ON COHOMOLOGY GROUPS OF NEF LINE BUNDLES TENSORIZED WITH MULTIPLIER IDEAL SHEAVES ON COMPACT KÄHLER MANIFOLDS

Kensho TAKEGOSHI

(Received October 25, 1996)

Introduction

Let X be a compact Kähler manifold of dimension n provided with a Kähler metric ω_{X} and let E be a holomorphic line bundle on $X . E$ is said to be numerically effective, "nef" for short, if the real first Chern class $c_{R, 1}(E)$ of E is contained in the closure of the Kähler cone of X. If X is projective algebraic, then E is nef if and only if $C \cdot E=\int_{C} c_{R, 1}(E) \geq 0$ for any irreducible reduced curve C of X (cf.[13], §2 and [1], §6).

If E is nef, then for a fixed smooth metric h_{E} of E and a given sequence of positive numbers $\left\{\varepsilon_{k}\right\}_{k \geq 1}$ decreasing to zero, there exists a sequence of realvalued smooth functions $\left\{\varphi_{k}\right\}_{k \geq 1}$ such that every form $\Theta_{E}+d d^{c} \varphi_{k}+\varepsilon_{k} \omega_{X}$ yields a Kähler metric. Here Θ_{E} is the curvature form of E relative to h_{E} defined by $\Theta_{E}=d d^{c}\left(-\log h_{E}\right)$ with $d^{c}=\sqrt{-1}(\bar{\partial}-\partial) / 2$. Normalizing φ_{k} in such a way that $\sup _{X} \varphi_{k}=0$, we can show that φ_{k} converges to an integrable function φ_{∞} on X so that $\Theta_{E}+d d^{c} \varphi_{\infty}$ is a positive current (cf. $\S 2$, Proposition 2.5). Such an integrable function φ_{∞} is said to be almost plurisubharmonic. In general φ_{∞} has singularities and $e^{-\varphi_{\infty}}$ is not integrable on X (cf. [11], [18]), which implies that the nefness is strictly weaker than the semi-positivity of line bundle in the sense of Kodaira (cf. [4], Example 1.7). Hence we can define a coherent analytic sheaf of ideal $\mathcal{I}\left(\varphi_{\infty}\right)$ associated to φ_{∞} whose zero variety (possibly empty) is the set of points in a neighborhood of which $e^{-\varphi_{\infty}}$ is not integrable. The sheaf $\mathcal{I}\left(\varphi_{\infty}\right)$ is called the multiplier ideal sheaf associated to φ_{∞} and we obtain the canonical homomorphism $\iota^{q}\left(\varphi_{\infty}\right): H^{q}\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \otimes \Omega_{X}^{n}(E)\right) \longrightarrow H^{q}\left(X, \Omega_{X}^{n}(E)\right)$ induced by $\iota\left(\varphi_{\infty}\right): \mathcal{I}\left(\varphi_{\infty}\right) \otimes \Omega_{X}^{n}(E) \hookrightarrow \Omega_{X}^{n}(E)$.

Though φ_{∞} can not be uniquely determined generally, the study of $H^{q}(X$, $\left.\mathcal{I}\left(\varphi_{\infty}\right) \otimes \Omega_{X}^{n}(E)\right)$ is deeply related to several interesting problems in analytic and algebraic geometry (cf. [2], [3], [11], [12], [18]). Nevertheless not much is known about the cohomology group except a vanishing theorem for multiplier ideal sheaves associated to nef and big line bundles by Nadel (cf. [11]). We study the cohomology group by establishing a certain harmonic representation theorem. In particular we
can determine the structure of $\operatorname{Image} \iota^{q}\left(\varphi_{\infty}\right)$. As a consequence we can get the following Lefschetz type theorem (cf. [5], Theorem 0.3).

Theorem 1. Let X be a compact Kähler manifold of dimension n provided with a Kähler metric ω_{X} and let E be a nef line bundle on X provided with a smooth hermitian metric h_{E}. Let φ_{∞} be an integrable function determined as above ; i.e., $\Theta_{E}+d d^{c} \varphi_{\infty}$ is a positive current on X, and let $\mathcal{I}\left(\varphi_{\infty}\right)$ be the multiplier ideal sheaf associated to φ_{∞}. Then the homomorphism

$$
L^{q}: \Gamma\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \bigotimes \Omega_{X}^{n-q}(E)\right) \longrightarrow \text { Image } \iota^{q}\left(\varphi_{\infty}\right) \subset H^{q}\left(X, \Omega_{X}^{n}(E)\right)
$$

is surjective and the Hodge star operator relative to ω_{X} yields a splitting homomorphism

$$
\delta^{q}: \text { Image } \iota^{q}\left(\varphi_{\infty}\right) \longrightarrow \Gamma\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \bigotimes \Omega_{X}^{n-q}(E)\right)
$$

with $L^{q} \circ \delta^{q}=\mathrm{id}$ for any $q \geq 1$.
The theorem was formulated and proved by Enoki in the case where E is semipositive, in which case the zero variety defined by $\mathcal{I}\left(\varphi_{\infty}\right)$ is empty and $\iota^{q}\left(\varphi_{\infty}\right)$ is isomorphic. Furthermore we can obtain certain injectivity and vanishing theorems for the cohomology groups, which are weaker than the semi-positive line bundle case and are closely linked together to study a Kawamata-Viehweg type vanishing theorem on compact Kähler manifolds (cf. §4, Theorems 4.2 and 4.3). Actually the following vanishing theorem holds (cf. [5], [9], [10], [15], [17], [19]).

