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Introduction

Hosokawa and Kawauchi [6] proved that any 2-knot can give an unknotted sur-
face after adding enough 1-handles in an appropriate manner. Hosokawa, Maeda,

and Suzuki [7] then defined the unknotting number u(K) of a 2-knot K to be the

least number of such 1 -handles.

A ribbon 2-knot is obtained from a trivial (n + 1) -component 2-link by adding

n 1-handles for some n. The fusion number f ( K ) of a ribbon 2-knot K is the least
number of n possible for K.

Let K be a ribbon 2-knot. Then Miyazaki [17, Lemma 1] proved:

Proposition 1.

u(K] < f ( K } .

Note that the fusion number is called the ribbon number in [17]. Let K*

denote the spun 2-knot of a 1-knot K. Let Tp^q denote the torus knot of type (p, <?).
Miyazaki [17, Claim, Remark 2] also showed:

CD ^2%m-l#Γ2*,2m+l) = 1, /(^2rn-l#^2*2rn+l) = 2,

if m > 2. The purpose of this paper is to provide more examples of ribbon 2-knots

that do not satisfy the equality in Proposition 1. First, we will prove:

Theorem 1. For a nontrivίal spun torus knot T^q with 1 < p < q, we have

Using the composition of a spun torus knot and some copies of a ribbon 2-knot

with fusion number one, we will show:

Theorem 2. For any integers m and n with 0 < ra < n, there exists a ribbon
1-knot K such that u(K) = m and f ( K ) = n.
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Sections 2 and 3 are devoted to prove u(T^q) = 1. We give two other characteri-

zations of a ribbon 2-knot by making use of a handle decomposition of a cobordism
between a ribbon 2-knot and a trivial 2-knot, from which we define the handle and
dual-handle numbers of a ribbon 2-knot. These invariants coincide (Proposition
3), and are greater than or equal to the unknotting number (Theorem 3) and less
than or equal to the fusion number (Theorem 4). We define a class of tubed 2-
knots, including all spun torus knots (Lemma 3), and show that a tubed 2-knot has
dual-handle number one (Theorem 5). From the fact that the torus knot has a (1,1)-
decomposition, we see that the spun 2-knot of a 1-knot with (1, l)-decomρosition
has weak unknotting number one (Proposition 5). In Sections 4 and 5, we prove

Theorems 1 and 2.
The fusion number plus one is an analogy of the bridge number for a 1-knot,

both of which are greater than or equal to the Wirtinger rank of the knot group.
In Section 6, we give a relation between the fusion number and the rank of the
fundamental group of the finite cyclic branched covering space of a ribbon 2-knot
(Proposition 6), which is also an analogy for the case of the bridge number. We
use this to generalize the example (1) of Miyazaki (Proposition 7).

In Section 7, we give another example for the inequality in Proposition 1 using
a satellite knot of a ribbon 2-knot.

1. Preliminaries

The boundary and the interior of a manifold M are denoted by dM and intM.
Both Dn and Bn denote the n-ball, and Rn and Sn denote the Euclidean n-space
and n-sphere, respectively. / is the unit interval [0,1].

Let K be an n-knot We denote by πK the group of K, i.e., πK = πι(Sn+2-K).
For a non-negative integer n, nK means the composition of n copies of K; if n = 0,
the knot is a trivial one.

The Wirtinger rank W-rank(πK) of a knot group πK is the least number of

meridional elements of K we need to generate πK. The rank rankG of a group G
is the least number of generators of G.

Let L be a 2-link in S4. A 1-handle h on L is an embedding h : I x D2 —> 54

with h(I xD2)nL = h(dl x D2). The arc h(I x {O}) is called the core of ft, where
O is the center of D2. We define the surface L -h h obtained from L by adding a
1-handle h to be the surface L + h = (L- h(dl x D2)) U h(I x dD2). We define a

ribbon 2-knot K to be a 2-knot obtained by adding n 1-handles {fti|l < i < n} to

a trivial 2-link with n -h 1 components UΓ=o ^f ^OΓ some n>

ί=l

See [28], where such a 2-knot is called a fusion of a trivial 2-link. If the ίth 1-handle
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hi connects Sf,^ with S?/2), then the group πK has a Wirtinger presentation

where Xi is a meridian of S? and r; = x^Ku^x^)'^ with ^ a word in x0,
x l 5 . . . , xn determined by the core of /^ see [27]. Then we have

(2) f ( K ) > W-rank(πAΓ) - 1.

