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0. Introduction

The generator of a Markov process of jump type is a pseudo-differential
operator of non-local type. If the pseudo-differential operator satisfies a certain
regularity condition, the fundamental solution of the parabolic equation associated
with the operator can be constructed by the general theory of pseudo-differential
operators, and properties of the solution are investigated by the theory ([8] Chap.7
§4, [9], [11]). However, in the case where the elements of the operator are
discontinuous, we need another theory.

Any symmetric stable process is associated with a Dirichlet form of non-local
type. In Komatsu [7] we proved that, if a Dirichlet form is bounded from above
and below by Dirichlet forms associated with stable processes of the same index,
there exists a strong Feller process associated with the Dirichlet form. We shall
call the strong Feller process a stable type process. More specifically, we obtained
some uniform estimates for the transition functions of stable type processes which
are fundamental solutions of parabolic equations in the weak sense associated with
Dirichlet forms of non-local type. We note that Carlen-Kusuoka-Stroock [3]
studied upper bounds for transition functions in a more ganeral context.

In this paper, we still work with the transition functions of stable type processes
and present, among others, a lower estimate and a uniform Holder estimate for
them, which we were unable to obtain in the previous paper [7]. Our lower
estimate is almost the same as the one naturally expected from the Aronson
estimate in [1] and [2]. These results can be proved through some improvements
of the proof in [7]. Actually we employ a wider class of stable type processes
than [7] and prove that the uniform estimates of their transition functions similar
to those in [7] remain valid for this enlarged class. Finally we examine those
examples where the Dirichlet forms are expressed as integrals of bilinear forms
involving pseudo-differential operators. This type of forms has been considered
by Jacob ([4], [5], [6]). An example of this type will indicate the necessity of
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the employment of the present enlarged class of stable type processes.

1. Notations and theorems

The Dirichlet form of non-local type associated with a measure K(t,dx,dy)

can be written in the form

We shall consider only the case where the measure K has the form

where 0<α<2, (ί,x,y)eR + xRdxRd and k(t,x,y) is a measurable function satisfying

and

(1,2) lim sup \k(s,x,y)-k(t,x,y)\=Q
s-»t |x| + |y |<N

for any t and N. Let Kγ = Kγ\_cί,c2,c3] denote the class of functions k satisfying
the above mentioned properties and that, for all (t,x9y)eR+ xRdxRd,

(1-3) c,<k(tw)<c2 + cj-^\x-y\\

where 0 < y < α / 2 and cί9c29c3 are positive constants.

A function ut(x) = u(t,x) is said to be a weak solution of the parabolic equation

(1.4)

associated with the Dirichlet form δt if

s\ιpt(uτ,uτ)L2+ gτ(uτ,uτ

J s

u*f)L* ~ (*»f)» + \#r(u = 0

for any Q<s<t and any test function / on Rd, where ( ' , ' ) L 2 denotes the usual
inner product of the Hubert space L2(Rd,dx).

Theorem 1. Let k(t,x,y) be a function in a class Ky and £t(',') denote the
Dirichlet form associated with the function k. Then there exists uniquely a function

S(s,x\t,y) such that S(s,x;ί,y) = S(s,yJ,x)>Q and, for any φ in L2, the function
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ut(y)= \φ(x)S(s,x',t,y)dx

is a weak solution of the parabolic equation (d/ dt\ut, ')L2 = $t(ut, •) associated with
the Dirichlet form ^t satisfying the initial condition

K-</>llL2-»0 as φ.

This function S(s,x'9t,y) is continuous on the set {(s,x,t,y)\ s<t, xeRd and yεRd}.

The function S(s9χ 9t^y) in Theorem 1 is called the fundamental solution of
equation (1.4). Under the additional assumption that (d / dx)μ(d / dy)vk(t,x,y) are
bounded and continuous on R+xRdxRd for all μ, veZ+, Theorem 1 is proved

by the theory of pseudo-differential operators (cf. [8]). And in this case functions
(d I dx)μ(d I dyγS(s,x\t,y) are continuous on {(s,x,t,y)\ s<t, xeRd and yeRd}. This
fact is a base of our arguments. Theorem 1 in the general case, however, is a

consequence of other theorems in this section.
We shall fix positive constants α, y, c l 5 c2 and c3, and use the convention of letting

c's stand for positive constants depending only on these constants. Each c may
denote a constant different from other c's. Let A: be a function in the class

Ky[.c\>c2>ci\ Without calling attention on each occasion, let δt denote the Dirichlet
form associated with the function k and S(s,x;t,y), the fundamental solution of the
parabolic equation associated with $f. Now set

(1.5) Tt(y) = T(t,y) = 5(0,0;̂ ).

