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1. Introduction

Let V be a normal surface defined over C. Following [3], we say V is logarith-
mic if all its singularities are of quotient type. It is called a Q-homology plane if its
reduced homology groups with rational coefficients all vanish. Let J^ = {pi, ,pr}
denote the set of singularities of V. Then recall that the logarithmic Kodaira di-
mension of V is defined to be the logarithmic Kodaira dimension of V \ ^ . In a
sequence of three articles beginning with this, we propose to probe the following
questions:

Question A: Are all logarithmic Q-homology planes rational?
All logarithmic Q-homology planes with logarithmic Kodaira dimension < 1

are known the be rational (see [3], [2], [7]). Therefore Question A immediately
reduces to:

Question B: Are all logarithmic Q-homology planes of logarithmic Kodaira
dimension 2 rational?

It may be recalled that in [4], it is proved that all smooth Z-homology planes
are rational. Adopting the style therein, we can pose the following:

Question C: Let X be a smooth projective surface defined over C. Suppose
there is a reduced effective divisor Δ on X such that

i) the irreducible components of Δ generate the Pic(X) ® Q;
ii) each connected component of Δ is simply connected;

iii) κ(X, K + A)=2.
Then is X a rational surface?

Observe that by blowing up points inside Δ, if necessary, we can assume that
Δ is a normal crossing curve. By blowing down, if necessary, we can assume that
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it is minimal with respect to this property. This is what we are going to assume in
the sequel without even bothering to mention it.

Given the logarithmic Q-homology plane V as above, let ψ : U —> V be the
minimal resolution of singularities, X be a smooth minimal completion of U and
D = (X \ U) U rφ~1(ΣJ). Below we recall some basic facts about logarithmic
Q-homology planes from [7].

Lemma 1.1. For a logarithmic Q-homology plane V, the following holds:
(a) V is an affine surface.
(b) A smooth projective completion X of U can be chosen such that D has at

worst ordinary double point singularities, and minimal with respect to this property.
(c) All the connected components of D are simply connected and the irreducible

components of D generate Pic I 0 Q . Also, X is simply connected.
(d) The irregularity and the geometric genus of V {and hence that of X)

vanish.
(e) The intersection form of D has exactly one positive eigen value.

Moreover, by the hypothesis in Question B, we have κ(X, K+D) = 2. Therefore,
a positive answer to Question C will imply the same for Question B by taking
Δ = D. We adopt similar techniques as in [4], which heavily depends on an
inequality of M. Miyaoka and the unimodularity of the adjacency matrix of the
divisor at infinity of the Z^homology plane. In the situation of Q-homology planes
and logarithmic Q-homology planes, the divisor at infinity need not be unimodular.
As if to compensate for this drawback, we now have a more generalized version of
the Miyaoka-Yau type inequality proved by R. Kobayashi for open algebraic surfaces
(see [5]). (This was brought to the notice of the authors by R. V. Gurjar for which
they are grateful to him.) This inequality plays a crucial role in our study. Below,
we breifly describe the outline of our strategy.

Assume that X is not rational. Then X is either a surface of general type or
an elliptic surface. Starting with a reduced effective NC divisor D on I , we study
the contractions Φ : (X,D) —• (XC,DC) where (XC,DC) denotes the log-canonical
model for the pair (X,D). With the help of this study and Kobayashi's inequality,
we derive an inequality (see (7) below), involving the bark of the divisor D, the Betti
numbers of X and D and (K.D) where K is the canonical divisor of X. The term
(K.D) is estimated in [4] by studying the contractions π : X —> X", where X" is
the smooth minimal model for the function field of X. We reproduce this estimation
with minor modifications for the sake of completeness of our treatment and for fixing
up our notations. Using this estimation in the afore mentioned inequality, we get an
important auxiliary inequality involving certain integral parameters of the surface
X and the divisor D. Of course, we are often interested in the case when D = Δ,
but sometimes we shall use the inequalities for other divisors also. From this stage
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onwards, our study is divided into two parts-one, when X is a surface of general type
and two, when X is an elliptic surface. A detailed study of the inequalities gives
a bound on the number of irreducible components in D and the self-intersection
number for the components appearing in D. Certain properties of these surfaces and
bark computations impose restrictions on the admissible values for the parameters
appearing in the auxiliary inequality. One then hopes that geometric configurations
predicted by this study violates the auxiliary inequality, thus proving the rationality
of X and hence rationality of V.

One can say that the case when Δ (and hence D) is connected corresponds to the
case when X is a smooth Q-homology plane. The additional number of connected
components in D make life easier, and hence one can prove the following theorem
with less efforts:

Theorem 1.1. With X and Δ as in Question C, assume further that Δ is not
connected. Then X is rational

In the present article, we shall complete the proof of this theorem thereby prov-
ing:

Corollary. There are no non-smooth non-rational logarithmic Q-homology
planes.

In Section 2, we collect some basic definitions and results relevant to our anal-
ysis. In Section 3, we obtain an auxiliary inequality from Kobayashi's inequality.
Another key role in our proof is played by a result due to Gurjar and Miyanishi
which states that a logarithmic Q-homology plane is strongly minimal. In partic-
ular, it does not contain any contractible curve and all log exceptional curves for
(X, Δ) are contained in Δ. We shall see that this is applicable even in the slightly
general situation of the Question C also. Later sections will be devoted to getting
rid of various cases involved.

ACKNOWLEDGEMENTS. We thank M. Miyanishi for putting the question of ra-
tionality of Q-homology planes. We thank R. V. Gurjar for some useful conversa-
tions and especially for pointing out to us, the possibility of employing Kobayashi's
inequality.

2. Preliminaries

For the details in this section we refer to [2]. Let F b e a smooth projective
surface. As in [2], we call a Q-divisor F on Y pseudo-effective if (H.F) > 0 for
every ample divisor H on Y. The Zariski-Fujita decomposition of Ky + D, in case
KY + D is pseudo-effective, is as follows:
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(a) There exists a Q-effective decomposition of Ky + D, Ky + D « P + N,
where « denotes numerical equivalence.

(b) P is numerically effective i.e., (P.A) > 0 for any irreducible curve A.
(c) N = 0 or the intersection form on the irreducible components of N is

negative definite.
(d) (P.Di) = 0 for every irreducible component Dι of N.
For a proof of the following, we refer to [6].

Theorem 2.1. Let (Y, 22) 6e α normal completion of a quasi-projective surface
Z such that ϋ(Z) > 0. Then Kγ + D is pseudo-effective and if P + N is the
Zarίski-Fujita decomposition of Ky + D, the following holds:

(a) κ(Z) = 0 iff P ~ 0.
(b) 7c(Z) = 1 iff P^O and (P)2 = 0.
(c) 7c(Z) = 2 ι# (P) 2 > 0.

In our study we need to estimate the value of (AT)2, where N is the negative part
of a certain log-canonical divisor (Ky + D). For this, we make use of the theory of
peeling as developed by M. Miyanishi, S. Tsunoda, T. Fujita et al. (See [8] or [2].)
For our purpose, the relevant definitions and results are found in Sections 3 and 6
of [2]. This is summarized in Section 10 of [4] which we reproduce below.

