THE SUBMANIFOLD OF SELF-DUAL CODES IN A GRASSMANN MANIFOLD

Shigeru KOBAYASHI and Ichiro TAKADA

(Received May 16, 1994)

1. Introduction

By a $[N, m]$-linear code over a finite field F, we mean an m-dimensional vector subspace of an N-dimensional vector space V over F. Let C^{\perp} be the orthogonal complement of a $[N, m]$-linear code C in V, that is $C^{\perp}=\{v \in V \backslash\langle v, c\rangle=0$ for any $c \in C\}$, where \langle,$\rangle denotes a fixed inner product of V$. This is called the dual code of C which is a $[N, N-m]$-linear code. C is called self-orthogonal (resp. self-dual) if and only if $C \subset C^{\perp}$ (resp. $C=C^{\perp}$). For any linear code, it may be known that there exists a self-dual embedding, and so every linear code can be made from a self-dual code. Therefore we are interested in self-dual codes. Since a linear code C is a vector space, C can be thought as an element of the Grassmann manifold $G M(m, V)$. Similarly, C^{\perp} can be thought as an element of $G M(N-m, V)$. As a set, $G M(m, V)$ and $G M(N-m, V)$ are isomorphic so that C and C^{\perp} correspond each other as elements of the Grassmann manifolds. In this paper, we shall study the self-orthogonality and the self-duality of linear codes through the Grassmann manifolds. In section 1, we shall give a constructive proof of self-dual embedding of linear codes. In section 2, we shall summarize about the Grassmann manifolds and give an elementary result about the self-duality using a projective embedding. In section 3, we shall give our main theorem on self-orthogonality and self-duality of linear codes. This theoerm shows that self-orthogonal codes and self-dual codes are on a quadratic surface in the projective space. Combining our results, we can see that every linear code can be obtained from a self-dual code, and every self-dual code is a special case of a self-orthogonal code.

2. Self-dual embedding of linear codes

In this section, we assume $N=n+m$. Let C be a $[N, m]$-linear code over a finite field F. We shall construct a self-dual code which contains C as an embedding image. It may be known, but this is a motive for studying self-dual codes and so we shall give the proof. Since C can be thought as a subspace of
F^{N}, we can write

$$
\begin{gathered}
C=\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-1)}
\end{array}\right) \\
\downarrow \\
\leftarrow N \rightarrow
\end{gathered}
$$

where $\xi^{(i)}(i=0, \cdots, m-1)$ are column vectors of F^{N}. First assume that $\operatorname{ch}(F)=2$ and consider the equation

$$
\begin{equation*}
\left\langle\xi^{(0)}, \xi^{(0)}\right\rangle+X^{2}=0 . \tag{2.1}
\end{equation*}
$$

where \langle,$\rangle means the inner product of F^{N}$. Since the Frobenius map $x \rightarrow x^{2}$ is an automorphism of F, the equation (2.1) has solution, say $X=a_{00}$. Further consider the equations

$$
\left\langle\xi^{(i)}, \xi^{(0)}\right\rangle+a_{0,0} X_{i}=0 \quad(i=0, \cdots, m-1) .
$$

Since these equations are linear, they has solutions, say $X_{i}=a_{0, i}(i=0, \cdots, m-1)$. Now the following matrix

$$
\begin{aligned}
& \left(\begin{array}{cc}
\xi^{(0)} & a_{0,0} \\
\xi^{(1)} & a_{0,1} \\
\vdots & \vdots \\
\xi^{(m-1)} & a_{0, m-1}
\end{array}\right)=\left(\begin{array}{c}
\xi_{1}^{(0)} \\
\xi_{1}^{(1)} \\
\vdots \\
\xi_{1}^{(m-1)}
\end{array}\right) \begin{array}{c}
\uparrow \\
\downarrow
\end{array} \\
& \leftarrow N \rightarrow
\end{aligned}
$$

satisfies $\left\langle\xi_{1}^{(0)}, \xi_{1}^{(j)}\right\rangle=0(j=0, \cdots, m-1)$, where $\xi_{1}^{(j)}=\left(\xi^{(j)}, a_{0, j}\right)$ are column vectors in F^{N}. Next consider the equation

$$
\left\langle\xi^{(1)}, \xi^{(1)}\right\rangle+X^{2}=0 .
$$

We can obtain the solution as above, say $X=a_{1,1}$. Further consider equations

$$
\left\langle\xi^{(1)}, \xi^{(i)}\right\rangle+a_{1,1} X_{i}=0 \quad(i=1, \cdots, m-1) .
$$

