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0. Introduction

Let (M, J, g) be a compact, simply connected homogeneous Kahlerian manifold
(we call the space a Kάhler C-space). In [10] we have proved that there is a positive
integer n such that the n-th covariant derivative of (1,0)-type of the curvature tensor
of (M, J, g) is identically zero (we call the least integer with above property the
degree of (M, J, #)). It is clear that a compact Hermitian symmetric space is charac-
terized as a Kahler C-space with degree one. Moreover we classified the spaces with
degree n (n < 3).

In this paper we shall prove explicitly that every Kahler C-space has a k-
symmetric structure (see also Burstall and Rawnsley [1], p.52 and Pasiencier [9],
Lemma 4.3). In [2] Gray showed that each Riemannian 3-symmetric space is a homo-
geneous almost Hermitian manifold with the canonical almost complex structure.
He also proved that a Riemannian 3-symmetric space with the canonical almost
complex structure is Kahlerian if and only if it is a Hermitian symmetric space. In
this paper we also show that the degree of a Kahler C-space equals three if and
only if it is a compact Kahler manifold with a 3-symmetric structure which is not
isometric to a Hermitian symmetric space (Theorem 2.4).

It is known that a Riemannian manifold (M, g) with a ^-symmetric structure is
homogeneous, that is, (M, g) has an expression (M, g) = G/K. For an irreducible
Riemannian symmetric space the expression as a symmetric pair is unique as is well-
known. In section 3 we shall show an analogous theorem on symmetric pair hold
for a compact simply connected irreducible Riemannian 3-symmetric space which
is not isometric to a Riemannian symmetric space (Theorem 3.6).

1. Preliminaries

In this section we recall notions and (some) properties of /c-symmetric spaces
(k e N) and Kahler C-spaces.

Let (M, g) be a Riemannian manifold. For x e M, an isometry of (M, g) with
an isolated fixed point x is called a symmetry of (M, g) at x. Assume that (M, g)
admits at least one symmetry at each point, and let {sx : x e M} be the set of
symmetries. Then it is known that (M,g) is a Riemannian homogeneous space.
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Moreover, if we denote by C\({sx}) the closure of the group generated by the set
{sx : x G M] in the isometry group I(M, g) of (M, g), then Cl({sx}) acts transitively
on (M,g). (cf. Kowalski [7].).

Again, suppose that (M, g) admits a set {sx : x G M} of symmetries. We call
{sx : x G M} a Rίemannian k-symmetrίc structure on (M,g) if for x,y e M

(1.1) 5X o 5 y = s2 o S ϊ , 0 =

( 5 χ ) f c =id, (βxj^id, (Z<fe).

We note that {sx : x G M} depends only on sp for a fixed p G M. Furthermore (M, #)
with a Riemannian /c-symmetric structure is said to be a Rίemannίan k-symmetrίc
space.

Let (M,g) be a Riemannian homogeneous space, i.e., there exits a group G
of isometries of (M, <?) such that M = G/ϋί (iί is a closed subgroup of G). Let
π : G —• G/ϋί be the canonical projection and put o = ττ(H). For an automorphism
σ of G let Gσ be the fixed point set and (G σ ) 0 the identity component of Gσ,
respectively. Then the following is known (cf. [7]).

Proposition 1.1. Suppose that there exists an automorphism σ ofG such that
(i) (Gσ)0 GHcGσ,
(ii) σk = 1 and σι φ 1 for any I < k,
(iii) let s be the transformation ofM definedbyπoσ = soπ. Then s preserves the

metric at o.
Then {sx = g o s o g'1 : x = g - o e M} defines a Riemannian k-symmetric

structure on (M,g).

Next, we construct Kahler G-spaces. (for example, see Itoh [5] and Matsushima

[8])
A compact simply connected homogeneous space with an invariant complex

structure is called a G-space. Moreover, a G-space with an invariant Kahler metric
is called a Kahler G-space. Let G be a compact Lie group and K a centralizer of a
toral subgroup of G. Then G/K admits a G-invariant Kahler structure. Conversely,
every Kahler G-space can be obtained in this way.

In the following we describe an irreducible Kahler G-space in terms of a root
syetem.

Let G be a compact simple Lie group and K a centralizer of a toral subgroup
of G. Q and I denote the Lie algebras of G and K, respectively. gc and £c denote
the complexification of Q and t. Then t contains a maximal abelian subalgebra ί)
of Q. Let A and Δo denote the set of nonzero roots of gc and ΐc, respectively, with
respect to fjc. We choose fundamental root systems Πo of Δo and Π of Δ for some
lexicographic ordering of Δ so that Πo C Π. Set Π = {αi, , 07}. For Πo and Π
we denote the positive root sets by Δo

+ and Z\+, respectively. Then zA0

+ C Δ+.
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Since the Killing form B of gc is non-degenerate, we can define Ha G ϊ}c

(a G Δ) by

We choose root vectors {E&} (a G Δ) so that for a, β e Δ

(1.2)

[Ea, Eβ] = NatβEa+β, Natβ = -N-ai-β G R.