Let Y be a non-singular projective surface and D a reduced curve on Y. We
shall assume that all the irreducible components of D are smooth rational curves
and hence we shall drop the term 'rational' from Fujita's terminology. Recall that
D is said to be NC (normal crossings) if all the components of D are smooth and
D has at worst ordinary double points. By a (—n)-curve, we mean a non-singular
rational curve Do with (Do)2 = —n. We call D a MNC (minimal with normal
crossings) if it is NC and blowing down of any (—1)-curve in D disturbs the NC
condition. We shall assume that D is a MNC-curve. For any component Do of
D the branching number β(D0) is defined by (D0.{D — Do)). We call Do a tip if
β(Do) = 1. A sequence Γ of components {Di,..., Dr}, r > 1, is called a twig of
D if β(Dx) = 1, β(Dj) = 2 and (Dj^.Dj) = 1 for 2 < j < r. We denote Γ by
[wι,... ,wr] where Wi = —(Di)2. We call Γ a maximal twig if there is a (unique)
component Do of D such that (Dr.D0) = 1 and β(D0) > 3. Then Do is called the
branching component of Γ. For any twig Γ we denote the curve D 2 U . . . U D r by Γ.
By convention Γ = 0 if r = 1. A sequence Γ is called a club if β(Dχ) = β(Dr) = 1,
β(Dj) = 2, 2 < j < r - l .

A connected component Γ of D is called a fork if
(a) Γ has a unique component Do with β(D0) = 3.
(b) Γ has three maximal twigs Γi, Γ2, Γ3 with Do as the branching component.
(c) Γ is negative definite.
(d) d(Γi)-1 4- ̂ (Γ2)~1 + d(Γs)-1 > 1 where d(-) denote the discriminant.
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Now, assume that K + D is pseudo-effective, so that by 6.13 of [2], all clubs and
maximal twigs of D are negative definite. If Γ is a maximal twig of D, then bark
of Γ denoted Bk(T) is an element Nx G Q(Γ) such that (iVi-A) = ((K + D).Di)
for 1 < i < r. If Γ is a club of D then Bk(T) is an element N2 G Q(Γ) such that
(N2.Di) = {{K + D).Di), for all A G Γ. For an isolated club Γ = {£>i}, we have
Bk(T) = 2(-(£>1)

2)-1£>1. For any curve D we define Bk{D) = ΣBk(Γj) w h ere
summation runs over all maximal twigs and clubs of D.

For a fork D we define thicker bark denoted Bkk{D), as an element TV G Q(D)
such that (N.Di) = ((K-\-D).Di), for every irreducible component Di of Zλ Finally
for any connected component Λ of D which is not a fork we define Bk*(A) = Bk(A).
Following [4], we introduce the notation bk(D) (resp. bk*(D)) for the rational
number (Bk(D).Bk(D)) (resp. (Bk*(D).Bk*(D))).

We will need the following result proved in [11].

Lemma 2.1. Let D be a contractible Q-divisor. Let F e Q(D) and let
(F.Dj) < 0 for any irreducible component Dj of D. Then F is effective.

Following is a result proved in [2].

Lemma 2.2. Let D be a Q-divisor and Γ = [-(£>i)2,..., -(Dr)
2} a twig of

D. Let Nλ = Σ mDi G Q(Γ) be the bark of Γ. Then nγ = d(Γ)/d(Γ), nr = d(Γ)"1,
(Nx)2 = - n i and 0 < nf < 1 for 1 < i < r.

Proof. By definition, we have Nλ G Q(Γ) and (Nx.Dj) = {{K + D).Dό) =
((K + Dj +D - Dj).Dj) = -2 + β(Dj) < 0. Thus by Lemma 2.1 above, we see
that Nι is an effective divisor. Also, — rij is the (1, j)th entry of the inverse matrix
of the adjacency matrix of Γ, which is the r x r matrix with (i,j)th entry (Di.Dj).
Hence we get m = d(Γ)/d(Γ) and nr = d(Γ)"1. That (A î)2 = - m is clear from
the definition of Nι. Clearly both ni and nr are less than 1. Now, assume that
M = Maxi{«/} > 1. Take the least i such that rii = M. Since 1 < i < r, we have
0 = (Nx.Di) = Πi-i + Πi(Di)2 + ni+1 < M(2 + (A) 2 ) < 0. This contradiction
proves that M < 1. Thus we have proved the lemma. Π

REMARK 2.1. The fact that bk(Γ) = -d(Γ)/d(Γ) implies that fefe(Γ) may be
obtained by the method of continued fractions. Henceforth we shall use this fact
freely.

The following lemma is useful when estimating bk{D).

Lemma 2.3. Let Γ denote the set of twigs of D, a non-linear tree with at least
five vertices. If any of the following is a subset of Γ, then bk(D) < — 1 :



434 C.R. PRADEEP AND A R SHASTRI

{[2], [2]}, {[2], [3], [4]}, {[3], [3], [3]}, {[3], [3], [4], [6]},

{[3], [3], [5], [5]}, {[3], [2,2]}, {[2, 2], [3,2]},

{[n],[nx2]}, where [n x 2] denotes a twig with n vertices each of weight 2.

Proof. Note that D has to have at least three tips. Further, in case D has

exactly three tips, all three cannot be maximal twigs. Then, by Lemma 2.2 we see

that bk(D) < - 1 . Observe that bk([3,2]) - -2/5 and bk([nx2}) = -n/rc + 1. D

Lemma 2.4. (a) Let {Li,... , L^} be the tips of α graph T with the weight

of U being w{ then bk(T) < Σi=i1/wi.

(b) // T is a fork, then bk*{T) < bk(T). Moreover, 6fc*(T) < - 1 .

(c) Let T = [-wu..., -wr] be a club. If r = 1,2,3 or 4, then bk(T) = 4/u>i,

{W\+W2 — 2)/{w\W2 — 1), W2(wι+W3)/(wιW2W3—Wι—Ws) Or (W1W2W3+W2W3W4 —

wι — W2 — w% — W4 — 2)/(l — W1W2 — W3W4 — W1W4 + W1W2W3W4) (resp.).

(d) If T is the dual graph of a minimal resolution of a quotient singularity,

then bk*(T) < —3/n, where n = d(T) is the order of the local fundamental group

of the singularity.

Proof. (a) First, let k > 2. i.e., T is not a club. Let Γ be a twig (with tip

Li). By Lemma 2.2 we see that bk(T) = -d(T/d(T). Thus

and hence bk(T) <

Now, let k < 2. i.e., T is a club. If T consists of exactly one component, then

bk(T) = 4/wι and hence (a) holds. Hence, let T = [T1,...,Tr] with r > 1. As in

the definitions above let JVi = Σ^iTi and N 2 = ΣViTi τ h e n ^2 = Bk(T), and

Nι has the numerical property of Bk(T) if T were a maximal twig with T\ as its tip.

Hence again by Lemma 2.2 above, we see that λi = —(Nι)2 > —1/wχ. On the other

hand we have ((-/V2 — Nχ).Ti) < 0 for every component T; and hence by Lemma 2.1,

ΛΓ2 > N\. In particular μ\ > λi > —\/w\. By symmetry, we get μr > —l/wr. Now

bk(T) = (N2)
2 = — (μi + μ2) < ( l/^i + l/wr). Hence we have proved (a) of the

lemma.

(b) To prove (b), let T be a fork with the three maximal twigs Γ l 5 Γ2 and Γ3

and let D be the corresponding curve. Let N = Bk(T) and ΛΓ; = Bfc(Γi), i = 1,2,3.

Let G = N — (Nι + iV2 + A 3̂). Then we have (G.L) = 0 for every component L of

Σ Γ i and (G.Do) = ((K + D).D0) - (d(Γi)" 1 + d(T2)-1 + ^ Γ s ) " 1 ) < 1 - 1 = 0.

Hence G > 0 by Lemma 2.1 above. Now (N)2 = (N^2 + (iV2)
2 + (7V3)

2 + (G)2 and

(G)2 = (G,(nD0)) where n > 0 is the coefficient of _D0 in N. Since (G.2?o) < 0, it

follows that (G)2 < 0. Hence bk*{D) = (N)2 < (iVi)2 + (AΓ2)
2 + (7V3)

2 < bk(D).