Let K be a 2-knot. For any element g e πlf, there exists a 1 -handle on K

whose core represents g [2]. So there exist #ι, #2, ,#n £ π^ such that

is the infinite cyclic group, where x is a meridian and [g^x] — gιxg~lx~l. We
define the weak unknottig number uw(K) of K to be the least number of n possible

for K\ see [9]. Then

(3) u(K) > uw(K).

Let Xκ be the infinite cyclic covering space of S4 — K. Then the Alexander

invariant of K, Hι(Xκ), is a finitely generated Λ-module, where Λ is the polynomial
ring Z[ί, ί"1] [21, Chapter 7]. We define e(K) to be the least number of generators

of HI(XK) as a Λ-module. Then we have the following [9, Proposition 2]:

(4) uw(K) > e(K).

Concerning the composition of 2-knots, the following is easy to see:

(5)

(6)

2. Handle number of a ribbon 2-knot

Let (BQ, BQ) be a standard ball pair. We attach n 1 -handles {Hi 1 < i < n} to

D% - D%. Let V = Dl U UΓ=ι ^/ τhe fundamental group πι(V - D%) is free on
n + 1 generators x, 1/1, 2/2, ., 2/n» where x is a meridian of DQ and yi9 I < ί < n, is
represented by a loop running through the zth 1 -handle Hi just once and missing

HJ for j / i. Let ^ = ^(x, 2/1,2/2, - - ,2/n) be an element of πι(^ — DQ) which
becomes yι if we kill the element x:

(7) υ»(:L,2/ι,2/2, . . , 2 / n ) =y».
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We attach 2-handles H? to V — DQ along embedded simple closed curves α; repre-

senting Vi in the boundary. Then V U |JΓ=ι ^ί *s a 5-ball and the sphere pair

n

(8) (d(VU\jHf),dD3

0)
i=l

is a ribbon 2-knot. Conversely, any ribbon 2-knot is constructed in this manner.
See [1, 5, 15].

The following is shown in [5, Theorem III. 5.1; 14, Lemma 2.2].

Lemma 1. In the above, we can take the attaching spheres aι of the 2-handles
H? so that the exponent sum ofvi on x is zero for each ί.

We define the handle number ψ(K] of a ribbon 2-knot K to be the least number
of 1 -handles for which the above construction yields K. The group of the ribbon
2-knot (8) is presented by

(9) (x, 2/1, 2/2, - , 2/n vι,υ2, . , υn),

and so we have

Proposition 2.

rank(π^) - 1 < φ(K).

Theorem 3.

u(K] < φ(K).

Proof. Suppose that K is the 2-knot with φ(K) — n described as (8). Let
Vi = uιxeιu<2X*2 - ukx

ekuk+ι, where m, u2, . . . , uk+ι are words in yι, y2, ...,yn

By Lemma 1, we may assume that Σ- =1 tj — 0.
Let hi be a 1 -handle on dD^ corresponding to yi and TO = ODg -I- ΣΓ=ι ^ ΐ? a

surface of genus n. Then the fundamental group πι(dV — TO) is given by

In this group, v^ becomes uιu2 Uk+ι, which is yι by (7). Thus we can move
isotopically the attaching spheres oti to the standard ones. Therefore the surface T0

is unknotted in the 4-sphere d(V U (JlLi Hf). D
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3. Dual-handle number of a ribbon 2-knot

Let K be a ribbon 2-knot given by (8). Attaching a 5-handle D\, we obtain a
handle decomposition of a 5-sphere:

n n

S5 = D5

0U (JHlυ \jHf(JDl

Turning this handle decomposition of S5 upside down, we have

where 7J^ is the handle of index j naturally obtained from Hf J for j = 3, 4. Then

K is on the boundary of £)f and the 3-handles {72^ } are trivial. From this, we
obtain the following [15, Corollary 1.10.1]; see [15, Theorem 1.10] for the detailed
proof.

Lemma 2. A 2-knot K in S4 = dD5 is a ribbon 2-knot if and only if there
exist ^-handles {Hf\l <i<n}onD5 with the following properties.
(i) The set of attaching spheres for the 3-handles forms a trivial 2-link in S4 that

does not intersect K.

(ii) K bounds a 3-ball in the boundary of the resulting manifold D5 U UΓ=ι Hf-

We define the dual-handle number φ*(K) of a ribbon 2-knot K to be the least
number of the 3-handles for K as in Lemma 2. From the proof of Lemma 2, we
have:

Proposition 3.
φ*(K)=φ(K).

