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0. Introduction

Let (M, J, g) be a compact, simply connected homogeneous Kahlerian manifold
(we call the space a Kdhler C-space). In [ 10] we have proved that there is a positive
integer n such that the n-th covariant derivative of (1,0)-type of the curvature tensor
of (M,J,g) is identically zero (we call the least integer with above property the
degree of (M, J,g)). It is clear that a compact Hermitian symmetric space is charac-
terized as a Kahler C-space with degree one. Moreover we classified the spaces with
degree n (n < 3).

In this paper we shall prove explicitly that every Kahler C-space has a k-
symmetric structure (see also Burstall and Rawnsley [1], p.52 and Pasiencier [9],
Lemma 4.3). In [2] Gray showed that each Riemannian 3-symmetric space is a homo-
geneous almost Hermitian manifold with the canonical almost complex structure.
He also proved that a Riemannian 3-symmetric space with the canonical almost
complex structure is Kéhlerian if and only if it is a Hermitian symmetric space. In
this paper we also show that the degree of a Kahler C-space equals three if and
only if it is a compact Kahler manifold with a 3-symmetric structure which is not
isometric to a Hermitian symmetric space (Theorem 2.4).

It is known that a Riemannian manifold (M, g) with a k-symmetric structure is
homogeneous, that is, (M, g) has an expression (M, g) = G/K. For an irreducible
Riemannian symmetric space the expression as a symmetric pair is unique as is well-
known. In section 3 we shall show an analogous theorem on symmetric pair hold
for a compact simply connected irreducible Riemannian 3-symmetric space which
is not isometric to a Riemannian symmetric space (Theorem 3.6).

1. Preliminaries

In this section we recall notions and (some) properties of k-symmetric spaces
(k € N) and Kahler C-spaces.

Let (M,g) be a Riemannian manifold. For € M, an isometry of (M, g) with
an isolated fixed point z is called a symmetry of (M,g) at z. Assume that (M, g)
admits at least one symmetry at each point, and let {s, : z € M} be the set of
symmetries. Then it is known that (M,g) is a Riemannian homogeneous space.
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Moreover, if we denote by Cl({s;}) the closure of the group generated by the set
{sz : € M} in the isometry group I(M, g) of (M, g), then Cl({s.}) acts transitively
on (M, g). (cf. Kowalski [7].)

Again, suppose that (M, g) admits a set {s, : ¢ € M} of symmetries. We call
{sz : x € M} a Riemannian k-symmetric structure on (M, g) if for x,y € M

(1.1) Sg 0 Sy = 8z O S, (ZZSz(y)),

(so)* =id, (sz)' #id, (I<k).

We note that {s; : « € M} depends only on s, for a fixed p € M. Furthermore (M, g)
with a Riemannian k-symmetric structure is said to be a Riemannian k-symmetric
space.

Let (M,g) be a Riemannian homogeneous space, i.e., there exits a group G
of isometries of (M, g) such that M = G/H (H is a closed subgroup of G). Let
7 : G — G/H be the canonical projection and put o = w(H). For an automorphism
o of G let G” be the fixed point set and (G?)o the identity component of G?,
respectively. Then the following is known (cf. [7]).

Proposition 1.1. Suppose that there exists an automorphism o of G such that
(i) (G%)o CHCG",
(i) o*=1ando' #1 for anyl <k,
(iii) let s be the transformation of M defined by mwoo = son. Then s preserves the
metric at o.
Then {s, = gosog ! :x =g-0 € M} defines a Riemannian k-symmetric
structure on (M, g).

Next, we construct Kéhler C-spaces. (for example, see Itoh [5] and Matsushima
(8D

A compact simply connected homogeneous space with an invariant complex
structure is called a C-space. Moreover, a C-space with an invariant Kéhler metric
is called a Kahler C-space. Let G be a compact Lie group and K a centralizer of a
toral subgroup of G. Then G/K admits a G-invariant Kahler structure. Conversely,
every Kédhler C-space can be obtained in this way.

In the following we describe an irreducible Kédhler C-space in terms of a root
syetem.

Let G be a compact simple Lie group and K a centralizer of a toral subgroup
of G. g and £ denote the Lie algebras of G and K, respectively. gc and €c denote
the complexification of g and ¢ Then ¢ contains a maximal abelian subalgebra §
of g. Let A and Ao denote the set of nonzero roots of g¢ and &c, respectively, with
respect to he. We choose fundamental root systems Il of Ay and II of A for some
lexicographic ordering of A so that ITy C IL. Set IT = {ay, -+, }. For Iy and II
we denote the positive root sets by Ao and A, respectively. Then A" C A*.
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Since the Killing form B of g¢ is non-degenerate, we can define H, € b
(e € A) by
B(H,H,) =a(H) (H €he).
We choose root vectors {E,} (a € A) so that for o, B € A

(1.2) B(Ea, E_0) = 1,
[Ea,Eﬁ] = Na,gEa+[3, Na,ﬂ = ——N_a,_ﬂ € R.