Theorem 2. Let the situation be the same as in Theorem 1. Then if $q>$ $n-\kappa_{*}(E)$

$$
\iota^{q}\left(\varphi_{\infty}\right): H^{q}\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \bigotimes \Omega_{X}^{n}(E)\right) \longrightarrow H^{q}\left(X, \Omega_{X}^{n}(E)\right)
$$

is the zero homomorphism. Especially if $\iota^{q}\left(\varphi_{\infty}\right)$ is surjective (resp. injective) and $q>n-\kappa_{*}(E)$, then

$$
H^{q}\left(X, \Omega_{X}^{n}(E)\right)=0\left(\text { resp. } H^{q}\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \bigotimes \Omega_{X}^{n}(E)\right)=0\right)
$$

where $\kappa_{*}(E)$ is the numerical Kodaira dimension of E defined by

$$
\kappa_{*}(E):=\max \left\{l: \wedge^{l} c_{R, 1}(E) \neq 0 \in H^{2 l}(X, R)\right\}
$$

Remark. The above vanishing theorem is a variant of Kawamata-Viehweg's vanishing theorem for nef line bundles on projective algebraic manifolds (cf. [9],
[19]). We do not know whether Kawamata-Viehweg's vanishing theorem still holds on any compact Kähler manifold even if E is nef and good (cf. §3, Comment and §4, Remark 2).

1. Harmonic representation theorem for cohomology groups of multiplier ideal sheaves

1.1. Let X be a complex manifold of dimension n and let T be a d-closed (1 , 1) current on X. Setting $d^{c}=\sqrt{-1}(\bar{\partial}-\partial) / 2$ we suppose that T is decomposed as follows :

$$
T=\Theta+d d^{c} \varphi_{\infty}
$$

for a d-closed smooth real $(1,1)$ form Θ and a locally integrable function φ_{∞} on X. In this article we represent the positivity of T in the sense of current by the notation " $T \gtrsim 0$ " and the semi-positivity (resp. positivity) of Θ by the notation " $\Theta \geq 0$ " (resp. " $\Theta>0$ "). A function φ on X is said to be almost plurisubharmonic if φ is locally equal to the sum of a plurisubharmonic function and of a smooth function (cf. [1], $\S 1)$. If $T \gtrsim 0$ and $d \Theta=0$, then locally there exist a plurisubharmonic function ψ and a smooth function h such that $T=d d^{c} \psi, \Theta=d d^{c} h$ and $h+\varphi_{\infty}$ is equal almost everywhere to ψ. Hence the function φ_{∞} is almost plurisubharmonic. The representation $\varphi_{\infty}=\psi-h$ is not unique. However if $\varphi_{\infty}=\psi-h=\psi_{*}-h_{*}$ with $\Theta=d d^{c} h_{*}$, then $\psi-\psi_{*}$ is pluriharmonic. In particular ψ is determined uniquely whenever h is fixed. Therefore we can define the following :

Definition. The multiplier ideal sheaf $\mathcal{I}\left(\varphi_{\infty}\right) \subset \mathcal{O}_{X}$ associated to φ_{∞} satisfying with $T=\Theta+d d^{c} \varphi_{\infty} \gtrsim 0$ is the sheaf of germs of holomorphic functions $f_{x} \in \mathcal{O}_{X, x}$ such that $|f|^{2} e^{-\varphi_{\infty}}$ is integrable with respect to the Lebesgue measure in a local coordinates around x for any point x of X.

It is known that $\mathcal{I}\left(\varphi_{\infty}\right)$ is a coherent analytic ideal sheaf of \mathcal{O}_{X} (cf. [11, 1.2] and [3, Lemma 4.4]). The zero variety $V\left(\mathcal{I}\left(\varphi_{\infty}\right)\right)$ of $\mathcal{I}\left(\varphi_{\infty}\right)$ is the set of points in a neighborhood of which $e^{-\varphi_{\infty}}$ is not integrable.

1.2.

Definition. A holomorphic line bundle E on X is said to be pseudo effective (resp. semi-positive, positive) if there exists a smooth hermitian metric h_{E} and an almost pluri-subharmonic function φ_{∞} (resp. a smooth hermitian metric h_{E}) such that $\Theta_{E}+d d^{c} \varphi_{\infty} \gtrsim 0$ (resp. $\Theta_{E} \geq 0, \Theta_{E}>0$) on X for the curvature form Θ_{E} relative to h_{E} defined by $\Theta_{E}=d d^{c}\left(-\log h_{E}\right)$.

Example. Let $D=\sum_{j=1}^{k} m_{j} D_{j}$ be an effective divisor on X with irreducible components D_{j} and non-negative integers m_{j}, and let [D_{j}] be the line bundle corresponding to each D_{j}. Then one can verify that the line bundle $F:=\bigotimes_{j=1}^{k}\left[D_{j}\right]^{\otimes m_{j}}$ is pseudo effective by the Lelong-Poincaré formula. If D is a divisor with only normal crossings, then one can take a smooth hermitian metric h_{F} and an almost plurisubharmonic function φ_{∞} such that $\Theta_{F}+d d^{c} \varphi_{\infty} \gtrsim 0$ and $\mathcal{I}\left(\varphi_{\infty}\right)=\mathcal{O}_{X}\left(F^{*}\right)$, where F^{*} is the dual line bundle of F (cf. [3], §5).
1.3. To study the cohomology groups of multiplier ideal sheaves of pseudo effective line bundles we need the following Dolbeault's lemma which is formulated for our purpose (cf. [2, Proposition 4.1] and [3, (5.3) Corollary]).