As is well-known, the following gu is a compact real form of gc:

where Aa = Ea — E_a and 5 α = y/^ϊ(Ea + £•-«). Now we may identify g with
gu. So we have

(1.3) t=

Put Φ = Π \ Πo = {ah, , α i r } and let Δ+(Φ) be the set Δ+ \ Z\o

+. Moreover set

(1.4) p

Then g = i + p (direct sum) and the tangent space TO(G/K) of G/K at o = {i^} is
identified with p. We define a linear mapping J : p —> p as

(1.5) J(A(X) = Bct, J(BCί) = -AOί ( α e 4 + ( Φ ) ) .

Then J can be extended to a G-invariant complex structure on G/K. p± denote the
eigenspaces of J corresponing with the eigenvalues ±\/^ΐ, that is

It is known that any G-invariant Kahler metric g is given at o by

r I

d 6)

Here Cj are positive numbers and gα = RAa + RBa. Conversely, any bilinear form
defined by (1.6) on p c x p c can be extended to a G-invariant metric on G/K (see
[5]). We have thus obtained a Kahler C-space (G/K,g). In the remaining part of
this paper we denote this Kahler C-space by M(g, Π, Φ, g).
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2. Symmetries of Kahler C-spaces

Let G be a compact Lie group and K a centralizer of a toral subgroup of G.

Then the homogeneous space G/K is called a generalized flag manifold. It is known

that G/K with G-invariant metric ( , ) admits a Riemannian ra-symmetric structure

(cf. [1] and [9]). For later use we shall prove this fact in the case where g is simple.

As in section 1, we set

9= Σ

Let 6 = Σ i = i n * α * ^ e t n e highest root of Z\ with respect to Π. For positive integers

πii (i = 0, , r) put m = m 0 + Σ j = i nίjmj' Set

(2.1) σ ( £ ± α i . ) = ξ ± m ' E ± α < . (α,. G Φ),

σ(E±δ) = ^ ^ £ 7 ^ , σ(£7αi) = £ α , (α, G Φo).

Here ξ denotes a primitive ra-th root of unity. Then σ can be extended to an inner

automorphism of order m of gc. Conversely, every inner automorphism of finite

order of g c is obtained in this way (cf. Helgason [4].)

Lemma 2.1. Let σ be an inner automorphism of finite order ofgc. Then there

exist a fundamental root system Π = {αi, , a{\ {with respect to a certain Cartan

subalgebra ί)) and nonnegative integers (m 0, mi , ,m/) without nontrivial common

factor such that σ satisfies the following :

σ(E±ai) = ξ±rn*E±ctτ, σ(E±δ) = ξ^m°E±δ,

where δ = Y^i=1 ΠiOti denotes the highest root, m = m0 + Σl

i=1 riirrii and ξ a

primitive m-th root of unity. Moreover σ has the form

(2.2) σ = eadH for some H G ί).

Since σ m = 1, we can see that H G Σα ^y/-~ΪHα. Therefore we can regard σ

as an inner automorphism of order m of Q. We can easily check that Qσ = £, where

Qσ is the fixed point set of σ. Set φ = (1 + σ -\ h σ 7 7 1 " 1 ). Then φ is a linear map

of & and I = Imφ. Moreover we have

kerφ=
<x(EΔ+(Φ)

Therefore g = t 4- p and [ί, p] C p.
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Let ( , ) be a G-invariant Riemannian metric on G/K. Then ( , ) is identified
with an Ad(K)-invariant scalar product on p (denoted by the same symbol ( , )).
Hence by (2.2) the restriction of σ to p preserves ( , ).

We denote the inner automorphism of G corresponding to σ by the same symbol
σ. Let π : G —> G/K be the canonical projection. Define a transformation s of
G/K by s o π = π o σ. Then the differential map of s at o = {K} coincides with
the restriction of σ to p. Consequently, from Proposition 1.1, (G/K, ( , )) admits a
Riemannian m-symmetric structure.

Let (M, J, g) be a Hermitian manifold with a complex structure J. Suppose that
(M,g) admits a Riemannian ra-symmetric structure {sx : x G M}. We call {sx :
x G M} a Hermitian m-symmetric structure if each s^ (x G M) is a holomorphic
isometry of (M,J,g). In particular, if (M,J,g) is Kahlerian, then Hermitian m-
symmetric structure is said to be Kahlerian. It is known that a Hermitian symmetric
space has a Kahlerian ra-symmetric structure for any m > 2.

