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0. Introduction

The generator of a Markov process of jump type is a pseudo-differential
operator of non-local type. If the pseudo-differential operator satisfies a certain
regularity condition, the fundamental solution of the parabolic equation associated
with the operator can be constructed by the general theory of pseudo-differential
operators, and properties of the solution are investigated by the theory ([8] Chap.7
§4, [9], [11]). However, in the case where the elements of the operator are
discontinuous, we need another theory.

Any symmetric stable process is associated with a Dirichlet form of non-local
type. In Komatsu [7] we proved that, if a Dirichlet form is bounded from above
and below by Dirichlet forms associated with stable processes of the same index,
there exists a strong Feller process associated with the Dirichlet form. We shall
call the strong Feller process a stable type process. More specifically, we obtained
some uniform estimates for the transition functions of stable type processes which
are fundamental solutions of parabolic equations in the weak sense associated with
Dirichlet forms of non-local type. We note that Carlen-Kusuoka-Stroock [3]
studied upper bounds for transition functions in a more ganeral context.

In this paper, we still work with the transition functions of stable type processes
and present, among others, a lower estimate and a uniform Holder estimate for
them, which we were unable to obtain in the previous paper [7]. Our lower
estimate is almost the same as the one naturally expected from the Aronson
estimate in [1] and [2]. These results can be proved through some improvements
of the proof in [7]. Actually we employ a wider class of stable type processes
than [7] and prove that the uniform estimates of their transition functions similar
to those in [7] remain valid for this enlarged class. Finally we examine those
examples where the Dirichlet forms are expressed as integrals of bilinear forms
involving pseudo-differential operators. This type of forms has been considered
by Jacob ([4], [5], [6]). An example of this type will indicate the necessity of
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the employment of the present enlarged class of stable type processes.

1. Notations and theorems

The Dirichlet form of non-local type associated with a measure K{(t,dx,dy)
can be written in the form

(L.1) ¢(f.8)= fj(f (x) =/ ONg(x)—gNK(t,dx.dy).
We shall consider only the case where the measure K has the form
K(t,dx,dy)= %k(t,x,y)|x —y| ™9 *dxdy,

where 0<a <2, (t,x,y)e R, x R*x R? and k(t,x,y) is a measurable function satisfying
k(t,x,y)=k(t,y,x) and

(192) lim su N |k(ssxay)—k(tsxsy)| =0

s=t x| +|y] <

for any t and N. Let K"=K"[c,,c,,c3] denote the class of functions k satisfying
the above mentioned properties and that, for all (t,x,y)e R, x R x R?,

(13) C1Sk(’,X,}’)Scz+03t_m|x‘}’|v,

where 0<y<a/2 and c,,c,,c5 are positive constants.
A function u(x)=u(t,x) is said to be a weak solution of the parabolic equation

(1.4) @/ dt)uy, )2 = — & (uy, *)

associated with the Dirichlet form &, if

t

S<ul<)t (umuw)L2 + J éDt(uvut)dt <,

s

t

(utaf)LZ - (us,f)Lz + \f g,(u,,f)d’l’ = 0

s

for any O<s<t and any test function f on R’ where (-,"),. denotes the usual
inner product of the Hilbert space L%(R’dx).

Theorem 1. Let k(t,x,y) be a function in a class K' and &(-,-) denote the
Dirichlet form associated with the function k. Then there exists uniquely a function
S(s,x;t,y) such that S(s,x;t,y)=S(s,y;t,x)>0 and, for any ¢ in L?, the function
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u(y)= j d(x)S(s,x;t,y)dx

is a weak solution of the parabolic equation (d/dt)u, )= &4, ") associated with
the Dirichlet form &, satisfying the initial condition

lu,—Pll2—0 as t]s.

This function S(s,x;t,y) is continuous on the set {(s,x,,y); s<t, xe R* and yeR%}.

The function S(s,x;t,y) in Theorem 1 is called the fundamental solution of
equation (1.4). Under the additional assumption that (0/dx)(d/0y)"k(t,x,y) are
bounded and continuous on R, x R*x R? for all u, ve Z%, Theorem 1 is proved
by the theory of pseudo-differential operators (cf. [8]). And in this case functions
(0/0x)"(@/ dy)*S(s,x;t,y) are continuous on {(s,x,t,y); s<t, xe R and ye R*}. This
fact is a base of our arguments. Theorem 1 in the general case, however, is a
consequence of other theorems in this section.

We shall fix positive constants a, y, ¢, ¢, and c5, and use the convention of letting
¢’s stand for positive constants depending only on these constants. Each ¢ may
denote a constant different from other ¢’s. Let k be a function in the class
K[c,,c5,¢5)- Without calling attention on each occasion, let &, denote the Dirichlet
form associated with the function £ and S(s,x;t,y), the fundamental solution of the
parabolic equation associated with £, Now set

(1.5) T(y)=T(t,y)=S5(0,0;1,y).

The purpose of this paper is to obtain a lower estimate and a continuity estimate
for the function T(y) depending only on constants a, y, ¢y, ¢, and ¢5. The following
theorem will be proved easily.

Theorem 2. Let ke K'. Then
(1.6) ﬂ(y)+J E(T, T)dv<ct™ "
t

In the case 0 <y <a /2, choose and fix a constant f satisfying o /2 <f<(a—7p)A L,
and define r(o)=0”. In the case y=a/2, let r(c) denote the function defined by

(1.7) ro)=0%?/(1+x(logo)?), k=(axA(2—a))?/6.

