METRICAL THEORY FOR FAREY CONTINUED FRACTIONS

Gavin BROWN and Qinghe YIN

(Received March 14, 1995)

1. Introduction

By making fundamental use of the Farey shift map and employing infinite (but σ-finite) measures together with the Chacon-Ornstein ergodic theorem it is possible to find new metrical results for continued fractions. Moreover this offers a unified approach to several existing theorems.

The application of ergodic theory to the study of continued fractions began with the Gauss transformation, $G:[0,1] \mapsto[0,1]$,

$$
G(x)= \begin{cases}\frac{1}{x}-\left[\frac{1}{x}\right], & x \neq 0 \\ 0, & x=0\end{cases}
$$

which is ergodic with respect to the Gauss measure μ_{g}, where

$$
\mu_{g}(B)=\frac{1}{\log 2} \int_{B} \frac{1}{1+x} d x
$$

for any Borel subset B of $[0,1]$. H. Nakada [11] extended G to the 2-dimensional case. Let $\tilde{G}:[0,1] \times[0,1] \mapsto[0,1] \times[0,1]$ be defined to be

$$
\tilde{G}(x, y)=\left(G(x), \frac{1}{a_{1}+y}\right)
$$

where $a_{1}=\left[\frac{1}{x}\right]$. The absolutely continuous invariant measure of $\tilde{G}, \tilde{\mu}_{g}$, is given by

$$
d \tilde{\mu}_{g}=\frac{1}{\log 2} \cdot \frac{d x d y}{(1+x y)^{2}}
$$

Then the dynamical system $\left([0,1] \times[0,1], \mathscr{B}_{2}, \tilde{\mu}_{g}, \tilde{G}\right)$ is the natural extension of $\left([0,1), \mathscr{B}_{1}, G\right)$ where \mathscr{B}_{n} is the Borel algebra of \boldsymbol{R}^{n}. Hence \tilde{G} is ergodic with respect
to $\tilde{\mu}_{g}$. Many metrical results for regular continued fractions can be proved using the ergodicity of G or \tilde{G}. For example, [3] (W. Bosma et al) gave the distribution of the sequences of approximation constants $\left\{\theta_{n}\right\}$.

In this paper we focus on the convergents and the mediants of the Farey (or slow) continued fractions. Define $T:[0,1] \mapsto[0,1]$ by

$$
T(x)= \begin{cases}\frac{x}{1-x}, & 0 \leq x \leq \frac{1}{2} \\ \frac{1-x}{x}, & \frac{1}{2} \leq x<1\end{cases}
$$

T is called the Farey shift map (see [10]). T preserves the measure v given by

$$
d v=\frac{1}{\log 2} \cdot \frac{d x}{x}
$$

which is σ-finite but not a probability measure, and T is ergodic with respect to this measere (see [12] or [10]). The natural extension of T, denoted by \tilde{T}, is the transformation on $[0,1] \times[0,1]$ given by

$$
\tilde{T}(x, y)= \begin{cases}\left(\frac{x}{1-x}, \frac{y}{1+y}\right), & 0 \leq x<\frac{1}{2} \\ \left(\frac{1-x}{x}, \frac{1}{1+y}\right), & \frac{1}{2} \leq x<1\end{cases}
$$

The absolutely continuous invariant measure, \tilde{v}, of \tilde{T} is determined by

$$
d \tilde{v}=\frac{d x d y}{(x+y-x y)^{2}} \cdot \frac{1}{\log 2}
$$

The ergodicity of \tilde{T} can be established from that of \tilde{G} using an argument of [16] or by direct appeal to a general result given in [4]. Since the v or \tilde{v} are infinite (σ-finite, though), the Birkhoff Ergodic Theorem is not applicable for T or \tilde{T}. To avoid this disadvatage, Ito considered another transformation T_{1} induced by T, the invariant measure of which is a probability measure. By the ergodicity of T_{1} and its natural extension, he obtained in [8] many metrical results related to convergents and nearest mediants. In this paper we consider T and \tilde{T} directly. We shall establish an ergodic theorem for \tilde{T} though the Chacon-Ornstein ergodic theorem. In this way the results of [8] can be generalized for we can derive metrical results on Diophantine approximation by all the mediants not only the nearest ones. The results for nearest mediants become a special case. Any other metrical results obtained by applying the Birkhoff ergodic theorem for G or
\tilde{G} can also be obtained by using the ergodic theorem we build for \tilde{T}.

In Section 2, we recall some basic results about Farey and regular continued fractions and give some basic properties of T and \tilde{T}. In Section 3, we establish an ergodic theorem for T through the Chacon-Ornstein Ergodic Theorem. In Section 4, we apply the ergodic theorem established in Section 3 to prove some old and new metrical results both for the regular continued fractions and the Farey continued fractions.

2. Preliminaries

For an irrational $x \in[0,1]$ with regular continued fraction expansion

$$
\frac{1}{a_{1}+\frac{1}{a_{2}+!}}=\left[0 ; a_{1}, a_{2}, \cdots\right],
$$

the n-th convergent is given by

$$
\frac{p_{n}}{q_{n}}=\frac{1}{a_{1}+\frac{1}{a_{2}+\cdot}+\frac{1}{a_{n}}}=\left[0 ; a_{1}, a_{2}, \cdots, a_{n}\right] .
$$

The integers p_{n}, q_{n} can be described inductively by setting

$$
\begin{array}{ccc}
p_{-1}=1, & p_{0}=0, & q_{-1}=0, \quad q_{0}=1, \\
p_{n}=a_{n} p_{n-1}+p_{n-2}, & q_{n}=a_{n} q_{n-1}+q_{n-2} .
\end{array}
$$

We shall be concerned with a slower sequence $\left\{P_{n} / Q_{n}\right\}$ of approximations to x, corresponding to a branch of the Farey tree (see [7], [14] for details). For our present purpose it suffices to know that

$$
P_{n}=k p_{m}+p_{m-1}, \quad Q_{n}=k q_{m}+q_{m-1},
$$

where

$$
n=a_{0}+a_{1}+\cdots a_{m}+k, \quad 0<k \leq a_{m+1}, \quad\left(a_{0}=0\right) .
$$

The sequence $\left\{p_{n} / q_{n}\right\}$ consists of the convergents of x, while $\left\{P_{n} / Q_{n}\right\}$ is the sequence of convergents and mediants.