Theorem. Let S be a Stein manifold of dimension n provided with a Kähler metric ω_{S} defined by $\omega_{S}:=d d^{c} \Phi$ by a smooth strictly plurisubharmonic function $\Phi \geq 0$ on S. Suppose E (resp. F) be a pseudo effective (resp. positive) line bundle provided with a smooth metric h_{E} and an almost plurisubharmonic function φ_{∞} (resp. a smooth metric h_{F}) such that $\Theta_{E}+d d^{c} \varphi_{\infty} \gtrsim 0$ (resp. $\Theta_{F}+d d^{c} \Phi>0$). Set $\left(G, h_{G}\right)=\left(E \otimes F, h_{E} \otimes h_{F}\right)$. Then for any $u \in L_{l o c}^{n, q}(S, G), q \geq 1$, with $\bar{\partial} u=0$ and

$$
\int_{S}|u|_{G}^{2} e^{-\varphi_{\infty}-2 \Phi} d v_{S}<\infty
$$

there exists $v \in L_{l o c}^{n, q-1}(S, G)$ with $\bar{\partial} v=u$ and

$$
q \int_{S}|v|_{G}^{2} e^{-\varphi_{\infty}-2 \Phi} d v_{S} \leq \int_{S}|u|_{G}^{2} e^{-\varphi_{\infty}-2 \Phi} d v_{S}
$$

1.4. Let X be an n dimensional complex manifold provided with a hermitian metric ω_{X}. Let E be a pseudo effective line bundle provided with a smooth metric h_{E} and an almost plurisubharmonic function φ_{∞} with $\Theta+d d^{c} \varphi_{\infty} \gtrsim 0$ and let $\mathcal{I}\left(\varphi_{\infty}\right)$ be the multiplier ideal sheaf associated to φ_{∞}. Let F be a holomorphic line bundle provided with a smooth metric h_{F} and set $\left(G, h_{G}\right)=\left(E \otimes F, h_{E} \otimes h_{F}\right)$. We denote $\left\|\|_{\infty}\right.$ the L^{2}-norm of G-valued forms relative to ω_{X} and $h_{G} e^{-\varphi_{\infty}}$, and denote \mathcal{F}^{q} the sheaf of germs of G-valued (n, q) forms u with measurable coefficients such that both u and $\bar{\partial} u$ are locally square integrable relative to $\left\|\|_{\infty}\right.$. By applying 1.3, Theorem to arbitrary small balls one can see that the complex of sheaves $\left\{\mathcal{F}^{\bullet}\right.$, $\bar{\partial}\}$ provides a fine resolution of the sheaf $\mathcal{I}\left(\varphi_{\infty}\right) \otimes \Omega_{X}^{n}(G)$. Hence letting $\Gamma\left(X, \mathcal{F}^{q}\right)$ be the space of global sections with values in \mathcal{F}^{q} and seting $\mathcal{F}^{-1}=0$, we obtain the following :

$$
H^{q}\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \bigotimes \Omega_{X}^{n}(G)\right) \cong \frac{\left\{u \in \Gamma\left(X, \mathcal{F}^{q}\right): \bar{\partial} u=0\right\}}{\left\{v \in \Gamma\left(X, \mathcal{F}^{q}\right): v=\bar{\partial} w \text { with } w \in \Gamma\left(X, \mathcal{F}^{q-1}\right)\right\}}
$$

for any $q \geq 0$.
1.5. Let $C^{q}(\mathcal{U}, \mathcal{S})$ be the space of q co-chains associated to the locally finite Stein open covering \mathcal{U} of X with values in the sheaf $\mathcal{S}:=\mathcal{I}\left(\varphi_{\infty}\right) \otimes \Omega_{X}^{n}(G)$. Combining 1.3, Theorem with the above Dolbeault's theorem in 1.4 the Čech cohomology group $H^{\bullet}(\mathcal{U}, \mathcal{S})$ defined by the complex $\left\{C^{\bullet}(\mathcal{U}, \mathcal{S}), \delta\right\}$ with the co-boundary operator δ is isomorphic to the Dolbeault cohomology group $H^{\bullet}(X, \mathcal{S})$ in view of Leray's theorem ; i.e., the two complexes $\left\{\Gamma\left(X, \mathcal{F}^{\bullet}\right), \bar{\partial}\right\}$ and $\left\{C^{\bullet}(\mathcal{U}, \mathcal{S}), \delta\right\}$ are quasi-isomorphic. In particular if X is a compact complex manifold, then the Čech cohomology group $H^{\bullet}(\mathcal{U}, \mathcal{S})$ has finite dimension and so it is a separeted Fréchet topological vector space (cf. [7], Appendix B, 12. Theorem).
1.6. From now on we assume that X is a compact complex manifold. Let $L^{p, q}(X, G)$ (rsep. $L_{\infty}^{p, q}(X, G)$) be the L^{2}-space of G-valued square integrable (p, q) forms provided with the inner product (,) (resp. (,$)_{\infty}$) relative to ω_{X} and h_{G} (resp. ω_{X} and $h_{G} e^{-\varphi_{\infty}}$). We denote $\vartheta: L^{p, q}(X, G) \rightarrow L^{p, q-1}(X, G)$ the adjoint operator of the closed densily defined operator $\bar{\partial}: L^{p, q}(X, G) \rightarrow L^{p, q+1}(X, G)$ relative to (,). Since φ_{∞} is bounded from above, $L_{\infty}^{p, q}(X, G)$ can be regarded as a subspace of $L^{p, q}(X, G)$. We denote the restriction of the operator $\bar{\partial}: L^{n, q}(X, G) \longrightarrow$ $L^{n, q+1}(X, G)$ onto $L_{\infty}^{n, q}(X, G)$ by $\bar{\partial}_{(\infty)}$ whose domain $\operatorname{Dom}\left(\bar{\partial}_{(\infty)}\right)$ coincides with $\Gamma\left(X, \mathcal{F}^{q}\right) \subseteq L_{\infty}^{n, q}(X, G)$. We claim the following.

Lemma. $\quad \bar{\partial}_{(\infty)}: L_{\infty}^{n, q}(X, G) \longrightarrow L_{\infty}^{n, q+1}(X, G)$ is a closed densily defined operator.