Theorem 4.
ψ*(K) < f ( K ) .

Proof. Suppose that K is a ribbon 2-knot in S4(= <9D5) obtained by adding

n 1-handles {/if | l < i < n} to a trivial 2-link with n + 1 components UΓ=ι ^j- ^e

take a 2-sphere ΣJ parallel to 5| for each j, 1 < j < n, so that UJ=ι Σ? forms
a trivial link in 54 and does not intersect the knot K. Let W be the manifold

obtained from D5 by adding trivial 3-handles along the 2-spheres Uj=ι Σj Then
each Sj9 1 < j < n, bounds a 3-ball in ^VF that intersects K only at the 1-handles.
By using these 3-balls, each 5? may be moved toward SQ along 1-handles, and the
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knot K becomes trivial in dW. Π

Let K be a ribbon 2-knot. Then K is called a tubed 2-knot if there exists S1 x B3

that is embedded in S4 such that K is obtained from a trivial link \J™=0{xi} x dB3,
xι G S1

9 by adding 1-handles {hj\l < j < n] in S1 x B3 for some n.

Theorem 5. IfK is a tubed 2-knot, then φ(K) < 1.

Proof. Let K be a tubed 2-knot as above. Assume that S4 = dD5, and put
S? = {xi} x dB3. Let W be the manifold obtained from D5 by adding trivial

3-handles along the 2-sphere in S4 — S1 x B3 that is parallel to S2. There is a

component, say S2, to which the only one 1-handle, say hn, is added; we suppose

Si n |J"=ι hj(I x £>2) = MM x D2). Then S2 bounds a 3-ball £g in <9W such
that K nB$ = S2- intMM x D2). Then there is an isotopy of dW carrying

K to UϋΓo ^i + Σj*=ι ^j Repeating this argument inductively, we finally obtain a
trivial knot, which is K on the boundary of D5 with suitable number of 3-handles

added. D

4. Spun torus knots

Let R+ and R3_ denote the upper-half space {(x,y,z)\z > 0} and lower-half

space {(x,y,z)\z < 0}, respectively. We define the spin σX(c R4) of any set X in
R3^ to be

σX = {(x,y,zcosθ,zsmθ)\(x,y,z) € X, 0 < θ < 2π}.

Let K be a 1-knot in R3 such that K Π R3_ is a properly embedded unknotted arc.

Then the spun 2-knot K* of K is given as the spin of K Π R^_; see [21, p.85].

Lemma 3. A spun torus knot is a tubed 2-knot.

Proof. For the torus knot Tp^q, there is a regular projection ψ : R3 —> R2

with q overpasses αi, α 2 , . . . , o>q and q underpasses β\,βι,...,βq such that

(i) ψ(Tp,q) is in an annulus A = S1 x / in R2, S1 = //(O - 1),

(ii) -0(cκi) = {i/q} x /,
(iii) ^(A) is a properly embedded arc in A.
Fig. 1 gives such a regular projection for T4?5.

We denote the unions U?=ι α* an(^ Ui=ι A by α an<^ /^» respectively. Then Tp^q

is isotopic to the following knot in A x [0,2] having the same diagram ψ(Tp^q):

{(x, 2)|x G ^(α)} U {(x, l)|χ G φ(β)} U {(x, ί)|x G ψ(da) = ψ(dβ), 1 < t < 2},



UNKNOTTING AND FUSION NUMBERS 531

α,

Fig. 1.

and thus the spun torus knot T£q is the spin of the following arc in R+:

{(x, 2)|x 6 ψ(<*)} U {(x, l)|x G ψ(βl U . . . U /3g_!)}

U {(x, ί)|x G ^(3/3ι U . . . U d/Vi), 1 < ί < 2}

U x , ί x

< ί < 2}.

We denote by ά^ the unknotted arc in #+ defined by

U

Then the spin of U?=ι ^ϊ forms a trivial 2-link with ^ components. We see that the
spun torus knot T£q is a ribbon 2-knot obtained from this trivial link by adding
1-handles hj, I < j < q — 1, whose core is σ{(x,0)|x G ψ(βj)}; cf. [16]. This
is a tubed 2-knot since the spin of the solid torus A x [0, 2] is homeomorphic to

S1 x B3. D

Proof of Theorem 1. By Theorems 3, 5 and Lemma 3, we have u(T*q} < 1.