Clearly we have solutions, say $X_{i}=a_{1, i}(i=1, \cdots, m-1)$. Hence the following matrix

$$
\begin{gathered}
\left.\left(\begin{array}{cc}
\xi_{1}^{(0)} & 0 \\
\xi_{1}^{(1)} & a_{1,1} \\
\vdots & \vdots \\
\xi_{1}^{(m-1)} & a_{1, m-1}
\end{array}\right)=\left(\begin{array}{c}
\xi_{2}^{(0)} \\
\xi_{2}^{(1)} \\
\vdots \\
\xi_{2}^{(m-1)}
\end{array}\right) \begin{array}{c}
\uparrow \\
\downarrow \\
\downarrow
\end{array}\right]=\left(\begin{array}{c}
\rightarrow
\end{array} .\right.
\end{gathered}
$$

satisfies

$$
\begin{array}{ll}
\left\langle\xi_{2}^{(0)}, \xi_{2}^{(j)}\right\rangle=0 & (j=0,1, \cdots, m-1) \\
\left\langle\xi_{2}^{(1)}, \xi_{2}^{(k)}\right\rangle=0 & (k=1,2, \cdots, m-1)
\end{array}
$$

where $\xi_{2}^{(0)}=\left(\xi_{1}^{(0)}, 0\right)$ and $\xi_{2}^{(i)}=\left(\xi_{1}^{(i)}, a_{1, i}\right)(i=1, \cdots, m-1)$. We continue this process, so that we have the following matrix

$$
\begin{aligned}
& C\left(\begin{array}{cccc}
a_{0,0} & \cdots & \cdots & \mathbf{0} \\
a_{0,1} & a_{1,1} & \cdots & \\
\vdots & \vdots & \ddots & \vdots \\
a_{0, m-1} & a_{1, m-1} & \cdots & a_{m-1, m-1}
\end{array}\right)=\left(\begin{array}{c}
\xi_{m-1}^{(0)} \\
\xi_{m-1}^{(1)} \\
\vdots \\
\xi_{m-1}^{(m-1)}
\end{array}\right) . \\
& \leftarrow \quad N+m
\end{aligned}
$$

We can express this matrix in the form

$$
\begin{aligned}
& \left(\begin{array}{ll}
C & A
\end{array}\right)=\left(\begin{array}{c}
\xi_{m-1}^{(0)} \\
\xi_{m-1}^{(1)} \\
\vdots \\
\xi_{m-1}^{(m-1)}
\end{array}\right) \\
& \leftarrow N+m \rightarrow
\end{aligned}
$$

where A is the following $m \times m$ matrix

$$
\left(\begin{array}{cccc}
a_{0,0} & \cdots & \cdots & 0 \tag{2.2}\\
a_{0,1} & a_{1,1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{0, m-1} & a_{1, m-1} & \cdots & a_{m-1, m-1}
\end{array}\right)
$$

Clearly the matrix (2.2) satisfies

$$
\left\langle\xi_{m-1}^{(i)}, \xi_{m-1}^{(j)}\right\rangle=0 \quad(i, j=0,1, \cdots, m-1) .
$$

Thus this matrix gives a self-orthogonal code. On the other hand, consider
the dual code C^{\perp}. Then the same argument can be applied to the dual code C^{\perp}. Since $N=m+n$, we can express C^{\perp} in the form

$$
\begin{aligned}
C^{\perp}= & \left(\begin{array}{c}
\eta^{(0)} \\
\eta^{(1)} \\
\vdots \\
\eta^{(n-1)}
\end{array}\right) \begin{array}{c}
\uparrow \\
n \\
\downarrow
\end{array} \\
& \leftarrow N \rightarrow
\end{aligned}
$$