Proof. By Demailly's regularization result for almost plurisubharmonic functions on compact complex manifolds (cf. [1, Main Theorem 1.1]), there exists a sequence of smooth functions $\left\{\varphi_{k}\right\}$ on X and an analytic subset A of X such that φ_{k} decreases to φ_{∞} on X as k tends to infinity and $e^{-2 \varphi_{\infty}}$ is locally integrable outside A. Set $(,)_{k}:=\left(, e^{-\varphi_{k}}\right)$ and let $L_{k}^{n, q}(X, G)$ be the L^{2}-space relative to the inner product $(,)_{k}$ for any k. Let $C_{0}^{n, q}(X \backslash A, G)$ be the space of G-valued smooth (n, q) forms with compact support in $X \backslash A$. Take a sequence $\left\{w_{j}\right\}$ in $\operatorname{Dom}\left(\bar{\partial}_{(\infty)}\right)$ such that w_{j} and $\bar{\partial}_{(\infty)} w_{j}$ converge strongly to w and v respectively. By the decreasing property of $\varphi_{k}, \bar{\partial} w=v$ in $L_{k}^{n, q+1}(X, G)$ for any k. For any $u \in C_{0}^{n, q+1}(X \backslash A, G)$, $\langle v, u\rangle_{G} e^{-\varphi_{\infty}}$ and $\langle\bar{\partial} w, u\rangle_{G} e^{-\varphi_{\infty}}$ are integrable on X by Schwarz's inequality. Hence by Lebesgue's dominant convergence theorem we obtain :

$$
(v, u)_{\infty}=\lim _{k \rightarrow \infty}(v, u)_{k}=\lim _{k \rightarrow \infty}(\bar{\partial} w, u)_{k}=(\bar{\partial} w, u)_{\infty}
$$

Since $C_{0}^{n, q}(X \backslash A, G)$ is dense in $L_{\infty}^{n, q}(X, G), \bar{\partial}_{(\infty)}$ is densily defined and the above equality implies $\bar{\partial}_{(\infty)} w=v$ in $L_{\infty}^{n, q+1}(X, G)$; i.e., the closedness of $\bar{\partial}_{(\infty)}$.

Hence the adjoint operator $\vartheta_{(\infty)}:=\bar{\partial}_{(\infty)}{ }^{*}$ of $\bar{\partial}_{(\infty)}$ can be defined and has the same property as $\bar{\partial}_{(\infty)}$ with $\bar{\partial}_{(\infty)}=\bar{\partial}_{(\infty)}{ }^{* *}$. The domain of $\vartheta_{(\infty)}$ is defined in the
following way.
$v \in \operatorname{Dom}\left(\vartheta_{(\infty)}\right)$ if and only if there exists a positive constant C such that

$$
\left|\left(v, \bar{\partial}_{(\infty)} w\right)_{\infty}\right| \leq C\|w\|_{\infty} \quad \text { for any } w \in \stackrel{n}{\operatorname{Dom}}^{q-1}\left(\bar{\partial}_{(\infty)}\right) .
$$

For a given linear operator T acting on the Hilbert spaces $L^{\bullet \bullet \bullet}(X, G)$ and $L_{\infty}^{\bullet \bullet \bullet}(X, G)$, we denote $N^{\bullet \bullet \bullet}(T)$ (resp. $R^{\bullet \bullet \bullet}(T)$) the null space of T (resp. the range of T). Setting $L_{\infty}^{n,-1}(X, G)=\{0\}$ and $L^{n,-1}(X, G)=\{0\}$ respectively, we define for any $q \geq 0$
$H^{n, q}(X, G):=N^{n, q}(\bar{\partial}) \cap N^{n, q}(\vartheta) \quad$ and $\quad H_{\infty}^{n, q}(X, G):=N^{n, q}\left(\bar{\partial}_{(\infty)}\right) \cap N^{n, q}\left(\vartheta_{(\infty)}\right)$.
$H^{n, q}(X, G)$ is the E-valued (n, q) harmonic space which is isomorphic to $H^{q}\left(X, \Omega_{X}^{n}(G)\right)$. Usually the following weak decomposition of $L_{\infty}^{n, q}(X, G)$ holds (cf. [8]) :

$$
L_{\infty}^{n, q}(X, G)=\left[R^{n, q}\left(\bar{\partial}_{(\infty)}\right)\right] \bigoplus H_{\infty}^{n, q}(X, G) \bigoplus\left[R^{n, q}\left(\vartheta_{(\infty)}\right)\right] \text { for any } q \geq 0
$$

where [] means the closure of space in $L_{\infty}^{n, q}(X, G)$. Since X is compact, for any $q \geq 0$ we note that

$$
R^{n, q}\left(\bar{\partial}_{(\infty)}\right)=\bar{\partial} \Gamma\left(X, \mathcal{F}^{q-1}\right) \text { and }\left[R^{n, q}\left(\bar{\partial}_{(\infty)}\right)\right] \subset N^{n, q}\left(\bar{\partial}_{(\infty)}\right)=\Gamma\left(X, \mathcal{F}^{q}\right) \cap \operatorname{Ker} \bar{\partial} .
$$

In view of the compactness of X, it is natural to claim the following strong decomposition.

