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1. Introduction

By making fundamental use of the Farey shift map and employing infinite
(but σ-finite) measures together with the Chacon-Ornstein ergodic theorem it is
possible to find new metrical results for continued fractions. Moreover this offers
a unified approach to several existing theorems.

The application of ergodic theory to the study of continued fractions began
with the Gauss transformation, G: [0,l]ι-»[0,l],

0, x = 0,

which is ergodic with respect to the Gauss measure μg, where

log2jBl-fx

for any Borel subset B of [0,1]. H. Nakada [11] extended G to the 2-dimensional
case. Let G: [0,1] x [0,1] h-> [0,1] x [0,1] be defined to be

where ax = - . The absolutely continuous invariant measure of G, /L, is given by

1 dxdy
dμg = -

Iog2 (1+xy)2

Then the dynamical system ([0,1] x [0,1], &2>fig>G) is the natural extension of
([0,1),^!,^) where 0&n is the Borel algebra of Rn. Hence G is ergodic with respect
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to μg. Many metrical results for regular continued fractions can be proved using
the ergodicity of G or G. For example, [3] (W. Bosma et al) gave the distribution
of the sequences of approximation constants {θn}.

In this paper we focus on the convergents and the mediants of the Farey (or
slow) continued fractions. Define T: [0,1] i—• [O,!] by

Άx)= ,
l-x

1-x 1
, -

x 2

T is called the Farey shift map (see [10]). T preserves the measure v given by

1 dx

log 2 x

1 dx
av — —

l 2
which is σ-finite but not a probability measure, and T is ergodic with respect to
this measere (see [12] or [10]). The natural extension of Γ, denoted by Γ, is the
transformation on [0,1] x [0,1] given by

T\χ,y)=
l-X'l+yΓ °-X<l2

1 — J C 1 1

x l+y

The absolutely continuous invariant measure, v, of T is determined by

dv =
(

dx dy 1

(x+y-xy)2 log2

The ergodicity of T can be established from that of G using an argument
of [16] or by direct appeal to a general result given in [4]. Since the v or v are
infinite (σ-finite, though), the Birkhoff Ergodic Theorem is not applicable for T or
T. To avoid this disadvatage, Ito considered another transformation T1 induced
by T, the invariant measure of which is a probability measure. By the ergodicity
of 7\ and its natural extension, he obtained in [8] many metrical results related
to convergents and nearest mediants. In this paper we consider T and T
directly. We shall establish an ergodic theorem for T though the Chacon-Ornstein
ergodic theorem. In this way the results of [8] can be generalized for we can
derive metrical results on Diophantine approximation by all the mediants not only
the nearest ones. The results for nearest mediants become a special case. Any
other metrical results obtained by applying the Birkhoff ergodic theorem for G or
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G can also be obtained by using the ergodic theorem we build for T.

In Section 2, we recall some basic results about Farey and regular continued
fractions and give some basic properties of T and T. In Section 3, we establish
an ergodic theorem for T through the Chacon-Ornstein Ergodic Theorem. In
Section 4, we apply the ergodic theorem established in Section 3 to prove some
old and new metrical results both for the regular continued fractions and the
Farey continued fractions.

2. Preliminaries

For an irrational xe[0,l] with regular continued fraction expansion

1

the «-th convergent is given by

Pn 1

The integers pn, qn can be described inductively by setting

/>-! = l, Po = 09 q-t=09 qo=l,

Pn = anPn-l+Pn-2> Qn = an<ln- 1 + qn- 2

We shall be concerned with a slower sequence {Pn/Qn} of approximations to
JC, corresponding to a branch of the Farey tree (see [7], [14] for details). For
our present purpose it suffices to know that

Pn=kPm+Pm-ι> Qn = kqm + qm-1,

where

n = ao + ax + 'am + k, 0<k<am+1, (ao = 0).

The sequence {pn/qn} consists of the convergents of c, while {Pn/Qn} is the
sequence of convergents and mediants.