Then the function r(o) is a concave function on R,. We claim no more
upperestimate of the function T(y) than Theorem 2. However, the following
moment bound plays the role of an upper estimate in the proof of the cotinuity
estimate in this paper.
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Theorem 3. Let ke K'. Then
(1.8) Jr(t ~Ey)T(y)dy <c.

In view of the Aronson estimate [2], it would be expected that the function
T(y) satisfies the lower estimate

T(y)=>ct ™ “exp[ —ct ™ |y|"].

Though the above estimate is nothing but a conjecture, the following rather loose
lower estimate can be proved. Define a function ¥(o) by

(1.9) Y(o)=exp[ —c®log(e + 0)].

Theorem 4. Let ke K*. Then

(1.10) T{y)= ct™ (e~ ey]) > 0.

It needs no explanation to see that, if there is a strictly positive function W (o)
on R, which is decreasing and depends only on a, y, ¢,, ¢, and c¢; such that

(1.11) JS(O’xl;tsy)A S(0,x5t,y)dy =W ot *|xy — X))

and if the moment bound (1.8) with r(6)=0f, 0<f<1 , is satisfied, then the
Holder continuity estimate can be proved by the Nash method [10]. Since overlap
estimate (1.11) is immediate from Theorem 4, we have the following theorem.

Theorem S. If y<a/2 and ke K?, then

(1.12) m-Ton s+ L)
-

for all 0<s<t<t and y,ne R

From the point of view of pseudo-differential operator theory, it seems
significant to investigate the case y=a/2 (see Section 4). Since moment bound
(1.8) is obtained only for the function r(s) given by (1.7), we cannot prove the
Hoélder continuity estimate in a similar way to the proof of the above theorem. But
the function T,(y) satisfies a certain continuity estimate in this case. Note that
moment bound (1.8) is quite similar to the moment bound in [7] (Theorem 1),
where the function #(s) is defined by
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Ho)=0"? /(1 +c(log 6)*)'/?
in place of (1.7). In the present case, we can work with the functions
(1.13) J(0)=0(1+(loga)?), J(o)=0o(1+(logo)>) !
in place of functions J(o) and J(o) in [7], §4. Since the functions J(o) and J(o)
given by (1.13) satisfy inequalities
cr(o) <J(6*?) < er(o),
Joo)<clo)(e),  Joa)<cl(o)(o),
co <JJ(0)), J(J(0))<ca(l+(logo)),

it is easy to check that the following theorem can be proved in almost the same
way as that in [7], §4. Define a function ®(c) by

) [ log(1 /)

——————:| O<o<e™)
loglog(1/0)

(1.14) O(0)=
e ¢ (e7°<o).

Theorem 6. If y=0o/2 and ke K?, then

(1.15) |Tt(n)—T,@)|3cs“/“®<(L?w>c

t—s

for all 0<s<t<t and y,neR".

As was mentioned before, these theorems are proved at first under the additional
assumption that (9/dx)“(@/ dy)*k(t,x,y) are bounded and continuous for all u,ve Z%,
and the assumption is removed afterward by making use of these proved
theorems. We shall explain briefly about it, for it was shown in [7], §5. Let
{6,(x)} be a sequence of non-negative test functions on R? such that the support
of §,, decreases to {0} as m— oo and [J,(x)dx=1. Let ke K" and define

km(t’x’y) = J\k(ts[éjm’[rl]m)am(x - 5)6",()) - n)dfdn,

where [&],,=¢l g <m and [1],=1ljy<m From condition (1.2), each function k,,
satisfies the above mentioned additional assumption, k,€ K’ and

(1.16) lim sup f f (k(T,,y) — k(t,x,y))?dxdy =0
|x]+|y| <N

m— o s<t<t
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for any s<tand N. Let &,,(",") be the Dirichlet form associated with the function
k,, and S,(s,x;t,y) be the fundamental solution of the parabolic equation associated
with &,,,. We see from Theorem 2 and Theorem 5 in the case y<a/2 or Theorem
6 in the case y=a/2 that the functions {S,(s,x;t,y)} are uniformly bounded and
equi-continuous on any compact subset of {(s,x,t,y); s<t, xeR? and yeR%}=D.
From the Ascoli-Arzera theorem, choosing a subsequence {m(n)} < {m} if necessary,
we may suppose that {S,} converges to a certain function S=S(s,x;t,y) as n — oo
locally uniformly on the set D. Then from Theorem 3

JS(s,x;t,y)dy=1, S(s,x;t,y) = 8(y—x) as t|s.
Using (1.16) and Theorem 1, it can be shown that, if ¢ € L?, then the function
uly)= er(X)S(s,x;t,y)dx

is a weak solution of the parabolic equation associated with &, Since the weak
solution to the Cauchy problem for the parabolic equation is uniquely determined,
we see that the function S(s,x;t,y) is the fundamental solution of the parabolic
equation associated with &, Therefore Theorem 1 remains valid without the
additional assumption. Theorem 2 also remains valid from the Fatou lemma.
Obviously Theorem 3, 4, 5 and 6 still hold without the additional assumption.

Here we shall remark that the function S(s,x;t,y) is a strong Feller transition
function. In fact, by making use of Theorem 3, for any |x|>2N,

J‘ S(s,x;t,y)dy < J S(s,x;t,y)dy
ly| <N

ly—x|>|x|/2
<r(lxl/2(t—5)"") "1 {rlly —xl/ (¢ —5) ") S(s,x5,y)dy
<cr(x|/2(t—s)t" 1.