Since T£q is nontrivial, we have u(T£q) = 1.
From the proof of Lemma 3, we have f(T£q) < p — 1. From [22], we have

W-rank(πTp,ς) > p - 1, which implies f(T*q) > p - 1 by (2). Thus we have

)= P -ι. ' D
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The spun 2-knot of a 1-knot is a ribbon 2-knot. Let b(K) denote the bridge
number of a 1-knot K. Then from the proof of Lemma 3, we see:

Proposition 4. For any l-knot K,

f(K ) < b(K) - 1.

Questions. (i) Does the equality in Proposition 4 always hold? Note also
that b(K) > W-rank(ττK); cf. (2).

(ii) It is known [24] that b(Kl#K2} = b(K^ + b(K2) - 1. How about the
fusion number? That is, does the equality of (6) always hold?

A l-knot K in S3 has a (I, I)- decomposition if the pair (S3,K) has a decom-
position into a union (Vi,αι) U (V^α^), where Vi is a solid torus and c^ is an
unknotted arc properly embedded in V^, ί — 1,2. The following is due to Makoto
Sakuma.

Proposition 5. For a nontrίvial l-knot K with (1, 1) -decomposition, we have
uw(K*) = I.

Proof. From the (l,l)-decomposition of K, the group πK, which is isomor-
phic to πK*9 is generated by two elements x, α, where x is a meridian. If h is a
1 -handle on K* corresponding to the element α, then the group of the embedded

torus K* 4- h is given by πK* /( [α, x] }, which is abelian. The proof is complete.

D

A torus knot has a (l,l)-decomposition, cf. [19], and so uw(T*^q) = 1. In fact,
let

(a,b\ap = bq)

be a presentation of πT£q. Then the element arbs describes a meridian, where
ps + qr = 1; cf. [3, Proposition 3.28]. The torus obtained by adding a 1-handle on
Tp>ς corresponding to the element α has the group given by

The new relation [α, arbs] — 1 implies [α, bs] = 1. Thus we have [α, b] — [α, 6ί?s+ςfr] =

REMARK. We note that a nontrivial l-knot with (l,l)-decomposiιion is a tun-
nel number one knot, which is known to be prime [20, 23]. Thus the example (1)
of Miyazaki shows that the converse of Proposition 5 does not hold.
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Question. Does it hold that uw(K] — u(K) for every 2-knot KΊ In particular,

does it hold that u(K*) = I for every nontrivial 1-knot K with (1, l)-decomposition?

5. Proof of Theorem 2

The spun torus knot 2^p+1 has the Alexander polynomial

By [11], there exists a ribbon 2-knot J with f ( J ) = I (and thus u(J] = 1) having
the Alexander polynomial Δj(ί) = Δ2,3(ί)Δpjp+ι(ί). We will show

u(τ;ϊp+1#ςJ) = g + 1, f(τ;ιp+l#qJ) = P + g - 1,

where p > 2 and g > 0.
From Theorem 1, using (5) and (6), we have u(Tpίp+l#qJ) < q -f 1 and

f(T*ιp+1#qJ) <p + q-l. The Alexander invariant of T*ιp+l#qJ is

Λ/(Δp,p+ι) Θ A/ (Δ2,3Δp,p+ι) Θ . . . Θ A/ (Δ2,3ΔP,P+1),

and so using (3) and (4), we have u(T;tp+l#qJ) > e(Γp*p+1#gJ) = q + 1.
There is an epimorphism

onto the symmetric group of degree p+1 defined by θ(xi) — (ί,ί + 1) (1 < ί < p)

and θ(xp+ι) = (p + 1, 1), where Xi is a meridian of the overpass α^ of the regular
projection of Tp?p+ι given in the proof of Lemma 3 (Fig. 1).

Let

(x,y\x = w~lyw)

be a Wirtinger presentation of πJ, where w — w(x,y) is a word in x and y. Then
the quotient group πJ/(x2 = y2 — 1} is the dihedral group of order 2r:

= 1),

where

if p is odd,

.f J ̂
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cf. [3, p.243]. Thus there is an epimorphism πJ —> 63 defined by x ι—» (12) and

2/^(13).
Let

π(qJ) = (x,yι,y2, ">yq\x = w(x,yk)~lykw(x,yk)(l <k< q)).

