SEIBERG-WITTEN INVARIANTS ON NON-SYMPLECTIC 4-MANIFOLDS

Yong Seung CHO

(Received February 19, 1996)

Let X be an oriented, closed Riemannian 4-manifold. There is an integral cohomology class which reduces mod (2) to the second Stieffel-Whiney class $w_{2}(X)$. This integral cohomology class induces a Spin^{c}-structure on X. Seiberg and Witten in [10] introduced a new invariant on X which is a differentialtopological invariant. Taubes in [9] proved that every closed symplectic 4-manifold has a non-trivial Seiberg-Witten invariant. The Seiberg-Witten invariants of connected sums of 4-manifolds with $b_{2}^{+}>0$ identically vanish. Kotschick, Morgan and Taubes in [8] showed that there are closed oriented 4-manifolds with nontrivial Seiberg-Witten invariants which do not admit symplectic structures. They considered the case which is the first Betti number $b_{1}(N)=0$. We would like to generalize their theorem by giving a certain condition instead of $b_{1}(N)=0$, of course our case will cover their case. We introduce their theorem:

Theorem ([8]). Let X be a manifold with a nontrivial Seiberg-Witten invariant with $b_{2}^{+}(X)>1$, and let N be a manifold with $b_{1}(N)=b_{2}^{+}(N)=0$ whose fundamental group has a nontrivial finite quotient. Then $M=X \sharp N$ has a non-trivial SeibergWitten invariant but does not admit any symplectic structure.

Let M be a closed symplectic 4-manifold and let $M=X \# N$ be a smooth connected sum decomposition. By the vanishing theorem of Seiberg-Witten invariants and non-trivial Seiberg-Witten invariants for symplectic manifolds, one of the summands, say it N, has a negative definite intersection form. By Donaldson's Theorem [5] there is a basis $\left\{e_{1}, \cdots, e_{n}\right\}$ of the free part of $H^{2}(N, Z)$ such that in this basis the intersection form of N is diagonal, where n is the rank of $H^{2}(N, Z)$. An element $\alpha \in H^{2}(N, Z)$ is said to be characteristic if the intersection number $\alpha \cdot x=x \cdot x \bmod (2)$ for any $x \in H^{2}(N, Z)$. If α is characteristic, then $\alpha \equiv w_{2}(N)$ modulo 2 .

Lemma 1. Let N be a closed oriented Riemannian 4-manifold with $b_{2}^{+}(N)=0$ and let $\left\{e_{1}, \cdots, e_{n}\right\}$ is a basis for the free part of $H^{2}(N, Z)$ such that $e_{i} \cdot e_{j}=-\delta_{i j}$.

[^0]Then

1. $e=e_{1}+\cdots+e_{n}$ is characteristic.
2. $\alpha=\left(1+\lambda_{1}\right) e_{1}+\cdots+\left(1+\lambda_{n}\right) e_{n}$ is characteristic if and only if the λ_{i} are even.

Proof. It is sufficient to consider the free elements in the proof because the intersection numbers with torsion elements are zero. Let $x=x_{1} e_{1}+\cdots x_{n} e_{n}$ $\in H^{2}(N, Z)$ where the x_{i} are integers $i=1, \cdots, n$.

Then

$$
\begin{aligned}
& \alpha \cdot x=-\left(1+\lambda_{1}\right) x_{1}-\cdots-\left(1+\lambda_{n}\right) x_{n} \quad \text { and } \\
& x \cdot x=-x_{1}^{2}-\cdots-x_{n}^{2} .
\end{aligned}
$$

$\alpha \cdot x=x \cdot x \bmod (2)$ for all $x \in H^{2}(N, Z)$.
$\Leftrightarrow-\left(1+\lambda_{1}\right) x_{1}-\cdots-\left(1+\lambda_{n}\right) x_{n}=-x_{1}^{2}-\cdots-x_{n}^{2} \bmod (2)$ for all x_{1}, \cdots, x_{n}.
$\Leftrightarrow \lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n}=0 \bmod (2)$ for all x_{1}, \cdots, x_{n}.
$\Leftrightarrow \lambda_{1}, \cdots, \lambda_{n}$ are even.
If the fundamental group $\pi_{1}(N)$ of N has a non-trivial finite quotient, then there is a connected covering of N with the cardinality of fiber >1 and so is a connected sum with N.