The second part follows easily from condition (d) in the definition of the fork. This
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proves (b) of the lemma.
(c) One can compute the barks directly from the definition.
(d) If T is a fork, then n > 6 and as seen above 6fc*(T) < - 1 . If T is an

isolated tip, then bk*(T) = -4/ra. Finally let T be a club. Then let us consider
T as maximal twig of a larger tree with one of its leaves as the leader. Then
bk*(T) < bk(T) = -d(T)/d(T) = -d(T)/n. Now, unless T = [2,2], by choosing
the leader appropriately, we see that d(T) > 3. Of course if T = [2,2] then we
directly see that bk*(T) = -2 and n = d(T) = 3. Thus in all cases, we see that
bk*(T) < -3/n. D

DEFINITION. TWO trees T and T1 are said to be isomorphic if there exists a
map / : T -> V such that whenever TλT2 is an edge in T, then /(Ti)/(Γ2) is an
edge in T". Let T be a tree in which vertices TΊ,.. . Tn are ordered in some fixed
order. Let the n-tuple (wι,..., wn) denote the ordered weight set of Γ. For any tree
T" isomorphic to T we say T < Tr if wι < w[ where w[ is the weight of f(Ti) under
the isomorphism / :T —• Tf.

Lemma 2.5. // T and f are isomorphic trees such that Γ < Γ, then bk(T) >
bk(f).

Proof. Given a T, let V be obtained by decreasing one of the weights on
Γ, by 1. It is enough to prove that bk(T') > bk(T). In fact, if the change in the
weight is made on a component not contained in support of the Bk(T), then this
is obvious. So, let us assume that the weight of Cj has been reduced by one where
Cj is one of the components of Bk(T). For simplicity, we shall consider the case
when Cj is inside a maximal twig Γ = [CΊ,..., Cfc] say. Let A := Bk(Γ) = Σ ai^ί
and A = Bk(Γ). Let E be a vertex with (E2) = - 1 and (E.Cj) = 1 and of course
(E.C) = 0 for all other components of T. We can think of T' as corresponding to
the proper transform of T under a blow-up on the vertex Cj. Recall that A and A
are defined by the property

(A.Ci) = (K + T).Cu V t = l,...,fe

and

( A C 0 = ( i r + Γ').q, V i = l,...,fe.

Taking the total transforms we have,

{A1 + *άE).Ci = {Kf + T' + 2JE7).C{, < # j

and

(A7 + otjE).{C'j + £7) = (If7 + Γ7 + 2£).(C; + £7).
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This is the same as

{A.d) = (A1.CD = ((*" + T').Ci) = (A.Cl), i φ j,

and

(A.Cj) = (A'.Cj) + OLJ = ((Kf + T').C$ + 2 - 1 + 1 - 2 = (ACj).

In particular, since α^ > 0, we have,

(A'.Cί)<(A.Cί), V i = l , . . . , fc.

Therefore,

{A'.A) < (A)2.

Further, from the above observations it follows that (A)2 = {A.A') < (A)2. In

fact, since aj > 0, strict inequality holds. Other cases can be considered similarly.

D

REMARK 2.2. In light of this lemma, we see that increase in the weight of a

vertex in a maximal twig (so that all the weights are still less than —1) reduces the

value oϊbk(D). Hence Lemma 2.3 is valid for any set of such increased weights. In

the sequel, Lemma 2.3 will be put to use with this additional sense.

Importance of bark stems from the following crucial result due to Fujita (see

Thm. 6.20 of [2]).

Theorem 2.2. Let Y be a non-singular projective surface and D a MNC-

curve on Y with all its irreducible components rational If K + D is pseudo-effective

and K + D = P + N its Zarίski-Fujita decomposition, then N = Bk*(D) unless

there exists a (—1) -curve E not in D satisfying one of the following:

(a) (D.E) = 0.

(b) (D.E) = 1 and E meets a component of Bk*(D).

(c) (D.E) = 2 and E meets precisely two components of D, one of which is a

tip of a club of D.

REMARK 2.3. As remarked in [4], even though the word precisely is not men-

tioned in Fujita's theorem, it is obvious from the proof given there. We shall refer

to these conditions on (Y,D) as Fujita's conditions. In application, when Y — X

and D = Δ of the Question C, we observe that by contracting all exceptional curves

violating Fujita's condition we can pass on to a surface pair (X,Δ) which satisfies

all the conditions of the Question C again. Therefore, without loss of generality, we

can assume that the given pair (X, Δ) itself satisfies Fujita's conditions. However,
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we note that, in carrying out these operations, at each step, the number of connected
components of Δ goes down at most by one whereas the second betti number goes up
by one in comparison with that of the surface. Alternatively, in Lemma 3.3, we shall
prove that indeed, the pair (X, Δ) satisfies Fujita's conditions. This observation is
crucial, in obtaining simpler proof of the Theorem 1.1, as claimed.

Now, we shall state an inequality due to R. Kobayashi. For the details we refer
to [5]. We recall the definitions of log-canonical and log-terminal singularities of a
pair (Y, D). Let (Y, D,p) be a germ of a normal surface pair, i.e., (Y,p) is a germ of
a normal surface and D is a finite union of branch loci D = ]ζ(l — l/zi)Di where
2 < Zi < oo are integers and each component Di passes through the point p. Let
μ : (Y,L>, E) —> (Y, D,p) be the resolution of p such that I? is a MNC curve and E
is the exceptional set. Let E = UEj with Ej being the irreducible components of
E. It is known that

where a3- are defined by the equations (see [9]):

(1) (Ky+~D + y£2aJE3 )'Ek = 0 for each fc.
^ j '

A germ of the normal surface pair (Y,D,p) is called log-canonical (resp. log-
terminal) singularity if a3- < 1 for all j (resp. a3- < 1 for all j and zι < oo for all i).
For a normal surface pair (Y, D) with at worst log-canonical singularities, we write
LCS(Y, D) for all log-canonical singularities of (Y, D) which are not log-terminal.

We now recall the definition of log-minimal and log-canonical models for a pair
(Y, D), where Y is a projective surface with at worst log canonical singularities and
D = Σ (l - l/zi)Di (zi = 2,3,..., oo), a divisor on Y.

DEFINITION. An irreducible curve E on Y is a log-exceptional curve of the first
kind (resp. log-exceptional of the second kind) if E2 < 0 and ((-Ky + D).E) < 0
(resp. if E2 < 0 and {(Kγ + D).E) = 0).

Given a smooth surface Y and a reduced effective divisor D on Y, by successive
contractions of log-exceptional curves of the first kind, we arrive at log-minimal
model (Ym,Z}m). This pair is characterized by the following two properties:

(a) (y m ,D m ) is log-minimal, i.e., it contains no log-exceptional curve of the
first kind;

(b) there exists a bimeromorphic holomorphic mapping / : (Y,D) —>
(Ym, Dm) such that L>m = /*(£>) and Kγ + D = f*(Km + £>m) + Σi aiEi> ai > °
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for all i, where Km is the canonical divisor of Ym and E = UEi is the exceptional
set of /.

By contracting all log-exceptional curves of the second kind in the log-minimal
model (Ym,Dm) we arrive at log-canonical model (YC,DC). This pair is character-
ized by the following two properties:

(a) (YC,DC) is log-canonical, i.e., it contains no log-exceptional curve of the
first or second kind;

(b) there exists a bimeromorphic holomorphic mapping g : (Ym,£)m) —>
(Yc, Dc) such that Dc = g*(Dm) and g*(Kc + Dc) = Km + Dm where Kc denotes
the canonical divisor of Yc.