We can also obtain a self-orthogonal code from C^{\perp} and express in the form

$$
\left(\begin{array}{ll}
C^{\perp} & B
\end{array}\right)
$$

where B is an $n \times n$ matrix obtained from C^{\perp} as well as A. To make a self-dual code, we take the following matrix

$$
\begin{aligned}
\hat{C}= & \left(\begin{array}{ccc}
C & A & 0 \\
C^{\perp} & 0 & B
\end{array}\right) \stackrel{\uparrow}{m+n} \\
& \leftarrow N+m+n \rightarrow
\end{aligned}
$$

This is a self-dual [$2 N, N$]-code because C^{\perp} is a dual vector space of F^{N} / C.
Next we assume $\operatorname{ch}(F)=p>2$ and consider an equation

$$
X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+\left\langle\xi^{(0)}, \xi^{(0)}\right\rangle=0
$$

Then a theorem of Chevalley-Warning (cf.[3]) shows that this equation have a solution, say ($a_{0,0}^{(1)}, a_{0,0}^{(2)}, a_{0,0}^{(3)}$). Further we consider following equations

$$
\left\langle\xi^{(0)}, \xi^{(i)}\right\rangle+a_{0,0}^{(1)} X_{i}=0 \quad(i=1, \cdots, m-1)
$$

These equations have a solution since the equations are linear. We set a solution as

$$
\left(x_{1}, \cdots, x_{m-1}\right)=\left(a_{0,1}, a_{0,2}, \cdots, a_{0, m-1}\right)
$$

Then the following matrix

$$
\left(\begin{array}{cccc}
& a_{0,0}^{(1)} & a_{0,0}^{(2)} & a_{0,0}^{(3)} \\
C & a_{0,1} & \cdots & \cdots \\
& \vdots & \ddots & \vdots \\
& a_{0, m-1} & \cdots & \mathbf{0}
\end{array}\right)=\left(\begin{array}{c}
\xi_{1}^{(0)} \\
\xi_{1}^{(1)} \\
\vdots \\
\xi_{1}^{(m-1)}
\end{array}\right)
$$

satisfies

$$
\left\langle\xi_{1}^{(0)}, \xi_{1}^{(i)}\right\rangle=0 \quad(i=0,1, \cdots, m-1) .
$$

Next consider

$$
X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+\left\langle\xi^{(1)}, \xi^{(1)}\right\rangle=0 .
$$

Let $\left(a_{1,1}^{(1)}, a_{1,1}^{(2)}, a_{1,1}^{(3)}\right)$ and $a_{1, j}$ be a solution of

$$
\left\langle\xi^{(1)}, \xi^{(j)}\right\rangle+a_{1,1}^{(1)} x_{j}=0 \quad(j=1,2, \cdots, m-1) .
$$

Then the following matrix

$$
\left(\begin{array}{c}
\xi_{1}^{(1)} \\
\xi_{1}^{(2)} \\
\vdots \\
\xi_{1}^{(m-1)}
\end{array}\left(\begin{array}{ccc}
a_{1,1}^{(1)} & a_{1,1}^{(2)} & a_{1,1}^{(3)} \\
a_{1,2} & 0 & 0 \\
a_{1,2} & \ddots & \vdots \\
a_{1, m-1} & \cdots & 0
\end{array}\right)\right)=\left(\begin{array}{c}
\xi_{2}^{(1)} \\
\xi_{2}^{(2)} \\
\vdots \\
\xi_{2}^{(m-1)}
\end{array}\right)
$$

satisfies

$$
\left\langle\xi_{2}^{(1)}, \xi_{2}^{(j)}\right\rangle=0 \quad(j=1,2, \cdots, m-1) .
$$