Lemma 2 ([8]). Let $M=X \# N$ be a closed symplectic 4-manifold which decomposes as a connected sum. If N has a negative definite intersection form then its fundamental group does not admit nontrivial finite quotient.

We recall briefly the Seiberg-Witten invariants for a compact, oriented Riemannian 4-manifold X with $b_{2}^{+}(X)>1$.

Let $e \in H^{2}(X, Z)$, with $e \equiv w_{2}(X) \bmod (2)$.
The cohomology class e defines a Spin c-structure on X. Let $W^{+}\left(W^{-}\right) \rightarrow X$ be the positive (negative respectively) spinor bundle on X and $L=\operatorname{det}\left(W^{+}\right)$the determinant line bundle of W^{+}. Let $\tau: \operatorname{End}\left(W^{+}\right) \rightarrow \Lambda^{+}\left(T^{*} X\right) \otimes C$ be the adjoint of Clifford multiplication. A connection A on L with the Levi-Civita connection on $T^{*} X$ defines a covariant derivative $\nabla_{A}: \Gamma\left(W^{+}\right) \rightarrow \Gamma\left(W^{+} \otimes T^{*} X\right)$. The composition of ∇_{A} and Clifford multiplication define a Dirac operator

$$
D_{A}: \Gamma\left(W^{+}\right) \rightarrow \Gamma\left(W^{-}\right) .
$$

For each connection on $L A \in \mathscr{A}(L)$ and $\phi \in \Gamma\left(W^{+}\right)$, the equations

$$
\left\{\begin{array}{l}
D_{A} \phi=0 \\
F_{A}^{+}=\frac{1}{4} \tau\left(\phi \otimes \phi^{*}\right)
\end{array}\right.
$$

are called the Seiberg-Witten monopole equations. The gauge group $C^{\infty}(X, U(1))$ of the complex line bundle L acts on the space of solutions of the monopole equations. The moduli space $\mathfrak{M}(X, e)$ is the quotient of the space of solutions by the gauge group. Then the moduli space is generically a compact smooth manifold with its dimension $-(1 / 4)(2 \chi(X)+3 \sigma(X))+(1 / 4) c_{1}(L)^{2}$ and defines canonically an invariant which is so called the Seiberg-Witten invariants. For details see [5].

Let X and N be compact oriented 4-manifolds. Let $\alpha \in H^{2}(X, Z)$ and $\beta \in H^{2}(N, Z)$ such that $\alpha \equiv w_{2}(X) \bmod (2), \beta \equiv w_{2}(N) \bmod (2)$. Let $M=X \# N$, then $\alpha+\beta \equiv w_{2}(M) \bmod (2)$. Let the complex line bundles $L_{\alpha} \rightarrow X, L_{\beta} \rightarrow N, L_{\alpha+\beta} \rightarrow M$ with their Chern classes $c_{1}\left(L_{\alpha}\right)=\alpha, c_{1}\left(L_{\beta}\right)=\beta$ and $c_{1}\left(L_{\alpha+\beta}\right)=\alpha+\beta$ respectively. We can easily calculate the virtual dimensions of the moduli spaces.

Lemma 3. $\operatorname{dim} \mathfrak{M}(M, \alpha+\beta)=\operatorname{dim} \mathfrak{M}(X, \alpha)+\operatorname{dim} \mathfrak{M}(N, \beta)+1$.
Proof. The Euler characteristic is $\chi(M)=\chi(X)+\chi(N)-2$. The signature is $\sigma(M)=\sigma(X)+\sigma(N)$. The first Chern classes are $c_{1}\left(L_{\alpha+\beta}\right)=c_{1}\left(L_{\alpha}\right)+c_{1}\left(L_{\beta}\right)$ and $\alpha \cdot \beta=0$. Thus

