to the n-th free group $\left\langle\gamma_{1}, \ldots, \gamma_{n}\right\rangle$, we have:

$$
K \cap N \cong \ll \gamma_{j}^{-1} \xi_{*}\left(\beta_{k}\right) \gamma_{j} \xi_{*}\left(\beta_{k}\right)^{-1} \mid 1 \leq j \leq n, 1 \leq k \leq t>^{K} .
$$

Thus,

$$
K /(K \cap N) \cong\left\langle\gamma_{1}, \ldots, \gamma_{n} \mid \gamma_{j}^{-1} \xi_{*}\left(\beta_{k}\right) \gamma_{j} \xi_{*}\left(\beta_{k}\right)^{-1}=1(1 \leq j \leq n, 1 \leq k \leq t)\right\rangle
$$

Since G / N is isomorphic to $\pi_{1}(E-S), R / N$ is isomorphic to $K /(K \cap N)$ and $N H / N \cong H /(N \cap H)=H / Q$ is isomorphic to $\pi_{1}(M)$, we have :

$$
\pi_{1}(E-S) \cong(K /(K \cap N)) \rtimes \pi_{1}(M) \text { (a semi-direct product). }
$$

Now useing φ and θ (defined in section 2), we have:

$$
\xi_{*}\left(\beta_{k}\right) \gamma_{j} \xi_{*}\left(\beta_{k}\right)^{-1}=\varphi\left(\theta\left(\beta_{k}\right)\right)\left(\gamma_{j}\right) \text { (see Figure 4). }
$$

Hence,

$$
K /(K \cap N) \cong\left\langle\gamma_{1}, \ldots, \gamma_{n} \mid \gamma_{j}=\varphi\left(\theta\left(\beta_{k}\right)\right)\left(\gamma_{j}\right)(1 \leq j \leq n, 1 \leq k \leq t)\right\rangle
$$

This completes the proof of Main Theorem.

Figure 4
4. Proof of Lemma 1. (Due to M.Sakuma) : For a given point $q \in M-B$, we can take a neiborhood U of q such that
(i) $\mu^{\prime-1}(U) \underset{\text { homeomorrbic }}{\approx} U_{i=1}^{n} \tilde{U}_{i}\left(\mu: \tilde{U}_{i} \sim \sim\right.$ We write $\mu^{-1}(q) \cap \tilde{U}_{i}=\left\{\tilde{q}_{i}\right\}$.
(ii) The following diagram is commutative.

$$
\begin{aligned}
& \mu^{-1}(U) \stackrel{\sim}{\rightarrow} U \times \boldsymbol{C} \\
& \mu \searrow \Omega \nearrow P_{1}\left(\text { where } P_{1}:(p, z) \mapsto p\right) \\
& U
\end{aligned}
$$

Here we define a map $h_{i}: \tilde{U}_{i} \rightarrow \boldsymbol{C}$ as follows:

$$
h_{i}: \tilde{U}_{i} \rightarrow \mu^{-1}(U) \cong U \times \boldsymbol{C} \underset{\text { projection }}{\rightarrow} \boldsymbol{C} .
$$

Then we can write \tilde{U}_{i} as follows :

$$
\tilde{U}_{i}=\left\{\left(x, h_{i}(x)\right\} \in U \times \boldsymbol{C} \mid x \in U\right\}
$$

We write $z_{j}=h_{i}\left(\tilde{q}_{i}\right)$, then there exists a positive number $\varepsilon>0$ such that (1) $\operatorname{Im} h_{i} \subset \operatorname{Int}\left(D_{\varepsilon}\left(z_{i}\right)\right)$, where $D_{\varepsilon}\left(z_{i}\right)$ is an ε-disk whose center is z_{i} and Int ($\left.D_{\varepsilon}\left(z_{i}\right)\right)$ is the interior of $D_{\varepsilon}\left(z_{i}\right)$.
(2) $D_{\varepsilon}\left(z_{1}\right), \ldots, D_{\varepsilon}\left(z_{n}\right)$ are disjoint each other.