The Farey shift map T: [0,l]h->[0,l], defined in the introduction, may be
characterised as follows. For x = [0;aua2,-

r], we have

^-Ua^ -], a>2

[0;Λ2,β3, ], at = i.
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Moreover, for x = [0;β1,α2, ], y = [0;bub29'"'] we have

P M S . M O I Λ Λ , - ] ) , * I = I .

We make basic use of the numbers Xn, Yn defined by fn(x,l) = (Xni Yn). Note,

in particular, that

Y =
l,^,---,^], m>\

.[0;* + l],

where

- +am + k, 0<k<am+ί.

It is well-known that for G, defined in the introduction,

where xm = Gmx, ym — qm~\l'qm.

Let us write

(1)

and

(2) x—-
qm

- 1

Then we have

(3) θm=xj

and this is contained in the following formula, given in [2],

(4) θ , = ( l -kxm)(k+>O(i + χ*yj- S

where

• ••• +am + k, 0<k<am+ί.

(4) allows discussion of Θw via G but our strategy is to work directly with f

so we set about expressing the quantities Qn~\l Qn and Θw in terms of Xn, Yn.

Lemma 1. For « = 1,2, , we have
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β,/β, 1 + ,=(H-r.- 1 Γ 1 =max{y 1 , , i-r 1 1 } .

Proof. We know that Yn equals FB_1(1 + Yn-ι)~ι or (l + r , . , ) " 1 and that
0 < r n _ ! < l . Hence (l + r ^ O " 1 equals max{r n , l- Yn}.

Next we use induction. When n = ί, we have Y1 = l/2, βi = l. And we
always have β 2 = 2. Hence

Suppose for /<« we have
β,/βI+1=max{yi,l-r,}.

Assume that n=ao + aι + 2-\ \-am+k, 0<k<am+l. If k=0, then Qn = qm,
β B + i = l ?m + 0 m - i ω d r , = [O;l,αwαm_1, ,α 1 ]£ l/2 . Hence Qn/Qπ+ι = Ym. If
α m + 1 >2, then Qa+2 = 2 qm + qm_ι = Ql, + Qm+1. Thus

If α m + 1 = l, then β π + 1 = ? m + 1 and Qn+2=<lm + qm+i. Again we have
i and again we get β B + 1 / β n + 2 = ( l + Yn)~ι.

When 0 < / : < α m + 1 - l , we have Qn=kqm + qm_u QB+ι=(k+l)qm + <lm-i and
βπ+2=(^ + 2)9m + ί'm-i. and Yn, which equals [0;^ + l] or \Q ,k+\,αw ,α{\, is
at most 1/2. Hence

Lastly we consider ^ = α m + 1 - l > 0 . We have Qn=kqm+qm_1=qm+1-qm,
β»+i=?m+i and Qn+2 = qm+ι+qm We also have r π = j m + 1 < l / 2 . Hence, once
more, β π + 1 / β n + 2 = ( l + YnΓ

ι.

Lemma 2. For « = 2,3, , we have

(6) ©^^(l

Proof. For n=ao+aί+a2+ ••• +am>2, we have Λr

n=jcm and y n =(l+>' m )" 1

>l/2 . An application of (3) gives
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For n = a1-\ +am+k>2 where 0<k<am+1, we apply (4) after noting that

Xn=(x^-k)-\ Y

This gives

It is now easy to see that Yn+ί>\/2 if and only if Xn>\/2. When Xn

(XB+ „ Yn+ 1 ) =

In this case we see that

® Λ 1 ' Λ + Y ~ ^ ^ )

For the case A ; < l / 2 , we substitute Xn+ί=(\-Xny
ιXn, Yn+1 = Yn{l + Yn)~γ

in the formula

®n + l = = ( l ~ ^ w + lX^n + 1 + -*ιi + 1 ~~ ̂ Gi + 1 ̂ n + l)

to obtain the required result. •

3. Frgodicity and ergodic theorem for f

We begin this section by showing that G can be induced from T.