As is well-known, the following g, is a compact real form of g¢:

gu= > RV-IH.+ Y (RA.+RB.),

acAt acAt
where A, = E, — E_, and B, = vV/—-1(E4 + E_,). Now we may identify g with

g,- So we have

(1.3) t= > RV-IH,+ Y (RAs+RB,).

aeAt a€Apt
Put ® =T\ Ilp = {a;,, -, } and let A*(®) be the set AT\ Agt. Moreover set
(1.4) p= > (RAs+RB,).
aEAT (D)

Then g = ¢+ p (direct sum) and the tangent space T,(G/K) of G/K ato = {K} is
identified with p. We define a linear mapping J : p — p as

(1.5) J(Aa) = B,, J(Ba) = —Ay (O‘ € A+((I)))'

Then J can be extended to a G-invariant complex structure on G/K. p* denote the
eigenspaces of J corresponing with the eigenvalues £+/—1, that is

It is known that any G-invariant Kéhler metric g is given at o by

r l
(1.6) glgaxga = _(Z Cjnij)B (a= an‘ai € A+((I)))'
j=1

=1

Here c; are positive numbers and g, = RA, + RB,. Conversely, any bilinear form
defined by (1.6) on pC x p€ can be extended to a G-invariant metric on G/K (see
[5]). We have thus obtained a Kéhler C-space (G/K, g). In the remaining part of
this paper we denote this Kéhler C-space by M (g,II, @, g).
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2. Symmetries of Kahler C-spaces

Let G be a compact Lie group and K a centralizer of a toral subgroup of G.
Then the homogeneous space G/ K is called a generalized flag manifold. It is known
that G/K with G-invariant metric {, ) admits a Riemannian m-symmetric structure
(cf. [1] and [9]). For later use we shall prove this fact in the case where g is simple.

As in section 1, we set

g= Y RV-1H,+ Y (RA,+RB,),
acAt acA+t
H:{ala"'7al}7 q):{aila"'uair}-

Let 6 = Zi:l n;a; be the highest root of A with respect to II. For positive integers
m; (i=0,---, ) put m=mg + Z;zl ni;m;. Set

2.1) U(E:l:aij) = fimj Eiai]. (Oéij € ‘I>),
o(E1s) = EFM™E s, 0(Ew;) = Ea, (a; € ®o).
Here ¢ denotes a primitive m-th root of unity. Then o can be extended to an inner

automorphism of order m of gc. Conversely, every inner automorphism of finite
order of g¢ is obtained in this way (cf. Helgason [4].)

Lemma 2.1. Let o be an inner automorphism of finite order of gc. Then there
exist a fundamental root system Il = {a,---,a;} (with respect to a certain Cartan
subalgebra b)) and nonnegative integers (mg, my, - - - ,m;) without nontrivial common
factor such that o satisfies the following :

0(Bta,) = ™ Eia,, 0(Exs) = 7™ Eys,

where § = Zﬁzl n;o; denotes the highest root, m = mg + Zi:l n;m; and £ a
primitive m-th root of unity. Moreover o has the form

(2.2) o=e*  for some H € }.

Since 0™ = 1, we can see that H € ) R+/—1H,. Therefore we can regard o
as an inner automorphism of order m of g. We can easily check that g = ¥, where
g is the fixed point set of 0. Set ¢ = (1 + 0 +---+0™ 1), Then ¢ is a linear map
of g and ¢ = Im¢. Moreover we have

kerg= > (RAa+RB,) (=p).
aceAt(P)

Therefore g = £+ p and (& p] C p.
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Let (, ) be a G-invariant Riemannian metric on G/K. Then ( , ) is identified
with an Ad(K)-invariant scalar product on p (denoted by the same symbol ( , )).
Hence by (2.2) the restriction of o to p preserves ( , ).

We denote the inner automorphism of G corresponding to o by the same symbol
o. Let m : G — G/K be the canonical projection. Define a transformation s of
G/K by som = mwoo. Then the differential map of s at o = {K} coincides with
the restriction of o to p. Consequently, from Proposition 1.1, (G/K,(, )) admits a
Riemannian m-symmetric structure.

Let (M, J, g) be a Hermitian manifold with a complex structure J. Suppose that
(M,g) admits a Riemannian m-symmetric structure {s,; : z € M}. We call {s; :
x € M} a Hermitian m-symmetric structure if each s, (x € M) is a holomorphic
isometry of (M, J, g). In particular, if (M, J,g) is Kéhlerian, then Hermitian m-
symmetric structure is said to be Kdhlerian. It is known that a Hermitian symmetric
space has a Kéhlerian m-symmetric structure for any m > 2.