Proposition 2.2. Let G/K be a generalized flag manifold, where G is simple.
Then G/K admits a G-invariant complex structure J such that (G/K, J, ( , )) has
a Hermitian m-symmetric structure for any G-invariant Riemannian metric ( , ). In
particular, a Kahler C-space admits a Kahlerian m-symmetric structure for some
integer m.

Proof. We define a G-invariant complex structure J by (1.5). Since
is contained in I, each metric ( , ) at o satisfies the following.

Hence ( , ) is a Hermitian metric with respect to J.
Let {sx : x G M} be the Riemannian ra-symmetric structure corresponding with

σ. Since σ has the form eadH for some H G t, we can see that s(= so) is holomorphic.
Therefore, since J is G-invariant, sx = g s g~λ (g o = x) is holomorphic. Π

Let R and V be the curvature tensor and the Levi-Civita connection, respectively,
of a Kahler G-space M(g,Π,Φ, ( , )). We denote by V the covariant derivative in
the derection of p + . According to [10] there exists positive integer n such that

VnR = 0 and V ^ i ? φ 0.

We call the integer n the degree of M(g,Π,Φ, ( , )). Then the degree of a Kahler
G-space is equal to one if and only if it is a Hermitian symmetric space. Moreover
the following holds (see [10]).
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Proposition 2.3. There exists no Kάhler C-space with degree two.
Let aa be any of the simple roots designed by the symbol θ and α ,̂ aj two

of the simple roots designed by the symbol 0 in the above Dynkin diagrams. Then
an irreducible Kάhler Cspace with degree three is one o/M(g,Π, {αα}, ( , )) and
M(Q, Π, {cti,aj}, ( , )). (In the diagrams, for ap corresponding to Θor®,a Kάhler
C-space M(g, Π, {αp}, ( , )) is a Hermitian symmetric space ([5]).)
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Let M(g,Π, Φ, ( , )) be an irreducible Kahler C-space with degree three and

δ = Σ ^ = 1 nidi the highest root. Then by Proposition 2.3 it is easy to see that

Φ = {«α} or Φ = {θέj,ak} with na = 2 and rij = nk = 1. Hence M(g,Π, Φ, ( , ))

has a Kahlerian 3-symmetric structure. In fact, take 1 as raα, rrij and m/-, and 0 as

the other mp (see the early part of this section and Proposition 2.2). More precisely,

the following holds.

Theorem 2.4. The degree of an irreducible Kahler C-space is three if and only

if it is a compact irreducible simply connected Kahlerian 3-symmetric space which is

not isometric to a Hermitian symmetric space.

Proof. Let (M, J, ( , )) be a compact irreducible Kahlerian 3-symmetric space

and {sx : x G M} a Kahlerian 3-symmetric structure of (M,J, ( , )). Let Cl({sx})

be the closure of the group generated by the set {sx : x e M} in the isometry group

of (M,g). Then Cl({sx}) is a closed subgroup of the holomorphic isometry group

of (M, J, ( , )) and acts transitively on M. Thus (M, J, ( , )) is a Kahler C-space.

Let G be the identity component of Cl({sx}) and K be the isotropy subgroup

of G at a point o e M. Then if is a centralizer of a toral subgroup of G since

(M, J, ( , )) is Kahler C-space. Define an automorphism σ of order three of C as

follows :

(2.3) σ(g) = so o g o S(
- 1

Since so o k = k o so for k e K (see [7]) and o is an isolated fixed point of so, we

have

( C σ ) 0 C K c C σ , and gσ = t.

Since £ contains a maximal abelian subalgebra of Q and σ leaves £ pointwise fixed,

we can see that σ is inner. We set δ = Σ i = = 1 r^α^ α 0 = — £ and n0 — 1. (In other

wards α^ and n^ (0 < i < I) are the vertices and corresponding coefficients in

the extended Dynkin diagram (cf. [4])). Then, by Lemma 2.1, the possibilities of

(mo, mi, , mi) are the following :

(i) mi = rrij = rrik = I and others are zero. In this case n* = rij = Πk = 1.

(ii) rrii = rrij = 1 and others are zero. In this case πi — 1, n3 = 2.

(iii) raj = 1 and others are zero. In this case ni = 3.

However, case (iii) is not possible since I must have a nonzero center (in the case,

gσ is semisimple).

If σ is of the form (i), then the degree of (M, J, ( , )) = G/K equals three (if

necessary, substitute — a0 for α^). Similarly, if σ is of the form (ii), then the degree

of (M, J, ( , )) = G/K is equal to three.