We continue this process, so that we have the following matrix

$$
\left(\begin{array}{ll}
C & A
\end{array}\right)=\left(\begin{array}{c}
\xi_{m-1}^{(0)} \\
\xi_{m-1}^{(1)} \\
\vdots \\
\xi_{m-1}^{(m-1)}
\end{array}\right)
$$

where A is the following $m \times 3 m$ matrix

$$
A=\left(\begin{array}{cccccc}
a_{0,0}^{(1)} & a_{0,0}^{(2)} & a_{0,0}^{(3)} & \cdots & \cdots & \mathbf{0} \\
a_{0,1} & 0 & 0 & \cdots & \cdots & \vdots \\
\vdots & \ddots & & \vdots & \ddots & \vdots \\
a_{0, m-1} & \cdots & \mathbf{0} & a_{m-1, m-1}^{(1)} & a_{m-1, m-1}^{(2)} & a_{m-1, m-1}^{(3)}
\end{array}\right)
$$

which satisfies:

$$
\left\langle\xi_{m-1}^{(i)}, \xi_{m-1}^{(j)}\right\rangle=0 \quad(i, j=0,1, \cdots, m-1) .
$$

Thus this matrix gives a self-orthogonal code. Further we can apply the same method to the dual code C^{\perp}. By using the same notation as above, we have a self-orthogonal code for C^{\perp}

$$
\left(\left(\begin{array}{c}
\eta^{(0)} \\
\eta^{(1)} \\
\vdots \\
\eta^{(n-1)}
\end{array}\right) B\right)
$$

where B is an $n \times 3 n$ matrix obtained from C^{\perp} as well as A. For $k \geq 5$, consider the following equations

$$
\begin{gathered}
f_{1}\left(X_{1}, \cdots, X_{k}\right)=\sum_{i=1}^{k} X_{i}^{2}=0 \\
f_{2}\left(X_{1}, \cdots, X_{k}\right)=\sum_{i=1}^{k-1} X_{i} X_{i+1}=0
\end{gathered}
$$

Since $\sum_{i=1}^{2} \operatorname{deg} f_{i}=4<k$, we can use a theorem of Chevalley-Warning again, so that there exists a non-trivial solution

$$
\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)
$$

Since α is non-trivisl, we may assume that $\alpha_{1} \neq 0$. We set

Then the following matrix

$$
\left(\begin{array}{cccc}
C & A & 0 & \mathbf{0} \\
C^{\perp} & 0 & B & \\
\mathbf{0} & & & M
\end{array}\right)
$$

gives a self-dual $[(2 k+4) N,(k+2) N]$-linear code.
Therefore we obtain the following theorem.
Theorem 1. Let C be a $[N, m]$-linear code over a finite field F. Then there exist a self-dual code \hat{C} such that C is embedded in \hat{C}. More precisely, we can take \hat{C} as follows:
(1) if $\operatorname{ch}(F)=2, \hat{C}$ is self-dual $[2 N, N]$-linear code.
(2) if $\operatorname{ch}(F)=p>2$, then for any integer $k \geq 5, \hat{C}$ is a self-dual $[(2 k+4) N,(k+2) N]$-linear code.

3. Grassmann Manifold

In this section, we summarize about Grassmanian manifolds. Let $N=n+m$ and $V=V(N)$ be an N-dimensional vector space over a field F. Put $G M(m, V)=\{m$-dimensional subspace of $V\}$. Take a basis $\left\{e_{0}, e_{1}, \cdots, e_{N-1}\right\}$ of V. Then $V=F e_{0} \oplus F e_{1} \oplus F e_{2} \cdots \oplus F e_{N-1}$. Let V^{*} be the dual space of V and $\left\{f_{0}, f_{1}, \cdots, f_{N-1}\right\}$ be a dual basis with $\left\langle e_{i}, f_{j}\right\rangle=\delta_{i, j}$, where $\delta_{i j}$ denotes Kronecker'delta. Let $V^{*}=F f_{0} \oplus F f_{1} \oplus \cdots \oplus F f_{N-1}$. For a subspace $V_{0} \subseteq V$, define $V_{0}^{\perp}=\left\{f \in V^{*}\right\}$ $\left.f\left(V_{0}\right)=0\right\}$. Then there is a one to one correspondence between V_{0} and V_{0}^{\perp}, so that $G M(m, V)$ is isomorphic to $G M\left(n, V^{*}\right)$ as a set. Let $\wedge^{m} V$ be the space of m-th exterior products of $V . \quad \wedge^{m} V$ is the $\binom{N}{m}$-dimensional vector space over F with basis $\left\{e_{i_{0}} \wedge e_{i_{1}} \wedge \cdots \wedge e_{i_{m-1}} ; 0 \leq i_{0} \leq i_{1} \leq \cdots \leq i_{m-1} \leq N\right\}$. We define the projective embedding of $G M(m, V)$ as follows:

$$
\begin{gathered}
G M(m, V) \rightarrow \boldsymbol{P}\left(\wedge^{m} V\right) \\
\xi=\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-1)}
\end{array}\right) \mapsto \xi^{(0)} \wedge \cdots \wedge \xi^{(m-1)}
\end{gathered}
$$

For $\xi \in G M(m, V)$, we can write $\xi^{(j)}=\sum_{0 \leq i \leq N} \xi_{j i}^{(j)} e_{i}$. Then

$$
\xi^{(0)} \wedge \cdots \wedge \xi^{(m-1)}=\sum_{0 \leq l_{0}<\ldots<l_{m-1} \leq N} \xi_{l_{0}, \cdots, l_{m-1}} e_{l_{0}} \wedge \cdots \wedge e_{l_{m-1}}
$$

where $\xi_{l_{0}, \cdots, l_{m-1}}$ is the determinant of the matrix obtained by picking out the l_{0}, \cdots, l_{m-1} columns of ξ.

The above projective embedding can be translated as follows:

$$
\begin{gather*}
G M(m, V) \rightarrow \boldsymbol{P}^{(N)-1}(F) \\
\xi=\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-1)}
\end{array}\right) \mapsto\left(\xi_{l_{0}, \cdots, l_{m-1}}\right)_{0 \leq l_{0}<\ldots<l_{m-1} \leq N} . \tag{3.1}
\end{gather*}
$$

Further, this projective embedding satisfies the Plücker relation

$$
\sum_{0 \leq i \leq N}(-1)^{i} \xi_{k_{0}, \cdots, k_{m-2}, l_{i}} \xi_{l_{0}, \cdots, \check{l}_{i}, \cdots, l_{m}}=0
$$

for

$$
0 \leq k_{0}<\cdots<k_{m-2}<N, 0 \leq l_{0}<\cdots<l_{m} \leq N
$$

where l_{i} means removing l_{i}.
Let C be a $[N, m]$-linear code which is an element of $G M(m, V)$ and write

$$
C=\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-1)}
\end{array}\right)
$$

Likewise, let

$$
C^{\perp}=\left(\begin{array}{c}
\eta^{(0)} \\
\vdots \\
\eta^{(n-1)}
\end{array}\right),
$$

which is an element of $G M(n, V)$. According to (3.1), $G M(m, V)$ has a projective embedding into $\boldsymbol{P}^{\left(\boldsymbol{N}_{m}\right)-1}(F)$ and similarly $G M(n, V)$ has a projective embedding into $\boldsymbol{P}^{(N)-1}(F)$. Since $\boldsymbol{P}^{(N)-1}(F)=\boldsymbol{P}^{(N)-1}(F)$, we have an easy criterion of self-duality of C as follows:

Theorem 2. Let C be a $[N, m]$-linear code over a finite field F and let C^{\perp} be the dual code of C. Assume that C and C^{\perp} are as above. Then C is self-dual if and only if $\left(\xi_{l_{0}, \cdots, l_{m-1}}\right)_{0 \leq l_{0}<\ldots<l_{m-1} \leq N}=\left(\eta_{s_{0}, \cdots, s_{n-1}}\right)_{0 \leq s_{0}<\ldots<s_{n-1} \leq N}$ in $\boldsymbol{P}^{\left(\begin{array}{c}(N)-1\end{array}\right.}$ and $N=2 m$.