Proposition 2.2. Let G/K be a generalized flag manifold, where G is simple.
Then G/K admits a G-invariant complex structure J such that (G/K, J,( , )) has
a Hermitian m-symmetric structure for any G-invariant Riemannian metric ( , ). In
particular, a Kdhler C-space admits a Kdhlerian m-symmetric structure for some
integer m.

Proof. @ We define a G-invariant complex structure J by (1.5). Since
Y aca RV—1H, is contained in &, each metric ( , ) at o satisfies the following.

<AouAa> = <Ba,Ba>, <Aa,Ba> =0
(RAq +RB,) L (RAg+RBg), (a8 € A% (®),a # f).

Hence (, ) is a Hermitian metric with respect to J.

Let {s, : ¢ € M} be the Riemannian m-symmetric structure corresponding with
o. Since o has the form e2H for some H € &, we can see that s(= s,) is holomorphic.
Therefore, since J is G-invariant, s, =g-s-g~* (g- o = z) is holomorphic. O

Let R and V be the curvature tensor and the Levi-Civita connection, respectively,
of a Kahler C-space M (g,II,®,( , )). We denote by V the covariant derivative in
the derection of p*. According to [10] there exists positive integer n such that

V'R=0 and V" 'R#0.
We call the integer n the degree of M(g,I1,®,( , )). Then the degree of a Kéhler

C-space is equal to one if and only if it is a Hermitian symmetric space. Moreover
the following holds (see [ 10]).
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A; @ &% S—D
ay Qa2 ap—1 (27}
B, & © O=Q®
631 Q2 ap_1 (o7}
Cl: R—6 O<—=Q
aq a2 aj_1 (27}
D
a1
Dy: & = to &}
23} (€3] 7))
S7)
)
Qg Qs (67 a3 (031
Eg: N <& l &
(6%
an (o773 Qs (a7 Qag aq
E7 & \o Y l ©
(£3)
Qg [0%4 Qg Qs Oy Qs aq
Eg © © © © :Lf O—
(6%

Fy: 6—0=060—0
a1 (&%) as Oy

Ga: ®<+=0©6
(635} a2

Proposition 2.3. There exists no Kahler C-space with degree two.

Let o, be any of the simple roots designed by the symbol © and o;, o two
of the simple roots designed by the symbol & in the above Dynkin diagrams. Then
an irreducible Kdhler C-space with degree three is one of M (g, 11, {a.},(, )) and
M(g, 11, {ci, a5}, (, ). (In the diagrams, for o, corresponding to ® or ®, a Kihler
C-space M(g,11,{ap}, (, )) is a Hermitian symmetric space ([5]).)
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Let M(g,II,®,(, )) be an irreducible Kéhler C-space with degree three and
6 = Zizl n;o; the highest root. Then by Proposition 2.3 it is easy to see that
® = {a,} or & = {oj,a;} with n, = 2 and n; = ny = 1. Hence M(g,I1,®,( , ))
has a Kéihlerian 3-sy'mmetric structure. In fact, take 1 as m,, m; and my, and O as
the other m,, (see the early part of this section and Proposition 2.2). More precisely,
the following holds.

Theorem 2.4. The degree of an irreducible Kdhler C-space is three if and only
if it is a compact irreducible simply connected Kahlerian 3-symmetric space which is
not isometric to a Hermitian symmetric space.

Proof. Let (M, J,(, )) be a compact irreducible Kihlerian 3-symmetric space
and {s, : * € M} a Kéhlerian 3-symmetric structure of (M, J, (, )). Let Cl({s.})
be the closure of the group generated by the set {s, : £ € M} in the isometry group
of (M,g). Then Cl({s.}) is a closed subgroup of the holomorphic isometry group
of (M, J,{, )) and acts transitively on M. Thus (M, J,(, }) is a Kéhler C-space.

Let G be the identity component of Cl({s,}) and K be the isotropy subgroup
of G at a point o € M. Then K is a centralizer of a toral subgroup of G since
(M, J,(, )) is Kéhler C-space. Define an automorphism o of order three of G as
follows :

2.3) o(g) =s,0g0s, L.

Since s, 0k = ko s, for k € K (see [7]) and o is an isolated fixed point of s,, we
have

(G CKCG?, and g¢°=¢.

Since ¢ contains a maximal abelian subalgebra of g and o leaves ¢ pointwise fixed,
we can see that o is inner. We set § = ) .| n;ay, ap = —6 and ng = 1. (In other
wards o; and n; (0 < ¢ < 1) are the vertices and corresponding coefficients in
the extended Dynkin diagram (cf. [4])). Then, by Lemma 2.1, the possibilities of
(mo, my,- -+, my) are the following :

(i) m;=m; =myp =1 and others are zero. In this case n; = n; = nx = 1.

(ii) m; =m; =1 and others are zero. In this case n; = 1,n; = 2.

(iii) m; =1 and others are zero. In this case n; = 3.

However, case (iii) is not possible since £ must have a nonzero center (in the case,
g% is semisimple).