The purpose of this paper is to obtain a lower estimate and a continuity estimate

for the function Tt(y) depending only on constants α, y, c l 5 c2 and c3. The following

theorem will be proved easily.

Theorem 2. Let keKy. Then

f00

(1.6) Γ,0)+ £t(Tτ9Tτ)dτ<cΓd/*.

In the case 0 < y < α / 2, choose and fix a constant β satisfying α/2</?<(α-y)Λl,
and define r(σ) = σβ. In the case y = α/2, let r(σ) denote the function defined by

(1.7) r(σ) = σ*/2/(\+κ(logσn κ = (αΛ(2-α))2/6.

Then the function r(σ) is a concave function on R+. We claim no more

upperestimate of the function Tt(y) than Theorem 2. However, the following
moment bound plays the role of an upper estimate in the proof of the cotinuity

estimate in this paper.
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Theorem 3. Let keKy. Then

(1.8) \r(r^\y\}Tt(y}dy<c.

In view of the Aronson estimate [2], it would be expected that the function
Tt(y) satisfies the lower estimate

Though the above estimate is nothing but a conjecture, the following rather loose
lower estimate can be proved. Define a function Ψ(σ) by

(1.9) Ψ(σ) = exp[ - σαlog(e + σ)].

Theorem 4. Let keKy. Then

(1.10) Tt(y)>cΓdl*Ύ(ΓilΛ\y\)c>Q.

It needs no explanation to see that, if there is a strictly positive function Ψ0(σ)
on R+ which is decreasing and depends only on α, y, cί9 c2 and c3 such that

(1.11)

and if the moment bound (1.8) with r(σ) — σβ, 0</?<1 , is satisfied, then the
Holder continuity estimate can be proved by the Nash method [10]. Since overlap
estimate (1.11) is immediate from Theorem 4, we have the following theorem.

Theorem 5. If y < α / 2 and k e K\ then

(1.12)

for all Q<s<t<τ and y,ηeRd.

From the point of view of pseudo-differential operator theory, it seems
significant to investigate the case y = α/2 (see Section 4). Since moment bound
(1.8) is obtained only for the function r(σ) given by (1.7), we cannot prove the
Holder continuity estimate in a similar way to the proof of the above theorem. But
the function Tt(y) satisfies a certain continuity estimate in this case. Note that
moment bound (1.8) is quite similar to the moment bound in [7] (Theorem 1),
where the function r(σ) is defined by

t-s
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r(σ) = σ"2/(l+c(logσ)2)1/2

in place of (1.7). In the present case, we can work with the functions

(1.13) /(σ) = σ(l + (log σ)2), J(σ)=σ( 1 + (log σ)2Γ1

in place of functions /(σ) and J(σ) in [7], §4. Since the functions /(σ) and J(σ)
given by (1.13) satisfy inequalities

cr(σ)<j(σ"'2)<cr(σ),

J(σσ') < cJ(σ)J(σ'l J(σσ') < cJ(σ)J(σ'),

cσ < J(J(σ)), J(J(σ)) < cσ(l + (log σ)4),

it is easy to check that the following theorem can be proved in almost the same
way as that in [7], §4. Define a function Φ(σ) by

log(l/

(1.14) Φ(σ) = ^ ^ lθgl°g(I/

Theorem 6. Ifγ = a/2 and keK\ then

(1.15)

σ) Ί

/σ)J

t-S

for all Q<s<t<τ and y, η e Rd.

As was mentioned before, these theorems are proved at first under the additional
assumption that (<9 / dx)μ(d / dy)vk(t,x,y) are bounded and continuous for all μ,veZ^,
and the assumption is removed afterward by making use of these proved

theorems. We shall explain briefly about it, for it was shown in [7], §5. Let

{δm(x)} be a sequence of non-negative test functions on Rd such that the support

of δm decreases to {0} as m-> oo and \δm(x)dx=\. Let keKy and define

J* - WJly - iW*i,

where K]m = ί/(K,<M) and Mm = ίf/(H<M). From condition (1.2), each function km

satisfies the above mentioned additional assumption, kmεKy and

Λ"?r '
(1.16) lim sup (km(τ,x,y)-k(τ9x,y))2dxdy =
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for any s < t and N. Let <?m<t( , ) be the Dirichlet form associated with the function
km and Sm(s,x;t,y) be the fundamental solution of the parabolic equation associated
with <ίmί. We see from Theorem 2 and Theorem 5 in the case γ < α / 2 or Theorem

6 in the case y = α/2 that the functions {Sm(s,x;t,y)} are uniformly bounded and
equi-continuous on any compact subset of {(s,x,t,y)\ s<t, xeRd and yeRd}=D.