Extending the above epimorphisms, we have an epimorphism

θ *(T;,P+1#qJ) = πTp*p+1 *_ π(ςJ)^6p+q+1
x\ — x

defined by θ\πT^p^ = 0 and 0(yfc) = (l,p + k + 1). Since we need at least p + q

transpositions to generate Θp+ς+ι, we have /(Tp)p+1#gJ) > p + ς — 1; cf. [12,

p.460]. This completes the proof of Theorem 2. Π

6. Branched cyclic cover of a ribbon 2-knot

Let K be an n-knot in 5n+2. We denote by Bm(K) the m-fold branched cyclic

covering space of 5n+2 branched over K. If K is a 1-knot with b bridges, then

the Heegaard genus of Bm(K) is less than or equal to (m — 1)(6 — 1), and so

rank(ττι(Em(K))) < (m - 1)(6 - 1); see [3, Proposition 11.4; 21, 10C3]. Similarly

we have

Proposition 6. IfK is a ribbon 2-knot, then

Proof. Suppose that f ( K ) — n. By sliding 1-handles, πK has a Wirtinger

presentation

(x(= Xθ),^l,^2, ,^nkl j^2, . ,^n),

where r^ = x~lw~lXiWi with ̂  a word in x, x l 5 x2,... ,xn. Let Mm(.fί) be the

m-fold cyclic covering space of 54 — K corresponding to the kernel of the map

πK —> Zm = (t|ίm) defined by Xi ι—> ί. We denote by Gm the fundamental group

πι(Mm(K))9 which is isomorphic to the kernel of this map. We find a set of

generators for Gm using the Reidemeister-Schreier method; cf. [13, Sect. 2.3].

From the right coset decompositions πK = Gm U G^x U G^x2 U . . . U Grnx
πι~l,

we may take U = {l,x, x 2 , . . . ,xm~1} as a Schreier system for Gm in τrK\ Then

Gm is generated by

{txitx~~l\t e [7,0 < i < n},
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where g H-> g is the map defined by Gmg^U — {g}. Since xjXiχJχi = xjXiX~i~l,
putting

( Xix~l if j = 0;
χiχiX~i~l if 1 < j < m — 2;

we see that Gm is generated by

Now we consider πι(Brn(K)), which is given by Grn/(xrn = 1). Since xm =

it;-1^^ in π/f, α^i.. .θi,m_ι = xj" = 1 in ^(Bm(K)). Thus πι(Sm(lf)) is
generated by {α^|l < i < n, 1 < j < m — 1}, completing the proof. Π

See [18, 26] for the geometric interpretation of Bz(K).
Using Proposition 6, we can prove the following, which is a generalization of

(1).

Proposition 7.

iid Ύ1* -M-IT* \ TYiov/i' 1\ fίL T1* -/-f-JT* \ I- _i_ 7C6^/iJ.2 Qψf-l-L<2 §J llldΛ- ^Λ/, t / j , ^ ^ΓbJ. 2 3γ^-tJ.2 g^/ — At ~r t-

Proof. We prove for k < I. From (5), we have ^(feΓ2*3#/T2*5) < to(T2*3#T2*5)
+(/ - fe)u(T2*5). From (1) and Theorem 1, ix(T2*3#T2*5) - w(T2*'5) = 1, and'thus we
obtain iA(/cΓ2*3#/T2*5) < /.

On the other hand, the Alexander invariant of &T2*3#/T2*5 is

A/(Δ2 > 3Δ2 > 5) θ . . . θ A/(A2 > 3A2 > 5) θ A/(Δ 2 > 5)Θ. . .ΘA/(Δ 2 > 5 ) ,

/-fe

where Δ2,p = (ίp + l)/(ί + 1), and so e(/cT2*3#/T2*5) = /. Therefore, by (3) and (4),
we have u(fcT£3#/T2*>5) = /.

By Theorem 1 and (6), we have /(fcT2*>3#/T2j5) < k + /. On the other hand,

from 7Γι(J32(T2*jp)) = πι(S2(Γ2>p)) = Zp with p(> 0) odd integer, we have

)) = Z3 * > • • * Z3 * Z5 * . . . * Zg .

The rank of this group is fc + / [13, p. 192, Corollary], and so by Proposition 6, we

have /(fcT2*)3#/Γ£5) > fc + Z. This completes the proof. Π
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7. Satellite knot of a ribbon 2-knot

Let R3[t] = R3 x {t}. Fig. 2 gives the motion pictures [4] of the spun trefoil T2*3

in R4(C S4), where D2 is a disk such that (T2*3Π#3[0])u£>2 = (T2*3ΓΊ#3[2])u£>2 =

(T2*3 n #3[1]). More precisely,

for -1< t < 1,
for ί = ±1,
for 1< |ί| < 3,
for t = ±3,
for |ί| > 3,

where Ό\ and Ό\ are disjoint disks bounding the trivial 2-component link T2 3 Π

^3[2].