If o is of the form (i), then the degree of (M, J,(, )) = G/K equals three (if
necessary, substitute —ag for ;). Similarly, if o is of the form (ii), then the degree
of (M, J,(, ))=G/K is equal to three.

We have thus proved the theorem. UJ
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REMARK 2.5.  According to Koda [6], except for compact irreducible Kéhlerian
3-symmetric spaces, compact irreducible 3-symmetric spaces admit no (possibly not
invariant) Kéhlerian structures because their second cohomology groups vanish.

REMARK 2.6. Let M(g,II,®,(, )) be a Kihler C-space and set ® = {a;,, -,
a; }. Let 6 = Zizl m;; be the highest root of g and put m = 377, m,,. By
the above argument we can see that the space has a Riemannian (m + 1)-symmetric
structure. Moreover, in [ 10], we implicitly proved that the degree of M(g,II, ®, (, ))
is at most (2m — 1).

3. Isometry groups of Riemannian 3-symmetric spaces

In this section we examine the isometry groups of Riemannian 3-symmetric
spaces.

Let (M, (, )) be a Riemannian m-symmetric space (m > 2) and {s, : x € M}
a Riemannian m-symmetric structure of (M, (, )). Let G be the identity component
of Cl({s;}) and K be the isotropy subgroup of G at a point o € M. As stated
in Section 2, 0(g) = s,0g0s,” ! (g € G) is an automorphism of order m of G.
Moreover it follow that

(3.1) (G°)C K CG°.

Now we shall show the following proposition.

Proposition 3.1. Let G be a compact, connected, simple Lie group and K a
closed subgroup of G such that G/K is simply connected and G acts effectively on
G/K. Let o be an inner automorphism of order three of G such that (3.1) is satisfied.
Suppose that G/ K is not Riemannian symmetric for a G-invariant metric { , ). Then
G coincides with the identity component of the isometry group of (G/K,{ , )).

Proof. Let G be the identity component of the isometry group of (G/K, ( , ))
and K the isotropy subgroup of G at a point o = {K}. Since G acts effectively on
G/K, the group G is a closed subgroup of G and K C K. Let g, ¢, § and £ be the
Lie algebras of G, K, G and K, respectively.

We denote the differential map of o by the same symbol o. Set p = ker(1+0+0?)
(C g). Then ¢ = Im(1+0+02), g = t®p and [, p] C p. Since o is inner, the restriction
of o to p preserves (, ). Thus by Proposition 1.1 the space M = (G/K,{, )) has a
Riemannian 3-symmetric structure {s; : z € M }. Moreover

1

SoOM =700, Sy=go0s,09 =~ (9€G,g-0==z),

where 7 : G — G/K be the canonical projection. We note that s, € K. Hence the
automorphism & of G defined by 6(g) = s, 0 go s, ! is inner and of order three.
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Let §° be the fixed point set of & in §. Since o is an isolated fixed point of s,, we
have

(32 tcg’ ce

Therefore § is semisimple, since G is compact and acts effectively on M. More-
over, ¥ contains a maximal abelian subalgebra of g because o is inner. Thus
M = (G/K,(, )) is an irreducible Riemannian manifold (see the proof of Theorem
5 in [3]). Also € contains a maximal abelian subalgebra of § because & is inner.
Therefore g must be simple. In fact, if not, then we have the decomposition

gzgl@...@gr, Eztl@...@gr,

where g, is an ideal of g and €; C g,. This contradicts the irreducibility of M.
Using a similar method as in the proof of Theorem 2.4 we shall see that ﬁa
coincides with &.
Since g is simple and & is an inner automorphism of order three, §5 contains
a maximal abelian subalgebra h of g. Furthermore, by Lemma 2.1, there exists a
fundamental root system Il = {aj,---, 0} with respect to hc of g¢ such that the
possibilities of (mg, my,---, m;) are the following :
(i) m; =mj; =m; =1 and others are zero. In this case n; = n; = ng = 1.
(ii) m; =m; =1 and others are zero. In this case n; =1, n; = 2.
(iiif) m; =1 and others are zero. In this case n; = 3.
Here —ap = ) ,_; n;o; is the highest root and we set ng = 1. Let AT be the set
of positive roots with respect to II. For a subset ® = {a;,, -+, ;. } of II we set

!
At (@) = {a = kaap €At :k;, >0 for somej}.
p=1

G

Now we shall see that & = g°.

Case (i) As mentioned in the proof of Theorem 2.4, we may assume that
ar = ag (—ag : the highest root). Set ® = {a;,a;}. Suppose that there is a root
o € AT(®) such that

g, = (RA, +RB,) C £\ §°.

Ifk;=0and k; =1 (o= Z;=1~kpo‘p)’ then, since 9a, is co~ntained in ﬁ‘} (p#1, ),
we see that g, is contained in €. In this case the pair (g, £) is symmetric (take an
involutive automorphism so that m; = mg = 1 and the others are zero).