From the Ascoli-Arzera theorem, choosing a subsequence {m(n)} c {m} if necessary,
we may suppose that {Sn} converges to a certain function S=S(s,x'9t9y) as «-* oo
locally uniformly on the set D. Then from Theorem 3

1, S(s,x'J,y) -*δ(y-x) as 11 s.
J

Using (1.16) and Theorem 1, it can be shown that, if φeL2, then the function

f
Ut(y)= \φ(x)S(s,x\t,y)dx

is a weak solution of the parabolic equation associated with $ t. Since the weak
solution to the Cauchy problem for the parabolic equation is uniquely determined,
we see that the function S(s9x'9t,y) is the fundamental solution of the parabolic
equation associated with $t. Therefore Theorem 1 remains valid without the
additional assumption. Theorem 2 also remains valid from the Fatou lemma.
Obviously Theorem 3, 4, 5 and 6 still hold without the additional assumption.

Here we shall remark that the function S(s,x;t,y) is a strong Feller transition
function. In fact, by making use of Theorem 3, for any \x\ > 2N,

S(s,x^y)dy<
J\y\<N J|y-Jc|>|y-Jc|>|x|/2

<cr(\x\/2(t-sγ'*Γl

Therefore the transition function S(s,x'9t,y) maps each bounded measurable function
on Rd with compact support to a continuous function vanishing at the infinity point.

Finally we shall consider the case where the function k(t,x,y) = k(x,y) is
independent of the time parameter t and it satisfies the inequality

(1.17) c^k^yXcz + c^x-y?

for all x, yeRd, where 0<y <α/2 and c l 5 c2 and c3 are positive constants. Let τ be a
positive constant and set
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Then kτ(t,x,y) = k(xy) for t < τ and kτ e IPfci,^] with c'3 = c3(2τ)y/α. Let Sτ(sjc;ty)

be the fundamental solution connected with the function kτ(t,x,y). In place of

theorems stated above, we shall consider modified theorems in which the parameter

set is restricted to the bounded interval [0,τ] and the class Ky[cί,c2,c3] is not the

original one but the set of symmetric functions k(x,y) satisfying (1.17). Applying

the original theorems to functions kτ and S\ we see that the modified theorems

also hold good.

2. Upper and moment estimates

In this section we shall prove Theorem 2 and Theorem 3 assuming that

(dI' dx)μ(dIdy)vk(t,x,y) are bounded and continuous on R+xRdxRd for any

μ,veZ+. Let At be the operator defined by

-/(*)- Mr df(x))k(t^x)\z\- d~*dz

Γ _ _ -d-a
J

for smooth bounded function/on Rd, where [z]1=z/(|z|<1) and 8 = dx = ((d /dx^ -,

(d/dxd)). Then we have

It is known that functions Tt(y) and (d / dy^Tt(y) are continuously differentiate on

(Q,ao)xRd and (d/ dt)Tt(y) = AtTty, morever

sup

for any Q<s<t.

Throughout this section let p(x) be a smooth function such that 0<p(jc)<l,

p(x)=\ for M<1 and p(x) = 0 for |x|>2, and p(x) = p( —x). Set

=( ί(l -e-**

Then we have c^<O/(l + |£|)<c and

(2.2) ί ΐ|/(jc) -f(y)\2p(x -y)\x-y\-d-*dxdy = c

for any function / on Rd, where J*' denotes the Fourier transform. Define

) = (Tt,Tt)L2 for />0. It is easy to show that
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(2.3) (d/dί)E(t)=-2^t(Tt,Tt).

Lemma 2.1. Assume that the function k is non-negative and satisfies the
inequality k(t,x,y)>cγ on the set {(t,x,y)', \x—y\<2}. Then there exists a constant C
depending only on α and ct such that E(t)<Ct~dl<l.

Proof. From the assumption and (2.2) we have

- (d/d t )E( t ) = 2St(Tt,Tt)> c ί(ξY\ϊFTt

For any 1>0,

Choosing the best constant A, we have

Using these inequalities,

(d/dt)(E(tΓΛld)=--E(tΓl~Λld(d/dt)E(t)>c.
d

Since £'(4-0)~1=0, we have the inequality E(t}~Λld>ct. q.e.d.

Theorem 1 is immediate from Lemma 2.1. The lemma implies that

\\S(s9χ 9t,')\\L2<c(t-SΓ
d/2*.