Proposition.

$$
L_{\infty}^{n, q}(X, G)=R^{n, q}\left(\bar{\partial}_{(\infty)}\right) \bigoplus H_{\infty}^{n, q}(X, G) \bigoplus R^{n, q}\left(\vartheta_{(\infty)}\right) \text { for any } q \geq 0
$$

Proof. Since the closedness of $R^{n, q}\left(\bar{\partial}_{(\infty)}\right)$ is equivalent to the one of $R^{n, q-1}\left(\vartheta_{(\infty)}\right)$ (cf. [8, Theorem 1.1.1]), we have only to see that $\left[\bar{\partial} \Gamma\left(X, \mathcal{F}^{q-1}\right)\right]=$ $\bar{\partial} \Gamma\left(X, \mathcal{F}^{q-1}\right)$. Let $v \in\left[\bar{\partial} \Gamma\left(X, \mathcal{F}^{q-1}\right)\right]$ and let $\left\{\bar{\partial}_{(\infty)} w_{k}\right\}_{k \geq 1}$ be a sequence in $\bar{\partial} \Gamma\left(X, \mathcal{F}^{q-1}\right)$ such that $\left\|v-\bar{\partial}_{(\infty)} w_{k}\right\|_{\infty} \rightarrow 0$ as $k \rightarrow \infty$. We must find $w \in$ $\Gamma\left(X, \mathcal{F}^{q-1}\right)$ with $v=\bar{\partial}_{(\infty)} w$. Let \mathcal{U} be a finite Stein open covering of X taken as in 1.5 . Combining the L^{2}-estimate in 1.3, Theorem with the quasi-isomorphism theorem in 1.5, there exists a q cocycle $\sigma(v) \in Z^{q}(\mathcal{U}, \mathcal{S})$ and a sequence of $q-1$ cochains $\left\{\tau\left(w_{k}\right)\right\}_{k \geq 1} \subset C^{q-1}(\mathcal{U}, \mathcal{S})$ such that $\sigma(v)-\delta \tau\left(w_{k}\right)$ tends to zero with respect to the uniform convergence topology. From the separability of Fréchet topology induced on $H^{q}(\mathcal{U}, \mathcal{S})$, there is a $q-1$ cochain $\tau(w) \in C^{q-1}(\mathcal{U}, \mathcal{S})$ with $\delta \tau(w)=\sigma(v)$ which implies the conclusion by the compactness of X and the quasi-isomorphism theorem (cf. [17, Proposition 4.6]).
1.7. We obtain the following theorem from the above observations:

Theorem. Let X be a compact complex manifold of dimension n provided with a hermitian metric ω_{X} and let E be a pseudo effective line bundle on X provided with a smooth hermitian metric h_{E} and an almost plurisubharmonic function φ_{∞} with $\Theta_{E}+d d^{c} \varphi_{\infty} \gtrsim 0$ on X for $\Theta_{E}=d d^{c}\left(-\log h_{E}\right)$. Let $\mathcal{I}\left(\varphi_{\infty}\right)$ be the multiplier ideal sheaf associated to φ_{∞}. Then for any holomorphic line bundle F provided with a smooth hermitian metric h_{F} on X and $q \geq 0$, the space
$H_{\infty}^{n, q}(X, E \bigotimes F):=\left\{u \in \operatorname{Dom}\left(\bar{\partial}_{(\infty)}\right) \cap \operatorname{Dom}\left(\vartheta_{(\infty)}\right): \bar{\partial}_{(\infty)} u=0\right.$ and $\left.\vartheta_{(\infty)} u=0\right\}$
defined in $L_{\infty}^{n, q}(X, E \otimes F)$ satisfies the following :

$$
H^{q}\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \otimes \Omega_{X}^{n}(E \otimes F)\right) \cong H_{\infty}^{n, q}(X, E \otimes F)
$$

and

$$
\operatorname{dim}_{\mathbb{C}} H_{\infty}^{n, q}(X, E \otimes F)<\infty
$$

Furthermore the following diagram is commutative :

where i_{∞}^{q} and $i^{q}\left(\right.$ resp. $\left.H^{n, q}\right)$ are isomorphisms (resp. the orthogonal projection from $L^{n, q}(X, E \otimes F)$ to $\left.H^{n, q}(X, E \otimes F)\right)$.

2. A smoothing of almost plurisubharmonic functions associated to nef line bundles on compact Kähler manifolds

Let X be a compact Kähler manifold of dimension n provided with a Kähler metric ω_{X} and let E be a holomorphic line bundle provided with a smooth hermitian metric h_{E} on X.

Definition 2.1. ($\left.E, h_{E}\right)$ is said to be nef if for any $\varepsilon>0$ there exists a smooth function ψ_{ε} on X such that $\Theta_{E}+d d^{c} \psi_{\varepsilon}+\varepsilon \omega_{X}$ yields a Kähler metric for $\Theta_{E}:=$ $d d^{c}\left(-\log h_{E}\right)$.

The above definition depends on the choice of neither h_{E} nor ω_{X} and is equivalent to that the real first Chern class $c_{R, 1}(E)$ of E is contained in the closure of
the Kähler cone of X (cf. [13], §2). If E has a smooth metric whose curvature is semi-positive, then E is clearly nef. However the converse is not true in general even if X is projective algebraic (cf. [4, Example 1.7]).

We begin with the following lemma suggested by [6], Lemma 2.1 and [18], Proposition 2.1 (compare [2, Lemma 6.6]).

Lemma 2.2. Let $\left(X, \omega_{X}\right)$ be a compact Kähler manifold of dimension n and let Θ be a d-closed smooth real $(1,1)$ form on X. Let $\mathcal{P}(\Theta)$ be the set of real-valued smooth functions ψ so that $\Theta+d d^{c} \psi \geq 0$ and $\sup _{X} \psi=0$. Then any sequence $\left\{\psi_{k}\right\}_{k \geq 1}, \psi_{k} \in \mathcal{P}(\Theta)$, contains a Cauchy subsequence in $L^{1}(X)$.

Remark. The existence of an L^{1} Cauchy subsequence in $\left\{\psi_{k}\right\}_{k \geq 1}, \psi_{k} \in \mathcal{P}(\Theta)$, is not trivial because a local version of such a property is never true (cf. [18, p.238, Remark] and Remark 2 below).