$$
\begin{aligned}
\operatorname{dim} \mathfrak{M}(M, \alpha+\beta)= & -\frac{1}{4}(2 \chi(M)+3 \sigma(M))+\frac{1}{4} c_{1}\left(L_{\alpha+\beta}\right)^{2} \\
= & {\left[-\frac{1}{4}(2 \chi(X)+3 \sigma(X))+\frac{1}{4} c_{1}\left(L_{\alpha}\right)^{2}\right] } \\
& +\left[-\frac{1}{4}(2 \chi(N)+3 \sigma(N))+\frac{1}{4} c_{1}\left(L_{\beta}\right)^{2}\right]+1 \\
= & \operatorname{dim} \mathfrak{M}(X, \alpha)+\operatorname{dim} \mathfrak{M}(N, \beta)+1 .
\end{aligned}
$$

Let N have a negative definite intersection form.
As in Lemma 1, let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a basis of the free part of $H^{2}(N, Z)$. If $\alpha=\left(1+\lambda_{1}\right) e_{1}+\cdots+\left(1+\lambda_{n}\right) e_{n}$ and the λ_{i} are even, the α is characteristic.

Lemma 4. If $4 b_{1}(N)=2 \lambda_{1}+\cdots+2 \lambda_{n}+\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}$, then $\operatorname{dim} \mathfrak{M}(N, \alpha)=-1$.
Corollary 5. If X is a symplectic manifold and K is the canonical line bundle on X, and $M=X \# N$, then $\operatorname{dim} \mathfrak{M}\left(M, c_{1}(K)+\alpha\right)=\operatorname{dim} \mathfrak{M}\left(X, c_{1}(K)\right)=0$.

Proof. For the proof use $c_{1}(K)^{2}=2 \chi+3 \sigma$ and Lemma 3, 4.
Proof of Lemma 4. The virtual dimension of the moduli space is

$$
\operatorname{dim} \mathfrak{M}(N, \alpha)=-\frac{1}{4}(2 \chi(N)+3 \sigma(N))+\frac{1}{4} \alpha^{2}
$$

$$
\begin{aligned}
= & -\frac{1}{4}\left\{2\left(2-2 b_{1}(N)+b_{2}(N)\right)+3\left(-b_{2}(N)\right)\right\} \\
& +\frac{1}{4}\left[\left(1+\lambda_{1}\right) e_{1}+\cdots+\left(1+\lambda_{n}\right) e_{n}\right]^{2} \\
= & -\frac{1}{4}\left[4-4 b_{1}(N)-b_{2}(N)\right]+\frac{1}{4}\left[-\left(1+\lambda_{1}\right)^{2}-\cdots-\left(1+\lambda_{n}\right)^{2}\right] \\
= & -\frac{1}{4}\left[4-4 b_{1}(N)+2 \lambda_{1}+\lambda_{1}^{2}+\cdots+2 \lambda_{n}+\lambda_{n}^{2}\right] \\
= & -1, \quad \text { since } 4 b_{1}(N)=2 \lambda_{1}+\cdots 2 \lambda_{n}+\lambda_{1}^{2}+\cdots+\lambda_{n}^{2} .
\end{aligned}
$$

Remark 1. For the equation $4 b_{1}(N)=2 \lambda_{1}+\cdots+2 \lambda_{n}+\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}$,

1. If $\lambda_{2}=\cdots=\lambda_{n}=0, b_{1}(N)=6$ and $\lambda_{1}=4$ or -6 , then the equation holds.
2. If $\lambda_{1}=\cdots=\lambda_{n}=0=b_{1}(N)$, then the equation also holds.

Theorem 6. Let X have a nontrivial Seiberg-Witten invariant and let N have a negative definite intersection form. If there are even integers $\lambda_{i}, i=1 \cdots n$ such that $4 b_{1}(N)=2 \lambda_{1}+\cdots+2 \lambda_{n}+\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}$, then the connected sum $M=X \# N$ has a nontrivial Seiberg-Witten invariant.