Proof. First assume that C is a self-dual code. Then since $C=C^{\perp}$, the theorem is clear. Conversely, assume that $\left(\xi_{l_{0}, \cdots, l_{m-1}}\right)_{0 \leq l_{0}<\ldots<l_{m-1} \leq N}=\left(\eta_{s_{0}, \ldots, s_{n-1}}\right)$ $0 \leq s_{0}<\ldots<s_{n-1} \leq N$ in $\boldsymbol{P}^{(\mathbb{N})-1}$ and $N=2 m$. Then clearly $\left(\xi^{(0)} \wedge \cdots \wedge \xi^{(m-1)}\right)=\left(\eta^{(0)} \wedge \cdots\right.$ $\wedge \eta^{(n-1)}$) and $\xi^{(0)} \wedge \cdots \wedge \xi^{(m-1)}=a \eta^{(0)} \wedge \cdots \wedge \eta^{(n-1)}$ for some non zero element a of F. Hence $\xi^{(0)} \wedge \cdots \xi^{(m-1)} \wedge \eta^{(i)}=a \eta^{(0)} \wedge \cdots \eta^{(i)} \wedge \eta^{(n-1)} \wedge \eta^{(i)}=0(i=0, \cdots, m-1)$, that is $\eta^{(i)} \in F \xi^{(0)} \oplus \cdots \oplus F \xi^{(m-1)}$. Similarly, we have $\xi^{(i)} \in F \eta^{(0)} \oplus \cdots \oplus F \eta^{(n-1)}$. This implies that $F \xi^{(0)} \oplus \cdots \oplus F \xi^{(m-1)}=F \eta^{(0)} \oplus \cdots \oplus \eta^{(n-1)}$ and we have $C=C^{\perp}$.

4. Self-duality of linear codes

In this section, we shall study self-orthogonal (resp. self-dual) codes in the Grasmann manifolds.

Theorem 3. Let $C=F \xi^{(0)} \oplus \cdots \oplus F \xi^{(m-1)}$ be a $[N, m]$-linear code over a finite field F. Then C is a self-orthogonal (resp. self-dual) code if and only if C is a point of the Grassmann manifolds which satisfies the Plücker's relations and is on the quadratic surface defined by

$$
\sum_{0 \leq l_{0}<\ldots<l_{m-1} \leq N} \xi_{l_{0}, \cdots, l_{m-1}}^{2}=0 \quad(\text { resp. further } N=2 m),
$$

where $\xi_{l_{0}, \cdots, l_{m-1}}$ is the determinant of the matrix obtained by picking out the m columns l_{0}, \cdots, l_{m-1} of C.

Proof. As explained in the previous section, C can be thought as a point of the Garassmann manifolds which satisfies the Plücker's relations. So we must prove that C is self-orthogonal if and only if C is on the quadratic surface defined as above. First assume that C is a self-orthogonal code. Let

$$
C=\begin{array}{cc}
\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-1)}
\end{array}\right) & \uparrow \\
& \downarrow \\
\leftarrow N \rightarrow
\end{array}
$$

Since C is contained in C^{\perp}, we have

$$
\begin{array}{cccc}
\uparrow & \left(\begin{array}{c}
\xi^{(0)} \\
m \\
\vdots \\
\downarrow
\end{array}\right. & \left(\begin{array}{ccc}
{ }^{t} \xi^{(0)} & \ldots & \left.\xi^{(m-1)}\right)
\end{array}\right) & \left.\begin{array}{c}
\uparrow \\
\xi^{(m-1)}
\end{array}\right) \\
& \leftarrow N \rightarrow 0 \\
& \leftarrow m \rightarrow & \downarrow
\end{array}
$$

where ${ }^{t} \xi^{(i)}$ is the transpose of $\xi^{(i)}$. Then we have

$$
\operatorname{det}\left\{\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-1)}
\end{array}\right) \quad\left(\begin{array}{lll}
{ }^{t} \xi^{(0)} & \ldots & t \xi^{(m-1)}
\end{array}\right)\right\}=0 .
$$