From Lemma 2 bellow, there exists a fiber preserving homeomorphism Φ such
that $\Phi\left(\tilde{U}_{i}\right)=U \times\{x\}$.

$$
\begin{gathered}
\mu^{-1}(U) \cong U \times \boldsymbol{C} \xrightarrow[\rightarrow]{\oplus} U \times \boldsymbol{C} \\
\mu \searrow \Omega \downarrow P_{1} \Omega \nearrow P_{1} \\
U
\end{gathered}
$$

So we can take local coordinates of $\mu: E-S-\mu^{-1}(B) \rightarrow M-B$. This shows Lemma 1.

Lemma 2. Let D be an ε-disk of C whose center is the origin. Let U be the neiborhood of q as above. Let $h: U \rightarrow \operatorname{Int}(D)$ be a continuous map such that $h(q)=0$, where $\operatorname{Int}(D)$ is the interior of D. Put $\tilde{U}=\{(x, h(x)) \in U \times \operatorname{Int}(D) \mid x \in$ $U\} \subset U \times \operatorname{Int}(D)$. Then there exists a homeomorphism $\Psi: U \times D \xrightarrow{\sim} U \times D$ such that
(i) $\Psi(\tilde{U})=U \times\{0\}$.
(ii) Ψ is fiber preserving. (i.e. the folloing diagram is commutative.)

$$
\begin{gathered}
U \times D \xrightarrow{\psi} U \times D \\
\searrow \Omega \nearrow \\
U
\end{gathered}
$$

(iii) $\left.\Psi\right|_{U \times \partial D}: U \times \partial D \rightarrow U \times \partial D$ is the identity map.

Proof of Lemma 2. First we define a homeomorphism $H_{x}: D \rightarrow D$ for each point $x \in U$ as follows :
(i) $\quad H_{x}(h(x))=0$.
(ii) $\left.\quad H_{x}\right|_{\partial D}=\left.i d\right|_{\partial D}$.
(iii) $\quad H_{x}$ is extended to D with radial extention (see Figure 5).

Figure 5

Second we define a homeomorphism $\Psi: U \times D \xrightarrow{\sim} U \times D$ as follows :

$$
\Psi(x, z)=\Psi(x, H x(z))
$$

Ψ satisfies the above conditions.
(q.e.d.)
5. Case of Trivial Line Bundle. In Main Theorem, we assumed the existence of a continuous section ξ such that $\xi(M) \cap S=\phi$. In the case of the trivial line bundle we can prove the following proposition:

Proposition 1. Let M be a connected complex manifold and $\mu: E \rightarrow M$ be a trivial line bundle on $M(i, e, E=M \times C$ and $\mu(p, z)=p$ for every point (p, z) $\in M \times \boldsymbol{C})$. Let $f ., \ldots, f_{n}$ be holomorphic functions on M and S be the hypersurface of E defined by

$$
S=\left\{(p, z) \in E \mid z^{n}+f_{1}(p) z^{n-1}+\cdots+f_{n}(p)=0\right\} .
$$

Then there is a continuous section ξ of $\mu: E \rightarrow M$ such that $\xi(M) \cap S=\phi$.
Proof. We define a continuous function $h: M \rightarrow \boldsymbol{C}$ by

$$
h(p)=\left|f_{1}(p)\right|+\cdots+\left|f_{n}(p)\right|+1
$$

We define a section $\xi: M \rightarrow E$ by

$$
\xi(p)=(p, h(p))
$$

One can easily see that this section ξ of μ satisfies $\xi(M) \cap S=\phi$. In fact, if there is a point $p \in M$ such that $\xi(p) \in S$, then

$$
\{h(p)\}^{n}+f_{1}(p)\{h(p)\}^{n-1}+\cdots+f_{n}(p)=0 .
$$

Since $h(p) \geq 1$

$$
1=\frac{f_{1}(p)}{h(p)}-\frac{f_{2}(p)}{\{h(p)\}^{2}}-\cdots-\frac{f_{n}(p)}{\{h(p)\}^{n}}
$$