The Farey shift map $T:[0,1] \mapsto[0,1]$, defined in the introduction, may be characterised as follows. For $x=\left[0 ; a_{1}, a_{2}, \cdots\right]$, we have

$$
T(x)= \begin{cases}{\left[0 ; a_{1}-1, a_{2}, \cdots\right],} & a \geq 2 \\ {\left[0 ; a_{2}, a_{3}, \cdots\right],} & a_{1}=1\end{cases}
$$

Moreover, for $x=\left[0 ; a_{1}, a_{2}, \cdots\right], y=\left[0 ; b_{1}, b_{2}, \cdots\right]$ we have

$$
\tilde{T}(x, y)= \begin{cases}\left(\left[0 ; a_{1}-1, a_{2}, \cdots\right],\left[0 ; b_{1}+1, b_{2}, \cdots\right]\right) & a \geq 2 \\ \left(\left[0 ; a_{2}, a_{3}, \cdots\right],\left[0 ; 1, b_{1}, b_{2}, \cdots\right]\right), & a_{1}=1 .\end{cases}
$$

We make basic use of the numbers X_{n}, Y_{n} defined by $\tilde{T}^{n}(x, 1)=\left(X_{n}, Y_{n}\right) . \quad$ Note, in particular, that

$$
Y_{n}= \begin{cases}{\left[0 ; k+1, a_{m}, \cdots, a_{1}\right],} & m \geq 1 \\ {[0 ; k+1],} & m=0\end{cases}
$$

where

$$
n=a_{0}+a_{1}+\cdots+a_{m}+k, \quad 0 \leq k<a_{m+1} .
$$

It is well-known that for \tilde{G}, defined in the introduction,

$$
\tilde{G}^{m}(x, 0)=\left(x_{m}, y_{m}\right)=\left(\left[0 ; a_{m+1}, a_{m+2}, \cdots\right],\left[0 ; a_{m}, \cdots, a_{1}\right]\right)
$$

where $x_{m}=G^{m} x, y_{m}=q_{m-1} / q_{m}$.
Let us write

$$
\begin{equation*}
\Theta_{n}=Q_{n}^{2}\left|x-\frac{P_{n}}{Q_{n}}\right| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{m}=q_{m}^{2}\left|x-\frac{p_{m}}{q_{m}}\right| \tag{2}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\theta_{m}=x_{m}\left(1+x_{m} y_{m}\right)^{-1} \tag{3}
\end{equation*}
$$

and this is contained in the following formula, given in [2],

$$
\begin{equation*}
\Theta_{n}=\left(1-k x_{m}\right)\left(k+y_{m}\right)\left(1+x_{m} y_{m}\right)^{-1} \tag{4}
\end{equation*}
$$

where

$$
n=a_{0}+a_{1}+\cdots+a_{m}+k, \quad 0<k \leq a_{m+1} .
$$

(4) allows discussion of Θ_{n} via \tilde{G} but our strategy is to work directly with \tilde{T} so we set about expressing the quantities Q_{n-1} / Q_{n} and Θ_{n} in terms of X_{n}, Y_{n}.

Lemma 1. For $n=1,2, \cdots$, we have

$$
Q_{n} / Q_{n+1}=\left(1+Y_{n-1}\right)^{-1}=\max \left\{Y_{n}, 1-Y_{n}\right\} .
$$

Proof. We know that Y_{n} equals $Y_{n-1}\left(1+Y_{n-1}\right)^{-1}$ or $\left(1+Y_{n-1}\right)^{-1}$ and that $0<Y_{n-1} \leq 1$. Hence $\left(1+Y_{n-1}\right)^{-1}$ equals $\max \left\{Y_{n}, 1-Y_{n}\right\}$.

Next we use induction. When $n=1$, we have $Y_{1}=1 / 2, Q_{1}=1$. And we always have $Q_{2}=2$. Hence

$$
Q_{1} / Q_{2}=1 / 2=Y_{1}=\max \left\{Y_{1}, 1-Y_{1}\right\} .
$$

Suppose for $l \leq n$ we have

$$
Q_{l} / Q_{l+1}=\max \left\{Y_{l}, 1-Y_{l}\right\} .
$$

Assume that $n=a_{0}+a_{1}+{ }_{2}+\cdots+a_{m}+k, 0 \leq k<a_{m+1}$. If $k=0$, then $Q_{n}=q_{m}$, $Q_{n+1}=1 \cdot q_{m}+q_{m-1}$ and $Y_{n}=\left[0 ; 1, a_{m}, a_{m-1}, \cdots, a_{1}\right] \geq 1 / 2$. Hence $Q_{n} / Q_{n+1}=Y_{n}$. If $a_{m+1} \geq 2$, then $Q_{n+2}=2 \cdot q_{m}+q_{m-1}=Q_{n}+Q_{n+1}$. Thus

$$
Q_{n+1} / Q_{n+2}=\left(1+Q_{n} / Q_{n+1}\right)^{-1}=\left(1+Y_{n}\right)^{-1} .
$$

If $a_{m+1}=1$, then $Q_{n+1}=q_{m+1}$ and $Q_{n+2}=q_{m}+q_{m+1}$. Again we have $Q_{n+2}=Q_{n}+Q_{n+1}$ and again we get $Q_{n+1} / Q_{n+2}=\left(1+Y_{n}\right)^{-1}$.

When $0<k<a_{m+1}-1$, we have $Q_{n}=k q_{m}+q_{m-1}, Q_{n+1}=(k+1) q_{m}+q_{m-1}$ and $Q_{n+2}=(k+2) q_{m}+q_{m-1}$, and Y_{n}, which equals $[0 ; k+1]$ or $\left[0 ; k+1, a_{m}, \cdots, a_{1}\right]$, is at most $1 / 2$. Hence

$$
\begin{aligned}
Q_{n+1} / Q_{n+2} & =Q_{n+1}\left(2 q_{m}+Q_{n}\right)^{-1} \\
& =\left(2 q_{m} / Q_{n+1}+\left(1-Y_{n}\right)\right)^{-1} \\
& =\left(2\left(k+1+y_{m}\right)^{-1}+\left(1-Y_{n}\right)\right)^{-1} \\
& =\left(2 Y_{n}+1-Y_{n}\right)^{-1}=\left(1+Y_{n}\right)^{-1} .
\end{aligned}
$$

Lastly we consider $k=a_{m+1}-1>0$. We have $Q_{n}=k q_{m}+q_{m-1}=q_{m+1}-q_{m}$, $Q_{n+1}=q_{m+1}$ and $Q_{n+2}=q_{m+1}+q_{m}$. We also have $Y_{n}=y_{m+1} \leq 1 / 2$. Hence, once more, $Q_{n+1} / Q_{n+2}=\left(1+Y_{n}\right)^{-1}$.