In this case, Binet-Cauchy formula (cf.[1]) implies

$$
\begin{aligned}
& \operatorname{det}\left\{\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-1)}
\end{array}\right)\left({ }^{t} \xi^{(0)} \ldots{ }^{t} \xi^{(m-1)}\right)\right\} \\
= & \sum_{\square} \operatorname{det}(\square)(\square) \\
= & \sum_{\square} \operatorname{det} \square \square \\
= & \sum_{l_{l_{0} \cdots l_{m-1}}^{2}=0}
\end{aligned}
$$

whereis an $m \times m$ matrix obtained by picking out m columns of C and summation is taken over all $m \times m$ matrices.

Conversely, we assume that

$$
\sum \xi_{l_{0} \cdots l_{m-1}}^{2}=0
$$

Then Binet-Cauchy formula implies

$$
\operatorname{det}\left\{\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-1)}
\end{array}\right) \quad\left(\begin{array}{lll}
t \xi^{(0)} & \ldots & \boldsymbol{t} \xi^{(m-1)}
\end{array}\right)\right\}=0
$$

since

$$
\begin{aligned}
& \operatorname{det}\left\{\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-1)}
\end{array}\right)\right.
\end{aligned}\left(\begin{array}{lll}
t \xi^{(0)} & \ldots & \left.t \xi^{(m-1)}\right)
\end{array}\right\}, \begin{array}{ccc}
\left\langle\xi^{(0)}, \xi^{(0)}\right\rangle, & \cdots, & \left\langle\xi^{(0)}, \xi^{(m-1)}\right\rangle \\
\vdots & \cdots & \vdots \\
=\operatorname{det}\left(\begin{array}{cc}
\\
\left\langle\xi^{(m-1)}, \xi^{(0)}\right\rangle, & \cdots,\left\langle\xi^{(m-1)}, \xi^{(m-1)}\right\rangle
\end{array}\right)=0
\end{array}
$$

where \langle,$\rangle means carnonical inner product in F^{N}$.
This shows that for any $i(i=0, \cdots, m-1)$,

$$
X_{0}\left\langle\xi^{(0)}, \xi^{(i)}\right\rangle+\cdots+X_{m-1}\left\langle\xi^{(m-1)}, \xi^{(i)}\right\rangle=0
$$

has a non-trivial solution $\left(\lambda_{0}, \cdots, \lambda_{m-1}\right)$. In particular,

$$
\left\langle\lambda_{0} \xi^{(0)}+\cdots+\lambda_{m-1} \xi^{(m-1)}, \xi^{(i)}\right\rangle=0
$$

so that

$$
\lambda_{0} \xi^{(0)}+\cdots+\lambda_{m-1} \xi^{(m-1)}
$$

is contained in $C \cap C^{\perp}$. We set

$$
\eta^{(m-1)}=\lambda_{0} \xi^{(0)}+\cdots+\lambda_{m-1} \xi^{(m-1)}
$$

which satisfies

$$
\left\langle\xi^{(i)}, \eta^{(m-1)}\right\rangle=0 \quad(i=0, \cdots, m-1)
$$

By renumbering $\lambda_{0}, \cdots, \lambda_{m-1}$, we may assume that $\lambda_{m-1} \neq 0$. We claim that

$$
\xi^{(0)}, \cdots, \xi^{(m-2)}, \eta^{(m-1)}
$$

are linearly independent over F. Assume that

$$
a_{0} \xi^{(0)}+\cdots+a_{m-2} \xi^{(m-2)}+a_{m-1} \eta^{(m-1)}=0
$$

for $a_{0}, \cdots, a_{m-1} \in F$. Then

$$
a_{0} \xi^{(0)}+\cdots+a_{m-2} \xi^{(m-2)}+a_{m-1}\left(\lambda_{0} \xi^{(0)}+\cdots+\lambda_{m-1} \xi^{(m-1)}\right)=0 .
$$