We have thus proved the theorem. D
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REMARK 2.5. According to Koda [6], except for compact irreducible Kahlerian

3-symmetric spaces, compact irreducible 3-symmetric spaces admit no (possibly not

invariant) Kahlerian structures because their second cohomology groups vanish.

REMARK 2.6. Let M(g, Π, Φ, ( , )) be a Kahler C-space and set Φ = {aiχ, ,

air}. Let δ = Σli=imiai t>e t n e highest root of g and put m = Y^j=1rriiά. By

the above argument we can see that the space has a Riemannian (m + l)-symmetric

structure. Moreover, in [10], we implicitly proved that the degree of M(g, Π, Φ, ( , ))

is at most (2m — 1).

3. Isometry groups of Riemannian 3-symmetric spaces

In this section we examine the isometry groups of Riemannian 3-symmetric

spaces.

Let (M, ( , )) be a Riemannian ra-symmetric space (m > 2) and {sx : x e M}

a Riemannian m-symmetric structure of (M, ( , )). Let G be the identity component

of C\({sx}) and K be the isotropy subgroup of G at a point o G M. As stated

in Section 2, σ(g) = so o g o so~
1 (g £ G) is an automorphism of order m of G.

Moreover it follow that

(3.1) (Gσ)ocK cGσ.

Now we shall show the following proposition.

Proposition 3.1. Let G be a compact, connected, simple Lie group and K a

closed subgroup of G such that G/K is simply connected and G acts effectively on

G/K. Let σ be an inner automorphism of order three ofG such that (3.1) is satisfied.

Suppose that G/K is not Riemannian symmetric for a G-invariant metric ( , ). Then

G coincides with the identity component of the isometry group of (G/K, { , )).

Proof. Let G be the identity component of the isometry group of (G/K, ( , ))

and K the isotropy subgroup of G at a point o = {K}. Since G acts effectively on

G/K, the group G is a closed subgroup of G and K c K. Let g, t, g and ϊ be the

Lie algebras of G, K, G and K, respectively.

We denote the differential map of σ by the same symbol σ. Set p = ker(l+σ+σ 2 )

(C Q). Then ϊ = Im(l+σ+σ 2 ), g = £θp and [6, p] C p. Since σ is inner, the restriction

of σ to p preserves ( , ). Thus by Proposition 1.1 the space M = (G/K, ( , )) has a

Riemannian 3-symmetric structure {sx : x G M}. Moreover

s o o π = τ r o σ , sx = g o so o g'1 (g eG,g o = x),

where π : G —• G/K be the canonical projection. We note that so G K. Hence the

automorphism σ of G defined by σ(g) = soo g o so~
1 is inner and of order three.
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Let gσ be the fixed point set of σ in g. Since o is an isolated fixed point of so, we

have

(3.2) ί C f C I

Therefore g is semisimple, since G is compact and acts effectively on M. More-

over, I contains a maximal abelian subalgebra of g because σ is inner. Thus

M = (G/K, ( , )) is an irreducible Riemannian manifold (see the proof of Theorem

5 in [3]). Also I contains a maximal abelian subalgebra of g because σ is inner.

Therefore g must be simple. In fact, if not, then we have the decomposition

9 = g1 Θ Θ g r, C = 61 Θ Θ ϊ r ,

where gi is an ideal of g and ^ c g{. This contradicts the irreducibility of M.

Using a similar method as in the proof of Theorem 2.4 we shall see that gσ

coincides with ί.

Since g is simple and σ is an inner automorphism of order three, gσ contains

a maximal abelian subalgebra fj of g. Furthermore, by Lemma 2.1, there exists a

fundamental root system Π = {αi, , aι} with respect to ί) c of gc such that the

possibilities of (ra0, mi, ,m/) are the following :

(i) rrii = πij = rrik — 1 and others are zero. In this case m = rij = rik = 1.

(ii) rrii = rrij = 1 and others are zero. In this case ni = 1, rij = 2.

(iii) πii — \ and others are zero. In this case n^ = 3.

Here — a0 = Σi=zl ΠiOti is the highest root and we set n0 = 1. Let Λ+ be the set

of positive roots with respect to Π. For a subset Φ = {aiλ , , α i r } o f Π w e set

> 0 for some

Now we shall see that I = gσ.

CASE (i) As mentioned in the proof of Theorem 2.4, we may assume that

ajς = ao (—αo : the highest root). Set Φ = {cti,aj}. Suppose that there is a root

a e Δ+(Φ) such that

If fci — 0 and kj = 1 (α = Y^p=1 kpap), then, since gap is contained in gσ (p φ ί, j),

we see that ga is contained in i. In this case the pair (ή,t) is symmetric (take an

involutive automorphism so that rrii = rao = 1 and the others are zero).