Lemma 2. For $n=2,3, \cdots$, we have

$$
\begin{gather*}
\Theta_{n}= \begin{cases}\left(1-Y_{n}\right)\left(X_{n}+Y_{n}-X_{n} Y_{n}\right)^{-1}, & Y_{n}<1 / 2, \\
X_{n} Y_{n}\left(X_{n}+Y_{n}-X_{n} Y_{n}\right)^{-1}, & Y_{n}>1 / 2,\end{cases} \tag{5}\\
\Theta_{n+1}=\left(1-X_{n}\right)\left(X_{n}+Y_{n}-X_{n} Y_{n}\right)^{-1} . \tag{6}
\end{gather*}
$$

Proof. For $n=a_{0}+a_{1}+a_{2}+\cdots+a_{m} \geq 2$, we have $X_{n}=x_{m}$ and $Y_{n}=\left(1+y_{m}\right)^{-1}$ $>1 / 2$. An application of (3) gives

$$
\Theta_{n}=\theta_{m}=X_{n}\left(1+X_{n}\left(Y_{n}^{-1}-1\right)\right)^{-1}=X_{n} Y_{n}\left(X_{n}+Y_{n}-X_{n} Y_{n}\right)^{-1}
$$

For $n=a_{1}+\cdots+a_{m}+k \geq 2$ where $0<k<a_{m+1}$, we apply (4) after noting that

$$
X_{n}=\left(x_{m}^{-1}-k\right)^{-1}, \quad Y_{n}=\left(k+1+y_{m}\right)^{-1}<1 / 2 .
$$

This gives

$$
\Theta_{n}=\left(1-Y_{n}\right)\left(X_{n}+Y_{n}-X_{n} Y_{n}\right)^{-1}
$$

It is now easy to see that $Y_{n+1}>1 / 2$ if and only if $X_{n}>1 / 2$. When X_{n} $>1 / 2$

$$
\left(X_{n+1}, Y_{n+1}\right)=\tilde{T}\left(X_{n}, Y_{n}\right)=\left(X_{n}^{-1}\left(1-X_{n}\right),\left(1+Y_{n}\right)^{-1}\right)
$$

In this case we see that

$$
\begin{aligned}
\Theta_{n+1} & =X_{n+1} Y_{n+1}\left(X_{n+1}+Y_{n+1}-X_{n+1} Y_{n+1}\right)^{-1} \\
& =\left(1-X_{n}\right)\left(X_{n}+Y_{n}-X_{n} Y_{n}\right)^{-1}
\end{aligned}
$$

For the case $X_{n}<1 / 2$, we substitute $X_{n+1}=\left(1-X_{n}\right)^{-1} X_{n}, Y_{n+1}=Y_{n}\left(1+Y_{n}\right)^{-1}$ in the formula

$$
\Theta_{n+1}=\left(1-Y_{n+1}\right)\left(X_{n+1}+Y_{n+1}-X_{n+1} Y_{n+1}\right)^{-1}
$$

to obtain the required result.

3. Frgodicity and ergodic theorem for \tilde{T}

We begin this section by showing that \tilde{G} can be induced from \tilde{T}.
Theorem 1. The dynamical system $\left(\Omega, \mathscr{B}_{2}, \tilde{\mu}_{g}, \tilde{G}\right)$ is (isomorphic with) the system induced from $\left(\Omega, \mathscr{B}_{2}, \tilde{v}, \widetilde{T}\right)$ on the set $E=\{(x, y): y>1 / 2\}$.

Proof. Recall that for $x=\left[0 ; a_{1}, a_{2}, \cdots\right], y=\left[0 ; b_{1}, b_{2}, \cdots\right]$ we have

$$
\tilde{T}(x, y)= \begin{cases}\left(\left[0 ; a_{1}-1, a_{2}, \cdots\right],\left[0 ; b_{1}+1, b_{2}, \cdots\right]\right), & a \geq 2 \\ \left.\left[0 ; a_{2}, a_{3}, \cdots\right],\left[0 ; 1, b_{1}, b_{2}, \cdots\right]\right), & a_{1}=1\end{cases}
$$

In particular the second coordinate of $\tilde{T}(x, y)$ is greater than $1 / 2$ if and only if $a_{1}=1$. Accordingly the induced map \tilde{T}_{E} is given by

$$
\tilde{T}_{E}(x, y)=\left(x^{-1}-a_{1},\left(1+\left(y^{-1}+a_{1}-1\right)^{-1}\right)^{-1}\right)
$$

Now consider the map $\phi: E \mapsto \Omega$ given by

$$
\phi(x, y)=\left(x, y^{-1}-1\right) .
$$

The map transforms to $(x, y) \mapsto\left(x^{-1}-a_{1},\left(y+a_{1}\right)^{-1}\right)$ and the measure $d x d y(x+y$ $-x y)^{-2}$ transforms to $d x d y(1+x y)^{-2}$.

By Theorem 1 and the ergodicity of \tilde{G} together with a result of [16], we obtain the ergodicity of \tilde{T}. Theorem 1 also gives an abstract justification of the statement that any result derived from G or \tilde{G} can be obtained from \tilde{T}.

The map \tilde{T} is ergodic and invertible and \tilde{v} is non-atomic so it follows (see [5]) that \tilde{T} is conservative. Therefore we may apply the Chacon-Ornstein theorem (cf. [13]) on the system $\left(\Omega, \mathscr{B}_{2}, \tilde{v}, \tilde{T}\right)$ (we use Ω to denote $[0,1] \times[0,1]$ for the remainder of the paper) to derive the following result.

Theorem 2. For any $f, g \in L^{1}\left(\Omega, \mathscr{B}_{2}, \tilde{v}\right)$ with $\int g d \tilde{v} \neq 0$, one has

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} f\left(\tilde{T}^{k}(x, y)\right)}{\sum_{k=0}^{n-1} g\left(\tilde{T}^{k}(x, y)\right)}=\frac{\int f d \tilde{v}}{\int g d \tilde{v}} \text { a.e. }
$$

Next we show that under Lipschitz conditions on f, g, the points $\tilde{T}^{k}(x, y)$ in Theorem 2 can be replaced by $\left(X_{k}, Y_{k}\right)=\tilde{T}^{k}(x, 1)$.