Therefore the transition function S(s,x;t,y) maps each bounded measurable function
on R? with compact support to a continuous function vanishing at the infinity point.

Finally we shall consider the case where the function k(t,x,y)=k(x,y) is
independent of the time parameter ¢ and it satisfies the inequality

(1.17) ¢, <k(x,y)<c,+cslx—y

for all x,y e R%, where 0<y<a/2 and c,, ¢, and c; are positive constants. Let 7 be a
positive constant and set

k(tx.p)=((2—1/7)vO) A Dk(xy) + (¢ /T = 1) VO) A Dy
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Then k%(t,x,y) =k(x,y) for t <t and k'€ K"[c,,c,,¢3] with ¢ =c5(21)"%. Let S(s,x;t,p)
be the fundamental solution connected with the function k%(t,x,y). In place of
theorems stated above, we shall consider modified theorems in which the parameter
set is restricted to the bounded interval [0,7] and the class K'[c,,c,,¢5] is not the
original one but the set of symmetric functions k(x,y) satisfying (1.17). Applying
the original theorems to functions k* and S°, we see that the modified theorems
also hold good.

2. Upper and moment estimates

In this section we shall prove Theorem 2 and Theorem 3 assuming that
(0/0xy(0/ 0y)’k(t,x,y) are bounded and continuous on R, xR‘xR? for any
w,veZ%. Let A, be the operator defined by

A= f(f(x+z) —/()— 21y - O (RDk(t.x. 0zl =4 *dz

+ j(f e+ 2) —f(X))k(t,x,x + 2) —k(t,x,x))|z| "¢ *dz

for smooth bounded function f on R?, where [2], =zl <,, and 0=0,=((9/dx,), -,
(0/0x,). Then we have

(ORY) E(f.8)=— (41,8

It is known that functions 7,(y) and (d/0y;)T(y) are continuously differentiable on
(0,00) x R? and (8/00)T(y)=A,T,y, morever

sup. f(w)z HOT )y < oo

for any O<s<t.
Throughout this section let p(x) be a smooth function such that 0<p(x)<1,
p(x)=1 for |x|<1 and p(x)=0 for |x|>2, and p(x)=p(—x). Set

& =(ﬁ1 —e % 2p(2))|z| T *dz) .
Then we have ¢<{&)/(1+|¢))<c and
22 ”If ) =S W)?plx—y)lx—y| =~ *dxdy = CJ.<§ YIZ f(O)dE

for any function f on RY where & denotes the Fourier transform. Define
E(t)=(T,T,).. for t>0. It is easy to show that
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(2.3) (d/dnElt)= —26(T,,T).

Lemma 2.1. Assume that the function k is non-negative and satisfies the
inequality k(t,x,y)>c, on the set {(t,x,y); |x—y|<2}. Then there exists a constant C
depending only on « and c, such that E(H)< Ct™ %=

Proof. From the assumption and (2.2) we have

—(d/dnE()=26(T,T)= CJ@ YIFT()I*dE.

For any 1>0,

E(t)=(2n)”"jl=?*'T,(é)l2d§
= cj1(<§> <pdé+ Cf’«o > ol F T dé

<cA+4cl7® J (EIF TLE)\dE.
Choosing the best constant 1, we have
j(é YIF T(E)\dE = cEr)' * .
Using these inequalities,
(d/dn(E@l) )= — 3 E({)~ 1744 | d)E(f)>c.

Since E(+0)"!=0, we have the inequality E(f)"*‘>ct. ged.

Theorem 1 is immediate from Lemma 2.1. The lemma implies that
1SCs,x5t, Y L2 < (t—s) =22
Therefore

T(y)= |S(0,0;t / 2,x)S(t / 2,x;t,y)dx

<180,05¢ /2, )l 21S(¢ / 2,3, Ml L2 S et~

From (2.3) and Lemma 2.1
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J E(T, Tyde=E(t)/2<ct™

t

Hence we obtain estimate (1.6).

For a while, let f,(x) be the convolution of functions (|x| A7)’ and p(x) for a fixed
constant 6, 0<d<a. We see that the second order derivatives of the function f,
are bounded and that

10/ ox)fux+2)<cflx)  (zl<1),
Sx+2)<c(f(x)+12).
Then

ASx)=ktx)| (L4 D=0 =z 0f(x)l " dz

lz|<1

¥ f (folx + 2) = (K x,x + 2) — k(t.x,x))|2| 4~ *dz
Jzl<1
¥ J (fulx +2) = (LDt x,x + 2)|z| ™ *dz
lz1>1
SC:CJ || "dz
lzZl=<1

+(supld,k(t.x.y)) e J |2i2 1%z

lz|<1

+uplk(t e J (L) +12lz| 47z

|z] >1

<a+af,(x),

where a is a constant independent of n.  Since f,(x) =n? for |x| > n + 2, we see that
[rmax=r0+ [ ([0 Tanavas
0
<c+ J‘(a + ajf,,(x) T(x)dx)ds.
0
This inequality implies that
J J[X)Tx)dx < ce™.

Letting n — oo, we see that if 0<d<a, then
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24 Sup flyl"T,(y)dy <.

Recall that the concave function r(s) is defined in the case 0<y<a/2 by
r(6)=0o” with a fixed constant B satisfying «/2<f<(x—7y)A 1, and in the case y=
a/2 by (1.7). Define a function M(¢) by

(2.5) M) = |r(iy)T()dy.

The following lemma is essential to prove Theorem 3.