It is known that log-canonical model of (Y, D) is unique if ~κ(Y \ D) = 2 (see
Fact 2, page 350 of [5]). Observe that, all the exceptional curves of / need not be
characterized by property in the above definition, on the surface Y itself, but could
satisfy this property after successive contractions.

In all our study we shall deal with only those divisors D such that ~κ(X\D) = 2.
Hence we always have unique log-canonical model. The following result is proved
by R. Kobayashi (see Theorem 1 and Theorem 2 of [5]).

Theorem 2.3. Let (Y, D) be a normal surface pair with ~κ(Y\D) = 2. Suppose
(Y,D) has at worst log-canonical singularities. Let (YC,JDC) be the log-canonical
model for (Y,D) where Dc = Σ^(l — l/zi)DCji is the image divisor of D. Define
Yo : = Yc \ ( U Z i = O O J D C ϊ i ) \ LCS(YC, Dc) and D< := DCfi Π Yo. Then

(2) (Kc + Dcf < 3 je(Yo) + Σ (̂ T "

where, e(—) denotes the topological euler number, dι is the number of singularities of
(Yc, Dc) lying over D°ci and \T{p)\ is the order of the local fundamental group T(p)
of a log-terminal singular point p of(Yc,Dc).

In the application of this theorem, we always have a situation in which Y = X
is simply connected, D is an (integral) reduced effective divisor, i.e., zι = oo for all
i. Thus any singularity which lies in the image divisor Dc of D is going to be LCS.
Moreover, since we begin with log projective surfaces, all singularities outside Dc

are goint to be log terminal. Let {pi,... ,ps} be the set of such singularities, and
let 7i denote the order of the local fundamental group at p;. Then (2) reduces to:

(Kc + Dc)
2 < 3 I e(Xc0) - s + V - 1 .

I Ί J
(3) ( ) ()

I =i

Let us introduce the notation bi(—) denote the ith betti number of a topological
space, and let βι — bi(X), bi = bi(D). Since X is simply connected, we have,



ON RATIONALITY OF LOGARITHMIC Q-HOMOLOGY PLANES-I 439

βx = β3 = 0. Also, β0 = β4 = 1. Hence, e{X) = 2 + β2. In order, to relate e(X),
e(Xc0) and e(D), let us make the following technical definition:

DEFINITION. We say (Y, D) is log-content if all the log-exceptional curves for
the pair (Y,D) are contained in D.

Let now (X, D) be log-content. Let I be the number of connected components
of Dc. Then s + / = δo (This follows because, tacitly we are assuming that D is a
MNC curve.) Let c be the number of irreducible components in the exceptional set.
Then it follows that b2(Xc) = b2(X)-c, bχ{Dc) = h, b2(Dc) = b2(D)-c. Therefore,
e(Xc\Dc) = e(Xc)-e(Dc) = l~\-(β2-c) + l-(l-b1-\-b2-c) = 2 + (β2-b2) + b1-l
Thus we may rewrite (3) as

(4) (Kc + Dc)
2 < 3 I 2 + (β2 - b2) + h - bo + J2 ~ \ •

I ί=i Ίi J

We will need the following important result due to Sakai relating the Zariski-
Fujita decomposition and the log-minimal model (see [10]).

Lemma 2.6. Let f : (Y,D) —> (Fm,Z^m) be the bimeromorphic holomorphic
mapping contracting the log-exceptional curves of the first kind. Then P = f*(Km +
Dm) where Kγ+D = P-\-N is the Zarίski-Fujita decomposition of the log-canonical
devisor Kγ + D.

As a consequence of this lemma, we see that

(Kc + Dc)
2 = (g*(Kc + Dc))2

= {Km + Dm)2

Thus, if K + D = P + N is the Zariski-Fujita decomposition of K + D, we may
rewrite (4) as

(5) 0 < {Pf = (Kc + Dc)
2 < 3 J 2 + (β2 - b2) + 6χ - 6o + ^ ~ f

Lemma 2.7. For X α^ αδov^ and any NC divisor D with all its irreducible
components rational, we have

(K + D)2 - 10 - β2 + 2(62 -bo) + ( O ) .
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Proof. If D is connected and simply connected, then it follows that, (K +

D.D) = -2. From this, we derive that if h(D) = I, then (K + D.D) = - 2 + 21.

Taking sum over all the connected components, we have, in general, (K + D.D)

= 2(bι — bo). Therefore, using Nόther's formula, and the simply connectedness of

X we have,

(6) (K + D)2 = (K)2 + (K.D) + ((K + D).D) = 10 - β2 + 2(bλ - b0) + ( O ) .

Thus we have proved the lemma. D

Using (K + D)2 = P2 + N2 in the inequality (5), we get

0 < 10 - β2 + 2(6X - b0) + (K.D) - (N)2 < 3 ί 2 + (β2 - b2) + h - b0 + ]Π - j .

Introducing the notation, (N)2 + 3^^=11/7^ = v = v(D), we get,

(7) -v < 4β2 - 362 + h - bo - (K.D) - 4.

3. Auxiliary inequality

As seen in the previous section, we have been lead to the problem of estimating

(K.D). This is done in this section, more of less exactly as in [4], with a few

improvements, which we shall recall here, for the sake of completeness, and for

fixing up the notation.

From now onwards we shall assume that X is smooth simply connected projec-

tive surface which is not rational and D is a MNC divisor on X satisfying Fujita's

conditions and such that (X, D) is log-content. Our aim here is to derive a number

of auxiliary inequalities, resulting from Kobayashi's inequality.

As a consequence of non-rationality of X we have the following result.

Lemma 3.1. (a) Any two (—l)-curves on X are disjoint.

(b) For any irreducible component C of D, we have (C)2 < 0.

(c) There is at least one branching curve in D.

We will use this lemma tacitly throughout our study.

Let π : X —• X" be a composition of contractions of (—l)-curves, where X"

is the smooth minimal model for the function field of X. Let D" := π(D). Let

S be the exceptional set for π. Write π = φm o 0 m _i o φλ where each φj is a

contraction of the (—1) curve Ej. Let φo = Idχ and ψj = φ3 o o φλ for j > 1.

By Lemma 3.1 (a), we see that any two (—1) curves in X are disjoint. Hence we can

arrange φjS in such a way that if πi = φni o o φl9 then
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(a) D' := TΓI(JD) has all the components still smooth and
(b) for each j > ni, (Ej.C) > 2 for at least one component C of ψj-ι(D).
Let X' — πι(X), π2 := φno oφni+1 : X1 —• X" and let 8^ be the exceptional set

for 7Γj, i = 1,2. Write m = ni + n2. Clearly b2(Si) = rii and b2(8) = m = rii + n2.
We introduce some more notations. The integer β(Ej) := (ψj-ι(D) — Ej).Ej is
the branching number of Ej w.r.t. ψj-^D). Let β(Ci) := β(ψj-ι(Ci)) for any
component C* of £ where j is such that ^ j- i ίQ) is a (—1) curve. Let
Λi := U{Lj e 8λ I β(Lj) = i}, n := 6 2 (^), i > 2, 5 := S2 Π D',

e i := m - b2(εΎ Π D), and σ := n2 - E £ ; , e 5 ( £ I / 2 + 2).
Now, let D = {Dr}, Df = {Df

s} and D" = {D't'}. Let {Pt>i} be all the singular
points of Z^7-including the infinitely near ones-and let the multiplicities at these be
mt,i(>2). We define

τ:=Σ mt,i ~ 2n2 and λ := ] Γ K".D'j.
t,i t

For 1 < j < ni, let now φj contract ψj-ι(Lj) where Lj C ^ Π Ri, for some i > 2.
Then clearly,

^ ( ( ^ ( r ) ) ) if

m Σ«*-.W)'+» έ , W ( ^ + 2 ) _ i + 1 lf

Here we take (^_i (D r ) ) 2 = 0 (resp. (ψj(Dr))2 = 0) if ^--i(i5r) (resp. ψj(Dr)) is
a point. By the adjunction formula we have

-(K.D) = Σ(Dl + 2) = I > o ( A ))2 + 2)
r

and

^ > ; ) 2 + 2) = Σ((*i(Ds))2 + 2) = Σ((^ n i (I?r) ) 2 + 2).