Hence

$$
1 \leq \frac{\left|f_{1}(p)\right|}{h(p)}+\frac{\left|f_{2}(p)\right|}{\{h(p)\}^{2}}+\cdots+\frac{\left|f_{n}(p)\right|}{\{h(p)\}^{n}}
$$

Since $\{h(p)\}^{k} \geq h(p)(k=1,2, \ldots)$,

$$
\begin{align*}
1 & \leq \frac{\left|f_{1}(p)\right|}{h(p)}+\frac{\left|f_{2}(p)\right|}{h(p)}+\cdots+\frac{\left|f_{n}(p)\right|}{h(p)} \\
& =\frac{\left|f_{1}(p)\right|+\cdots+\left|f_{n}(p)\right|}{\left|f_{1}(p)\right|+\cdots+\left|f_{n}(p)\right|+1}<1 . \tag{q.e.d.}
\end{align*}
$$

A contradiction.
Let $\mu: \boldsymbol{C}^{m+1} \rightarrow \boldsymbol{C}^{m}$ be the trivial line bundle on \boldsymbol{C}^{m} defined by

$$
\mu:\left(z_{1}, \ldots, z_{m}, z_{m+1}\right) \rightarrow\left(z_{1}, \ldots, z_{m}\right)
$$

Let S be the hypersurface of C^{m+1} defined by

$$
S=\left\{\left(z_{1}, \ldots, z_{m}, z_{m+1}\right) \in \boldsymbol{C}^{m+1} \mid z_{m+1}^{n}+f_{1}(z) z_{m+1}^{n-1}+\cdots+f_{n}(z)=0\right\} \cdots(1),
$$

where $z=\left(z_{1}, \ldots, z_{m}\right)$ and $f_{1}(z), \ldots, f_{n}(z)$ are polynomials.
By Corollary to Main Theorem and Proposition 1, we have
Theorem 1. Let S be the hypersurface of C^{m+1} defined by (1). Then,

$$
\pi_{1}\left(\boldsymbol{C}^{m+1}-S\right) \cong\left\langle\gamma_{1}, \ldots, \gamma_{n} \mid \gamma_{j}=\varphi\left(\theta\left(\beta_{k}\right)\right)\left(\gamma_{i}\right),(1 \leq j \leq n, 1 \leq k \leq t)\right\rangle
$$

Furthermore, let $\left(X_{0}: X_{1}: \cdots: X_{m+1}\right)$ be homogeneous coordinatss of \boldsymbol{P}^{m+1} such that $\left(X_{1} / X_{0}, \cdots, X_{m+1} / X_{0}\right)=\left(z_{1}, \ldots, z_{m+1}\right) \in C^{m+1}$ and \bar{S} be the closure of S in \boldsymbol{P}^{m+1}. Then we have the following theorem of Zariski :

Theorem 2(Zariski [5]).

Suppose that $p_{\infty}=(0: \cdots: 0: 1)$ is not contained in \bar{S}. Then

$$
\begin{aligned}
& \pi_{1}\left(\boldsymbol{P}^{m+1}-\bar{S}\right) \\
\cong & \left\langle\gamma_{1}, \ldots, \gamma_{n} \mid \gamma_{n} \gamma_{n-1} \ldots \gamma_{1}=1, \gamma_{j}=\varphi\left(\theta\left(\beta_{k}\right)\right)\left(\gamma_{j}\right),(1 \leq j \leq n, 1 \leq k \leq t)\right\rangle .
\end{aligned}
$$

Proof. Let H_{∞} be the hypersurface of \boldsymbol{P}^{m+1} defined by $H_{\infty}=\left\{X_{0}=0\right\}$, (i.e. hyperplane at infinity) and α be a meridian of H_{∞} in $\boldsymbol{P}^{m+1}-\bar{S}-H_{\infty}$ (see Figure 6).