Ifk;=k; =1 (?‘ = Z;zl kpayp), then the same argument as &ibove implies that
94, s contained in £. Moreover g,,, and g, are not contained in &, since we assume
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t # §. Then ¢ coincides with §”, where 7 is the inner automorphism of order two
of g defined by the relation m; = m; =1 and my =0 (k # 4, j, 0 < k < I). Hence
(8,€) is a symmetric pair.

Consequently, in this case, §° = &, since we assume that M = G/K = G/K is
not symmetric.

Case (i)  As in the Case (i) we assume ¢ = 0. Suppose that there is a root
a= Zi,=1 kpap in AT (a;) such that

= (RAq +RB,) C B\ §°

It is clear that k; = 1 or 2. If k; = 1, then g, C E, that is, £ = §. This is a
contradiction.

If k; = 2, then g, C t. Then £ coincides with g7, where 7 is the inner auto-
morphism of order two of g defined by the relation m; = 1 and my = 0 (k # j,
0 < k <1). Hence the pair (g, E) is symmetric.

Cask (iii) In this case we can see that 9o, C ﬁ& for j #1 (0 < j <1). Suppose
that there is a root a = Z;zl kpcp in At (a;) such that g, C €\ g°. Then k; = 1
or 2 because g, C a°. If k; = 1, then E must be equal to g. If k; = 2, then since
9o C t there is a root 8 in AT (a;) such that 95 C tand h; =1 (8= Zé:l hja;).
Therefore & = §

We have thus £ = Q&.

Consequently, & must be equal to §°.

Set p = ker(1 + & + &2). Then since ¢ = Im(1 + & + &2), we have

Then p = p because p C p and dimp = dim M = dimp. On the other hand,
g=9p+[p,p] and § = p + [p,p] since g and g are simple Lie algebras. Finally, we
have g = §g. OJ
We consider the similar problem in other cases. Let (G, K) be one of the fol-
lowing:
(1) (Spin(8),SU(3)/Zs),
(i)  (Spin(8), Gz),
(iii)) ({LxLxL}/6Z,6L/6Z),
where L and Z denote the compact, simply connected, simple Lie group and
its center, respectively. Moreover 6(g) = (g,9,9) (g € L). Let I be the Lie algebra of
L. Then the Lie algebra 6 of §L is given by

§l={(X,X,X): X €1}.
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Moreover, the automorphism o of order three of [® [ & [ is given by o(X,Y, Z) =
(Z,X,Y).

Now, we shall show that 6l is a maximal o-invariant subalgebra of [® [ & L.

Let ¢ be a o-invariant Lie subalbegra of [ @ [ @ [ such that §I C ¢. At first, we
shall see that there is X € [ such that (0,0, X) € & if £ # 6L

We may assume that there exist X, Y € [ (X # Y) such that (0,X,Y) € &
If [X,Y] # 0, then (0,0, [X,Y]) € ¢ because (X, X, X) € £ Thus we suppose that
[X,Y] = 0. Then there exists a maximal abelian subalgebra b of [ such that X,
Y € h. Let A be the set of nonzero roots of I¢ with respect to hc and choose a Weyl
basis {Eq, Ha} (@ € A) so that for any a € A

Ao =(Ey —E_o)€l, Ba=+v—-1(Ea+E_o)el, V—1H, €l
(see Section 1). Set X =+/—1H and Y = /—1H' (H,H' € b). Then
[(0, V=1H,V~=1H'), (A, Aa, Aa)] = (0,a(H)B,,a(H')B,) € t.
Similarly, (0, «(H)By,a(H')B,) € € from which we have

[(0, a(H)Aq, a(H')Ay), (0, a( H) Ba, o H') B,,)]
= (0,20(H)*V=1H,,2a(H')>V=1H,) € t.

Now, we may assume a(H) # 0 since [ is simple. If a(H)? = a(H’)?, then we obtain
(a(H)*V/=1H,,0,0) € ¢

since a(H)?(v=1Ha,vV—1Ha,vV—1H,) and (0, a(H)*v/—1H,, o(H)*/—1H,) are
in €. Thus (0,0,+/—1H,) € ¢ because £ is o-invariant.

We suppose that a(H)? # a(H’)?. Then there exist @ € A and nonnegative
number c such that (0,/—1H,,c\/—1H,) € & Since ¢ is o-invariant, we have

(cV/=1H4,0,v/—1H,), (V—1Hg4,cvV/—1H,,0) € t.

Hence (0, —c*\/—=1H,;,v/—1H,) € & Then it is easy to see that (0, (1+c®)y/—1H,,0)
is in €. Thus (0,0,1/—1H,) is in &

From the above argument, we assume that there is o € A such that (0,0,/—1H,)
€ ¢t Let {a1, - +,q;} be a fundamental root system of A with respect to some
lexicographic ordering. Then there is ¢ (1 < ¢ < I) such that o;(Hs) # 0. By a
similar method as above, we can see that

(3.4) (0,0,RA,, ® RB,, ® RV —1H,,) C &.
Next, choose j (j # i) so that a;(H,,;) # 0. Then

(0,0,RA,, ® RB,, ® RV—1H,,) C t.
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By induction, (3.4) holds for all ¢ (1 < 4 < I), since [ is simple. Therefore (0,0,[) C &,
and & coincides with [ @ [ @ [. We have thus proved the following.