Theorem 3. Suppose that $f, g \in L^{1}(\Omega, \mathscr{B}, \tilde{v})$ satisfy

$$
\begin{aligned}
& \left|f(x, y)-f\left(x, y^{\prime}\right)\right| \leq L\left|y-y^{\prime}\right|^{\alpha} \\
& \left|g(x, y)-g\left(x, y^{\prime}\right)\right| \leq L\left|y-y^{\prime}\right|^{\alpha}
\end{aligned}
$$

where $L>0, \alpha>0$ are constants. If $\int g d \tilde{v} \neq 0$, then for almost all $(x, y) \in \Omega$ one has

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} f\left(\tilde{T}^{k}(x, y)\right)}{\sum_{k=0}^{n-1} g\left(\tilde{T}^{k}(x, y)\right)}=\lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{n-1} f\left(X_{k}, Y_{k}\right)}{\sum_{k=0}^{n-1} g\left(X_{k}, Y_{k}\right)} .
$$

Proof. Let Z_{i} be the second coordinate of $\tilde{T}^{i}(x, y)$, i.e. $\quad \tilde{T}^{i}(x, y)=\left(X_{i}, Z_{i}\right)$. We claim that for almost all $x \in[0,1]$ and all $y \in(0,1]$, we have

$$
\sum_{i=0}^{\infty}\left|Z_{i}-Y_{i}\right|^{\alpha}<+\infty .
$$

In fact, for $x=\left[0 ; a_{1}, a_{2}, \cdots\right], i=a_{1}+a_{2}+\cdots+a_{m}+k, 0 \leq k<a_{m+1}$, one has

$$
Z_{i}=\left[0 ; k+1, a_{m}, \cdots, a_{2}, a_{1}-1+y^{-1}\right]
$$

and

$$
Y_{i}=\left[0 ; k+1, a_{m}, \cdots, a_{2}, a_{1}\right] .
$$

Hence we have

$$
\left|Y_{i}-Z_{i}\right| \leq c / q_{m}^{2}
$$

for some constant c, where q_{m} is the denominator of the m-th convergent $\frac{p_{m}}{q_{m}}$ of the regular continued fraction expansion of x (cf. [1] p.42]. Therefore we get that

$$
\sum_{i=0}^{\infty}\left|Z_{i}-Y_{i}\right|^{\alpha} \leq \sum_{m=0}^{\infty} \sum_{k=1}^{a_{m+1}}\left(\frac{c}{q_{m}^{2}}\right)^{\alpha}=c^{\alpha} \sum_{m=0}^{\infty} \frac{a_{m+1}}{q_{m}^{2 \alpha}} .
$$

By induction we can see that

$$
q_{m} \geq 2^{(m-1) / 2}
$$

We need the following theorem (see [15]).
Theorem A. Let $F(n)>1$, for $n=1,2, \cdots$, and suppose that $\sum_{n=1}^{\infty} \frac{1}{F(n)}<\infty$. Then the set

$$
A=\left\{x \in[0,1], a_{k}(x)>F(k) \text { infinitely many times }\right\}
$$

has Lebesgue measure 0.
Now we choose $F(n)=2^{n \alpha / 2}$. By the above theorem we see that the set

$$
E=\left\{x \in[0,1], a_{k}(x)>F(k) \text { only finitely many times }\right\}
$$

has Lebesgue measure 1. Hence for almost all $x \in[0,1]$,

$$
\sum_{m=0}^{\infty} \frac{a_{m+1}}{q_{m}^{2 \alpha}} \leq C(x)+\sum_{m=0}^{\infty} 2^{\alpha(2-m) / 2}<\infty .
$$

Where $C(x)=\sum_{a_{m}>F(m)} \frac{a_{m+1}}{q_{m}^{2 \alpha}}$. The required result follows easily when we bear in mind the fact that $\Sigma g\left(\tilde{T}^{k}(x, y)\right)$ diverges almost everywhere because \tilde{T} is conservative and ergodic.

For some functions $f(x, y)$ though we do not have

$$
\begin{equation*}
\left|f(x, y)-f\left(x, y^{\prime}\right)\right| \leq L\left|y-y^{\prime}\right|^{x} \tag{*}
\end{equation*}
$$

for all $y, y^{\prime} \in[0,1]$, it is still true that

$$
\left|f\left(T^{i}(x, y)\right)-f\left(X_{i}, Y_{i}\right)\right| \leq L\left|Z_{i}-Y_{i}\right|^{\alpha}, \quad \alpha>0
$$

for almost all $x \in[0,1]$ and i large enough.
Example. Let

$$
f(x, y)= \begin{cases}\log (1-y) & y \in[0,1) \\ 0 & y=1\end{cases}
$$

Then $f \in L^{1}(\Omega)$. We do not have (*) for all $y, y^{\prime} \in[0,1]$.
For $x=\left[0 ; a_{1}, a_{2}, \cdots\right]$, let

$$
i=a_{1}+a_{2}+\cdots+a_{m}+k, \quad 0 \leq k<a_{m+1}
$$

where $m \geq 2$. Then

$$
\begin{aligned}
& \left|f\left(T^{i}(x, y)\right)-f\left(X_{i}, Y_{i}\right)\right| \\
= & \left|\log \left(1-Z_{i}\right)-\log \left(1-Y_{i}\right)\right| \\
= & \frac{1}{\left|1-\xi_{i}\right|}\left|Z_{i}-Y_{i}\right|
\end{aligned}
$$

where ξ_{i} is in between y_{i} and Y_{i}. It is easy to see that $1-\xi_{i} \geq 1 / q_{m}$, i.e.

$$
\frac{1}{1-\xi_{i}} \leq q_{m} \leq c\left|Y_{i}-Z_{i}\right|^{1 / 2}
$$

Therefore, $\left|f\left(T^{i}(x, y)\right)-f\left(X_{i}, Y_{i}\right)\right| \leq c\left|Y_{i}-Z_{i}\right|^{1 / 2}$.

4. Applications

In this section we apply the ergodic theorems for \tilde{T} to obtain metrical results for convergents and medians of regular continued fractions. For all the functions f, g involved in this section it is valid to replace $\tilde{T}^{k}(x, y)$ by $\left(X_{k}, Y_{k}\right)$ as in Theorem 3 but omit the tedious verification.

For an irrational $x=\left[0 ; a_{1}, a_{2}, \cdots\right]$ we shall call

$$
\frac{k p_{n}+p_{n-1}}{k q_{n}+q_{n-1}} \text { and } \frac{\left(a_{n+1}-k\right) p_{n}+p_{n-1}}{\left(a_{n+1}-k\right) q_{n}+q_{n-1}}
$$

the k-th mediants of x, when $a_{n+1} \geq 2 k$. We let $P_{n}^{(k)} / Q_{n}^{(k)}$ denote the sequence which consists of all convergents and i-th mediants of x for all $i \leq k$. When $k=0$, we recover the convergents $\left\{p_{m} / q_{m}\right\}$ and, when $k=1$, we obtain the so-called nearest mediants of Ito, [8]. It is easy to see that the event " P_{n} / Q_{n} appears as some $P_{i}^{(k)} / Q_{i}^{(k)}$ " is characterised by $X_{n}>1 /(k+1)$ or $Y_{n}>1 /(k+2)$ while " P_{n+1} / Q_{n+1} appears as some $P_{i}^{(k)} / Q_{i}^{(k) "}$ is by $X_{n}>1 /(k+2)$ or $Y_{n}>1 /(k+1)$.