Theorem 1. The dynamical system (Ω,&2>fig>G) *s (isomorphic with) the system
induced from (Ω9@2,v,f) on the set E={(x9y):y>l/2}.

Proof. Recall that for x = [0;aua29 "']» y = ίθ'9bl9b29~ ~] we have

In particular the second coordinate of f(x,y) is greater than 1 / 2 if and only if
aί = l. Accordingly the induced map TE is given by

Now consider the map φ:E\-^Ω given by
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The map transforms to (x,y)t—>(x~ι — au (y + tfi)"1) and the measure dxdy(x+y
—xy)~2 transforms to dxdy(l+xy)~2. •

By Theorem 1 and the ergodicity of G together with a result of [16], we
obtain the ergodicity of T. Theorem 1 also gives an abstract justification of the
statement that any result derived from G or G can be obtained from T.

The map T is ergodic and invertible and v is non-atomic so it follows (see
[5]) that f is conservative. Therefore we may apply the Chacon-Ornstein theorem
(cf. [13]) on the system (Ω,@2,v,T) (we use Ω to denote [0,l]x[0,l] for the
remainder of the paper) to derive the following result.

Theorem 2. For any fgeLι(Ω,$t2>v) with \gdvΦQ, one has

nΣf(fk(x,y)) ίfdv
lim —{ =- a.e.

- . £s(f*(x,j,)) \gdv~
k = 0 J

Next we show that under Lipschitz conditions on / g, the points f\x,y) in
Theorem 2 can be replaced by (Xk, Yk) = f\x, 1).

Theorem 3. Suppose that f,geL\Ω,@,v) satisfy

\f(χ,y)-f(χ,y')\<L\y-yT

\g(χ,y)-g(χ,y')\<L\y-yγ

where L>0, α>0 are constants. If jgrfv/O, then for almost all (x,y)eΩ one has

"Σnfk(χ,y)) "
hm ^ = hm

fc=O

Proof. Let Z{ be the second coordinate of f\x,y\ i.e. TI'(x,y) = (Ar

i,Zi). We
claim that for almost all xe[0,l] and all >>e(0,l], we have

In fact, for x = [0;α1,β2, ] ) i = aί+a2-\—Λ-am + K 0<k<am+1, one has
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and

Hence we have

for some constant c9 where qm is the denominator of the m-th convergent — of

the regular continued fraction expansion of x (cf. [1] p.42]. Therefore we get that

ί=0 m=0*=l\q m j m=0

By induction we can see that

We need the following theorem (see [15]).

oo 1

Theorem A. Let F(n)>l,for A2=l,2, , and suppose that Y <oo.
n=ιF(ή)

Then the set

4̂ = {XG[0,1], ak(x)>F{k) infinitely many times)

has Lebesgue measure 0.

Now we choose F(n) = 2n<x/2. By the above theorem we see that the set

E={xe [0,1], ak(x)>F{k) only finitely many times]

has Lebesgue measure 1. Hence for almost all xe[0,l],

m = 0

Where C(x)= J] ~ ! !^r τ ^ e required result follows easily when we bear in
am>F(m) qm

a

mind the fact that Σg(Tk(x9y)) diverges almost everywhere because T is conservative
and ergodic. •

For some functions f(x9y) though we do not have
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(*) \f(χ,y)-f(χ,yΊ\zL\y-y'\'

for all j>,/e[0,l], it is still true that

\f(T%x,y))-f(Xi9 Yt)\ <L\Zt- rj-, α>0,

for almost all xe[0,l] and / large enough.

EXAMPLE. Let

Then feL\Ω). We do not have (•) for all j/j/e[0,l].

For x = lO;aua2,—]9 let

where m>2. Then

=|iog(i-zί)-iog(i-ri)|

where ^ is in between y{ and y f. It is easy to see that l—ξi>ί/qm9 i.e.

Therefore, \f(Γ(x,y))-f{XhYd\<.c\Yt-Zt\
1/2.