Lemma 3.2. 6l is a maximal o-invariant subalgebra of | ® 1 L.

Next, let o be an outer automorphism of order three on a compact simple Lie
algebra g. Then g is of type D4. Let {a1, a2, a3, 04} be a fundamental root system
(see Proposition 2.3). As before, we choose a Weyl basis {E,, Hy; € A} so that
it satisfies (1.2). Let £ be a primitive cube root of unity. Set

a+ = Eia, + Exoy + Fia,, 0 = Eiay + &4, + &2 Eya,,
af =Eiq, +EEiny +EE1q,,
bt = Ext(artas) + Ex(astar) T Bx(astas))
by = Ei(a;tas) + EF+(astan) + € Fi(astan)
by = Bi(a;tas) + E Ex(astas) + EP+(astaz)
¢t = Ei(aytastas) T Ft(aztastas) T Et(ar+astaq)
c;t = E:i:(a1+az+aa) + éE:t(az+a3+a4) + ﬁzEﬂ:(a1+az+a4)’
i = Fi(ar+astas) + £ Fi(astas+as) T EF+(artaztas)-
Let g(o, &%) be the complex eigenspace of o with eigenvalue ¢ (i = 0, 1, 2). Accord-

ing to Wolf and Gray [11], o is conjugate to 71 or 75, where 7; (¢ = 1, 2) are defined
by the following :

(3.5) g(m1,1): {Haszal + Hgj, + HauEﬂ:az’E:l:(a1+a2+013+Ot4)v
By (ay+200+as+as) Ok, bt Cx }
8(11,€) : {Ho, + EQHas + &Ha,,ay, by, ¢
9(7'1"52) : {Hay +E&Ha, + §2Ha4’a/i7b;:ac/i}
(3.6) 9(m2,1) : {Hay, Hay + Hay + Hoyyaq, bl 07
9(72,€) : {Ha, + §2Ha3 + {Ho,, Eazs Eay +az+as+aq
E_ (o +2as+astas) O, by, ey e}
9(7'2"52) :{Ho, +&Hoy + ézHauE—az,E—(a1+az+as+a4)7

!/ // /"
Eal +20p+aztoayr A4, b ) b+) C—,Cy

REMARK 3.3. By (3.5) and (3.6) we can see that there is no element X in
a(i,€) @ g(i,€2) such that

[X,9(7i,1)] = {0}.

We note that (g, g(71,1)) and (g, g(72, 1)) correspond to the cases (ii) and (i),
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respectively.

Let (G, K) be one of (i), (ii) and (iii). g and ¢ denote the Lie algebras of G
and K, respectively. Let o be an outer automorphism of order three of g such that
t = g°. As in Proposition 1.1 we define a transformation s of G/K corresponding
to 0. Let (, ) be a G-invariant metric on G/K such that (, ) is preserved by s
at the origin o = {K}. Then (G/K,(, )) has a Riemannian 3-symmetric structure
{5 : € G/KY} associated with s. Let G be the identity component of the isometry
group of (G/K,(, )) and § its Lie algebra. Since G is compact, the algebra § has
the following form :

3.7 0=3D9,® - Dg,.

Here 3 is the center and g; (¢ = 1, - - -, r) are simple ideals of g and [g, g] = g, D" - -Dg,..
Define an automorphism & of G by 7(g) = sogos™!. Let K be the isotropy subgroup
of G at 0 and  its Lie algebra. We also denote by & the differential map of & at the
identity of G. Then, as before, we have §° C . Moreover, since each g; in (3.7) is a
simple ideal, it is easy to see that

() =3 0(g) =49,
for some 4, j (4, j =1, -- -, 7). Therefore we may assume that
(8,8 =9(1)® - D9 (F-invariant decomposition),

where g;) is a simple ideal or [& [ . In the following we denote the restriction of
G to g(;) by the same symbol 5.

Suppose that & # §°. Let X = (Z,Xq1y, -+, Xq@) be an element of £\ §°.
Assume that X(;y # 0. Then it is easy to see that there exists Y € g(l)& such that
[Y; X(1y] # 0. (In fact, if rk(g(;)?) = rk(g(;)), then take Y from a maximal abelian
subalgebra contained in g(,)°. For the other cases, by Remark 3.3 we can see that
such Y exists.) In particular, g(1) is a compact simple Lie algebra from Lemma 3.2.
Then [Y, X(y)] is contained in EN g(1)- Hence the subalgebra £(;) of g(;) generated
by [Y, X(1)] and g(;)° is contained in €N gy).