Proof. Suppose N has a negative definite intersection form. As in Lemma 4, choose $\alpha=\left(1+\lambda_{1}\right) e_{1}+\cdots+\left(1+\lambda_{n}\right) e_{n}$ such that $4 b_{1}(N)=2 \lambda_{1}+\cdots+2 \lambda_{n}+\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}$ and the λ_{i} are even. Then α is characteristic by Lemma 1 and there is a $S_{\text {Pin }}{ }^{\text {c}}$-structure on N with first Chern class α. The Seiberg-Witten monopole equation is

$$
\left\{\begin{array}{l}
D_{A} \psi=0 \\
F_{A}^{+}=\frac{1}{4} \tau\left(\psi \otimes \psi^{*}\right)
\end{array}\right.
$$

For a generic metric on N there is no non-abelian solution of the equations since $\operatorname{dim} \mathfrak{M}(N, \alpha)=-1$. We have a unique abelian solution $\left(A_{\alpha}, 0\right)$ given by the zero section of the positive spinor bundle and a connection A_{α} whose curvature is the harmonic form representing $\alpha=(i / 2 \pi) F_{A_{\alpha}} \in H^{2}(N, \boldsymbol{R})$. The given Spin ${ }^{c}-$ structure $e \in H^{2}(X, Z)$ on X and α induce a $S p i n^{c}$-structure on M. By choosing generic metrics on $\left[X \backslash D^{4}\right] \cup[0, \infty) \times S^{3}$ and $\left[N \backslash D^{4}\right] \cup[0, \infty) \times S^{3}$, and product metric on the cylinder $S^{\mathbf{3}} \times \boldsymbol{R}$ and connecting them, we have a Riemannian metric on $M=X \# N$. The solutions of the Seiberg-Witten equations in $\mathfrak{M}(M, e+\alpha)$ are given by gluing the solutions in $\mathfrak{M}(X, e)$ on X to the unique solution $\left(A_{\alpha}, 0\right)$ in $\mathfrak{M}(N, \alpha)$ on N.

In particular, $\operatorname{dim} \mathfrak{M}(M, e+\alpha)=\operatorname{dim} \mathfrak{M}(X, e)$.
By combining Lemma 1 to Theorem 6 we have the following Theorem.
Theorem 7. Let X be a manifold with a nontrivial Seiberg-Witten invariant defined by $e \in H^{2}(X, Z)\left(b_{2}^{+}(X)>1\right)$, and let N be a manifold with negative definite intersection form. If there are even integers $\lambda_{i}, i=1 \cdots n$ such that $4 b_{1}(N)=2 \lambda_{1}+\cdots$ $+2 \lambda_{n}+\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}$ and that the fundamental group of N has a nontrivial finite quotient, then the connected sum $X \# N$ has a nontrivial Seiberg-Witten invariant but does not admit any symplectic structure.

According to the Remark 1, Theorem 7 covers the Theorem [8] and there are many examples which are not included in Theorem [8].

References

[1] Y.S. Cho: Seiberg-Witten invariants, and 3- and 4-manifolds, Preprint.
[2] Y.S. Cho: Equivariant metric for smooth moduli spaces, Topology and its Applications 62 (1995), 77-85.
[3] Y.S. Cho: Cyclic group actions on Gauge theory, Differ. Geom. and its Applications 6 (1996), 87-99.
[4] Y.S. Cho: Finite group actions on the moduli space of self-dual connectins (I), Trans. A.M.S. 323 No. 1, January (1991), 233-261.
[5] S.K. Donaldson: The orientation of Yang-Mills moduli space and 4-manifold topology, J. Differential Geometry 26 (1987), 397-428.
[6] M. Gromov: Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
[7] P. Kronheimer and T. Mrowka: The genus of embedded surfaces in the projective plane, Math. Research Letters 1 (1994), 794-808.
[8] D. Kotschick, S. Morgan and C. Taubes: Four-manifolds without symplectic structures but with nontrivial Seiberg-Witten invariants, Math. Research Letters 2 (1995), 119-124.
[9] C.H. Taubes: The Seiberg-Witten invariants and symplectic forms, Math. Research Letters 1 (1994), 809-822.
[10] E. Witten: Monopoles and four-manifolds, Math. Research Letters 1 (1994), 769-796.

Department of Mathematics Ewha Women's University Seoul 120-750, Korea

[^0]: The present studies were supported in part by the BSRI program, Ministry of Education, 1996. project No. BSRI-96-1424, and GARC-KOSEF.