Therefore

= fsm

From (2.3) and Lemma 2.1
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Hence we obtain estimate (1.6).
For a while, let/„(;*:) be the convolution of functions (\x\ f\n)δ and p(x) for a fixed

constant δ, Q<δ«x. We see that the second order derivatives of the function /„
are bounded and that

|(3 / dXj)fπ(x + z)\ < cfa(x) (|z| < 1),

Then

f
A f ( γ \ — k(tΎΎ\\ ( f(*4- 7\— f (Y\ 7' ft f (γ\\\7\~ d~ ̂ d?ΛtJn\x)—κ\l9X>x) \ Un\x * z) Jn \x) ~~z GJn\X))\Σ\ az

ί
J |z |<l

<c2c\ \z\2 d Λdz

+(sup\dyk(t,x,y)\)c
y J l z

where α is a constant independent of«. Since/B(x)=n* for |x| > n + 2, we see that

(fn(x)T,(x)dX =/π(0) + Γ( ΪAJJίx) Ts(x)dx)ds

<c+f(a+a\fn(x)Tj(x)dx)dS.

This inequality implies that

ίfn(X)Tt(X)dx<ceM.

Letting n -* oo, we see that if 0<<5 <α, then
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(2.4)

Recall that the concave function r(σ) is defined in the case 0<y<α/2 by

r(σ) = σβ with a fixed constant β satisfying a,/2<β<(oι — γ ) / \ l 9 and in the case γ =

α/2 by (1.7). Define a function M(f) by

(2.5) M(i)=\r(\y\)Tt(y)dy.

The following lemma is essential to prove Theorem 3.

Lemma 2.2. (i) In the case 0<y<α/2 and keKy,

(2.6) (d/dt)M(ή<ctβl"' ίl2<ίt(Tt,logTt)
112

(ii) In the case γ = <x/2 and k e Ky,

(2.7) (d/ dί)M(t) < c^((Γ(,logΓ()
1/2 + cΓ 1/2.

Proof. Let pn(x) = p(x/n) and ra(x) = r(\x\)pn(x). Then

Let [ΛΓ|+ denote the positive part of X. Set 6 = f1/α. Since

([l-Γ^/ΓMM^Cl-Ή*^

and

+ τt(y}K(t4χ4y]

<( ίί k^-z)-^
JJ|z|<b

-ίί,+ I I \φ-z)-rn(y)\Tt(y)K

where

-ifJJ|zl<fc
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= if
JJ\z) \ z \ > b

Since the function r(σ) is concave,

(r(\y-z\)-r(\y\))2\z\-ά-"Tt(y)dydz

+ 2 f f \r(\y\)2(pa(y-z)-pM2\z\-d-"T,(y)dydz
JJ\z\<b

<2

7 n 2 <
|z|>6

r(\z\)\pn(y-z)-pM
\z\>b

J\z\>b

where

,2 (
J

P(\y\ J
|z |<b

|pπ(y-z)-pπ(y)|
; |z |>b

We see that JnΛ<cnΛ~2. Using (2.4) we have

\z\<b

Choose the constant ε so as to satisfy 0<ε<(α — y ) / \ l . Then

y \z\>b/n
\ρ(y-z)-p(y)\

J\z\>b/n

! \p(y-z)-p(y)\ \zΓ"-"c

-r-'-'dz)}
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•u,
supίbff |z
|y|>4 J |z |> |y |/2

This and (2,4) imply that

Therefore we have

\(d/dt)M(f)\<c( r(\z\)2\zΓd-
\z\<b

(
J\z\<

\
J\z\>\z\>b

Inequality (2.6) is immediately obtained from the above inequality. Since

(2.8)

we have (2.7). q.e.d.

Let Q(t) be the entropy

(2.9)

of the probability density function Tt(y). Since -logTt>l-Tt, Q(t)>\-E(t)
>-oo. From (2.4) and the inequality -TlogT<(a-l)T+e~a we see that

L|«/2 - l)Tt(y)dy + ίexp[ -Q(t) < |«/2 - l)Tt(y)dy + exp[ - ly^dy < oo.

There is a general inequality that if T(x) is a probability density function on Rd

and β,βf>0, then

\((\x\β Λ\xf)Ί\x)dx>(ceψd

where Q=-j71(x)log71(A:)rfx (cf. [7], Lemma 2.2). Applying this ineguality to
functions Tt(y) and r(\y\\ we have
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(2. 10) M(t) > c exp [cβ(ί)] Λ exp[cβ(0].

Let 0<s<t. Then, for each δ>0,

- \Tt\og(Tt + δ)dy + \Tslog(Ts

+ δ)) + £τ(Tτ,Tτ /(Tτ + δ)))dτ

> f'#τ(TMTτ

Js

Since Q<<ίτ(Tτ,log(Tτ + δ))ϊ S^TJogTJ as <5|0,, we see that

(2.11)

This does not always imply the inequality (d/dt)Q(i)>St(Tt,\o%Tt).