If ki = kj = 1 (α = Σpz=ι kpap), then the same argument as above implies that

gao is contained in I. Moreover ga. and ga are not contained in ί, since we assume
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i Φ g. Then I coincides with gτ, where r is the inner automorphism of order two
of g defined by the relation πii = mj = 1 and mk = 0 (k φ i, j , 0 < k < I). Hence
(g,ϊ) is a symmetric pair.

Consequently, in this case, gσ = I, since we assume that M = G/K = G/K is
not symmetric.

CASE (ii) As in the Case (i) we assume i = 0. Suppose that there is a root

α = Σ =ι kpap i n ^ + ( α j ) such that

It is clear that kj = 1 or 2. If kj = 1, then ga. c ί, that is, I = g. This is a
contradiction.

If kj = 2, then gao c i. Then I coincides with gτ, where r is the inner auto-
morphism of order two of g defined by the relation πij = 1 and rrik = 0 (k φ j ,
0 < k < I). Hence the pair (g, I) is symmetric.

CASE (iii) In this case we can see that ga. c f for j Φ i (0 < j < I). Suppose

that there is a root a = Σl

p=1 kpap in Δ+(ai) such that ga C \ \ gσ. Then ki = 1

or 2 because gao C 5σ. If ki = 1, then I must be equal to g. If /̂  = 2, then since

gao C I there is a root /? in ^+(0;^) such that gβ c ϊ and hi = 1 (β = ^ = 1 hjCtj).

Therefore I = g.
We have thus ί = gσ.
Consequently, i must be equal to gσ.
Set p = ker(l + σ + σ2). Then since i = Im(l + σ + σ2), we have

(3.3) fl = ϊ θ p , [ϊ,p]Cp.

Then p = p because p C p and dimp = dimM = dim p. On the other hand,
g = p + [p,p] and g = p + [p,p] since g and g are simple Lie algebras. Finally, we
have g = g. D

We consider the similar problem in other cases. Let (G, K) be one of the fol-
lowing:

(i) (Spin(8),SU(3)/Z3),
(ii) (Spin(8),G2),
(iii) ({LxLx L}/δZ, δL/δZ),

where L and Z denote the compact, simply connected, simple Lie group and
its center, respectively. Moreover 6(g) = (g,g,g) (g G L). Let [ be the Lie algebra of
L. Then the Lie algebra <Sί of δL is given by

δl={(X,X,X) : I G ( } .
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Moreover, the automorphism σ of order three of [ 0 ί 0 [ is given by σ(X, Y, Z) =
(Z,X,Y).

Now, we shall show that δi is a maximal σ-invariant subalgebra of ί 0 ί 0 L
Let ! bea σ-invariant Lie subalbegra of I 0 10 I such that δi C !. At first, we

shall see that there is X G ί such that ( 0 , 0 , I ) G l i f t / δl
We may assume that there exist X, Y G i (X φ Y) such that (0, X, Y) G t

If [X,Y] φ 0, then (0,0, [X,Y]) G ί because (X,X,X) G C. Thus we suppose that
[X, Y] = 0. Then there exists a maximal abelian subalgebra f) of [ such that X,
Y G f). Let zl be the set of nonzero roots of lc with respect to ί)c and choose a Weyl
basis {Ea, Ha} (a £ Δ) so that for any a G A

Aa = (Ea - E-a) G ί, Ba = V^ϊiEa + £?_α) G (, Λ/=ϊffα G I

(see Section 1). Set X = y/^ΪH and Y = λ /^ϊ iJ / (ff, ίf; G I)). Then

[(0, Λ/=Tίr, V^H'), (Aα, ̂ α, Aα)] = (0, a(H)Ba,a(Hf)Ba) G ί.

Similarly, (0,a(H)Ba,a(H')Ba) G t from which we have

[(0, a(Ji)A a, α(/0^α)> (0, a(H)Ba,a(H')Ba)}

= (0,2a(H)2y/=lHa,2a(H')2y/=lHa) G t

Now, we may assume a(H) φ 0 since ϊ is simple. If α(if)2 = a(H')2, then we obtain

since a(iJ) 2 (v^Ti/ a , > / ^ ϊ i ί α , / ^ i ^ α ) and (0,α(fΓ)2''y/^ΪH^aίH)2'V^ΪHa) are
in t. Thus (0,0, y/^ΛHa) G £ because E is σ-invariant.

We suppose that a(H)2 φ a(H')2. Then there exist a e Δ and nonnegative
number c such that (0, y/^lHa,cy/^lHa) G £. Since £ is σ-invariant, we have

0) G ί.