Now by repeated application of (8) for j = 1,..., ni and the fact that n\ = Σi>2

 r*>
we obtain

-(K.D) = -(K'.Df) ~Σiri+ b2(S1 Π D)
i>2

and hence,

-(K.D) = -{K'.D1) -Σiri+2 - m - ex.
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Now observe that each Df

t is a smooth model for D". However, it is possible
that a number of points have been further blown-up on the minimal smooth model
of D" to arrive at D't. Let us denote this number by u, and let u = Σt ut- ^ n t n e

other hand, by genus formula, we have for each £,

{{D'lf + 2) + (D't'.K")

and

(9) {D't)
2 + 2 = (Dfl)2 + 2 - J ] ml, - ut = - ] Γ m t | i - (D't'.K") - ut.

i i

Recalling the definition of r, λ and u we get

Σ((D't)
2 + 2) = -T - 2n2 - λ - u.

t

Since

-(if'.D') = Σ((D's)2 + 2) = Σ ( ( ° ί ) 2 + 2) + Σ (( £ / ) 2 + 2),
s t E'es

we have

— (K.D) = — λ — r — σ — eι — ^ i r i + 2 — m — u.

ΐ>l

Let us put

(10) <9 = λ + τ + σ + e i +

Then we have,

(11) -{K.D) = -Θ-m.

Substituting this in (7) and noting that β% := b2(X/f) = /32 — m, we get,

(12) -v < β% - 4 - θ + 3(02 - 62) + hi ~ bo.

Since each term in the expression for θ is non negative, we get bound on each
of these terms and some inter-relation. The idea is to show that, these relations are
not compatible and hence to arrive at a contradiction. This part of the proof is
quite a detailed case by case study. The following qualitative observations most of
which are taken from [4], aid us in this task considerably.
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Lemma 3.2.

(a) To each {-l)-curve E[ in S there exist D't C D' such that (£•.£>•) > 2

and some point xι € E^ΠD^ such that either b2(ττ^1(xi)) > 2 and πf 1(XΪ) contains

a curve Li G R3U R4 or π^1(xi) = {Li} for some (—1)-curve Li which is not in D.

In particular, if p :=number of'(—I)-curves in 5, then p < n1.

(b) If σ = 0 then 82 = S and S is a disjoint union of {—1)-curves and hence

n2 = p < n\.

(c) If σ = 1 then either

(i) E2 \ D' = {E[} and S is a disjoint union of (-1) curves or

(ϋ) £2 = S consists of a disjoint union of (—1) curves and {E[,Ef

2}

with (E[)2 = - 1 , ( £ 2 ) 2 = - 2 and (E[.Ef

2) = 1.

(d) σ + πi = 0 implies that X = X" is minimal; in particular, r = 0 = u.

(e) u = 0 implies that each D[ is the minimal smooth model of D".

Proof. (a) Let E[ be any (—1)-curve in 5. By definition of S2, there exists

D[ C Df with (D'i.Ei) > 2. Since D is a system of divisors with normal crossings

and E[ c D', it follows that for all x e D[r\E[ such that {D'i.E'i)x > 2 we have the

said property for πf 1(xi). If (£>•.£•)* = 1 f o r a 1 1 x ^ Di n #*• then D^ U ̂  is not

simply connected. Since D is simply connected, it follows that for some x e D^ΠE[

we have {D^.E'^x > 2 and so we are done.

(b) By definition we have

E'CS

Since b2(S) < n2 and (E')2 < -1 for each Ef c 5, σ = 0 implies that (^ 7 ) 2 = - 1

for all E' e S and 62(5) = n2. Hence S2 = S and S2 is a disjoint union of

(—1)-curves.

(c) If σ — 1 then either b2(S) = n2 — 1 or 62(5) = n 2 . In the former case, we

further have {E')2 = - 1 for all E' e S as before. In the latter case S2 = S and

all except one curve, say E[, in 5 are (—l)-curves and (E[)2 = —2. The rest of the

claim of the lemma is obvious.

(d) This is an easy consequence of (b).

(e) This is an easy consequence of the definition of u. D

We shall now prove:

Lemma 3.3. Let (X, Δ) be as in Question C. Then the following holds:

(a) (X, Δ) is log-content.

(b) b2(A)=β2.

(c) Components of Δ form a Q-basis for Pic (X) 0 Q.

(d) The intersection form on Δ has exactly one positive eigen value.
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(e) The connected component of Δ that supports the positive eίgen value has
non-linear dual graph (if X is non-rational).

(f) Δ has at most two connected components.
(g) (X, Δ) satisfies Fujita's conditions.

Proof. We shall first prove the assertions (a) to (f) assuming that (X, Δ)
satisfies Fujita's conditions. Then we shall show that, indeed, (X, Δ) satisfies Fujita's
conditions.

To prove (a), we make use of the results of [3]. In order to apply Lemma
4 and Lemma 6 of [3] directly for our situation the only trouble is that X \ Δ
is not necessarily affine. However what is needed instead is that X \ Δ does not
contain any complete curve and this follows from the hypothesis that the irreducible
components of Δ generate Pic(X) (g) Q. Hence, if (X, Δ) were not log-content, by
Lemmas 4 and 6 of [3] we see that there exists a (—l)-curve E on X not contained
in Δ such that E intersects Δ in at most two distinct connected components of Δ
transversally. This violates Fujita's conditions and hence (a) follows.

Now, assume that 62(Δ) > β2. Since (X, Δ) is log-content we may apply
inequality (5) to the pair (X,Δ),

(13)

Now, recall that 7* > 2 for all i and 0 < s < 60 — 1. Hence, we obtain

| ^

which is absurd. Thus 62 = #2 proving (b). The above inequality now yields

(14) 0<P2 <3<2 +β2-b2+b11
Hence 0 < 3(2-&o + (&o-l)/2) which impies that b0 < 2. This proves (f). Statements
(c), (d) and (e) are all straight forward consequences of (b).

Now, we shall prove that (X, Δ) satisfies Fujita's conditions. Assuming on the
contrary, we see that there exists a (—l)-curve E as in Theorem 2.2. Let Δi = A + E.
Clearly 62(Δi) > β2. Contracting all such curves we still obtain a smooth surface
pair (X,Δ) which satisfies the hypothesis of Question C. Also, 62(Δ) > β2(X)
contradicting the assertion (b) above. This contradiction proves that (X, Δ) satisfies
Fujita's conditions.

This completes the proof of the lemma. D

As an immediate consequence we obtain a result due to R.V. Gurjar and
M. Miyanishi (see [3]).
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Corollary. On a logarithmic Q-homology plane V of Kodaira dimension 2,
we can have at most one singularity.

Finally, for D = Δ, by Lemma 2.4(d) and the fact that 61 = 0, it follows that
—v > 0. Since 62 = β2, etc., from (12), we get,

(15) 0 < -i/(Δ) < β'i - 4 - θ - 60.

Since, the terms on the r.h.s. are integers, it follows that,

(16) 0 < / 3 £ - 5 - 0 - & o .

In the sequel, we shall denote the connected component of Δ which has exactly
one positive eigen value by Δoo.

Lemma 3.4. Suppose (X, Δ) are as in Question C. Then
(a) X does not contain any simply connected curve E meeting Δ in less than

two points.
(b) If equality is reached in (16), then X does not contain any (—l)-curve E

which intersects Δ in at most two points.