Let us write also

$$
\Theta_{n}^{(k)}=\left(Q_{n}^{(k)}\right)^{2}\left|x-P_{n}^{(k)} / Q_{n}^{(k)}\right| .
$$

Our main theorem can now be stated.
Theorem 4. For almost all x we have
(i). for $k=0,1,2, \cdots$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log Q_{n}^{(k)}=\frac{\pi^{2}}{12 \log (2 k+2)},
$$

(ii). for $k=0,1,2, \cdots$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|x-\frac{P_{n}^{(k)}}{Q_{n}^{(k)}}\right|=-\frac{\pi^{2}}{6 \log (2 k+2)}
$$

(iii). for $k=1,2, \cdots$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{i: i \leq n, \Theta_{i}^{(k)}<z\right\} \\
= & \frac{1}{\log (2 k+2)} \begin{cases}z, & 0 \leq z<1 \\
1+\log z, & 1 \leq z<\frac{k+1}{2} \\
2-\frac{2 z}{k+1}+\log \frac{2 z^{2}}{k+1}, & \frac{k+1}{2} \leq z<k+1 \\
\log (2 k+2), & k+1<z\end{cases}
\end{aligned}
$$

(iv). $\lim _{n \rightarrow \infty} \frac{1}{\log Q_{n}} \#\left\{i: i \leq n, \Theta_{i}<z\right\}=\frac{12}{\pi^{2}} \begin{cases}z, & 0<z \leq 1, \\ 1+\log z, & 1<z .\end{cases}$

Remark. The case $k=0$ of (i) and (ii) are the basic results of Levy (see [1]), and the case $k=1$ of (i), (ii) and (iii) give results of Ito, [8]. The important result of Bosma et al in [3] corresponds to the case $k=0$ of (ii) and the proof which
follows could be simplified to yield that special case. Nevertheless a suitable interpretation of the three terms corresponding to $1 / 2 \leq z<1$ yields the appropriate distribution. We take the signed sum, i.e.

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{i: i \leq n, \theta_{n}<z\right\}=\frac{1}{\log 2} \begin{cases}z, & 0 \leq z<\frac{1}{2} \\ 1-z+\log (2 z), & \frac{1}{2} \leq z<1 \\ \log 2, & 1 \leq z\end{cases}
$$

where

$$
1-z+\log (2 z)=z-(1+\log z)+\left[2-2 z+\log \left(2 z^{2}\right)\right] .
$$

Proof. For (i) we take

$$
\begin{aligned}
& f(x, y)=\log (\max \{y, 1-y\}), \\
& g(x, y)= \begin{cases}1, & \text { when } x>(k+1)^{-1}, \text { or } y>(k+2)^{-1} \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then

$$
\int f d \tilde{v}=-\frac{\pi^{2}}{12 \log 2}, \quad \int g d \tilde{v}=\frac{\log (2 k+2)}{\log 2} .
$$

For $n=a_{0}+a_{1}+\cdots+a_{m}+k, \quad 0 \leq k<a_{m+1}$, we have, by Lemma 1 ,

$$
\log \frac{Q_{n}}{Q_{n+1}}=f\left(X_{n}, Y_{n}\right)
$$

while

$$
\sum_{i=1}^{n} g\left(X_{i}, Y_{i}\right)=\#\left\{i: i \leq n, Q_{i} \text { appears as some } Q_{j}^{(k)}\right\} .
$$

Therefore

$$
\sum_{i=1}^{n} f\left(X_{i}, Y_{i}\right) / \sum_{i=1}^{n} g\left(X_{i}, Y_{i}\right)=-s^{-1}\left(\log Q_{n+1}-\log Q_{1}\right) .
$$

where s is determined by $Q_{s}^{(k)} \leq Q_{n}<Q_{s+1}^{(k)}$. By the ergodic theorem of the last section

$$
\lim _{s \rightarrow \infty} \frac{\log Q_{s}^{(k)}}{s}=-\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(X_{i}, Y_{i}\right) / \sum_{i=1}^{n} g\left(X_{i}, Y_{i}\right)=-\int f d \tilde{v} / \int g d \tilde{v},
$$

and the required result follows.
For (ii) noting that $\Theta_{n}^{(k)}=\left(Q_{n}^{(k)}\right)^{2}\left|x-P_{n}^{(k)} / Q_{n}^{(k)}\right|$, by (i) it suffices to show that

$$
\lim _{n \rightarrow \infty} \frac{\log \Theta_{n}^{(k)}}{n}=0 \quad \text { a.e. }
$$

Remember that Θ_{n+1} is one of $\Theta_{s}^{(k)}$ if and only if $X_{n}>(k+2)^{-1}$ or $Y_{n}>(k+1)^{-1}$. Then when Θ_{n+1} is one of $\Theta_{s}^{(k)}$ we have

$$
\Theta_{n+1}=\frac{1-X_{n}}{X_{n}+Y_{n}-X_{n} Y_{n}}<k+1 .
$$

On the other hand,

$$
\Theta_{n+1} \geq 1-X_{n} \geq 1-\left[0 ; 1, a_{m+1}, \cdots\right]>1 /\left(a_{m+1}+1\right) \geq 1 / 2 a_{m+1}
$$

where m is determined by $Q_{n} \leq q_{m}<Q_{n+1}$. Therefore,

$$
-\frac{\log a_{m+1}+\log 2}{s}<\frac{\Theta_{s}^{(k)}}{s}<\frac{\log (k+1)}{s} .
$$

Noting that $m \leq s \leq(2 k+1) m$ we obtain

$$
\frac{\log a_{m+1}}{s} \leq \frac{\log a_{m+1}}{m}=\left(\frac{a_{m+1}}{m^{\alpha}}\right)^{1 / \alpha} \cdot \frac{\log a_{m+1}}{a_{m+1}^{1 / \alpha}} \rightarrow 0 \quad \text { a.e. }
$$

by Theorem A, where $\alpha>1$ is a constant. Therefore

$$
\lim _{n \rightarrow \infty} \frac{\log \Theta_{n}^{(k)}}{n}=0 \quad \text { a.e. }
$$