Lemma 2.3. Let /ce#y. Then M(\)<c.

Proof. By Theorem 2 there is a constant b, depending only on α and clt

such that Tt(y)<ebΓΛlx. Define functions g(i) and h(t) by

h(ή =

Then the function g(t) is non-negative, and from (2.11) we see that

g(t) - g(s) > h(t) - h(s) (0 < s < t).

Suppose that y<α/2. From (2.6),

(d/dt)M(t)<ctβ/Λ-ίl2((d/dt)h(t) + d/ta)ll2 + ctβlΛ-1

= tβl*-l(c(l+(tκ/d)(d/dt)h(t))ί/2 + c)

<tβlΛ-\c + ct(d/dt)h(i)\

For any 0<ε<l, by the integration by parts,

M(l)-M(ε)< I (ct^-i + ct
Jε

α) | ̂  ~l

Jε
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{
Since M(-hO) = 0, it follows that M(\)<c + cg(\). In the case y = α/2 it can be
similarly obtained that M(\)<c + cg(\). On the other hand, from inequality (2.10)
and the relation g(l) = £?(!) + b>0 we have

cexp[cg(l)]<cexp[cβ(l)]<M(l).

Hence estimates g(l)<c and M(\)<c follows from the inequality c-\-cg(l)>M(l)
>cexp[c #(!)]. q.e.d.

The canonical scale change is necessary to show Theorem 3 from Lemma
2.3. For Λ,>0, let δ t ( λ \ - 9 - ) be the Dirichlet form defined by

(2.12) W\f,g)=(((f(x)-f(y)^^

where K(λ\t9dx4y)=k(λΛt9λx9λy)\x--yΓά~Λdxdy. Then the function

(2.13) S(λ\s,x\ty) = λdS(λ*s,λx\λΛt9λy)

is the fundamental solution of the parabolic equation

Set

(2.14)

Note that k(λ*t,λx,λy)eKv if k(t,x,y) 6 Kγ for any Λ>0 and that

(r

From Lemm 2.3 the right hand side of the above equality is limited by a constant
independent of /, and this implies Theorem 3.

3. The lower estimate

In this section we shall prove Theorem 4 assuming that the function k(t9x,y)
and its derivatives of every order with respect to x and y are bounded and
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continuous on /?+ x Rd x Rd. An estimate for the overlap of fundamental solutions
will give the lower estimate of the fundamental solution. The proof is quite similar
to that in [7], §3, but the result is considerably sharp.

For given function k(t,x,y) e K\ let K(i,x9y) = k(lJυΛx,tί/<xy) and

(3.1) ^ , ) = ̂ 1/β| , ), Ut(y)=T(t^\lyl

these are the same ones given by (2.12) and (2.14) taking λ = tΐla. Then the
equation —(d/dt\Tt,f)L2 = ̂ t(Tt,f) is equal to the equation

(3.2) -^/θO^/)L2 = -(
α

Throughout this section let P(y) denote the probability density function

(3.3)

Define for 0 < δ < 1

(3.3) Gδ(t)= - (

From (1.6), log(5<log(t/f + <5)< Ut<c, therefore -c<Gδ(t)<\ogδ'1.

Lemma 3.1.

(3.4) t(d/dt)Gδ(t)<c + cGδ(t) + £t(Ut,P/(Ut + δ))

Proof. Applying (3.2) for function f(y) = P(y)/( Ut(y) + δ),

t(d/dt)Gδ=-t((d/dt)Ut,

= --(
α

= --(^,P/(^ + 5))L2--
α α

<--(
α

= --Gs+-
α α

Note that y dP=(y dlogP)P and
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where

/W = (rf+α)/(l + M) + OogO^^^

Since F\y) is a positive bounded function,

α α

α

Now fix ?>0 and set

q.e.d.

2ω(X,y) = l

Then

( Ut(x) - U,(y))(P(X) I ( U,(X) +δ)-P(y)/( Ujy) + δ))

= (e2β-2<°-l)(e2°>-l)P(y)

- ω)sh ω (P(x)P(y)Y12

) + />(y))sh(0 - ω)sh ω / ch 0.

< 2(P(x) + P(y))((th 0) / 0)(0 - ω)ω

<(P(x) + P(y)X(th0)/0)(02-ω2),

because of inequalities sh(0— ω)shω<((sh0)/0)(0— ω)ω and 2(0— ω)ω<02— α>2.
The following inequality is essential for the overlap estimate.

Lemma 3.2.