Since $\xi^{(0)}, \cdots, \xi^{(m-1)}$ are linearly independent, we have

$$
a_{i}+a_{m-1} \lambda_{i}=0(i=0, \cdots, m-1), a_{m-1} \lambda_{m-1}=0
$$

Since $\lambda_{m-1} \neq 0$, we have that $a_{m-1}=0$. Thus we obtain

$$
a_{0} \xi^{(0)}+\cdots+\mathrm{a}_{m-2} \xi^{(m-2)}=0 .
$$

Since $\xi^{(0)}, \cdots, \xi^{(m-2)}$ are linearly independent, we have

$$
a_{0}=\cdots=a_{m-2}=0 .
$$

This shows that $\xi^{(0)}, \cdots, \xi^{(m-2)}, \eta^{(m-1)}$ are linearly infependent.
Now $\left\{\xi^{(0)}, \cdots, \xi^{(m-2)}, \eta^{(m-1)}\right\}$ becomes a basis of C. Since

$$
\left\langle\eta^{(m-1)}, \xi^{(i)}\right\rangle=0 \quad(i=0, \cdots, m-1)
$$

we know

$$
\operatorname{det}\left\{\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-2)} \\
\eta^{(m-1)}
\end{array}\right)\left({ }^{t} \xi^{(0)}, \cdots, \xi^{t(m-2)}, \eta^{(m-1)}\right)\right\}=0
$$

which implies

$$
\begin{aligned}
& \operatorname{det}\left\{\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-2)} \\
\eta^{(m-1)}
\end{array}\right)\left({ }^{t} \xi^{(0)}, \ldots,{ }^{t} \xi^{(m-2)},{ }^{t} \eta^{(m-1)}\right)\right\} \\
= & \operatorname{det}\left\{\left(\begin{array}{c}
\xi^{(0)} \\
\vdots \\
\xi^{(m-2)}
\end{array}\right)\left({ }^{t} \xi^{(0)} \ldots{ }^{t} \xi^{(m-1)}\right)\right\}=0 .
\end{aligned}
$$

By the same argument, we see that there exists a non-trivial solution

$$
\left(\mu_{0}, \cdots, \mu_{m-2}\right) \in F^{m-1}
$$

such that

$$
\left\langle\mu_{0} \xi^{(0)}+\cdots+\mu_{m-2} \xi^{(m-2)}, \xi^{(i)}\right\rangle=0 \quad(i=0, \cdots, m-2) .
$$

We set

$$
\eta^{(m-2)}=\mu_{0} \xi^{(0)}+\cdots+\mu_{m-2} \xi^{(m-2)}
$$

which satisfies

$$
\left\langle\xi^{(i)}, \eta^{(m-2)}\right\rangle=0 \quad(i=0, \cdots, m-2), \quad\left\langle\eta^{(m-1)}, \eta^{(m-2)}\right\rangle=0
$$

Similarly,

$$
\left\{\xi^{(0)}, \cdots, \xi^{(m-3)}, \eta^{(m-2)}, \eta^{(m-1)}\right\}
$$

becomes a basis of C. We proceed this process. Then we obtain a basis

$$
\left\{\eta^{(0)}, \cdots, \eta^{(m-1)}\right\}
$$

which satisfies

$$
\left\langle\eta^{(i)}, \eta^{(j)}\right\rangle=0 \quad(i, j=0, \cdots, m-1)
$$

Now C becomes a self-orthogonal code. Since the case of a self-dual code is clear, the proof is complete.

References

[1] S. Lang: Linear Algebra, Springer, New York, 1987.
[2] J.H. van Lint, G. van der Geer: Introduction to Coding Theory and Algebraic Geometry, Birkhäuser, Basel, 1988.
[3] J.-P. Serre: Cours d'Arithmetique, P. U. France, 1970.

Department of Mathematics
Naruto University of Education
Takashima, Naruto, 772, Japan
e-mail address: skoba@naruto-u.ac.jp and
Department of Mathematics
Tokushima Uninversity
Tokushima, 770, JAPAN
e-mail address: g01536@sinet.ad.jp