Hence (0, -^yf-XΉ.^ Λ/^ΪHO,) G t. Then it is easy to see that (0, (l+c3)y/^ΪHa, 0)
is in C Thus (0,0, V ^ ^ α ) is in t.

From the above argument, we assume that there isa e Δ such that (0,0, y/^ΪHa)
G t. Let {αi, ••-,«/} be a fundamental root system of Δ with respect to some
lexicographic ordering. Then there is i (1 < i < I) such that a^Ha) φ 0. By a
similar method as above, we can see that

(3.4) (0,0,JL4α. θ R B α i θRΛ/^J ϊαJ C t.

Next, choose j (j φ ϊ) so that aj(Hai) φ 0. Then

(0,0, RAa. θ M.Bĉ  θ RV^ΪHa.) C t.
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By induction, (3.4) holds for allz (1 < i < Z), since [ is simple. Therefore (0,0, [) C t,
and ϊ coincides with [ 0 10 [. We have thus proved the following.

Lemma 3.2. δί is a maximal σ-invariant subalgebra of i 0 [ 0 ί.

Next, let σ be an outer automorphism of order three on a compact simple Lie
algebra Q. Then Q is of type D4. Let {αi,α2,α3,α4} be a fundamental root system
(see Proposition 2.3). As before, we choose a Weyl basis {Ea,Ha;a e Δ} so that
it satisfies (1.2). Let ξ be a primitive cube root of unity. Set

C± =

Let g(σ, ξ1) be the complex eigenspace of σ with eigenvalue ξτ (i = 0, 1, 2). Accord-
ing to Wolf and Gray [11], σ is conjugate to τ\ or τ2, where T* (Z = 1, 2) are defined
by the following :

(3.5) fl(TLjl) {Hct2,Hctl + Ha3 + i ί α 4 , ^ ± α 2 , ^ ± (

+2α2+α3+α4)> α±> &±> c ± }

fl(n,ί2) : {Hai +ξHa3+ξ2HaΛ,a'±,b'±,cf±}

(3.6) fl(r2,l) : {^2, ffttl + # α 3 + ffα4, α±, 67+, &_,

3 + α 4 ) , 4 ^ + ' 6'_ , C+, c'_

ί ^α4,^-α2^-(αi+α2+

O >̂ >̂ C C }

REMARK 3.3. By (3.5) and (3.6) we can see that there is no element X in
&(ruξ)ΘQ(rhξ

2) such that

We note that (β, £J(TΪ, 1)) and (g,0(τ2,1)) correspond to the cases (ii) and (i),
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respectively.
Let (G, K) be one of (i), (ii) and (iii). g and I denote the Lie algebras of G

and K, respectively. Let σ be an outer automorphism of order three of g such that
I = gσ. As in Proposition 1.1 we define a transformation s of G/K corresponding
to σ. Let ( , ) be a G-invariant metric on G/K such that ( , ) is preserved by s
at the origin o = {K}. Then (G/K, ( , )) has a Riemannian 3-symmetric structure
{sx : x G G/K} associated with s. Let G be the identity component of the isometry
group of (G/K, ( , )) and g its Lie algebra. Since G is compact, the algebra g has
the following form :

(3.7) g = 3 θ 0 i θ θ fc .

Here 3 is the center and g{ (i — 1, , r) are simple ideals of g and [g, g] = gx0- θg r .
Define an automorphism σ of G by σ(g) = sogos"1. Let K be the isotropy subgroup
of G at o and I its Lie algebra. We also denote by σ the differential map of σ at the
identity of G. Then, as before, we have gσ c I. Moreover, since each gt in (3.7) is a
simple ideal, it is easy to see that

for some i, j (i, j = 1, , j). Therefore we may assume that

[flί έ] = 9(i) θ θ 9(z) (σ-invariant decomposition),

where g^ is a simple ideal or [0 [0 [. In the following we denote the restriction of
σ to g^) by the same symbol σ.

Suppose that I φ jjf. Let X = (Z,X(i), ,X(/)) be an element of I \ ga.
Assume that X{\) φ 0. Then it is easy to see that there exists Y G 0(i)σ such that
[y, X(ι)] φ 0. (In fact, if τk(g^σ) = rk(g(1)), then take Y from a maximal abelian
subalgebra contained in g(i)σ. For the other cases, by Remark 3.3 we can see that
such Y exists.) In particular, g ^ is a compact simple Lie algebra from Lemma 3.2.
Then [y, X(i)] is contained in I Π g^y Hence the subalgebra l^ of g^ generated
by [y, X(!)] and g^σ is contained in tΠg^y