(3.5)
J

Proof. For certain positive constants cί9 c2 and c3, the function k belongs
to the class ΛΓv[c1,c2,c3], and this implies that cί<K(t,x,y)<c2 + c3\x— y\γ. Since
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Therefore

< I LP(y)((thθ)/θ}(θ2-ω2)K\x-y\-d-"dxd

<c-Cl \P(y)((thθ)/Θ)ω2\x-y\-d-"dxdy.

It is easy to see that (thφqy^/flfoj^cOogfc + lx-jl))"1, so that

((thθ(x,y))/θ(x,y))\X-y\-d-'>cP(X-y).

From this we have

-cP(y)ω(x,y)2P(x-y)dxdy

<c-c ( I P(y)ω(x,y)2P(x)dxdy
J J \ X \ > \ y \

On the other hand

<4fp(y)(L(x9y)2P(x)dx)dy

P(y)ω(x,y)2P(x)dxdy.
\x\>\y\

Combining these inequalities, we obtain (3.5). q.e.d.

From Theorem 2 and Theorem 3 there are positive constants a and b depending

only on α, y, ci9 c2 and c3 such that

This and preceding two lemmas will lead to the following lemma.

Lemma 3.3. There is a positive constant CQ depending only on α, y, c1? c2 and

c3 such that Gδ(t)<c0 for all t>0 and <5, Q<δ<l.
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Proof. Define a function hδ(u,v\ 0<w and — oo<y<oo, by

The function hδ(- 9v) is decreasing on [e2~v,ao). Therefore

= (

>hδ(a,Gδ(ή) (p(y)Ut(y)I(Vt(y)>ε)dy

as long as ε>exp[2-G^(0] Let

Then

Ut(y)I(Ut(y)>C4)dy
J\x\<b

>ί Ut(y]dy-[ c4dy=\-
J\x\<b J\x\<b ^

\x\<b

Ut(y)dy
\x\<b J\x\<b J\χ\>b

If c4>exp[2-Ga(ί)], then

>hβ(a,Gδ(t)) ί P(y)Ut(y)I(Vt(y)>Cί}dy
J\x\<b

>l- ( mfP(x)) hd(a,Gs(t)) >(c+cG9(t))2,
2 \x\<b

This inequality and (3.4) and (3.5) imply that there are positive constants c5 and
c6 depending only on α, 7, c1? c2 and c3 such that

(3.6) t(d/dt)Gδ(t)<c5

2-c6

2Gδ(ή2
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as long as Gδ(t)>2 + log(l/c4). It is easy to show from this differential inequality
that

Gδ(ί) < (2 + log(l / c4)) v (c5 / c6) = c0. q.e.d.

Let w(σ) be a function on R+ defined by

(3.7) w(\xι-x2\)= [p(x-xί)

In the case d>2,

H<2σ) = 2 Γ f P((s,ξ))dsdξ
Jσ jRr f-

>c Γ ί (
Jσ Jnd-i

Substituting the variable ξ by (1+^2)1/2C and using the inequality that

log(e +s2 4- |C|2 +s2\ζ\2) < 21og(e+*2)log(* + |C|2),

the function w(2σ) is estimated from below in the following manner.

w(2σ)>c
f*5

\ (l+j2)-(β+

J σ

χ [ (i + ICl
Jjf-ί

= c Γ(l+(σ + ί)2

Jo

^c| (l + σ2 + ί2

Jo

X

o

Hence it is obtained that

(3.8)

The same lower estimate for the function w(σ) is easily obtained in the case
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d=l. Let Ψ(σ) be the function defined by (1.9). Then (3.8) is eguivalent to the

lower setimate exp[— 1 / w(σ)] >

Lemma 3.4. Let S(l\s,x\t,y\i=\ or 2, be fundamental solutions for Dirichlet

forms which are associated with functions k(i\t,x,y) belonging to the same class

Ky{c^c29c^\. Then

f
C\ QΛ I C(^VΠ v "t iΛ Λ ^^VΠ v •/ ιΛ//ι; "*> s^Vίt ^/αlv v \\c

\j.yt i o IU,Λ i ,t, y ι /\ o \Λ'v*'2»^V'' — \ I i— 2i/
J

Proof. Set C/(l)(^) = ίll/βS(0(0,ί1/βxj;ί,/
1/β>0 τhen it suffices to prove that

Γjmm

Using the inequality

we have from Lemma 3.3 that

min/Xy—jc^ min
J ί '

>Σ \P(y-xi)\o^ί)(tyy) + δ)dy

C
maxP(y - xt) - max log( ί/°(ί,y) + 5)rfχ

I i i

> — 2c0 — ma;

>-2c0-2C,

where c0 is the constant in Lemma 3.3 and C, in (3.3). On the other hand

mmP(y - xt) - min log( t/°(/,y) + δ)dy

< minPO-^)-(log^-hlog(l

<logδ w(\Xl-x2\) + (C/δ) min

Therefore

C minU«\t,y)dy>δ(-\ogδ w(\x,-x2|)-2(c0 + Q).
J
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Set q = 2(c0 + Q, σ = \xί—x2\ and w = w(σ). Since

ma.xe~s(sw — <7) = wexp[ — q/w— 1],
s>0

it follows from (3.8) that

jmi

> c exp[ - c (1+ σ)Λ log(e + σ)] > cΨ(σ)c. q.e.d.