If X(1) is not in €(;), then we may assume that X, is perpendicular to ;) with
respect to the Killing form of g(;). Then [X(y), )] is perpendicular to £x). This
contradicts the definition of £). Thus X(;) is contained in k. By a similar argument,
if Z # 0, then Z is in . However, this contradicts the effectivity of G. Therefore we
have

b=t @b, (6 Cgy)

Since (G/K,{, )) is simply connected and irreducible (cf. Gray [2]), the algebra g
is simple or [ [D L.
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Case (i) Let G be the identity component of the isometry group of the Rie-
mannian 3-symmetric space

M = (Spin(8)/(SU(3)/Zs), (. ))-

Then & is an outer automorphism of G. (If not, then the Euler number of M is
nonzero.) Thus, by the above argument, G is one of the following :

Spin(8), {Lx L x L}/6Z.
If G = {L x L x L}/6Z, Then by Lemma 3.2 we have
M = ({LxLxL}éZ)/(6L/6Z).

However, from [6] we can see that Spin(8)/(SU(3)/Z3) is not diffeomorphic to it
for any compact simple Lie group L. Thus Spin(8) is the identity component of the
isometry group.

Cask (ii) By similar argument as above, G is one of the following :
Spin(8), {L xL x L}/é6Z.

However, since there is no simple Lie algebra with dimension seven, the latter case
is impossible. Thus Spin(8) coincides with the identity component of the isometry
group.

Finally, we consider the case (iii).

We shall prove the following lemmas.

Lemma 34. Letg = Dy. Then g(12,1) is a maximal subalgebra of g.

Lemma 3.5. Let g = D4. Then B3 and g(r1,1) are only proper subalgebras
containing g(1,1). Here the pair (g, B3) is symmetric.

If the lemmas hold, then {L x L x L}/6Z coincides with the identity component
of the isometry group of

({L x L x L}/62)/(6L/62),(, ))-

In fact, if the Lie algebra of the isometry group coincides with Dy, then the Lie
algebra of the isotropy subgroup must be equal to one of g(71,1), g(72,1) and Bs.
However, this contradicts the above argument. (Since dimg — dim B3 = 7, the last
case is impossible.)
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Proof of Lemma 3.4. In this case g(72,1) is isomorphic to As. Set

HO = Hal + Haa + Hau Hl = Ha1 + §2Ha3 +£Ha47
H2 = Ha1 +£Ha3 +£2Ha4‘

Then we note that

v—1H,, (Hl—Hz), \/—1(H1+H2), (a.,,—a ) vV — ]. a++a cg
(aif— - a/i)v Vv —1(‘1; +ali)v (al— - ai{—)v \ 2 (a’ + a+) €9,
ey (d=d)), V-1 +d))eq.

Let ¢ be a subalgebra of g such that g(m2,1) C € and g(m2,1) # ¢ Let X be an

element of £\ g(72,1). Since v/—1H,, and v/—1Hj are contained in g(72, 1), we may
assume that X is contained in one of the following (see (3.6)) :

Cal ® Ca’y, Cby®CH_ o CbY,
CC:}: &) CCI_ &) (CCQI_, (CE:E(01+OL2+C!3+Q4)
CE:tOtz 3 CE:’:(a1+2a2+ag+a4)’ CHI ® CH2

(Consider [y/—1H, X] for some H € RHy ® RH,,.)

(1) Thecase X € CE4,,.

In this case Y = [v/=1H,,, X] is also in & Hence we have FE,, € tc. On the
other hand, it is known that E,,, a; and c¢” generate gc (cf. chapter X of [4]).
Thus ¢c = g¢, that is, € = g.

(2) The case X € CEL (4, +as+astas):

As in (1), we can see that E (o, tas+as+as) € Ec. Then

[a—7 Ea1+az+a3+a4] € 9(7-276) n (CEC!1+C!2+0¢3 + CE&1+02+0¢4 + (CEC!2+043+0¢4)'

Thus c; € ¥¢. Similarly we have b, € £ and E,, € £c. Hence, by the same reason
as (1), it follows that ¢ = g.

(3) The case X € CEL(q;4205+as+aq)-

As in (1), we can see that E'y (4, {2q,+a3+as) € Ec. Then we get

['ECYl‘+-2Ot2+0t3-+-0147bli](?é 0) € 9(7—2752)
O(CEal-f—ag-f-ag + CECI1+042+0£4 + CE02+0¢3+€!4)'

Hence ¢/| € tc. Similarly we can check that ¢’ € &c, b/,b” € €c. Then
[bl ,bl_]=H1 € tc, [C+,Cl’]"‘—€H2 € Ec.