Lemma 2.2. (i) In the case 0<y<a/2 and ke K",
(2.6) (d/anM() < ctPl*~12g (T JogT)" > 4 ctP*~ 1,
(ii) In the case y=0o/2 and ke K?,
2.7 (d/d)M() < cE(TJogT) > +ct™ 12,

Proof. Let p,(x)=p(x/n) and r(x)=r(x])p(x). Then

M(t)— M(s)= — lim Jté” (rmT)dr.

s

Let [X], denote the positive part of X. Set b=¢'". Since
([1-Tx)/ T)]+)* <1 - Tix)/ T+ 1og(T,(y)/ Ti(x)
and ke K'[cy,c,,c5],
€rw T/ 2

< J\J]rn(x) =W = T(x)/ T+ T()K(t.dx,dy)
< (Jf Iriy —2) =, > T)K)' 26 (T, logT)""?
|z| <b

+ H Iy —2) =r I TK
121> b

<c(l,1)'?8(T,logT)"* +cl, ,,

where

Ly =Jf Iy —2) =1, )|zl =~ T (y)dydz,
|z <b
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I,,= jj Irsy —2) =1, W)zl =4 BT T(y)dydz,
|1z} >b

Since the function r(s) is concave,
I, <2 f J (r(ly—2D) = r(y)*lzl =~ *T(y)dydz
Izl <b
+ 2H (YD (puy — 2) = pa)) 12l =~ *Ty(y)dydz
|zl <b

<2| Azl "z +2J,, fr(lyl)zlyl “*T)dy,

|z| <b

L Sb—’” Ity — 2 — (WDl |zl == " T(y)dydz
|z| >b
+b"’Jf (zDlpny —2)— Pl |2l =41 T (y)dydz
1z|>b

<b7(| izl dz + J:;J"(!}’DM “*Ty)dy),

|1z]>b

where

Jn. =sup(y* J (0¥ —2)— Pzl *d2),

z|<b
22 =sup(yl f Ipa0 =2, |24 )
|z|>b

We see that J, ,<cn*~% Using (2.4) we have

Tim17, , _<_2J r(z))?|z| ¢~ *dz.

1z]<b

Choose the constant ¢ so as to satisfy O<e<(x—y)A1l. Then

:,2=m+s—a51§p(|y|ej oy —2)— p)| Izlv—d—adz)

|z} >b/n

Snv+e-a{4f Iply—2)—pO) |24 ~%dz
|z| > b/n

+ l§|u>p4(lyl‘ﬁp(y—2)—10(V)I |z~ 4~ *dz)}

843
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<n’*¢~*{c+sup|dp(x)| |zt 1472 dy
* bin<|z|<1
+ sup (I)’ICJ 2]~ 4"*dz)}
PIZ4 1z i

Scns— 1 vn'y+e—a'

This and (2,4) imply that

Tim1,,<b "J r(z))z) 42 dz.
lz}>b

n—oo

Therefore we have

(d/dM(1)| < J r(|zl)*lz| =~ *dz)' 26 (T logT)'
|

z|<b

+ cb_yf r(z))|z)? ¢~ dz.
|z]|>b

Inequality (2.6) is immediately obtained from the above inequality.

2.8) Jr(|z|)2|z| “d-adr 4 Jr(|z|)|z| ~d-el2dr; < 0,
we have (2.7).

Let Q(7) be the entropy

29 on=— jT t(y)IOth(y)dy

Since

q.e.d.

of the probability density function T(y). Since —logT7,>1—-1T7, QO()=>1—E(f)
> —o0. From (2.4) and the inequality —TlogT<(a—1)T+e™* we see that

UGBS J(Iyl“’ 2= DT (y)dy + JCXp[ —y|*?]dy < 0.

There is a general inequality that if 7(x) is a probability density function on R?

and B, >0, then

J(lxl” AXI")T(x)dx > (ce?)P' A (cedP ",

where Q= —[T(x)logT(x)dx (cf. [7], Lemma 2.2). Applying this ineguality to

functions T(y) and r(|y|), we have
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(2.10) M(t)=cexp [cQ(O)] AexplcO(D)].
Let O<s<t. Then, for each 6>0,

»

— |Tlog(T,+ 6)dy + JTS log(Ts+ 6)dy

.

— | AT tog(T,+8) + &(T T,/ (T, + S))de

("t

Y

& (T log(T, +d))dr.

vs

Since 0<E(T,log(T,+0)) 1 E(T,logT,) as 6|0, we see that

t

2.11) 0(t)— O(s) > f &[T logT)dr  (0<s<i).

s

This does not always imply the inequality (d/d0)Q(¢) > E«(T,,logT,).
Lemma 2.3. Let ke K'. Then M(1)<c.

Proof. By Theorem 2 there is a constant b, depending only on a and c,,
such that T(y)<e’t~%* Define functions g(f) and h(f) by

g)=0(—(d/x)logt+b,

h(t)= f&,(T,,loth)dr —(d/a)logt.
1

Then the function g(¢) is non-negative, and from (2.11) we see that
g)—g)=ht)—hs) (0<s<i).
Suppose that y<a/2. From (2.6),
(d/dOM() < ct?l*~ V(| dh(t) +d | to) /% + ctPl*— 1
=P Y e (1 +(ta/ d) (d ] ADR(D)? +¢)
<Pl V(e + ct (d ] dru(t)).

For any 0<e<1, by the integration by parts,

M(1)— M) < f l(ct”/“ “yct?1™(d | diyh(t))dt

<c +c(s’”“(h(l)—h(s))+(ﬂ/oc)ft”’“' L(h(1)— h(2))d?)