The above estimate for the overlap of fundamental solutions will be equivalent
to the lower estimate stated in section 1 as Theorem 4. It is obvious that estimate
(1.10) implies estimate (3.9). And so, we shall show the inverse implication.

Let

tf2\tjc)=ί" s(t,til (r

Then

1\2t,y) = \S(0,0;t,x)S(t,y;2t^)dx

= Γdl"\Uw(t,x) Um(t,x)dx.

Let R be a positive constant depending only on α, y, cit c2 and c3 such that

{r(\y\)U^\t,y )dy<R (* = 1,2).

There are positive constants B and ε such that r(σ)>Bσc for all σ>r~\R). Let

|+ denote A'vO. For any 1>0 we have

td/*T(2t9y)> I
J\x\<λ

(\ I
J\x\<λ

Idx)
l\x\<λ J\x\

>cλ-d({uw ̂ mdx-{
J J\x\>λ
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>cλ~Λ\_ C/ (1)Λ Umdx-r(λΓl I

Since for any v>Q

it follows from Lemma 3.3 that

\tάl*T(2ty)>c( I

Hence we obtain Theorem 4.

4. Examples

The Holder continuity of the fundamental solution is not obtained in the case

fceJP/2. The necessity for studyng the case y = α / 2 in condition (1.3) or (1.17),

however, arises when we want to consider Dirichlet forms determined by

pseudo-differential operators.

Let £(x) = (kj{x))ι<j<N be an fl^- valued smooth homogeneous function on

/?d\{0} with index — d— α/2, and «W = (βl/^))ι<ίj<jv be a symmetric real matrices
valued function on Rd. Let pj(ξ) denote the Fourier transform of the function

kj(x) in the sense of distribution. Then the function p}(ξ) is homogeneous with
index α / 2 and the pseudo-differential operator PJ(D) can be written in the form

(4. 1) Pj{D)f(x) = \(f(y) -f(x))kj(x-y)dy

where kcj(x)=kJ{x)I(M>ε) and m^fcfaWx. Let />//>)* be the adjoint operator of
pj(D). Then

(4.2) PJP)*f(x)= \(f{y)-f(x)]kjy-x)dy
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where icε

j{x) = kε

){-x). Assume that ai3{x) and its first order derivatives are bounded
for any / and j. We shall consider the bilinear form

(4.3) a(f,g) = Σ£= ! L(D)f(x) atjix) 'Pj(D)g(x)dx

{<p(D)f(x} a(x\= {<

where p(D) = (p±(D\ - p^D)) and <w,y> = ΣjL iW/; for u = (w1,- ,n J V)andz; = (z;1, . ,z;JV).
The Dirichlet problem related to such bilinear forms had been studied in [4]. It
is not known the concrete condition for a(x) under which the bilinear form (4.3)
becomes a Dirichlet form.

We shall write the bilinear form in a form like (1.1) and derive a necessary
condition for it to be a Dirichlet form. Let/?J(D) and/?J (/))* be operators given by

=*5 */-mJ/, ftDΓf^lSj *f-m]f.

Then

- mf ̂  * (α0 /) + wjw? ay

- [fWfc -y)aij(X)(ίk}(Z-X)dz)dy

- J/(yX f *Kz -jWΦy

= ί ΐσω -

- x)}dydz.

Therefore
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- <£(x-y)a(x), fa - x)> - <£(z -y)a(y), k(y - x)y}dydz

-j)φ),£(y-x)> - <fi(z-y)a(z\k(z-x»}dz

->>), faz - *Xφ) - αW)rfz>

Let 0=0(x->-)=(A:-j)/|x-j| and set

(4.4) A0(^) = 2"+«Σ^.=

- θ) + k& + θ)k,{ - 2θ) ]dζ,

(4.5)

where /;(£))* = (p „(/>)*, •••,/;„(£>)*). Then we see that h0(x,y)=h0(y,x) and
= Λ!(V,Λ:). Let h(x,y) = H0(x,y) + h^(x,y). Then