To prove (iii) and (iv) we also consider Θ_{n+1} instead of Θ_{n}. Let

$$
\begin{aligned}
E_{z, t}=\{(x, y) \in \Omega: & \left.\frac{1-x}{x+y-x y}<z, x>\frac{t}{1+t}\right\} \\
& \cup\left\{(x, y) \in \Omega: \frac{1-x}{x+y-x y}<z, y>t\right\}=E_{1} \cup E_{2}
\end{aligned}
$$

where $0<z, 0 \leq t \leq 1 / 2$ and

$$
f(x, y)= \begin{cases}1, & (x, y) \in E_{z, t} \\ 0, & \text { othewise }\end{cases}
$$

We recast the inequality

$$
(1-x)(x+y-x y)^{-1}<z
$$

in the form

$$
x>(1-z y)(1+z(1-y))^{-1}=u(y), \text { say, }
$$

and note that $(1-z y)(1+z(1-y))^{-1}>t /(1+t)$ if and only if $y>z^{-1}-t$. Therefore

$$
E_{1}=\left\{\begin{array}{lll}
\{x>u(y), & 0<y<1\}, & 0<z<\frac{1}{1+t} \\
\{x>u(y), & \left.0<y<\frac{1}{z}-t\right\} \cup\left\{x>\frac{t}{1+t},\right. & \left.\frac{1}{z}-t<y<1\right\}, \\
\left\{x>\frac{t}{1+t},\right. & 0<y<1\}, & \frac{1}{1+t}<z<\frac{1}{t} \\
\frac{1}{t}<z .
\end{array}\right.
$$

Suppose first that $0<z<1 /(1+t)$. Then $E_{z, t}=E_{1}=\{x>u(y), 0>y>1\}$. Hence

$$
\log 2 \int f d \tilde{v}=\int_{0}^{1} d y \int_{u(y)}^{1}(x+y-x y)^{-2} d x=z .
$$

Now consider the case $1 /(1+t) \leq z<1$. Note that $t \leq 1-t<z^{-1}-t$. Then again $E_{z, t}=\{x>u(y), 0<y<1\}$ and $\log 2 \int f d \tilde{v}=z$.

When $1<z<1 / 2 t$ we also have $z^{-1}-t>t$. Remember that $u(y)>0$ when $y>z^{-1}$. Thus

$$
\begin{aligned}
E_{z, t} & =\{(x, y) \in \Omega: x>u(y), 0<y<1\} \\
& =\left\{x>u(y), 0<y<z^{-1}\right\} \cup\left\{x>0, z^{-1}<y<1\right\},
\end{aligned}
$$

and

$$
\log 2 \int f d \tilde{v}=1+\log z
$$

If $1 / 2 t<z<1 / t$, then $0<z^{-1}-t<t$ and

$$
\begin{gathered}
E_{z, t}=\left\{x>u(y), 0<y<\frac{1}{z}-t\right\} \cup\left\{x>\frac{t}{1+t}, \frac{1}{z}-t<y<t\right\} \\
\cup\left\{x>u(y), t<y<\frac{1}{z}\right\} \cup\left\{x>0, \frac{1}{z}<y<1\right\}
\end{gathered}
$$

Calculate that

$$
\log 2 \int f d \tilde{v}=2-2 t z+\log \left(2 t z^{2}\right)
$$

Lastly, when $z>1 / t$ we have

$$
E_{z, t}=\{x>t /(1+t), 0<y<t\} \cup\{x>0, t<y<1\}
$$

and $\log 2 \int f d \tilde{v}=\log 2-\log t$.
It is now easy to piece together the result of (iii) by taking $t=(k+1)^{-1}$ and

$$
g(x, y)= \begin{cases}1, & \text { when } x>(k+2)^{-1} \text { or } y>(k+1)^{-1} \\ 0, & \text { otherwise }\end{cases}
$$

To obtain (iv) we set $t=0$ and replace g by the function $\log (\max \{y, 1-y\})$ used as f in proving (i). This completes the proof.

Remark. Part (iii) of the theorem (in some sense a limiting case as $k \rightarrow \infty$) shows that $\frac{1}{n} \#\left\{i: i \leq n, \Theta_{n}<z\right\} \rightarrow 0$ as $n \rightarrow \infty$ and hence that $\left\{\Theta_{n}\right\}$ does not have a distribution function. We can obtain some more information about Θ_{n}. We have

For almost all $x \in[0,1]$ and any $\varepsilon>0$,
(i). $\lim _{n \rightarrow \infty} \frac{\Theta_{n}}{m^{1+\varepsilon}}=0$, where $q_{m} \leq Q_{n}<q_{m+1}$;
(ii). $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \Theta_{i}=\infty$; and
(iii). $\lim _{n \rightarrow \infty} \frac{1}{n^{2+\varepsilon}} \sum_{i=1}^{n} \Theta_{i}=0$.

In fact, for $n=a_{0}+a_{1}+\cdots+a_{m}+k$, where $0 \leq k<a_{m+1}$, by Lemma 2

$$
\begin{equation*}
\Theta_{n+1}<Y_{n}=\left[k+1 ; a_{m}, \cdots, a_{1}\right]<k+2 . \tag{*}
\end{equation*}
$$

Then (i) follows from Theorem A. Using (*) we can get the the following estimation:

$$
\begin{equation*}
\frac{1}{16}\left[\sum_{i=1}^{m} a_{i}^{2}+k^{2}-n\right]-(m+1)<\sum_{i=1}^{n} \Theta_{i}<\sum_{i=1}^{m} a_{i}^{2}+k^{2} \tag{**}
\end{equation*}
$$

Then follow (ii) and (iii).
Next let us compare Theorem 4 (iv) with some results of P. Erdös [6] and
J. Blom [2]. Let

$$
\Theta\left(\frac{p}{q}, x\right)=q^{2}\left|x-\frac{p}{q}\right| .
$$

Define

$$
\begin{aligned}
& U(x, z, n)=\#\left\{(p, q) \in Z \times N:(p, q)=1, \Theta\left(\frac{p}{q}, x\right) \leq z, q \leq n\right\}, \\
& U_{1}(x, z, n)=\#\{(p, q) \in Z \times N:(p, q)= 1, \Theta\left(\frac{p}{q}, x\right) \leq z, q \leq n, \\
&\left.\frac{p}{q} \text { is a convergent of } x\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
U_{2}(x, z, n)=\#\{(p, q) \in Z \times N:(p, q)= & \left.1, \Theta\left(\frac{p}{q}, x\right) \leq z, q \leq n\right\}, \\
& \left.\frac{p}{q} \text { is a best approximant of } x\right\} .
\end{aligned}
$$