Figure 6
From the theorem of Van Kampen [4], we have the following exact sequence :

$$
1 \rightarrow \ll \alpha>^{\pi^{i}\left(\boldsymbol{C}^{m+1}-S\right)} \rightarrow \pi_{1}\left(\boldsymbol{C}^{m+1}-S\right) \rightarrow \pi_{1}\left(\boldsymbol{P}^{m+1}-\bar{S}\right) \rightarrow 1 \text { (exact). }
$$

We can take α as $\left(\gamma_{n} \gamma_{n-1} \cdots \gamma_{1}\right)^{-1}$ in $\boldsymbol{C}^{m+1}-S$ (see Figure 7).
Thus,

$$
\pi_{1}\left(\boldsymbol{P}^{m+1}-\bar{S}\right) \cong \pi_{1}\left(\boldsymbol{C}^{m+1}-S\right) / \ll \gamma_{n} \gamma_{n-1} \cdots \gamma_{1} \ggg^{\pi_{1}\left(C^{m+1}-S\right)}
$$

This shows Theorem 2.

Figure 7

Remark. A similar theorem to Theorem 1 holds for $\mu: \boldsymbol{B}^{m}(\varepsilon) \times$ $\boldsymbol{B}^{1}\left(\varepsilon^{\prime}\right) \rightarrow \boldsymbol{B}^{m}(\varepsilon)$, where $\boldsymbol{B}^{m}(\varepsilon)$ is a m-dimensional complex ball; $\boldsymbol{B}^{m}(\varepsilon)=\left\{\left(z_{1}, \ldots\right.\right.$, $\left.\left.z_{m}\right) \in \boldsymbol{C}^{m} \|\left. z_{1}\right|^{2}+\cdots+\left|z_{m}\right|^{2}<\varepsilon^{2}\right\}$. In this case, the existence of continuous section with a similar conditions to Theorem 1 is obvious.

6. Calculations of Fundamental Groups of Finite Branched Coverings

Example 1.
Let X be the surface in C^{3} defined by

$$
\left.X=\{\lambda, x, y) \in \boldsymbol{C}^{3} \mid y^{2}=x(x-1)(x-\lambda)\right\}
$$

X has two isolated singular points at $(0,0,0)$ and $(1,1,0)$. Hence X is normal. Let $\pi: X \rightarrow \boldsymbol{C}^{2}$ be the projection map defined by

$$
\pi(\lambda, x, y)=(\lambda, x)
$$

Then π is a double branched covering of \boldsymbol{C}^{2}. The branch loucus S of π is a curve in \boldsymbol{C}^{2} and is written as :

$$
S=\left\{(\lambda, x) \in C^{2} \mid x(x-1)(x-\lambda)=0\right\} .
$$

According to Theorem 1, we can calculate $\pi_{1}\left(\boldsymbol{C}^{2}-S\right)$. Let $\mu: \boldsymbol{C}^{2} \rightarrow \boldsymbol{C}$ be the trivial line bundle on \boldsymbol{C} defined by

$$
\mu(\lambda, x)=\lambda
$$

The branch locus B of μ is $\{0,1\} \subset \boldsymbol{C}$ and $\pi_{1}(\boldsymbol{C}-B)$ is isomorphic to the free group $\left\langle\beta_{1}, \beta_{2}\right\rangle$, where β_{1} and β_{2} are its generators and can be considered as the

Figure 8
meridians of $\{0\}$ and $\{1\}$, respectively. We may take $q_{0}=\frac{1}{2}$ as a reference point of $\pi_{1}(C-B)$. In this case the standerd fiber F of $\mu_{C-S-\mu^{-1}(\infty)}$ is $C-\{3$-points $\}$. We define γ_{1}, γ_{2} and γ_{3} as the meridians of $\left(\frac{1}{2}, 1\right),\left(\frac{1}{2}, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 0\right)$, respectively. The image of β_{1} and β_{2} by $\theta: \pi_{1}(\boldsymbol{C}-B) \rightarrow B_{3}$ are σ_{1}^{2} and σ_{2}^{2}, respectively. Then we have