= ί(/W-

and hence

(4.6)

= ί ΐ(/(χ)

If the function h(x,y) is non-negative, the bilinear form <%( , ) is a Diriclet
form. But it is not so easy to find simple conditions which imply that h(x,y)>0
for all x and y. Let \φ\s denote the maximum norm of the continuous function φ on
S""1. For |0| = 1,

- θ) - k&tykjίζ -θ}- k& + θ)k}{ - 2Θ)\

< c (\ki\s\kj\s + WMkk + \ki\s\dkj\s)

X{l^l A C I > 2 )
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Therefore

(4.7) |Λ0(jyO| < c Σ^= 1 supfo/z)! \kt\^s + \dkj\s) < oo

It is obvious that

(4.8) lAifoOl < c Σ?j= ! sup(k-/z)| + \datj(z)\) \kt\s |jc -

Now we shall introduce the following definition. Let TV be a positive integer

and Q = (Qij)ι<ij<N be a non-negative definite matrix. A mapping a(x)
= (aij(x))ί<ij<N from Rd to the space of non-negative definite matrices is said to
belong to the class A[N^Q\ if ai}{x) and its first order derivatives are bounded for
any i and j and if

(4.9) Σ£, =! \ai}(x) - Qtj\dx < oo.

Theorem 7. Assume that homogeneous functions kj(x\ 1 <j<N, with index —d

— α / 2 are smooth on Sd~1 and that the space RN is generated by vectors
{(k ί(ω), ,kN(ώ))ι ωeSd~1}. Let pj{D) andpj(D) * denote pseudo-differential operators

given by (4.1) and (4.2). If a(x) belongs to a class A\_N9Q] and the bilinear form

&(',') defined by (4.3) is a Dirichlet form, then

(4.10) p(D) *a(x) = (p ± (D) *, ,pN(D) *)a(x) — 0.

Proof. Since <%( -, ) is a Dirichlet form, we see that h(x,y) = hQ(x,y) 4- h ι(x,y) > 0
for all x and y, where h0 and hί are functions defined by (4.4) and (4.5). It follows

from (4.7) that —h^x^^c for all x and y.

Therefore

+ (p(D)*a(y)Mrω-x)/ |x-

for any ωeSd~l, where /c = (kl,'-,kN). Since 3αί; are bounded, condition (4.9)

implies that

lim sup |α lV(rω) - Qtj\ = 0
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so that \p(D)*a(rω)\ tends to 0 as r -> oo. Hence we see that

for any ωeSd~l and xeRd. Let p(x) be the same function as in Section 2. From

condition (4.9),

l i m | f 'p(x/n)p(D)*a(x)dx\
H-+00 J

= Jim I J£(z)( ί(a(x) - Q)(p((x -z)/n)- p(x / n))dx) dz\

lim I I \£(z
n-"°°JJ

<Hm I ||^(z)(α(x)-ρ)|(lΛ(Φ|/n))ί/χί/z=0,

which implies that

r
lim ρ(x I «)<£( — ω),p(D) *a(x)ydx = 0.

H-»00
J

Since < (̂ — ω),/?(/))*0(;c)><0 everywhere, it must be that

for any coeS**"1 and xεRd. From the assumption that RN is generated by vectors

(£(ω); ωeSd~*}9 we have condition (4.10). q.e.d.

EXAMPLE 1. Let us consider the case where TV =2,

and «W = (fli ;W)ι<ij<2 with aί2(x) = ̂ 2i(x)=1Φ(x) If <^ is a tempered function on
R2, and if

then

a22(χ)= -3r-1U

for some constants Qii and Q22. Obviously, condition (4.9) is satisfied. For

sufficiently large Qvι and Q22, the bilinear form &(f,g) associated with pv(D\ p2(D)

and a(x) becomes a Dirichlet form.

EXAMPLE 2. Let us consider one dimensional case. If a(x) is a tempered
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function, not identically 0, then condition (4.10) is not satisfied for the
pseudo-differential operator p(D) = \D\a/2. Therefore, no matter how large the
constant Q is, the form

(r,g)= \p(D)f(x) (a(x) + Q)p(D)g(X)dX

does not become a Dirichlet form. If constants Q and λ are sufficiently large,
the bilinear form

is a Dirichlet form, because this can be written in the form

2(*)λ\x -y\"'2}\x ~y\ ~ l

where c^α) and c2(α) are positive constants depending only on α. If Q and λ are
sufficiently large, the function

k(x,y) = h(x,y) + Cl(α)β + c2(a)A|x -j|a/2

satisfies condition (1.17) for y = α/2, but not for y<α/2. This is the main reason
why we consider the case keKΛ/2.
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