R\2\
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The group πT£ 3 has a presentation

(x,y\xyx = yxy).

Let V be a tubular neighborhood of the simple closed curve representing the element
y~lx in the exterior of T23. Let J be a 2-knot and N(J) its tubular neighborhood.
Then there is a homeomorphism ξ : S4-intV —> N(J). The 2-knot ξ(K) is called
the satellite knot of (T^3,y~lx) about J, which we denote by Σ(J). See [8]. By
the van Kampen theorem, the group ττΣ(J) is the free product of πJ and πT2*3,

amalgamating the subgroup generated by a meridian of π J and the subgroup gen-
erated by y~lx, both of which are infinite cyclic groups. Thus it contains subgroups
isomorphic to πT2 3 and πJ. The Alexander invariant of Σ(J) is Λ/(t2 — t + 1); cf.
[25].

When J is a spun trefoil, Σ(J) may be presented as in Fig. 3:

(Σ(J)fΊ#3[0] for -l
for ί =

Σ(J) Π R3[t] = { Σ(J) Π R3[2] for 1< |ί| < 3,
Ό\ U D\ U Dl U Ό\ for ί = ±3,

I 0 for |ί| > 3,

where £)?, z = 1,2,3,4, are disjoint disks bounding the trivial 4-component link

Σ(J)nfl3[2].
Σ(J) is also regarded as a 2-knot constructed by attaching a 1-handle to a

parallel link [10] of two components associated with J. The following is easy to
see.

Lemma 4. If J is a ribbon 2-knot, then Σ( J) is also a ribbon Ί-knot and

<2/(J) + l.

Adding a 1-handle on T2 3 whose core is α in Fig. 2, we obtain an unknotted
surface. Similarly, adding a 1-handle on Σ(J) whose core is β in Fig. 3, we obtain
an unknotted surface. Note that this 1-handle corresponds to y~lx G 7rT23 c
πΣ( J). More generally, we have:

Lemma 5. For any 2-knot J, τx(Σ( J)) = 1.

Now we consider Σ(/cT2*5), the satellite knot whose companion is the com-
position of k copies of the spun 2-knot of the (2,5)-torus knot. Let K(k,l) be
the composition of Σ(A:Γ2*5) and the composition of / copies of the spun trefoil:

K ( k , ΐ ) = Σ(fcT2*>5)#/Γ2*>3, M > 0. Then we have:
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R\2\

R\\\

/ΠO] β

Fig. 3.

Proposition 8.

u(K(k,l))=l + l, f(K(k,l))=2k

Proof. Since «(Σ(fcT2*5)) = u(T2*3) = 1, we have u(K(k, /)) < I + 1 by (5).
On the other hand, the Alexander invariant of K(k,l) is the sum of the Z + 1 copies
of Λ/(ί2 - ί + 1), and so e(K(k, I)) = I + 1. Therefore, from (3) and (4), we have

Next we consider the fusion number. By Lemma 5 and (6), we have f(K(k, Z)) <
2k + I + 1. Using the presentation

(o, 6ι,62, . . . ,bk\abi<ιbia = bi (1 < i < k))
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of 7r(fcT2*5), we have a presentation of 7r

(x,y,α,&ι,62, A, I

dbidbid = b^dbidbi (1 < ί < k ) ) .

Thus πK(k, I) has a presentation

(x, y, zι, z2, . . . , zι, α, &ι, 62, - - : , δ fc l xyz = yxy,

xzjX — ZjXZj (1 < j ' < /), α = ί/~ x,

dbidbid — bidbidbi (I < ί < k}).

There is a homomorphism from πK(k,l) to Θ2fc+ί+3? defined by

x »-> (12), y ̂  (23), ^ •-> (2,2k +j + 3) (1 < j < Z),

α ι-> (123), 6i ι-̂  (3, 2z + 2, 2z + 3) (1 < z < fe).

Then we have feiyfe^1 ι-> (2,2i + 3) and b~lybi ι-> (2, 2i + 4), and so this homo-

morphism is surjective. Since we need at least 2k + / + 2 transpositions to generate

&2k+ι+3, f(K(k, l))>2k + l + 1. The proof is complete. D

Clearly many more examples can be constructed using satellite knots.

REMARK. The results of this paper may be generalized to higher dimensions.
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