Then there is H € Z?:o CH; (H; = H,,) such that ax(H) = az(H) = ay(H) =0
and a;(H) # 0. Thus we can see that F1,, € fc. Similar argument implies that
E., € %c for all a € A. Therefore € = g.
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(4) The case X € Cb+ © Cb” @ CV/|.
In this case we may assume that

{(by +pblf +qb_), (b—+rb+sb)etc} or {¥, b_etc},

for some p, g, r, s € C. If b/[, b_ € ¥, then [0/, ](€ CEq,+2a24as+as) C fc-
Thus Eu, 20,+as+as (@0 E_ (o, 420, +as+a4)) iS contained in €. Hence this case is
reduced to (3).

If (by + pb’ + gb"), (b— +rb{ + sb__) € tc, then

[a’+’ (b+ +pbi|l- + qbl—)] € (CC+ S (Cc{{l— ® {0}»
[a+7 [a+7 (b+ +pb{}/— + qbl—)]] € CE011+0¢2+013+0¢4 2] {O} 52 {O}

Therefore we have Eu, tastas+as € € (and E_ (4, tas+as+as) € Ec). This case is
reduced to (2).

(5) The case X € Ca/, ® Ca].

In this case we may assume that

{(@ +pal, +qa”), (a_ +rad +sa’)etc} or {a,, a” €tc},

for some p, g, 7, s € C. If a/, and a” are in ¢, then we have [b”,a/,] € CE_,, and
(b ,a”] € CE,,. This case is reduced to (1).
If (a!] + pa’, + qa”) and (a’_ + ra/, + sa’) are in £, then

[(a’ik,— + pai}— + qali)7cil~] € CEal+a2+a3+a4 @ {O} & (Cb+a

([} + pa’, + qa”),¢}],a_] € Ccy ® {0} @ CE,,,

([[(a’f +paly +qa”),c}],a_],a_] € CEq, & {0} & {0}.
Hence E,, € tc. Similarly we have E_,, € tc. This case is reduced to (1).

(6) The case X € Ccx @ Cc_ & Ccl].
In this case we may assume that

(e +pc_+qcl), (c—+rc_+sd)etc or ¢, ek,
for some p, ¢, 7, s € C. If ¢_ and ¢/ are in fc, then

[cl-qlnbi{—](e CEa1+2az+as+a4)’ [Cl—’bl—/](e CE—(a1+2a2+a3+a4))

are contained in £c. This case is reduced to (3).
If (cq +pc_ +qc]) and (c_ +rc_ + sc!}) are in €c, then since

[C+ +pcl— + qc,—il-va+] € CE&1+Q2+03+C¥4 2] {0} ® {O}’
[c- +rc_ +sc,a_] € CE_(4,+as+as+as) © {0} © {0},
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it follows that E (a4, 4a,+as+aq) € Ec. Hence this case is reduced to (2).

(7) The case X € CH; & CH,.

It is easy to see that [X,ay] # 0 and [X, a4 ] are contained in Ca/, & Ca/,. Thus
this case is reduced to (5).

We have thus proved the lemma. O

Sketch of the proof of Lemma 3.5. Suppose that there exists a Lie subalgebra
¢ of g such that ¢ contains g(71,1). As above, we may assume that there is X €
€\ g(m1,1) such that X is contained in one of the following (see (3.5)) :

(R(Hy — Hy) ®RV=1(Hy + Hy)), (R(a’ - a%) @ RV—1(a] + a%)),
(R(b] = b%) @ RV=1(VL + L)), (R(ch — i) @ RV=1(c] + ).

In particular, we may suppose that there exists an element in R(H; — Hy)®R+/—1 (H;
+H3>) such that it is contained in £ In fact, if X is in R(aZ —a%) ®Ry/~1(aZ +a’),
then

(@ —a_) +p(a” —al ) +qvV—-1(a" +d/) €,
V—=1(a} +a_) +7r(a” —al )+ svV-1(a" +dl) €t
or (a” —d), V-1(a” +d,)€t

If (a” —a!,) € € then we have
[@” —d/,,vV-1(ay + a-)] € R(H1 — H2) ®RV—-1(H, + Hp) C &

For the other cases, we can check that there exists an element in R(H; — Hy) &
Rv/—=1(H; + H2)) such that it is contained in €. Thus we assume that there exist
p,q € R such that

X =p(Hy — Hy) +qvV—1(H, + Hz) € ¢.

Since [X, g(71,1)] C & and [X, [X,g(71,1)]] C tc, we can check that if ¢ # g then
H,, (=1, 3 o0r4)is in £ For any case we can see that £ is isomorphic to Bz and
the pair (g, B3) is symmetric. Ul

Finally we have the following.

Theorem 3.6. Let (M,( , )) be a compact irreducible simply connected Rie-
mannian 3-symmetric space which is not isometric to a symmetric space. Then there
exists a unigue pair (G, K) of a compact connected Lie group G and a closed sub-
group K of G satisfying (3.1) such that (M,{, )) = G/K and G acts effectively on
M. In particular, G is the identity component of the isometry group of (M, { , )).
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