If X{\) is not in t^9 then we may assume that X{\) is perpendicular to t^ with
respect to the Killing form of g^. Then [-^(I),^!)] is perpendicular to t^y This
contradicts the definition of t(χ). Thus X^ is contained in \. By a similar argument,
if Z φ 0, then Z is in t. However, this contradicts the effectivity of G. Therefore we
have

Since (G/K, ( , )) is simply connected and irreducible (cf. Gray [2]), the algebra g
is simple or ί 0 ί 0 I.
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CASE (i) Let G be the identity component of the isometry group of the Rie-
mannian 3-symmetric space

M = (Spin(8)/(SU(3)/Z3), ( , ))•

Then σ is an outer automorphism of G. (If not, then the Euler number of M is
nonzero.) Thus, by the above argument, G is one of the following :

Spin(8), {Lx Lx L}/δZ.

If G = {L x L x L}/δZ, Then by Lemma 3.2 we have

M =({LxLx L}/δZ)/(δL/δZ).

However, from [6] we can see that Spin(8)/(SU(3)/Z3) is not diffeomorphic to it
for any compact simple Lie group L. Thus Spin(8) is the identity component of the
isometry group.

CASE (ii) By similar argument as above, G is one of the following :

Spin(8), {Lx Lx L}/δZ.

However, since there is no simple Lie algebra with dimension seven, the latter case
is impossible. Thus Spin(8) coincides with the identity component of the isometry
group.

Finally, we consider the case (iii).
We shall prove the following lemmas.

Lemma 3.4. Let g = D4. Then g(r2,1) is a maximal subalgebra ofg.

Lemma 3.5. Let g = D4. Then B3 and g{τu 1) are only proper subalgebras
containing g(τi, 1). Here the pair (g, B%) is symmetric.

If the lemmas hold, then {Lx Lx L}/δZ coincides with the identity component
of the isometry group of

(({LxLxL}/δZ)/(δL/δZ),(, ))•

In fact, if the Lie algebra of the isometry group coincides with D4, then the Lie
algebra of the isotropy subgroup must be equal to one of £j(τi, 1), gfo, 1) and B%.
However, this contradicts the above argument. (Since dim g — dim B3 = 7, the last
case is impossible.)
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Proof of Lemma 3.4. In this case g(τ2,1) is isomorphic to ^42 Set

Ho = ϋfαi -f Ha3 + Ha4, Hi = Hai + ξ Ha3 + £#α4 >

Then we note that

(I If \ / ~Λ ( f i II \ ( I ll \ / T ί I i H \ j- *.

(α_l_ — α_J, v -~J-vα+ + α_ J, («_ — α_|_J, v—1(«_ + β_|_) G 9,

• ••, fc;_ - cl),
Let t be a subalgebra of g such that β(τ2,1) c t and g(τ2,1) ^ t. Let X be an
element of t\g(r2,1). Since y/^ΛHa2 and >/—ϊ#o are contained in g(τ2,1), we may
assume that X is contained in one of the following (see (3.6)) :

Cα;± θ Cα±, C6± θ Cb'_ 0 C6+

Cc± θ Cc'_

CE±Oί2,

(Consider [Λ/ 1 1 !^, X) for some # G RH0 θ Rffα2 )
(1) The case X eCE±Cί2.
In this case Y = [y/^ΪHa2,X] is also in t. Hence we have E±a2 G tc On the

other hand, it is known that Ea2, α + and c'!_ generate gc (cf. chapter X of [4]).
Thus tc = 0c» t n a t is, t = fl.

(2) The case I e C % 1 + α 2 + Ω 3 + α 4 ) .
As in (1), we can see that £ 7 ± ( α i + α 2 + α 3 + α 4 ) G t c . Then

[α_, £'α i-|_α 2 + α 3+Q ; 4] G £j(τ2,£) Π (C£l

αi-(-α2-(-α3 + C-Eαi+α2.fα4 +(CEa2+a3+(X4).

Thus c+ G tc Similarly we have b+ G £c and Ea2 G tc Hence, by the same reason
as (1), it follows that I — Q.

(3) The case X G C E ± ( α i + 2 α 2 + α 3 + α 4 ) .

As in (1), we can see that ^±(α1+2α2+α3+α4) e *c Then we get

Hence c^ G tc Similarly we can check that c'_ G tc, ̂ ?+, 6;_ G tc Then

[&;, &1] = ffi G tc, [<, c^] - -f/r2 e ίc.

Then there is ff G ΣLoCHi (H* = H^) such that α2(£Γ) = a3{H) = a4(H) = 0
and ctι(H) Φ 0. Thus we can see that E±ai G tc Similar argument implies that
E±a € tc for all a e Δ. Therefore t = g.
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(4) The case X G Cb± 0 Cb'_ 0 C67 | .