By best approximant we mean that if there is a fraction $\frac{a}{b}$ different from $\frac{p}{q}$ such that

$$
\left|\frac{a}{b}-x\right| \leq\left|\frac{p}{q}-x\right|
$$

then $b>q$. Erdös [6]) proved that for any $z \geq 0$

$$
\lim _{n \rightarrow \infty} \frac{U(x, z, n)}{n}=\frac{12}{\pi^{2}} z \quad \text { a.e. }
$$

Blom [2] gave that

$$
\lim _{n \rightarrow \infty} \frac{U_{1}(x, z, n)}{n}=\frac{12}{\pi^{2}}(f) z \quad \text { a.e. }
$$

and

$$
\lim _{n \rightarrow \infty} \frac{U_{2}(x, z, n)}{n}=\frac{12}{\pi^{2}}(f(z)+h(z)) \quad \text { a.e. }
$$

where

$$
\begin{aligned}
& f(z)= \begin{cases}z & 0 \leq z \leq \frac{1}{2} \\
1-z+\log (2 z) & \frac{1}{2} \leq z \leq 1 \\
\log 2 & z \geq 1,\end{cases} \\
& h(z)= \begin{cases}0 & 0 \leq z \leq \frac{1}{2} \\
z-\frac{1}{2}-\frac{1}{2} \log (2 z) & \frac{1}{2} \leq z \leq 1 \\
\frac{1}{2}+\frac{1}{2} \log (2 z) & z \geq 1 .\end{cases}
\end{aligned}
$$

When $z \leq 1$ Theorem 4(iii) corresponds to the result of Erdös [6]. [8] and [9] also gave new proofs in this case. When $z>1$ this result takes a different form. This fact tells us that, for $z>1$, there is no result for convergents and mediants analogous to the theorem of Legendre for $z=1 / 2$ or the theorem of Fatou and Koksma for $z=1$ (see [9]).

The result of Blom [2] can also be proved by Theorem 2 or 3. In fact for irrational $x \in[0,1)$, a best approximant is an element of $\left\{\frac{P_{n}}{Q_{n}}\right\}$ characterized by

$$
Y_{n}>\frac{1}{2} \text { or } Y_{n}^{-1}>X_{n}^{-1}+1, \quad n \geq 2
$$

Thus we can prove these results by choosing appropriate functions f and g.
Jager [9] considered the two sequences

$$
\left\{\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}\right\},\left\{\frac{\left(a_{n+1}-1\right) p_{n}+p_{n-1}}{\left(a_{n+1}-1\right) q_{n}+q_{n-1}}\right\}
$$

separately and obtained some metrical results. If P_{N} / Q_{N} appears as $\left(p_{n}+p_{n-1}\right) /\left(q_{n}\right.$ $\left.+q_{n-1}\right)$ then we have

$$
X_{N}=\left[0 ; a_{n+1}-1, a_{n+2}, \cdots\right], \quad Y_{N}=\left[0 ; 2, a_{n}, \cdots, a_{1}\right] \quad \text { when } a_{n+1} \geq 2,
$$

or

$$
X_{N}=\left[0 ; a_{n+2}, \cdots\right], \quad Y_{N}=\left[0 ; 1,1, a_{n}, \cdots, a_{1}\right] \quad \text { when } a_{n+1}=1 .
$$

Thus the first sequece is characterised by $1 / 3<Y_{n}<2 / 3$. The second one is more complicated. If $a_{n+1} \geq 2$, then $\left(\left(a_{n+1}-1\right) p_{n}+p_{n-1}\right) /\left(\left(a_{n+1}-1\right) q_{n}+q_{n-1}\right)$ corresponds

$$
X_{N}=\left[0 ; 1, a_{n+2}, \cdots\right] \in(1 / 2,1), \quad Y_{N}=\left[0 ; a_{n+1}, \cdots, a_{1}\right] \in(0,1 / 2) .
$$

When $a_{n+1}=1$ we get p_{n-1} / q_{n-1} which corresponds to

$$
\left\{\begin{array}{l}
X_{N}=\left[0 ; a_{n}, 1, a_{n+2}, \cdots\right] \in\left(\frac{1}{a_{n}+1}, \frac{2}{2 a_{n}+1}\right), \\
Y_{N}=\left[0,1, a_{n-1}, \cdots, a_{1}\right] \in(1 / 2,1) .
\end{array}\right.
$$

Hence the second one is characterised by

$$
X_{n} \in(1 / 2,1), \quad Y_{n} \in(0,1 / 2) \quad \text { or } \quad X_{n} \in \bigcup_{i=1}^{\infty}\left(\frac{1}{i+1}, \frac{2}{2 i+1}\right), \quad Y_{n} \in(1 / 2,1) .
$$

However, those two sequences are not "pure" nearest mediants. We shall consider the sequences

$$
\left\{\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}, a_{n+1} \geq 2\right\} \quad \text { and }\left\{\frac{\left(a_{n+1}-1\right) p_{n}+p_{n-1}}{\left(a_{n+1}-1\right) q_{n}+q_{n-1}}, a_{n+1} \geq 2\right\}
$$

which are characterised by $1 / 3<Y_{n}<1 / 2$ and $X_{n}>1 / 2, Y_{n}<1 / 2$ respectively. In general we use $\left\{a_{n}^{(k)} / b_{n}^{(k)}\right\}$ and $\left\{c_{n}^{(k)} / d_{n}^{(k)}\right\}$ to denotes the "pure" k-th mediant sequences for each of the two directions

$$
\left\{\frac{k p_{n}+p_{n-1}}{k q_{n}+q_{n-1}}, a_{n+1} \geq 2 k\right\} \quad \text { and } \quad\left\{\frac{\left(a_{n+1}-k\right) p_{n}+p_{n-1}}{\left(a_{n+1}-k\right) q_{n}+q_{n-1}}, a_{n+1} \geq 2 k\right\}
$$

respectively, where $k \leq 1$. It is not hard to see that $\left\{a_{n}^{(k)} / b_{n}^{(k)}\right\}$ is the subsequence of $\left\{P_{n} / Q_{n}\right\}$ determined by $X_{n}<1 / k$ and $(k+2)^{-1}<Y_{n}<(k+1)^{-1}$ while $\left\{c_{n}^{(k)} / d_{n}^{(k)}\right\}$ determined by $(k+1)^{-1}<X_{n}<k^{-1}$ and $Y_{n}<(k+1)^{-1}$. Define

$$
\sigma_{n}^{(k)}=b_{n}^{(k)}| |_{n}^{(k)} x-a_{n}^{(k)} \mid
$$

and

$$
\rho_{n}^{(k)}=d_{n}^{(k)}\left|d_{n}^{(k)} x-c_{n}^{(k)}\right| .
$$

Theorem 5. For almost all $x \in[0,1]$ and $k=1,2, \cdots$, one has
(i).

$$
\lim _{n \rightarrow \infty} \frac{\log b_{n}^{(k)}}{n}=\lim _{n \rightarrow \infty} \frac{\log d_{n}^{(k)}}{n}=\frac{\pi^{2}}{12(\log (2 k+1)-\log (2 k))}
$$

(ii).