&
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SC+C(8”’“g(1)+(ﬁ/0t)ft”’“' '(g(1)—g(1)d1)

<c+cg(l)eh" +(/3/a)f1t”/“' tdy=c+cg(l).

Since M(+0)=0, it follows that M(1)<c+cg(l1). In the case y=a/2 it can be
similarly obtained that M(1)<c+cg(1). On the other hand, from inequality (2.10)
and the relation g(1)=Q(1)+b>0 we have

cexplcg(1)] <cexp[cQ(1)] < M(1).

Hence estimates g(1)<c¢ and M(1)<c follows from the inequality c+cg(1)>M(1)
>cexplcg(1)]. q.e.d.

The canonical scale change is necessary to show Theorem 3 from Lemma
2.3. For A>0, let &,(4|-,-) be the Dirichlet form defined by

2.12) E(Af,8)= ﬁ(f () =/ Oe(x) —gO)K(Alt,dx.dy),

where K(A|t,dx,dy)=k(A*t,Ax,Ay)|x —y|~? " *dxdy. Then the function
(2.13) S(Als,x;t,y) = A1S(A%s,Ax;A%t,Ay)
is the fundamental solution of the parabolic equation
(d/dtuy, )= — EAluy, *).
Set
(2.14) T(Alt,y) = AT(2*,Ay) = S(4|0,0;1,p).

Note that k(A%,/x,Ay)e K if k(t,x,y)e K* for any 1>0 and that
Jr(t‘”“Iyl)Tt(V)dy=Jr(|y|)T(t”“|1,y)dy~

From Lemm 2.3 the right hand side of the above equality is limited by a constant
independent of ¢, and this implies Theorem 3.

3. The lower estimate

In this section we shall prove Theorem 4 assuming that the function k(t,x,y)
and its derivatives of every order with respect to x and y are bounded and



NonN-LocAL DIRICHLET FORMS 847

continuous on R, x R?x R%. An estimate for the overlap of fundamental solutions
will give the lower estimate of the fundamental solution. The proof is quite similar
to that in [7], §3, but the result is considerably sharp.

For given function k(t,x,y)e K?, let k(t,x,y)=k(t,t"/*x,t'/y) and

(3.1 &L, )=6,(-,0), U)=T"" 1),

these are the same ones given by (2.12) and (2.14) taking A=¢'*. Then the
equation —(d/dit\T,f):=6(T,.f) is equal to the equation

1 ~
(6.2 —1(0/00U, )12 =;(Uz,y 02+ E(Unf)-

Throughout this section let P(y) denote the probability density function
(3.3) P(y)=C(1+|y))~**/log(e+[y)).
Define for 0<d<1
(3.3) G)=— JP(V)log( Uy)+é)dy.
From (1.6), logd <log(U,+6)< U,<c, therefore —c<Gy(f)<logd 1.

Lemma 3.1.

(3.4 t(d]d)GH)<c+cGyt)+E(U, P/ (U,+5))

Proof. Applying (3.2) for function f(y)=P(y)/(U(y)+ ),
t(d/d)Gs=—1(0/00U, P/(U+9))y.

= L6 U)P/(U 4 O)at (U, PI(U+0)
o

- —f’(U,,P/(U,w»Lz—icy-alog(U,+a),P)Lz+&’,(U,,P/(U.+a»
o

< — L - log(U, +8), P)yat &(U, P/ (U, +5)
o

d 1 ~
=——G;+-(y- 0P, log(U,+96)).+ (U, P [ (U, +9)).
o o

Note that y-dP=(y-dlog P)P and
y-dlog P=y-(—(d+a)/(1+y)—1/((e+IyDlogle+ 1y /Iy
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=—d—a—1+Hy),
where
Fy)=(d+a)/(1+]y])+(og(l +|y|/e) +e/(e+|yD)/logle +[yl).
Since K(y) is a positive bounded function,

o+1
o

t(d] dt)G,<

Gs+ é JFU’)P(V) log(U,(y)+0)dy +&(U, P/ (U, +9))

o+
o

1 ~
< Gs+c+E(U, P/(U,+9)). g.ed.

Now fix >0 and set
20(x,y)=1ogP(x)—logP(y),
2a(x,y) =log(U(x) + 6) —log(U(y) + 9).
Then
(Ux)— U)P) / (Ufx)+6)— P) / (U») +6)
=(e*7?—1)(e**—1)P(y)
=4sh(0 - w)sh w (P(x)P()'?
=2(P(x)+ P(y))sh(0 —w)shw / ch 6.
<2(P(x)+ Py))(th 6) / 0)(0 — w)w
<(P(x)+ Pp))((th 0)/ 0Y0” — w?),
because of inequalities sh(0—w)shw <((sh0)/0)0—w)w and 2(0—w)w<0*—w?.

The following inequality is essential for the overlap estimate.

Lemma 3.2.

(3.5) E{U,P/(UA+d)<c—c J P(yYlog(Uy) + )+ Gy(1))*dy

Proof. For certain positive constants c¢,, ¢, and cj, the function k& belongs
to the class K”[c,,c,,c3], and this implies that ¢, <k(t,x,y)<c,+cslx—y|’. Since
10(x.y) < clog(1+|x—)) <clx—yl,

ij(V)O(x,y)z(Cz +eslx—yIMx—yl ™" *dxdy <c.
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Therefore

EAU, P/ (U,+8))

< ”P(y)((th 0)/6)(0> — wlx — y| =4~ *dxdy

<c—c, j fP(y)((th 0)/ 0)w?|x — y| =4 *dxdy.