$$
\begin{aligned}
\pi_{1}\left(\boldsymbol{C}^{2}-S\right) & \cong\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3} \mid \gamma_{j}=\varphi\left(\theta\left(\beta_{k}\right)\right)\left(\gamma_{j}\right), j=1,2,3, k=1,2\right\rangle \\
& \cong\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3} \mid \gamma_{2} \gamma_{3}=\gamma_{3} \gamma_{2}, \gamma_{1} \gamma_{2}=\gamma_{2} \gamma_{1}\right\rangle .
\end{aligned}
$$

By using the Reidemeister- Schreier method (c.f. Rolfsen [3] P.315-P.316), we can calculate $\pi_{1}(\operatorname{Reg} X)$, where $\operatorname{Reg} X$ is the set of regular points of X. Since $\pi_{1}\left(C^{2}\right.$ $-B$) is generated by three elements and since π is a double branched covering, we take the 3-th free group F_{3} and the 5-th free group F_{5}. As in Figure 9, we take their generators $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$, respectively, where $\pi^{-1}\left(\gamma_{1}\right)=\left\{x_{1}, x_{2}\right\}$, $\pi^{-1}\left(\gamma_{2}\right)=\left\{y_{1}, y_{2}\right\}, \pi^{-1}\left(\gamma_{3}\right)=\left\{z_{1}, z_{2}\right\}$, and

$$
\begin{aligned}
b_{1} & =y_{1} x_{1}^{-1} \\
b_{2} & =x_{1} y_{2} x_{2}^{-1} x_{1}^{-1} \\
b_{3} & =z_{1} x_{1}^{-1} \\
b_{4} & =x_{1} z_{2} x_{2}^{-1} x_{1}^{-1} \\
b_{5} & =x_{1} x_{2} .
\end{aligned}
$$

Then we transfer the relation of $\pi_{1}\left(\boldsymbol{C}^{2}-S\right) \gamma_{2} \gamma_{3} \gamma_{2}^{-1} \gamma_{3}^{-1}=1$ in the words of F_{5}.

$$
y_{1} z_{2} y_{2}^{-1} z_{1}^{-1}=b_{1} b_{4} b_{5} b_{5}^{-1} b_{2}^{-1} b_{3}^{-1}=1
$$

Figure 9

$$
x_{1} y_{2} z_{1} y_{1}^{-1} z_{2}^{-1} x_{1}^{-1}=b_{2} b_{5} b_{3} b_{1}^{-1} b_{5}^{-1} b_{4}^{-1}=1 .
$$

In a similar way, we transfer the relation $\gamma_{1} \gamma_{2} \gamma_{1}^{-1} \gamma_{2}^{-1}=1$ in the words of F_{5} :

$$
\begin{array}{r}
x_{1} y_{2} x_{2}^{-1} y_{1}^{-1}=b_{2} b_{5} b_{5}^{-1} b_{1}^{-1}=1 \\
x_{1} x_{2} y_{1} x_{1}^{-1} y_{2}^{-1} x_{1}^{-1}=b_{5} b_{1} b_{5}^{-1} b_{2}^{-1}=1 .
\end{array}
$$

We also transfer the relations $\gamma_{1}^{2}=1, \gamma_{2}^{2}=1, \gamma_{3}^{2}=1$ since the ramification index of each irreducible component of S is equal to 2 :

$$
\begin{aligned}
& x_{1} x_{2}=b_{5}=1 \\
& y_{1} y_{2}=b_{1} b_{2} b_{5}=1 \\
& z_{1} z_{2}=b_{3} b_{4} b_{5}=1 .
\end{aligned}
$$

Putting $\alpha_{1}=b_{1}$ and $\alpha_{2}=b_{4}$, we have

$$
\begin{aligned}
\pi_{1}(\operatorname{Reg} X) & \cong\left\langle\alpha_{1}, \alpha_{2} \mid \alpha_{1}^{2}=1,\left(\alpha_{1} \alpha_{2}\right)^{2}=1\right\rangle \\
& \cong(\boldsymbol{Z} / 2 \boldsymbol{Z}) *(\boldsymbol{Z} / 2 \boldsymbol{Z})(\text { free product })
\end{aligned}
$$

Example 2.