4. Applications

In this section we apply the ergodic theorems for f to obtain metrical results
for convergents and medians of regular continued fractions. For all the functions
/, g involved in this section it is valid to replace Tk(x,y) by (Xk9 Yk) as in Theorem
3 but omit the tedious verification.

For an irrational x = [0;aua2, \\ we shall call
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the k-th mediants of x, when an + ί>2k. We let P*® / Q^ denote the sequence
which consists of all convergents and i-th mediants of x for all i<k. When £ = 0,
we recover the convergents {pm/qm} and, when k—\, we obtain the so-called
nearest mediants of Ito, [8], It is easy to see that the event "PM/βM appears as
some P^IQf^ is characterised by Xn> 1 /(*+1) or Yn> 1 /(k + 2) while "Pn+ί/Qn+ί

appears as some /f >/$*>" is by *„> l/(* + 2) or 7W>

Let us write also

(i).

Our main theorem can now be stated.

Theorem 4. For almost all x we have

lim -
,

121og(2A: + 2)

(ii).

(iii). for k = \,2, ,

.. 1 . , .

lim - log
p(k)

Ik 61og(2A:4-2)

1

log(2A: + 2)

1+logz,

2z

ifc + ϊ '

0<z<l

ik +

2z2 /c+1

2

k+l<z

<z<k+\

. , ,. 1 „,. . Λ , 12fz, 0 < z < l ,
IV). lim #{i: i<n, Θ i<z}=^r<

-»logβ, l J π2ll+logz, l<z.

(iv).

REMARK. The case k = 0 of (i) and (ii) are the basic results of Levy (see [1]),
and the case k= 1 of (i), (ii) and (iii) give results of I to, [8]. The important result
of Bosma et al in [3] corresponds to the case k = 0 of (ii) and the proof which
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follows could be simplified to yield that special case. Nevertheless a suitable

interpretation of the three terms corresponding to 1 / 2 < Z < 1 yields the appropriate

distribution. We take the signed sum, i.e.

z, 0<z<-

lim-#{/: i<n9 θn<z} =
n-* oo '

- z + log(2z), -
>» ~ Iog2

log 2,

where

1 - z + log(2z) = z - (1 + log z) + [2 - 2z + log(2z2)].

Proof. For (i) we take

/(*,>>) = log(max{>>, 1 -y}\

, whenx>(A:+l)-1,or.y>(A:4-2)-1

[), otherwise.

Then

Jm log(2A: + 2)~
 π2 Γ ^

v= , \gdv=
121og2' J S

/ Λ — I O " Iog2

For « = flo + βiH ^βm + A:, 0<fc<αm + 1, we have, by Lemma 1,

Qn+1

while

n

Σg{Xi,Yd = Hi' i^n> Qi appears as some Qf).

Therefore

Σ f(X» γι) I Σ A** γ>)= ~s~'dogQn+1 -logQx).
i = l I r = l

where s is determined by Qf] <Qn< Qfl i By the ergodic theorem of the last section

= - lim £ / ( ^ Yd I Σ E&t> Yi) = " ί/
n-»ooί=l I i= 1 J
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and the required result follows.

For (ii) noting that Θ^^iQ^Ylx-P^ / Q(f% by (i) it suffices to show that

r log©?0

 Λ

hm & n = 0 a.e.

Remember that ΘM + 1 is one of Θjfc) if and only if Xn>(k-\-2)~1 or
)" 1 . Then when Θn + 1 is one of Θ<fc) we have

On the other hand,

Θ n + 1 > l - A - π > l - [ 0 ; l , α m + 1 , ]>l/(α m + 1

where m is determined by Qn<qm<Qn+ί Therefore,

s s s

Noting that m<s<(2k+\)m we obtain

logam+1 fam + 1\
ίla logαmH

s m \ nf

by Theorem A, where α > l is a constant. Therefore

a.e.

h m — - — ^ = 0 a.e.