It is easy to see that (th 6(x,y))/0(x,y)=c(logle+|x—y]) !, so that
(th 0(x.)) / 0Cx.p))lx —y| =9~ *= cP(x —y).

From this we have
E(U,P/(U+d)<c—c f J P(y)o(x,p)* P(x — y)dxdy
<c—c f f P(y)o(x,p)? P(x)dxdy
x| >y
On the other hand y

jp (0)log(U,(y) +0) + G4(1))*dy
= jP @XZJMX,Y)P (x)dx)*dy
<4 J PO)( |@(x,y)*P(x)dx)dy

=8 J f P(y)(x,y)* P(x)dxdy.
1x1> 1yl
Combining these inequalities, we obtain (3.5). q.e.d.

From Theorem 2 and Theorem 3 there are positive constants a and b depending
only on «, y, ¢y, ¢, and c; such that

) <a, Jrﬂyl)v,(y)dy <370

This and preceding two lemmas will lead to the following lemma.

Lemma 3.3. There is a positive constant c, depending only on a, v, ¢y, ¢, and
¢y such that Gy(t)<c, for all t>0 and 6, 0<é<1.
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Proof. Define a function hsu,v), 0<u and — oo <v<oo, by
1 2
hs(u,0) =~ (log(u +6) +v)*.
u
The function hy(-,v) is decreasing on [e?7%,c0). Therefore
JP(V)(IOg( U) +0)+ Gy1))*dy
= JP(y) Uhs(U),Gs(0)dy
> hy(a,Gy(1) | PO)U0] > @Y
as long as e>exp[2—Gy(f)]. Let

C4=(4'[I(‘x| <,,)dx)- l.

Then

J U w.s)>cody
|x| <b

3
2 J‘ U(y)dy — J Cady = Z - J U(y)dy
x| <b x| <b x| =b
3, 1
>——r(b)” " |r(y)U()dy = .
4 2
If c,>exp[2—Gy1)], then

JP(y)(log( U(y)+9) + Gy(1)dy

> hy(a,Gt) PO)UW) (Ue(y)> mdy

x| <b
> inf, PO haGl0)> e+ cGl0)"

This inequality and (3.4) and (3.5) imply that there are positive constants ¢s and
¢ depending only on a, y, ¢y, ¢, and c¢; such that

(3:6) t(d/dGyt)<cs® —cs*G1)?
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as long as G4(f)=>2+1log(1/c,). It is easy to show from this differential inequality
that

Gy()<(2+1log(1/ca) v(es/ce)=co ged.

Let w(c) be a function on R, defined by
3.7 w(jx; —x,)= | P(x —x,) A P(x —x,)dx.

In the case d>2,

00

w(2o-)=2j

ag

f _ P((s,0))dsdl

chmf (14524 €19 D 2(log(e + 5% +|£]%)) ™ 'dsdE.
g JRA-!

Substituting the variable ¢ by (1+s5%)"/2( and using the inequality that
log(e + 5% +1¢1% +5%|{|%) < 2log(e + s*)log(e + |¢|?),

the function w(20) is estimated from below in the following manner.

W(ZO')ZCJ (1453~ @*V2(log(e + 52)~ ds

(4

X J (A +1E7) ™" (log(e + %)~ dl
Rd-1

=c r(l +(o+0)?)~@* DV 2(log(e + (o +1)%) " 'dt
0

>c j (1 +02 413~ Y2(log(e + 02+ t2)) " 'dt
1]
>c((1+02*logle+02)~*

X J (1413~ Y %(loge+12) " 'dr

0

=c((14+0*)**logle+0?) .
Hence it is obtained that
(3.8) w(0) > c((1+ o)*log(e +0)) .

The same lower estimate for the function w(s) is easily obtained in the case
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d=1. Let ¥(0) be the function defined by (1.9). Then (3.8) is eguivalent to the
lower setimate exp[ —1/w(a)]>c¥(0).

Lemma 3.4. Let S9sx;t,y),i=1 or 2, be fundamental solutions for Dirichlet
forms which are associated with functions k“(t,x,y) belonging to the same class
K[c,,c5,¢3). Then

(39) fS‘”(O,xﬁt,y) ASP0x,5t,)dy = Pt — X, ).
Proof. Set U%(t,y)=t4*SD(0,t'/*x;;t,t'/*y). Then it suffices to prove that
Jmin U t,y)dy = c¥(1x, —x,)".

Using the inequality
aib,+a,b,<(a;vay)b,vby)+(a; Aay)by Aby),

we have from Lemma 3.3 that
Jm}nP(y — ;) min log( U9(t,y) + 0)dy
= f P(y —x)log(U"(t,y) + 8)dy
- fm;gle(y —X;)'max log(U"(t,y)+ d)dy

> 2co— f maxP(y—x)- (UV(t3) + UP(ty)dy

> —2¢,—2C,

where ¢, is the constant in Lemma 3.3 and C, in (3.3). On the other hand
J miinP(y —x) miin log(U(t,y) + 6)dy
sfmiinP(y—x,.)-(logéﬂog(l + UM A UP)/ 8))dy
<logé - w(lx, —x2|)+(C/5)ijn U(t,y)dy.

Therefore

c J minU(t,y)dy 2 5(—log & w(lx, —X,[) — 2(co + C)).
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Set g=2(co+ (), 6=|x;—x,| and w=w(s). Since
m>ag(e‘s(sw-—q)=wexp[—q/w—1],
it follows from (3.8) that

Jmin U(t,y)dy

>c((1+0)*log(e+0)) ‘exp[ —c (1 + 0)*log(e +0)]
>cexp[—c(1+0)*logle + )] = c¥(o). q.ed.