Proof. Let $\left\{\psi_{k}\right\}_{k \geq 1}$ be a sequence belonging to $\mathcal{P}(\Theta)$. Setting $\tau_{X}=$ $\omega_{X}^{n-1} /(n-1)!$ and $d v_{X}=\omega_{X}^{n} / n!$, there exists a positive constant $C\left(\Theta, \omega_{X}\right)$ not depending on k such that

$$
\begin{aligned}
0 \leq \int_{X} e^{\psi_{k}} d \psi_{k} \wedge d^{c} \psi_{k} \wedge \tau_{X} & =-\int_{X} e^{\psi_{k}} d d^{c} \psi_{k} \wedge \tau_{X} \quad \text { by Stokes' theorem } \\
& =-\int_{X} e^{\psi_{k}}\left\{d d^{c} \psi_{k}+\Theta\right\} \wedge \tau_{X}+\int_{X} e^{\psi_{k}} \Theta \wedge \tau_{X} \\
& \leq \int_{X}\left|\operatorname{Trace}\left(\Theta, \omega_{X}\right)\right| d v_{X} \leq C\left(\Theta, \omega_{X}\right)<\infty
\end{aligned}
$$

Since $\left\{e^{\psi_{k} / 2}\right\}$ and their first derivatives are bounded in $L^{2}(X)$ from the above inequality, $\left\{e^{\psi_{k} / 2}\right\}$ has a Cauchy subsequence in $L^{2}(X)$ in view of Rellich's lemma.

On the other hand there are three positive constants C_{j} such that $C_{1} \omega_{X} \leq$ $C_{2} \omega_{X}+\Theta \leq C_{3} \omega_{X}$. Hence by [18], Proposition 2.1, there exist positive constants α with $0<\alpha \ll 1$ and C_{*} not depending on $\psi \in \mathcal{P}(\Theta)$ such that

$$
\begin{equation*}
\int_{X} e^{-\alpha \psi} d v_{X} \leq C_{*}<\infty \tag{2.3}
\end{equation*}
$$

for any $\psi \in \mathcal{P}(\Theta)$. For any $\beta>0$ by Schwarz's inequality we obtain

$$
\left(\int_{X}\left|e^{\beta\left(\psi_{j}-\psi_{k}\right)}-1\right| d v_{X}\right)^{2} \leq\left(\int_{X}\left|e^{\beta \psi_{j}}-e^{\beta \psi_{k}}\right|^{2} d v_{X}\right)\left(\int_{X} e^{-2 \beta \psi_{k}} d v_{X}\right)
$$

Taking $2 \beta=\alpha$ the right hand side converges to zero from the above observation and (2.3). In particular we get

$$
\begin{equation*}
\int_{X}\left|\max \left\{e^{\beta\left(\psi_{j}-\psi_{k}\right)}, 1\right\}-1\right| d v_{X} \rightarrow 0 \quad \text { as } j \text { and } k \rightarrow \infty \tag{2.4}
\end{equation*}
$$

Here we may assume $\operatorname{Vol}\left(X, \omega_{X}\right)=1$ and use the following notation :

$$
\log ^{+} t=\log \max \{t, 1\} \quad \text { and } \quad|\log t|=\log ^{+} t+\log ^{+}\left(\frac{1}{t}\right) \text { for } t>0
$$

By setting $\gamma=1 / \beta$ and the concavity of logarithmic functions we obtain:

$$
\begin{aligned}
& \int_{X}\left|\psi_{j}-\psi_{k}\right| d v_{X} \\
= & \gamma \int_{X}\left|\log \left\{e^{\beta\left(\psi_{j}-\psi_{k}\right)}\right\}\right| d v_{X} \\
= & \gamma \int_{X}\left\{\log ^{+} e^{\beta\left(\psi_{j}-\psi_{k}\right)}+\log ^{+} e^{\beta\left(\psi_{k}-\psi_{j}\right)}\right\} d v_{X} \\
\leq & \gamma \log \left\{\left(\int_{X} \max \left\{e^{\beta\left(\psi_{j}-\psi_{k}\right)}, 1\right\} d v_{X}\right)\left(\int_{X} \max \left\{e^{\beta\left(\psi_{k}-\psi_{j}\right)}, 1\right\} d v_{X}\right)\right\}
\end{aligned}
$$

Finally our assertion follows from the above inequality and (2.4).
Proposition 2.5. Let $\left(E, h_{E}\right)$ be a nef line bundle on a compact Kähler manifold $\left(X, \omega_{X}\right)$. For a given sequence of positive numbers $\left\{\eta_{k}\right\}_{k \geq 1}$ decreasing to zero, let $\left\{\psi_{k}\right\}_{k \geq 1}$ be a sequence of smooth functions on X such that

$$
\begin{equation*}
\Theta_{E}+d d^{c} \psi_{k}+\eta_{k} \omega_{X}>0 \quad \text { on } X \text { and } \sup _{X} \psi_{k}=0 \tag{2.5}
\end{equation*}
$$

where $\Theta_{E}=d d^{c}\left(-\log h_{E}\right)$.
Then there exist an almost plurisubharmonic function φ_{∞}, a sequence of smooth functions $\left\{\varphi_{k}\right\}_{k \geq 1}$ on X, and a sequence of positive numbers $\left\{\varepsilon_{k}\right\}_{k \geq 1}$ decreasing to zero such that
(i) $\Theta_{E}+d d^{c} \varphi_{\infty} \gtrsim 0$; i.e., E is pseudo effective on X
(ii) $\Theta_{E}+d d^{c} \varphi_{k}+\varepsilon_{k} \omega_{X}>0$ and $\varphi_{\infty}<\varphi_{k} \leq 1$ on X for any $k \geq 1$
(iii) φ_{k} converges to φ_{∞} in $L^{1}(X)$ and almost everywhere on X.