n-*oo ft

To prove (iii) and (iv) we also consider ΘM + 1 instead of Θw. Let

1— x t
}

x+y—xy

1—x

x+y—xy

where 0<z, 0<t<l/2 and

1, (x,y)eEXtt

0, othewise.

z, y>ή=EίκjE2
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We recast the inequality

(1 — x)(x-\-y—xy)~ι <z

in the form

x>(l—zy)(\+z(l—y))~ι=u(y), say,

and note that (1 -zj)(l +z(l -y))~ι >t/(ί 4- 0 if and only if>>>z~1 - 1 . Therefore

1
{x>u(y\ 0<>><l}, 0<z<

{x>u{y\ Q<y<—t}yj{x>- , —t<y<l}9 - <z<-
z 1+t z \+t t

1
x > , 0<^<l}, .

Suppose first that 0<z< 1/(1 + 0- Then Ezt = Eγ = {x>u{y\

Hence

Iog2 \fdv= dy (x+y-xy)~2dx = z.
J JO J u(y)

Now consider the case 1/(1+ *)<*< 1. Note that t<l-t<z~1-t. Then

again Ezt = {x>u(y% 0<>><l} and Iog2j/rfv = z.

When l < z < l / 2 ί we also have z" 1 — t>t. Remember that u(y)>0 when

y>z~K Thus

9 : x>u(y\

= {x>u(y% 0<y<z~1}κj{x>0, z~x

and

ί [fdv = \log2 |/rfv = l+logz.

If l/2t<z<l/t, then 0<z~1-t<t and

EZft={x>u(y\ Q<y<--t}κj{x>-^--^ --t<y<t}

κj{x>u(y\ t<y<-}u{x>0, -
z z
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Calculate that

Lastly, when

G.

log2J/

z>\/1 we have

BROWN AND Q. YIN

dv = 2-2tz + log(2tz2).

0<y<ήu{x>0, t<y<\)

and log2j/</v=log2 —log*.

It is now easy to piece together the result of (iii) by taking t=(k + l)~i and

l,

0, otherwise.

To obtain (iv) we set ί = 0 and replace g by the function log(max{>>, 1 — y}) used

as / in proving (i). This completes the proof. •

REMARK. Part (iii) of the theorem (in some sense a limiting case as k -> oo)

shows that £#{/: i<n9 Θw<z}-*0 as n -» oo and hence that {Θπ} does not have

a distribution function. We can obtain some more information about Θw. We have

For almost all xe[0,l] and any ε>0,

(i). lim — i - = 0, where qm < Qn < qm+1

1
(ii). lim - £ ©,= 00; and

n-»oo«i=l

(iii).

In fact, for n = ao + ai-\ \-am + k, where 0<k<am + u by Lemma 2

(*) Θ M + 1 < y π = [/:4-l;flm, ,αi]<fc-f2.

Then (i) follows from Theorem A. Using (*) we can get the the following estimation:

(**) A Γ Σ af+k2-n\-(m+l)< £ Θf< £ af+k2.
lθ |_/=l J i = l i=ί

Then follow (ii) and (iii).

Next let us compare Theorem 4 (iv) with some results of P. Erdos [6] and
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J. Blom [2]. Let

x-P-

Define

and

: (p,q)=l

- is a convergent of x}

: (p9q)=l9
Z, q<n},

- is a best approximant of x}.
q

By best approximant we mean that if there is a fraction - different from - such that
b q

a

then b>q. Erdόs [6]) proved that for any z>0

Γ U(x9z9n) 12
hm = — z a.e.

n π

Blom [2] gave that

Ux{x,z,n) 12
hm —^ = — (f)z a.e.

n 7T

and

where
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0<z<-

h(z) =

l-z+log(2z) -

Iog2 z

0

2-i-llog(2z) i

i+ilog(2z)

When z < l Theorem 4(iii) corresponds to the result of Erdos [6]. [8] and
[9] also gave new proofs in this case. When z > l this result takes a different
form. This fact tells us that, for z>l , there is no result for convergents and
mediants analogous to the theorem of Legendre for z = l / 2 or the theorem of
Fatou and Koksma for z = 1 (see [9]).