The above estimate for the overlap of fundamental solutions will be equivalent
to the lower estimate stated in section 1 as Theorem 4. It is obvious that estimate
(1.10) implies estimate (3.9). And so, we shall show the inverse implication.

Let

UD(1,x)=14%5(0,0;1,6'*x),
U(t,x)=14*S(1,t 1 la(y= Uay)0p pllay),

Then
T(2t,y) = |5(0,0;,x)S(2,y;2t,x)dx
=¢ i J. UY(t,x)- UD(t,x)dx.
Let R be a positive constant depending only on «a, y, ¢y, ¢, and c; such that
Jr(lyI)U“’(t,y)dy <R (=12

There are positive constants B and ¢ such that r(g)> Bo® for all 6>r"'(R). Let
[X], denote Xyv0. For any A>0 we have

t"/“T(Zt,y)zj UM UPdx

Ix]<2

2(J U(l)/\U(z)dx)z/(J 1dx)
lx| <2 |

x| <2

zcr"(fvm A U‘z’dx—J UMD A UNdx)?
|

x| =2
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ch"[JU“)A UPdx—r(2)~ lJ‘r(lxl)U‘”/\ UPdx],?
ch'“[JU(l’A UPdx—(R/B)A™%] 2
Since for any v>0
sup A~4[v—(R/B)A™"]4)* = cv**?,
it follows from Lemma 3.3 that
1192 T(2t,y) > c (|UP A UPdx)* 2 > Pt~ o)y
Hence we obtain Theorem 4.

4. Examples

The Holder continuity of the fundamental solution is not obtained in the case
ke K*?. The necessity for studyng the case y=u/2 in condition (1.3) or (1.17),
however, arises when we want to consider Dirichlet forms determined by
pseudo-differential operators.

Let E(x)=(kj(x))ls j<n be an RY-valued smooth homogeneous function on
RA\{0} with index —d—a/2, and a(x)=(a;{x)); <; j<n be a symmetric real matrices
valued function on R’ Let p/(¢) denote the Fourier transform of the function
ki(x) in the sense of distribution. Then the function p(¢) is homogeneous with
index a/2 and the pseudo-differential operator p(D) can be written in the form

(.1 PAD)f(x)= ﬁf(y) ~f (Ve fx—y)dy
= Hm(l§ «f(x) — i (1),

where kj(x)=k{(x)[y >, and m'=[ki(x)dx. Let p{(D)* be the adjoint operator of
p{D). Then

4.2) pAD)*f(x)= f(f 0) =Sk vy —x)dy

= lim(E; ()~ m3f (),
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where Ej{x):kj(—x). Assume that g;;(x) and its first order derivatives are bounded
for any i and j. We shall consider the bilinear form

(4.3) B(f,8)=2l;= J-pi(D)f (x)-ai(x) pD)g(x)dx

= J@(D)f (x)-a(x), p(D)f(x))dx,

where p(D)=(p,(D),--,py(D)) and {u,p) =Z¥_ jup; for u=(u,,---,uy) and v=(v,,---,0y).
The Dirichlet problem related to such bilinear forms had been studied in [4]. It
is not known the concrete condition for a(x) under which the bilinear form (4.3)
becomes a Dirichlet form.

We shall write the bilinear form in a form like (1.1) and derive a necessary
condition for it to be a Dirichlet form. Let p(D) and p{(D)* be operators given by

PAD) f=ksxf—mif,  pUAD)*f =Kkixf—mf.

Then
piD)*a;(x)pi(D) f(x)
= Ej *(a; (ki +f))—m5a; ki *f)
—mej *(a;; /) +mmta;f
= jff 0)ki(z — y)ai(2)ki{z — x)dydz
- Jf Wki(x—y)a; j(X)(fk'}(Z —x)dz)dy
- ff (V)(ka(z —y)dz)a;(y)ki(y —x)dy
+f (x)(fk?(x —y)y)a; ,-(X)(ka(z —x)dz)
= J ﬁf ) —f ) ki(z — y)ayf2)k(z — x)
—ki(x — y)a; (x)k{z — x) = ki(z — y)a, )k — x)}dydz.
Therefore

Z?.Ij= 1P ){D)*aij(x)pi(D)f (%)

=H(f(y) —f(){<k(z —y)a(2), k(z— X))
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— (k(x—y)alx), Kz —x)) — k(z = p)a(y), k(y — x)) }dydz
=f(f(x) —f(y»[f«é(x—y)a(z), Kz — %)
+ <Kz —y)a(z), Ky — x)y — <Kz —y)alz), Kz — x)) }dz
—Ck(x—y), fﬂz—x)(a(z)—a(x»dn

—< f k(z - y)a(z) — a(y))dz, k(y — x)>1dy.

Let 0=0(x—y)=(x—y)/|x—y| and set

2 2
+ki(20)k ({ — 0)+ k({ + O)k (—20)]dC,

(4.4) ho(x,y)=20EN _, J ail(m—l- k—y 'c>[ —k{C+ 00k —0)

4.5) hy(x,y) = — [x—yI"*[{K(6), p(D)*a(x)> + {p(D)*a(y), K(— 6)>]

where p(D)*=(p,(D)*,---,py(D)*). Then we see that hy(x,y)=hy(y,x) and h(xp)
=h,(y,x). Let h(x,y)=ho(x,y)+h,(x,y). Then

ij: 1P ,-(D) *a; ,{x)pi( D)f(x)
= J(f () —f DA Y)x—y| =4~ dy,

and hence

(4.6) B(f,8)= Jg(x)(zﬁ' i=1P{D)*a;{x)p{D)f (x))dx

= ”(f () —f () —gODh(x.y) / 2lx —yI*** dxdy.