Let X be the hypersurfaces of C^{4} defined by

$$
X=\left\{(x, y, z, w) \in \boldsymbol{C}^{4} \mid w^{n}=z^{2}-x y^{2}\right\}(n \geq 2) .
$$

The singular locus of X is the line $\{(x, y, z, w) \in X \mid y=z=w=0\}$. Hence X is normal. Let $\pi: X \rightarrow C^{3}$ be the projection map defined by:

$$
\pi(x, y, z, w)=(x, y, z)
$$

Then π is a cyclic branched covering of C^{3}. The branch locus S of π is a surface in \boldsymbol{C}^{3} and is written as:

$$
S=\left\{(x, y, z) \in \boldsymbol{C}^{3} \mid z^{2}-x y^{2}=0\right\} \text { (the Cartan umbrella). }
$$

According to Theorem 1 , we can calculate $\pi_{1}\left(\boldsymbol{C}^{3}-S\right)$. The result is

$$
\pi_{1}\left(\boldsymbol{C}^{3}-S\right) \cong\langle\gamma\rangle \text { (the free group) }
$$

From the Reidemeister-Schreier method again, we have: $\pi_{1}(\operatorname{Reg} X) \cong\{$ i.e. $\operatorname{Reg} X$ is simply connected $)$.

Example 3.

Let X be the hypersurface of C^{m+2} defined by

$$
X=\left\{\left(z_{1}, \ldots, z_{m+2}\right) \in \boldsymbol{C}^{m+2} \mid z_{m+2}^{2}+z_{m+1}^{2}+g\left(z_{1}, \ldots, z_{m}\right)=0\right\},
$$

where g is a polynomial which is not constant. The singular locus of X is at most ($m-1$)-dimensional. Hence X is normal. Let $\pi: X \rightarrow \boldsymbol{C}^{m+1}$ be the projection map defined by :

$$
\pi\left(z_{1}, \ldots, z_{m+1}, z_{m+2}\right)=\left(z_{1}, \ldots, z_{m+1}\right)
$$

Then π is a branched covering of C^{m+1}. The branch locus S of π is a hypersurface in C^{m+1} and is written as:

$$
S=\left\{z_{m+1}^{2}+g\left(z_{1}, \ldots, z_{m}\right)=0\right\}
$$

By Theorem 1, $\pi_{1}\left(C^{m+1}-S\right)$ can be written as:

$$
\pi_{1}\left(\boldsymbol{C}^{m+1}-S\right) \cong\left\langle\gamma_{1}, \gamma_{2} \mid \square=1, \ldots, \square=1\right\rangle
$$

From the Reidemeister-Schreier method again, we have:

$$
\pi_{1}(\operatorname{Reg} X) \cong\left\{\begin{array}{l}
\{1\} \text { or } \\
\boldsymbol{Z} / q \boldsymbol{Z}(\exists q \in \boldsymbol{Z}) \text { or } \\
\boldsymbol{Z}
\end{array}\right.
$$

(i.e. $\pi_{1}(\operatorname{Reg} X)$ is isomorphic to a cyclic group).

References

[1] T. Matsuno: Normal singularities and fundamental groups, Osaka Univ. master theses (in Japanese).
[2] M. Namba : Branched coverings and algebraic functions, Pitman Res. Notes Math. Ser., Vol.161, Longman Sci. Tech., Harlow,1987.
[3] D. Rolfsen: Knots and links, Publish or Perish, Berkeky, 1976.
[4] van Kampen: On the fundamental group of an algebraic curves, Amer.J.Math. 55 (1933), 255-260.
[5] O. Zariski : Collected Papers Vol 3, MIT Press, Cambridge, 1973.

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560, Japan