The result of Blom [2] can also be proved by Theorem 2 or 3. In fact for
(p ]

irrational xe[0,l), a best approximant is an element of <—-> characterized by

i + l, n>2.

Thus we can prove these results by choosing appropriate functions / and g.
Jager [9] considered the two sequences

'Pn+Pn-l

separately and obtained some metrical results. If PN/ QN appears as (pn +pn-^)/{qn

+ qn-ι) then we have

Ί̂v = [0;flΛ+i-l,Λl,+2> ]> FN = [0;2,αw, ,α1] when αw + 1 > 2 ,

or

ΓiV = [0;l,l,απ, ,α1] when an+1 = \.

Thus the first sequece is characterised by l/3< Γw<2/3. The second one is more
complicated. If an +1 > 2, then ((an +ί-l)pn +pn _ t) / ((an +i-ί)qn + qn-1) corresponds
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When an+1 = l we get pn-χlqn-γ which corresponds to

1 2

Hence the second one is characterised by

2,1), 7,6(0,1/2) or Xne , Yne

However, those two sequences are not "pure" nearest mediants. We shall
consider the sequences

Pn+Pn-l ,an+1>2} and

which are characterised by 1 / 3 < Yn < 1 / 2 and Xn > 1 / 2, Yn < 1 / 2 respectively. In
general we use {a^/b^} and {c^/d^} to denotes the "pure" A:-th mediant
sequences for each of the two directions

- , 0 * + i > and —• ,an+1>2k

respectively, where k<\. It is not hard to see that {a^/b^} is the subsequence
of {PnIQn} determined by Xn<\/k and (k + 2)-1 < Yn<(k+\yΛ while {c
determined by (k+l)'1 <Xn<k~ι and Yn<(k+l)~\ Define

σΓ' =

and

Theorem 5. For almost all xe[0,l] and A:=l,2, , one has

n 12(log(2A:+l)-log(2A:))

(ii). lim -log x—- = lim -log x — 6(log(2A:+l)-log(2&))'

(iii). lim -#{σ\k)<z, i<n} = lim
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- 2z
-

2z
- ,

k2+k

k k2+k

P+k

k+l *(2k+l)z

ί)-\og(2k),

, k < z < k + ί

Proof. For (i) we take / to be the same function as in the proof of
Theorem 4(i). We let

l,

0, otherwise

for the first one and

Then

1,

0, otherwise.

rd" r log 2

Therefore we get (i).

(ii) can be proved by a similar argument as the proof of Theorem 4(ii).

As for (iii), we take σ^ as an example. Since we are concerned Xn<\/k
and (A: + 2)" 1 <r M <(A:+l)- 1 , we have

Θn = (l-Yn)(Xn+Yn-XnYnΓ
ι

by Lemma 2. It is easy to see that for the Θn in consideration we have

k/2<θn<k+l.

Let

\-y 1 1 1
< Z X < < > '

0, otherwise.
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Then Σ"= xf(Xb Yi) counts the number of Θ t, i<n appears as some σψ and <z. The
non-zero regions of / with respect to different values of z are as follows:

\-zx 1 k-z Π t k k2 + k
<y<—-, -—<*<->, when -<z<-\Λ-z-zx * k + ϊ kz ky 2 2k+l

1-zx 1 k-z k+l-z]

l+z-zx Jfc+Γ kz ~ (k + ί)z
ί 1 1 k+l-z 1 | . A:2+A:
< < j < , <*<->, when <z<k,

2k+\

u< <j< , <*<->, when
[k + 2 k + i {k+l)z ky 2k+\

\-zx 1 Jt + 1-
0 <l+z-zx fc+Γ

cw^\
ί ! ! Λ + l - z 1) u 7

u< <V< , <Λ:<->, when k<z<k+\.
U + 2 A+1 (fc+l) jkj

The proof is completed by calculating several integrals and taking g as gt in the
proof of (i). •
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