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|x-\frac{a_{n}^{(k)}}{b_{n}^{(k)}}\right|=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|x-\frac{c_{n}^{(k)}}{d_{n}^{(k)}}\right|=-\frac{\pi^{2}}{6(\log (2 k+1)-\log (2 k))},
$$

(iii). $\quad \lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{\sigma_{i}^{(k)}<z, i \leq n\right\}=\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{\rho_{n}^{(k)}<z, i \leq n\right\}$

$$
=\frac{1}{\log (2 k+1)-\log (2 k)} \begin{cases}\frac{2 z}{k}-1-\log \frac{2 z}{k}, & \frac{k}{2}<z \leq \frac{k^{2}+k}{2 k+1} \\ \frac{z}{k^{2}+k}-\log \left(1+\frac{1}{2 k+1}\right), & \frac{k^{2}+k}{2 k+1}<z \leq k \\ 1-\frac{z}{k+1}-\log \frac{2\left(k^{2}+k\right)}{(2 k+1) z}, & k<z \leq k+1 \\ \log (2 k+1)-\log (2 k), & k+1<z .\end{cases}
$$

Proof. For (i) we take f to be the same function as in the proof of Theorem 4(i). We let

$$
g_{1}(x, y)= \begin{cases}1, & 0<x<k^{-1},(k+2)^{-1}<y<(k+1)^{-1} \\ 0, & \text { otherwise }\end{cases}
$$

for the first one and

$$
g_{2}(x, y)= \begin{cases}1, & (k+1)^{-1}<y<k^{-1}, 0<x<(k+1)^{-1} \\ 0, & \text { otherwise } .\end{cases}
$$

Then

$$
\int g_{1} d \tilde{v}=\int g_{2} d \tilde{v}=\frac{\log (2 k+1)-\log (2 k)}{\log 2}
$$

Therefore we get (i).
(ii) can be proved by a similar argument as the proof of Theorem 4(ii).

As for (iii), we take $\sigma_{n}^{(k)}$ as an example. Since we are concerned $X_{n}<1 / k$ and $(k+2)^{-1}<Y_{n}<(k+1)^{-1}$, we have

$$
\Theta_{n}=\left(1-Y_{n}\right)\left(X_{n}+Y_{n}-X_{n} Y_{n}\right)^{-1}
$$

by Lemma 2. It is easy to see that for the Θ_{n} in consideration we have

$$
k / 2<\Theta_{n}<k+1
$$

Let

$$
f(x, y)= \begin{cases}1, & \frac{1-y}{x+y-x y}<z, x<\frac{1}{k}, \frac{1}{k+2}<y \frac{1}{k+1} \\ 0, & \text { otherwise. }\end{cases}
$$

Then $\Sigma_{i=1}^{n} f\left(X_{i}, Y_{i}\right)$ counts the number of $\Theta_{i}, i \leq n$ appears as some $\sigma_{j}^{(k)}$ and $<z$. The non-zero regions of f with respect to different values of z are as follows:

$$
\begin{aligned}
& \left\{\frac{1-z x}{1+z-z x}<y<\frac{1}{k+1}, \frac{k-z}{k z}<x<\frac{1}{k}\right\} \text {, when } \frac{k}{2}<z \leq \frac{k^{2}+k}{2 k+1}, \\
& \left\{\frac{1-z x}{1+z-z x}<y<\frac{1}{k+1}, \frac{k-z}{k z}<x \leq \frac{k+1-z}{(k+1) z}\right\} \\
& \cup\left\{\frac{1}{k+2}<y<\frac{1}{k+1}, \frac{k+1-z}{(k+1) z}<x<\frac{1}{k}\right\}, \text { when } \frac{k^{2}+k}{2 k+1}<z \leq k, \\
& \left\{\frac{1-z x}{1+z-z x}<y<\frac{1}{k+1}, 0<x \leq \frac{k+1-z}{(k+1) z}\right\} \\
& \cup\left\{\frac{1}{k+2}<y<\frac{1}{k+1}, \frac{k+1-z}{(k+1) z}<x<\frac{1}{k}\right\} \text {, when } k<z \leq k+1 .
\end{aligned}
$$

The proof is completed by calculating several integrals and taking g as g_{1} in the proof of (i).

References

[1] P. Billingsley: Ergodic Theory and Information, John Wiley \& Sons, Inc., New York, 1965.
[2] J. Blom: Metrical properties of best approximation, J. Austril. Math. Soc. (Ser. A), 53 (1992), 78-91.
[3] W. Bosma, H. Jager and F. Wiedijk: Some metrical observations on the approximation by continued fractuibs, Indag. Math., 45 (1983), 281-299.
[4] G. Brown and Q. Yin: Natural extensions with infinite invariant measure, submitted.
[5] N.A. Friedman: Introduction to Ergodic Theory, Van Nostrand Reinhold, New York, 1970.
[6] P. Erdös: Some resuls on Diophantine approximation, Acta Arith., 5 (1959), 359-369.
[7] L. Goldberg and C. Tresser: Rotation orbits and the Farey, tree, preprint.
[8] S. Ito: Algorithms with mediant convergents and their metrical theory, Osaka J. Math., 26 (1989), 557-578.
[9] H. Jager: Some metrical observations on the approximation of an irrational number by its nearest mediants, Period. Math. Hungar., 23 (1991), 5-16.
[10] J.C. Lagarias: Number theory and dynamical systems, Proc. Symp. Appl. Math., 46 (1992), 35-72.
[11] H. Nakada: Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., 4 (1981), 499-426.
[12] W. Parry: Ergodic properties of some permutation processes, Biometrika, 49 (1962), 151-154.
[13] K. Petersen: Ergodic Theory, Cambridge Univ. Press, 1983.
[14] I. Richards: Continued fractions without tears, Math. Mag., 54 (1981), 163-171.
[15] A.M. Rockett and P. Szusz: Continued Fractios, World Scientific, 1992.
[16] M. Thaler: Transformations on [0,1] with infinite invariant measures, Isr. J. Math, 46 (1983), 67-96.

Department of Pure Mathematics
The University of Adelaide
Adelaide, SA 5005, Australia
Vice-Chancellor
The University of Sydney
Sydney, NSW 2006, Australia