Proof. By applying Lemma 2.2 to $\Theta_{E}+\eta_{k} \omega_{X}$, if necessary, taking a subsequence, there exists a limit $\varphi_{\infty} \in L^{1}(X)$ such that $\left\{\psi_{k}\right\}_{k \geq 1}$ converges to φ_{∞} in $L^{1}(X)$. If necessary, taking a subsequence, we may assume that :

$$
\begin{gather*}
\left\|\psi_{k}-\varphi_{\infty}\right\|_{L^{1}(X)}<\frac{1}{2 k} \tag{1}\\
\Theta_{E}+d d^{c} \varphi_{\infty} \gtrsim 0 \tag{2}
\end{gather*}
$$

(2) follows from the weak continuity of $\partial \bar{\partial}$ and (2.5) immediately. Locally ω_{X} can be written $\omega_{X}=d d^{c} \Phi$ by a smooth strictly plurisubharmonic function Φ. By (2.5) (resp. (2)) $-\log h_{E}+\eta_{k} \Phi+\psi_{k}$ (resp. $-\log h_{E}+\varphi_{\infty}$) defines locally a smooth
plurisubharmonic function θ_{k} (resp. a plurisubharmonic function θ_{∞}). For every k we put

$$
\lambda_{k}:=\max \left\{\psi_{k}, \varphi_{\infty}\right\} .
$$

Then λ_{k} satisfies the following properties for any $k \geq 1$:

$$
\begin{gather*}
\left\|\lambda_{k}-\varphi_{\infty}\right\|_{L^{1}(X)}<\frac{1}{2 k} \tag{3}\\
\Theta_{E}+d d^{c} \lambda_{k}+\eta_{k} \omega_{X} \gtrsim 0 \tag{4}
\end{gather*}
$$

(3) follows from (1) and (4) follows from the following local equality :

$$
\lambda_{k}=\log h_{E}-\eta_{k} \Phi+\max \left\{\theta_{k}, \theta_{\infty}+\eta_{k} \Phi\right\}
$$

because $\max \left\{\theta_{k}, \theta_{\infty}+\eta_{k} \Phi\right\}$ is plurisubharmonic. Since λ_{k} is locally bounded, the Lelong number of λ_{k} is zero at any point of X. Therefore by Demailly's regularization result for almost plurisubharmonic functions (cf. [1], §3. the proof of Propositions 3.1 and 3.7), there exist a sequence of smooth functions $\left\{\varphi_{k}\right\}_{k \geq 1}$ and a sequence of positive numbers $\left\{\delta_{k}\right\}_{k \geq 1}$ decreasing to zero such that

$$
\begin{gather*}
\varphi_{\infty} \leq \lambda_{k}<\varphi_{k} \leq 1 \quad \text { on } \quad X \tag{5}\\
\Theta_{E}+d d^{c} \varphi_{k}+\left(\eta_{k}+\delta_{k}\right) \omega_{X} \geq 0 \quad \text { on } \quad X \tag{6}\\
\left\|\varphi_{k}-\lambda_{k}\right\|_{L^{1}(X)}<\frac{1}{2 k} \tag{7}
\end{gather*}
$$

for any $k \geq 1$. Setting $\varepsilon_{k}:=\eta_{k}+2 \delta_{k}$ and if necessary, taking a subsequence, we obtain the desired sequence $\left\{\varphi_{k}\right\}_{k \geq 1}$. This completes the proof of Proposition 2.5.

3. On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds

Let X be a connected compact Kähler manifold of dimension n provided with a Kähler metric ω_{X}. Let E (resp. F) be a nef (resp. semi-positive) line bundle provided with a smooth metric h_{E} (resp. h_{F} with $\Theta_{F}=d d^{c}\left(-\log h_{F}\right) \geq 0$) on X. Let φ_{∞} be an almost plurisubharmonic function on X with $\Theta_{E}+d d^{c} \varphi_{\infty} \gtrsim 0$ determined in Proposition 2.5 and let $\mathcal{I}\left(\varphi_{\infty}\right)$ be the multiplier ideal sheaf associated to φ_{∞}. For φ_{∞} we fix a sequence of smooth almost plurisubharmonic functions $\left\{\varphi_{k}\right\}_{k \geq 1}$ taken as in Proposition 2.5. We set :

$$
G=E \bigotimes F, \quad h_{G}=h_{E} \bigotimes h_{F}, \quad \text { and } \quad h_{G, k}=h_{G} e^{-\varphi_{k}}
$$

for any k with $0 \leq k \leq \infty$. Here if $k=0$, then we set $\varphi_{0} \equiv 0$ and do not specify it in the notations below.
$L_{k}^{p, q}(X, G)$ be the L^{2}-space of G-valued square integrable (p, q) forms provided with the inner product $(,)_{k}$ relative to ω_{X} and $h_{G, k}$, and let $\left\|\|_{k}\right.$ denote the norm defined by the inner product. $L_{\infty}^{p, q}(X, G)$ can be regarded as a subspace of $L_{k}^{p, q}(X, G)$ for any k with $0 \leq k<\infty$. Let $\vartheta_{(k)}$ denote the adjoint operator of $\bar{\partial}$ in $L_{k}^{p, q}(X, G)$ (cf. 1.6). The space $N_{k}^{n, q}(\bar{\partial})$ of null solutions for $\bar{\partial}$ in $L_{k}^{n, q}(X, G)$ is decomposed strongly as follows :

$$
\begin{equation*}
N_{k}^{n, q}(\bar{\partial})=R_{k}^{n, q}(\bar{\partial}) \bigoplus H_{k}^{n, q}(X, G) \tag{3.1}
\end{equation*}
$$

where $H_{k}^{n, q}(X, G):=\left\{u \in L_{k}^{n, q}(X, G): \bar{\partial} u=\vartheta_{(k)} u=0\right\}$ for any $q \geq 1$ and $0 \leq k \leq \infty$. We denote $H_{k}^{n, q}$ the orthogonal projection onto $H_{k}^{n, q}(X, G)$ for every k with $0 \leq k \leq \infty$.