Proof. Put Δi = Δ + E. Since E intersects Δ in less than two points,
each connected component of Δi is simply connected. Hence, Δi satisfies all the
conditions of the Question C, in place of Δ. Therefore, by Lemma 3.3, we have,
62(Δi) = /?2pO = 62(Δ), which is absurd. This proves (a).

In (b), it follows that, either 60(Δi) = 6Q(Δ), 61 ( Δ X ) = 1, or60(Δi) = 6O(Δ)-1,
61 (Δi) = 0. Of course, 62(Δi) = β2 + 1. Moreover, it is easily seen that κ(X,K +
Δi) = 2, and (X, Δi) is log-content. Therefore, we can apply (7) to (X,Δi) to
obtain:

-i/(Δi) < 4/32 - 4 - 362(Δχ) + ^ ( Δ O

On the other hand, equality in (16) implies that θ = β'± — 5 — 60(Δ), and hence

(ίf.Δi) = (KΛ) + (K.E) = 0 + m - l = # ; / - 5 - 60(Δ) + m - 1.

Substituting this in the above inequality, we get —z/(Δχ) < 0. But since Δoo should
have at least three tips, the corresponding connected component of Δi should have
at least one tip. Hence — u(A±) > 0. This contradiction proves the lemma. D

4. Some general remarks in the two cases

In this section, we shall establish some general properties of the configurations
of Δ. Most of these can be found in [4] but the proofs given there are not always
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valid any more in our situation. First we recall some general facts about minimal

surface of general type and derive some restrictions on λ.

Theorem 4.1. Let Y be a minimal surf ace of general type. Then the following

holds:

(a) {Kγ)2 > 0 and hence the second betti number β(Y) < 9.

(b) For any irreducible curve D on Y, we have (Kγ.D) > 0 and (Kγ.D) = 0

iff D is a (-2)-curve.

(c) All the {—2)-curves on Y can be contracted to finitely many rational double

point singularities.

(d) The number of (—2)-curves is at most equal to {p(Y) — 1), where p(Y)

denotes the Picard number of Y.

(e) There cannot exist three (—2)-curves intersecting (transversally) at a single

point.

(f) There cannot exist two (—2)-curves intersecting tangentially at a single

point.

A proof of (c) may be found in [10]. Statements (e) and (f) follow easily from

(c). For the other results we refer to Section 2, chapter VII of [1].

Lemma 4.1. If E <£ Δ, then λ > 2.

Proof. For, amongst the curves contracted by π, there is at least one curve

which is not in Δ and hence b2(A/f) > β%. On the other hand, at most β% — 1 curves

on X" can be (—2)-curves. Hence the lemma. D

Now, we shall assume that X is an elliptic fibre space. So, let φ : X —• C be an

elliptic fibration and φ" : X" —> C be the corresponding minimal elliptic fibration.

Clearly C = P1. Since X" is a minimal elliptic surface, we have, βίj = 10 and

hence (16) may be written as

(17) -v<6-θ-b0.

Since r.h.s is an integer and —v is positive rational number, we see that

(18) θ<b-b0.

Recall that an irreducible curve contained in a fibre of φ is called a vertical com-

ponent. Otherwise, it is called an horizontal component. Note that if Δ has no

horizontal components, then every component of Δ is in a fibre and hence the inter-

section form of the adjacency matrix of Δ has no positive eigen value contradicting

Lemma 3.3. Hence Δ has at least one horizontal component, i.e., λ > 1. We will



ON RATIONALITY OF LOGARITHMIC Q-HOMOLOGY PLANES-I 447

need the following result about multiplicity of the multiple fibres, as a consequence
of non-rationality of X. The proof is exactly as in [4], and we reproduce it below
for the sake of completeness.

Lemma 4.2. There are exactly two multiple fibres of φh\ viz., m\P" and
m2P2> Also {mi,m2} = {2,3} or {2,5}. // (K".H") < 2 for some horizontal
component, then {mi,m2} = {2,3}.

Proof. Let {miP"}l be the multiple fibres of φ". By the simply connectivity
of X" it follows that r < 2 and πiχ and m2 are coprime. Since pg = q = 0, we have
the canonical bundle formula

K" = tf'^

Thus if r < 1, it follows that \nK"\ = 0 for all n, and hence \nK\ = 0 for all n,
contradicting our basic assumption. Hence r = 2.

Now, if P" denotes a general fibre of φ", we have the linear equivalence

P"

and hence

K" ~ (m2 - 1)P^ - P{' - (mi -

Thus ϋί'7 is numerically equivalent to the Q-divisor mP" where m = (mi777,2 — mi —
rri2)/mιm2. Now let H" be a horizontal component in Δ". Then 1 < {K".H") =
m{P".Hrr). Since mi and πi2 are coprime it follows that πi\m2 — mi — 7722 divides
{K".H"). On the other hand by (18), we have λ < 4 and hence (K".H") < 4. Hence
{mi,m2} = {2,3} or {2,5}, and if {K"\H") < 2 for some H", then {mum2} =
{2,3}, as claimed. D

Now we show that Δ contains at least two horizontal components.

Lemma 4.3. There are at least two horizontal components in Δ. In particular,
λ > 2 and {mi,m2} = {2,3}.

Proof. Assume that there is only one horizontal component in Δ. Let us
denote it by H. Let H be an h-fo\ά section for φ. Then as observed above we know
that h is an integral multiple of mim2. Let Si, 1 < i < k, be the simply connected
fibres and 7), 1 < j < I be the fibres with bi(Tj) = 1. Since Δ is simply connected
it follows that no Tj is completely contained in Δ. Hence,

(19) 62(Δ) <
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On the other hand, by the well known addition formula for euler characteristic, we

have

(20) 2 + 62(Δ) = e(X) =

Putting these two together, we get k + I < 3.

Since irreducible components of Δ are linearly independent, it follows that no

two fibres of φ are completely contained in Δ. On the other hand, suppose no fibre

is completely contained in Δ. Then

1) + 1 < P(X)

which is a contradiction. Therefore there is a unique fibre, say 5Ί, contained in Δ.

Then

(21) 62(Δ) < 62(Si) + 2J6 2(S0 - 1) + ̂ friTj) - 1) + 1.
i>2 j

Combining this with (20) we have; 2k 4- / < 4. Of course, we have k > 1, I > 0.

Now suppose fc = 1. If / = 0 then

e(Si) = e(X) = 2 + 62(Δ) = 2 + 1 + 62(5i) = 2 + e(Si)

which is absurd. So / > 1.

The idea of the proof is the following. Let W := X \ Δ. We eliminate all

possibilities for k and / by considering the restricted fibration φ* : W —• C and

using the fact that

ί??ϊ p/'w^ = P(C\P(F \ -I- \^(p(F λ — ρ(F )λ

s

where F x is a generic fibre of φ* and F s a singular fibre of 0*. Also note that

e(W) = e(X) - e(Δ) = 2 + 62(X) - (60(Δ) + 62(Δ)) < 1.

Denote the closure of 7* \ Δ by C{. Let Ai = T» U ff = S< U C. where B» is the

union of all components of Ai not in Q. Then we have e(A^) = e ( ^ ) + e(Q) — ηι

where ^ is the number of points in BiOCi. Also

(23) b2(Ci) = l + b2(Ti)-b2(Bi).

Let H intersect Ti in α^ points. Then bι(Ai) — oci and hence

(24) e(Λi) = l - α <
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Since Δ is simply connected and has at most two connected components, we see

that Bi is also simply connected and has at most two connected components. Thus

e(Bi) < 2 + b2(Bi) and hence

(25) e(Ci) - ηi = e(Ai) - e ( ^ ) > 1 - a{ + b2(Ai) - (2 + b2(Bi))

Now suppose 1 = 1. Then

e(5!) + e(Tλ) = e(X) = 2 + 62(Δ) = 2 + fc^) + b2(B1) = 1 + e(5x) + b2(B1).