In this case we may assume that

or

for some p, q, r, s G C. If b% b'_ G t c , then [&",c7

+](G C£α i + 2α 2+0*3+^4) C t c .

Thus E α i + 2 α2+α3+α 4 (and £_(α i +2c* 2+α 3+α 4)) is contained in tc Hence this case is

reduced to (3).

If (6+ +p&'; + g&7_), (6_ + rbl + s&7_) G t c , then

[α+, (6+ + p 6 ^ + g6'_)] G C c + 0 Cc ; | θ {0},

[α+, [α+, (6+ +P&7! + ς6;_)]] G C £ 7 α i + α 2 + α 3 + α 4 θ {0} 0 {0}.

Therefore we have £ α i + α 2 + α 3 + α 4 G tc (and E _ ( Q l + Ω 2 + α 3 + Q 4 ) G tc). This case is

reduced to (2).

(5) The case X G Ca'± 0 C<4

In this case we may assume that

{(α" + p α ' + + gαϋ), (α'_ + rα'+ -f sα^) G tc} or {α'+, α!ί. G t c } ,

for some p, q, r, s G C. If α^ and α^ are in tc, then we have [6", α̂ _] G CE_a2 and

[&+>a-] G C£?α 2. This case is reduced to (1).

If (α'l + pa'+ + qa!!_) and (α'_ + r α ^ + saf!_) are in tc, then

^ ) , c ' + ] G C £ α i + α 2 + Q 3 + α 4 0 {0} 0 C6+,

g α 7 ^ ) , ^ ] ^ - ] G Cc+ 0 {0} 0 C £ α 2 ,

(α7! +pα 7

+ + ^ ) , c V ] , α _ ] , α _ ] G C£7αa 0 {0} 0 {0}.

Hence Ea2 G tc Similarly we have E-a2 G tc This case is reduced to (1).

(6) The case X G Cc± 0 Cc'_ 0 Cc^.

In this case we may assume that

c_ + rc'_ + sc7 |) G t c or c'_, c' | G t c ,

for some p, q, r, 5 G C. If c7_ and c^ are in tc, then

are contained in tc. This case is reduced to (3).

If (c + + pd_ + ςc7!) and (c_ + rc7_ + sc7_[_) are in tc, then since

[c+ +pc7_ + 9 < , α + ] G C ^ α i + α 2 + α 3 + α 4 0 {0} 0 {0},

[c_ + rc'_ + sc7;, α_] G C £ _ ( α i + α 2 + α 3 + α 4 ) 0 {0} 0 {0},
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it follows that £ ± ( α i + α 2 + α 3 + α 4 ) G tc Hence this case is reduced to (2).

(7) The case X G CHλ Θ CH2.

It is easy to see that [X, a±] Φ 0 and [X, α±] are contained in Ca± Θ Cα±. Thus

this case is reduced to (5).

We have thus proved the lemma. •

Sketch of the proof of Lemma 3.5. Suppose that there exists a Lie subalgebra

t of g such that I contains g(τi, l) . As above, we may assume that there is X G

t \ g(τi, 1) such that X is contained in one of the following (see (3.5)) :

- H2) θ Mv^ί i ί i + H2)), (R(4 - a'τ)

In particular, we may suppose that there exists an element in R(Hχ — # 2 ) Θ M Λ / — ϊ (HI

+H2) such that it is contained in t In fact, if X is in M ( α ± - α y Γ ϊ
then

-fαV) G ϊ,

or (α^ - α ;

+), \ / ^ ϊ ( α ^ + α'+) G t.

If (α^ - α;

+) G B, then we have

h + α_)] G R(ffi - ff2) θ M λ / ^ ϊ ^ i + ff2) C

For the other cases, we can check that there exists an element in R(Hι — H2) θ

RΛ/^Ϊ(H1 + H2)) such that it is contained in t. Thus we assume that there exist

p, ς G R such that

X = p ^ _ H2) + g V ^ Ϊ ( i ί i + # 2 ) € ί.

Since [X,fl(ri, 1)] C tc and [X, [X,g(ru 1)]] C Bc? we can check that if t Φ g then

Hai (ί = 1, 3 or 4) is in C. For any case we can see that I is isomorphic to JE?3 and

the pair (g,B3) is symmetric. •

Finally we have the following.

Theorem 3.6. Let (M, ( , )) be a compact irreducible simply connected Rie-

mannian ^-symmetric space which is not isometric to a symmetric space. Then there

exists a unique pair (G, K) of a compact connected Lie group G and a closed sub-

group K ofG satisfying (3.1) such that (M, ( , )) = G/K and G acts effectively on

M. In particular, G is the identity component of the ίsometry group of (M, ( , )).
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