If the function A(x,y) is non-negative, the bilinear form %(-,-) is a Diriclet
form. But it is not so easy to find simple conditions which imply that A(x,y)>0
for all x and y. Let |¢|s denote the maximum norm of the continuous function ¢ on
S4=1. For |0]=1,

kil C + O)e (L — 0) — ki 200k (L — ) — k(L + O)c ( — 20)]
<c(lkilslkjls +10kilslk s + kils|ok ls)

—d—a/2
X7 g5 2+ lgg < 2.0c-012 172,10+ 012 1/2)
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HIE=01" " gy <172y + L+ 0! T o< 1))

Therefore

4.7 [ro(x.y)| <c ij: 1 Sl:plaij(z)‘ |ki|s(|kjls + |akj|s) <oo.
It is obvious that

(4.8) i) < € 2=y supllafz)| + |0ay2)]) kils - [x — yI*2.

Now we shall introduce the following definition. Let N be a positive integer
and Q0=(Q;)i<ij<y be a non-negative definite matrix. A mapping a(x)
=(a;(x))1 <i,j<n from R‘ to the space of non-negative definite matrices is said to
belong to the class A[N,Q] if a;{x) and its first order derivatives are bounded for
any i and j and if

(4.9) N, f la;fx)— @y ldx < .

Theorem 7. Assume that homogeneous functions k (x), 1 <j<N, with index —d
—a/2 are smooth on S ' and that the space R is generated by vectors
{(ky (@), ky(w)); we S~} Let p{D) and p (D)* denote pseudo-differential operators
given by (4.1) and (4.2). If a(x) belongs to a class A[N,Q) and the bilinear form
%(-,") defined by (4.3) is a Dirichlet form, then

(4.10) p(D)*a(x)=(p((D)*,---,px(D)*a(x)=0.
Proof. Since 4(-, -) is a Dirichlet form, we see that A(x,y)=ho(x,y) + h,(x,y) =0
for all x and y, where h, and k, are functions defined by (4.4) and (4.5). It follows

from (4.7) that —h,(x,y)<c for all x and y.
Therefore

0= F[(E((x —rw)/|x —rol), p(D)*a(x))
+<p(D)*a(y), k((ro—x) / Ix—ro])>]

= (k(—w), p(D)*alx)> + Tim <p(D)*a(rw), k),

for any weS?"!, where k=(ky,--,ky). Since da;; are bounded, condition (4.9)
implies that

lim sup |a;(rw)—Q;;|=0

"7 ol =1
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so that |p(D)*a(rw)| tends to 0 as r - co. Hence we see that
Ck(— ), p(D)*a(x)> <0

for any weS? ! and xe R%. Let p(x) be the same function as in Section 2. From
condition (4.9),

lim IJP(X / n)p(D)*a(x)dx|
= lim I_[E(Z)(J(a(X) = O)p((x—2)/n)— p(x/n))dx) dz|

<lim J (z)(a(x)— Q)I(1 A(clz| /m)) dxdz =0,
which implies that
lim JP(X / m)<Xk(— @), p(D)*a(x)>dx =0.

Since <k(—w), p(D)*a(x)» <0 everywhere, it must be that
k(= o), p(D)*a(x)y =0

for any we S! ! and xe R%. From the assumption that R" is generated by vectors
{K(w); weS?~'}, we have condition (4.10). qe.d.

ExaMPLE 1. Let us consider the case where N=2,
pi&)=(E3+2ED)4,  py(&)=(2&F+ &3

and a(x)=(a;{(x))1 <i,j<2 With a;,(x)=a,,(x)=¢(x). If ¢ is a tempered function on
R?, and if

p(D)*a(x)=(py(D)ay, +px(D)p, p1(D)p+py(D)a,)=0,
then
a1(x)=—F ' [(Po&)/ PAENF HEIX) + Oy,
ay(X)=—F "' [(p:1(&)/ 2N F HE)]X) + O3,

for some constants Q,; and Q,,. Obviously, condition (4.9) is satisfied. For
sufficiently large Q,, and Q,,, the bilinear form Z(f, g) associated with p,(D), p,(D)
and a(x) becomes a Dirichlet form.

ExAMPLE 2. Let us consider one dimensional case. If a(x) is a tempered
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function, not identically 0, then condition (4.10) is not satisfied for the
pseudo-differential operator p(D)=|D|?. Therefore, no matter how large the
constant Q is, the form

Bo(f,8)= | D) (%) (a(x)+ Q)p(D)g(x)dx

does not become a Dirichlet form. If constants Q and A are sufficiently large,
the bilinear form

BY(1,8)=By(f,8)+ A(D|"*f, |D|"*g),.

is a Dirichlet form, because this can be written in the form

Bo(f.8)= H(f () —f)Ne(x)—20))
x {h(x.p) + ¢1(0)Q + c5 (@) Ax — y|*2}|x — y| = ~*dxdy

where cy(x) and c,(«) are positive constants depending only on a. If Q and A are
sufficiently large, the function

k(x,y)=h(x,p) + ¢1(0)Q + c;()Alx — y|*?

satisfies condition (1.17) for y=a/2, but not for y<a /2. This is the main reason
why we consider the case ke K*2,
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