Using this in (23) we get

= 1 + 62(Γi) - (e(Γi) - 1) = 2.

Let Pi, i = 1,2 denote the multiple fibres of φ. If 7\ is not one of them, then we

see that H intersects 7\ in at most h points, i.e., aλ < h. Hence by (25), we have

e(CΊ) -m> 62 (Ci) - h - l = l-h. Therefore e(Γi \ Δ) = e(CΊ) - η > 1 - h.

On the other hand, H intersects Pi in at most h/rrii points and hence e(Pi \ Δ) =

e(Pi \H)> -h/rrii. The set of singular fibres of φ* includes Tλ \ Δ and Pi \ Δ,

ί = 1,2. By (22) we have

1 > e(W) > -h + (1 - Λ H- Λ) + f—— 4- h) + ( — — + h) > 2,
V mi J \ rn2 J

which is absurd.

Now, if T\ happens to be one of the multiple fibres, say TΊ = Pi, then ϋf

intersects 7\ in at most h/rrii points and hence we get e(CΊ) — 771 > 1 — h/mi.

Hence by (22) we have

1 > e(W) > -h + (1 - — -h ft") -h f-— + Λ^ > 2,
V mi / V m 2 /

which is absurd.

Let us now consider the case k = 1,1 = 2. We know that at least one component

each from TΊ and T2 is not contained in Δ. But then we see that (21) is an equality

and hence exactly one component of Ti is not contained in Δ. Since Δ has at most

two connected components, it is easily seen that at least one of BiS (i = 1,2) is

connected - say B\ is connected. Then as in (25) we have e(CΊ) — 771 = 1 — otχ

and e(C2) — η2 > —a2. Now, again consider the restricted fibration φ* : W —• C.

Assuming that Ti, i = 1,2 is not a multiple fibre we see that

1 > e{W) > -h + (1 - αi + h) + (-α2 + h) + ( - — + /Λ + ( - — -f h
mi J \ m2
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( ) ( ) (—+h) + (-5- +ft

> 2

which is absurd. A similar argument when one or both T{ are multiple fibres
eliminates this case completely.

Finally, let k = 2. Then I = 0. Let S2 be the second simply connected fibre.
As above we see that exactly one component of S2 — say C — is not contained in
Δ. As before we define A = S2UH = BuC. Clearly bλ(A) < h - 1. Also, both
B and C are simply connected. Thus C intersects B (and hence Δ) in at most h
distinct points. Hence e(C \ Δ) > 2 - h. By (22) we see that

l>e(W0>-/ι+(2-Λ + ft) ( ) (
\ mi ) \ m2

which is absurd.
This eliminates the last case also. Therefore, there must be at least two hori-

zontal components in Δ.
By (18) we know that λ < 4. Since there are at least two horizontal components

and at least one of them, say H" in A" has the property (K".H") < 2. But then
by Lemma 4.2 we see that {mi,m2} = {2,3}. This completes the proof of the
lemma. D

For the rest of this section, X could be either a surface of general type or an
elliptic surface. We need to handle the situation of the following lemma quite often.

Lemma 4.4. Let Do e R3, and let Dι,D2,D3 be the components that meet
Do. Then the image of one of Diy (i = 1,2,3) in X" is a curve such that a :=
(K" - D") > 0. Let us denote one such component by D3. Further, assume that
D\,D2, Ds are not in R3 and do not intersect any other component of R$. Then,
the weight set W = {(A))2, (£>i)2, (A2)2, (D3)

2} is one of the following:
(1) W = {-1, (D'{)2 - 1, {D'i)2 - 1, -a - 3}.
(2) W = {-1, -2, {D'2')

2 - 2, - α - 4} and Dλ is an isolated tip in Δ.
(3) W = {-1, -2, - 3 , - α - 6} and Dλ is an isolated tip.

Proof. Observe that after contracting Do the image of the other three curves
intersect in the same point. It follows that not all of them will be contracted in X".

Since Dι do not intersect the rest of R3 at worst we have a sequence of possible
contractions as indicated by the following diagram.
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Dx D2 D3

Φi

D>>

We consider the thre possibilities one by one:
(a) After contracting Do, none of the other three curves may be contracted.

Now D'l intersect transversally at a single point. Not all these three curves can be
(—2)-curves, for otherwise,

(i) if X" is a surface of general type then as they cannot be contracted
to a rational double point contradicting Theorem 4.1.
(ii) if X" is elliptic, they will form a full fibre F" and for any hori-
zontal component H" in Δ it is easy to see that (F".H") Φ 6 which is a
contradiction.

Therefore, it follows that K" .D'l > 0, for some i = 1,2,3.
(b) It may happen that we can contract one more curve say D\ also and

then the image of D2 and D3 cannot be contracted. They meet at a single point
tangentially. For exactly the same reason as in (a) both of them cannot be (—2)-
curves.

(c) It may happen that we can contract the image of one of D2 or D% and then
the remaining curve is a cuspidal curve. Then if X" is a surface of general type by
Theorem 4.1, we see that (K".D%) > 0. In elliptic case (K".D'^) > 0 for the same
reason as in (a).

The case (a), it is clear that weight-set is clearly as indicated in (1). In case
(b), let us say {Dλ)

2 = -2. Then (D2)
2 < - 3 and Dλ will be a tip. This gives

W as in (2). In case (c), we can even contract D2 also. Hence it follows that
(D2)

2 = —3. Also the image of D% has a ordinary cusp. Therefore, by the genus
formula (K".D%) + {D%)2 = 0 and hence (D^)2 = -a. It follows that W is as
indicated in (3). •

We shall end this section with a typical step towards our goal.

Lemma 4.5. If there is an equality in (16), then λ < Θ.

Proof. Clearly, \<Θ. If possible let λ = θ and let (16) be an equality. Then
we see that σ + ni = 0 , which by Lemma 3.2, implies that X = X" is a minimal
surface.

Suppose that X is a surface of general type. Since there is an equality in (16),
we have θ = β2

f - 5 - 60 < 4 - 60 < 3. By (15) we see that -i/(Δ) < 1. Hence if we
can show that v < — 1 we obtain a contradiction. In view of Lemma 2.5 we only
need to consider the case θ = λ = 3. Therefore the weight set for Δ is one of the
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following:

{-5, - 2 , . . . , -2}, {-4, - 3 , - 2 , . . . , -2}, {-3, - 3 , - 3 , - 2 , . . . , -2}.

By (15) we see that 60 = 1 and hence Δ = Δoo. Then it is easy to see that
v = bk(Aoo) < — 1. Hence X cannot be a surface of general type.

Now, suppose that X is of elliptic type. Equality in (16) implies that θ =
5 — b0 < 4. As above, we only need to consider the case θ = λ = 4 and show
that z'(Δ) < —1. Since there are at least two horizontal components in Δ, possible
weight set for Δ are the following:

(a) {-3,-3,-3,-3,-2,...,-2}
(b) {-4, - 3 , - 3 , - 2 , . . . , -2}
(c) {-5,-3,-2,...,-2} or
(d) {-4,-4,-2,...,-2}.

By (15) we see that 60 = 1 and hence Δ = Δoo Since Δ has at least three tips,
in each of these cases we see that in the worst case the weight set of the tips are
{-3,-3,-3}, {-4,-3,-3}, {-5,-3,-2} and {-4,-4,-2} respectively. In all
cases except in the case of {—4, —3, —3, —2,..., —2}, we see that z/(Δ) = 6fc(Δoo) <
- 1 . In case the weight set is {-4, - 3 , - 3 , - 2 , . . . , -2} if Δ = Δ ^ has four (or
more) tips or if it has a (—2)-tip, we see that v = bk(Aoo) < — 1. Hence we need
to consider only ten vertex trees with exactly three tips and whose weight set of
the tips is {—4, —3, —3}. If every maximal twig has at least two components, then
v — 6/c(Δoo) < —2/5 — 2/5 — 2/7 < —1 and hence not possible. Hence at least one
of the maximal twigs contain exactly one irreducible component. Such trees arise
from partitions of 9 into exactly three parts with at least one of the summands equal
to 1. Following are such partitions:

9 = 1 + 1 + 7

= 1 + 2 + 6

= 1 + 3 + 5

= 1 + 4 + 4.

Since Δ is free from (—1)-curves, trees corresponding to the partitions 1 + 1 + 7
and 1 + 2 + 6 are negative definite and hence cannot occur. Following are the trees
corresponding to the remaining partitions.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

(1) l 0 (2) l 0

We study each of these trees individually and eliminate them.
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Tree 1: If wx = -4, w9 = - 3 and w10 = - 3 , then v = -5/16 - 3/7 - 1/3 =

—361/336 < - 1 and hence this combination cannot occur.

If w\ = —3, w9 = —3 and wι0 = —4, then the tree is negative definite and hence

this combination cannot occur.

lfwi = - 3 , w9 = - 4 and w10 = - 3 , then v = -5/11-3/10-1/3 = -359/330 < - 1

and hence this combination cannot occur.

Tree 2: If wλ = -4, w9 = - 3 and w10 = - 3 , then v = -4/13 - 4/9 - 1/3 =

— 127/117 < - 1 and hence this combination cannnot occur.

If Wl = - 3 , w9 = - 3 and w10 = -4, then v = -4/9 - 4/9 - 1/4 = -41/36 < - 1

and hence this combination cannot occur.

This completes the proof of the lemma. D

5. The singular case

We shall complete the proof of the Theorem 1.1, in this section. By the assump-

tion, and from Lemma 3.3, we have now b0 = 2, s = 1. From (16), we have,

(26) θ<β%- 7.

We shall make two subsections here to deal with the two major cases.

5.1. The general type case

In this subsection, we shall consider the case when X is a surface of general

type. Then the above inequality reduces to θ < 2. Also, we know that λ > 1.

Clearly Vi = 0, i > 4. While estimating v we should remember that Δ has two

connected components, one corresponding to the resolution of the single quotient

singularity.

Suppose λ = 1. Then by Lemma 4.1, it follows that S c Δ. In particular,

ei = 0. Assume that S is non empty, i.e., X is not minimal. Then, it is necessary

that r 3 = 1, and σ + r = 0. Therefore, by Lemma 4.4, π may consist of at most

three contractions. Also, since λ = 1 here, it follows that a = 1 and the weight set

of Δ will consist of W along with some —2 curves. From this, it is not difficult to

see that —v > 1, which is a contradiction.

On the other hand, if X = X" is minimal, the weight set for the dual graph of

Δ consists of one (—3)-curve and all other (—2)-curves. Clearly Δoo consists of at

most 8 irreducible curves. If all the components of Δoo are (—2)-curves, by Theorem

4.1 we see that the intersection form of Δoo is negative definite contradicting Lemma

3.3. In view of Lemma 2.4(d) and Lemma 2.3 we see that if Δoo has four (or more)

tips, then i/(Δ) < —2 which is a contradiction. Thus we need to consider the case

when Δoo has exactly three tips. If Δoo has 7 (or less) irreducible curves, then

the intersection form on Δoo is negative definite which is a contradiction. Thus

Δoo contains exactly seven (—2)-curves and one (—3)-curve. Then Δ s := Δ — Δoo
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contains exactly one (—2)-curve. Clearly the contribution of Δ s to z/(Δ) is equal to
-2 + 1/2 = -3/2 and the contribution of Δoo to i/(Δ) is at most 2(-l/2) - 1/3 =
-4/3 and hence z/(Δ) < -2 which is a contradiction.

The case λ = 2 cannot occur because of Lemma 4.5. This proves that X cannot
be of general type.

5.2. The singular elliptic case

Here we have, θ < 3 but also λ > 2. As in the general type case, we must
remember here that Δ has two connected components and one of them corresponds
to the resolution of the quotient singularity.

Here again by Lemma 4.5, the case λ = 3 does not occur. Let now λ = 2. Then
σ + r -f r 3 + e1 -f u < 1.

Consider the case r 3 = 1. Then σ + τ + eι+u = 0 and hence, it follows that,
7Γ may be a contraction of at most three curves, as discussed is Lemma 4.4. In view
of Lemma 4.4, depending on whether the two horizontal components are adjacent
to the (—l)-curve or not we have the following weight set for Δ:

(1) {-4, -4, - 3 , - 2 , . . . , -2, -1} or {-4, - 3 , - 3 , - 2 , . . . , -2, -1}.

(2) {-5, -5, - 2 , . . . , -2, -2, -1} or {-5, -4, - 3 , - 2 , . . . , -2, -1}.

(3) {-7, - 3 , - 3 , - 2 , . . . , -2, -1} or {-8, - 3 , - 2 , . . . , -2, -1}.
In any of these cases, it is fairly easy to see that —v > 1, which leads to a contra-
diction.

Therefore, we now consider the case λ = 2, r3 = 0. Suppose that e\ = 1. Then
the lone component E of £χ \ Δ has to intersect Δ in two transversal points. This
contradicts the Lemma 3.4. Therefore e\ = 0.

Suppose that σ = 1. Then it follows that Δ = Δ', S2 = {E} which has to
intersect a component of Δ say Dx with multiplicity at least two. Also it cannot
intersect Dι with multiplicity > 3 since τ = 0. Nor it can intersect any component
of Δ with multiplicity > 2. Finally, it cannot intersect any other component at all
since u — 0. Hence, E intersects Δ in one point or in exactly two transversal points,
contradicting Lemma 3.4. Therefore σ = 0.

Thus we have shown that when λ = 2, it must be that e\ = r^ — σ = 0.
It follows that r = 0 = u and X = X" is minimal. Clearly the weight set is
{—3, —3, —2,..., —2}. If we can show that — v > 2 we arrive at a contradiction to
(15).

If the connected component Δ ^ has four tips then this is easy to see. So, we
have to consider only the case when Δ ^ has precisely three tips. Observe that Δoo
cannot be consisting of only (—2)-curves, for then it will be contained inside a
fibre and hence cannot have a positive eigen value. Observe that Δ ^ has at most 9
irreducible components. Since Δ ^ has at least one (—3)-curve it is easy to see that if
it has 7 (or less) irreducible components, then Δoo is negative definite contradicting
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Lemma 3.3. Let Δoo have 8 irreducible components. Then As = Δ — Δoo consists
of exactly two irreducible components.

If Δ s = [2,2] we have the contribution of Δ s to ι/(Δ) equal to -2 +1/3 = -5/3
and that of Δ ^ is at most 2(-l/3) - 1/2 = -7/6 and hence z/(Δ) < -2. If As =
[2,3] then we have the contribution of Δ s to i/(Δ) equal to -4/3 + 1/5 = -17/15
and that of Δ ^ is at most -1/3 + 2(-l/2) and hence z/(Δ) < -2. Now let Δ ^
have exactly 9 irreducible components. Then Δ s = [2] or [3]. In either case it is
easy to see that i/(Δ) < -2.

This completes the proof that X cannot be of elliptic type and thereby completes
the proof of the Theorem 1.1.
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