Setting $\mathcal{K}_{\infty}^{n, q}(X, G):=\operatorname{Kernel}\left\{H^{n, q}: H_{\infty}^{n, q}(X, G) \rightarrow H^{n, q}(X, G)\right\}$ (cf. 1.7, Theorem), we define a subspace $\mathcal{H}_{\infty}^{n, q}(X, G)$ of $H_{\infty}^{n, q}(X, G)$ by the following orthogonal decomposition relative to $(,)_{\infty}$:

$$
H_{\infty}^{n, q}(X, G)=\mathcal{H}_{\infty}^{n, q}(X, G) \bigoplus \mathcal{K}_{\infty}^{n, q}(X, G)
$$

Since $\mathcal{K}_{\infty}^{n, q}(X, G)=H_{\infty}^{n, q}(X, G) \cap R^{n, q}(\bar{\partial})$, the space $\mathcal{H}_{\infty}^{n, q}(X, G)$ is characterized as follows.

$$
\begin{array}{r}
u \in \mathcal{H}_{\infty}^{n, q}(X, G) \text { if and only if } u \in N^{n, q}\left(\bar{\partial}_{\infty}\right) \text { and }(u, \bar{\partial} w)_{\infty}=0 \tag{3.2}\\
\text { for any } w \in L^{n, q-1}(X, G) \text { with } \bar{\partial} w \in L_{\infty}^{n, q}(X, G) .
\end{array}
$$

We define a homomorphism

$$
\mathcal{L}_{(\infty)}^{q}: \Gamma\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \bigotimes \Omega_{X}^{n-q}(G)\right) \longrightarrow \mathcal{H}_{\infty}^{n, q}(X, G)
$$

by the composition of the homomorphism

$$
L^{q}: \Gamma\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \bigotimes \Omega_{X}^{n-q}(G)\right) \longrightarrow N^{n, q}\left(\bar{\partial}_{(\infty)}\right)
$$

induced by the q-times left exterior product by ω_{X} with the orthogonal projection from $N^{n, q}\left(\bar{\partial}_{(\infty)}\right)$ to $\mathcal{H}_{\infty}^{n, q}(X, G)$.

The following lemma is very useful (cf. [3, (4.10)]).
Lemma 3.3. Let W be a holomorphic line bundle on X provided with a smooth hermitian metric h_{W}. Let Θ be a smooth real $(1,1)$ differential form on X and let $\left\{\lambda_{j}\right\}$ be the eigen-values of Θ relative to ω_{X} with $\lambda_{1} \leq \lambda_{2} \leq, \ldots, \leq \lambda_{n}$ (which are
continuous functions on X) ; i.e., $\Theta(x)=\sqrt{-1} \sum_{j=1}^{n} \lambda_{j}(x) d z^{j} \wedge d \bar{z}^{j}$ with $\omega_{X}(x)=$ $\sqrt{-1} \sum_{j=1}^{n} d z^{j} \wedge d \bar{z}^{j}, x \in X$. Then if $v(x)=\sum v_{A_{n}, B_{q}} d z^{A_{n}} \wedge d \bar{z}^{B_{q}} \in C^{n, q}(X, W)$ with $q \geq 1$, the following holds

$$
\langle\mathbf{e}(\Theta) \Lambda v, v\rangle_{W}(x)=\sum_{\left|A_{n}\right|=n,\left|B_{q}\right|=q}\left(\sum_{j \in B_{q}} \lambda_{j}(x)\right)\left|v_{A_{n}, B_{q}}\right|_{W}^{2}
$$

In particular setting $\delta_{q}:=\sum_{j=1}^{q} \lambda_{j}$ with $q \geq 1$ the following holds

$$
\begin{equation*}
\langle\mathbf{e}(\Theta) \Lambda v, v\rangle_{W} \geq \delta_{q}\langle v, v\rangle_{W} \quad \text { if } v \in C^{n, q}(X, W) \tag{3.4}
\end{equation*}
$$

The nefness of E enables us to show the following theorem.
Theorem 3.5. $\quad \mathcal{L}_{(\infty)}^{q}$ is surjective and the Hodge star operator $*$ relative to ω_{X} yields a splitting homomorphism

$$
\delta_{(\infty)}^{q}: \mathcal{H}_{\infty}^{n, q}(X, G) \longrightarrow \Gamma\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \bigotimes \Omega_{X}^{n-q}(G)\right)
$$

with $\mathcal{L}_{(\infty)}^{q} \circ \delta_{(\infty)}^{q}=$ id. Furthermore $\mathcal{L}_{(\infty)}^{q}=L^{q}$ on $\operatorname{Image} \delta_{(\infty)}^{q}$ for any $q \geq 1$.
Proof. If $\mathcal{H}_{\infty}^{n, q}(X, G)=\{0\}$, then we have nothing to prove. Hence we assume $\mathcal{H}_{(\infty)}^{n, q}(X, G) \neq\{0\}$ and take $u \in \mathcal{H}_{\infty}^{n, q}(X, G)$ with $\|u\|_{\infty}=1$. We claim that $* u \in$ $\Gamma\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \otimes \Omega_{X}^{n-q}(G)\right)$, which implies that $\mathcal{L}_{(\infty)}^{q}=L^{q}$ is surjective by $L^{q} \circ *=$ $c(n, q)$ id on the space of (n, q) forms for the uniquely determined complex number $c(n, q) \neq 0$. We have only to define $\delta_{(\infty)}^{q}:=c(n, q)^{-1} *$.

We note that u has the following orthogonal decomposition by (3.1) :

$$
\begin{equation*}
u=\bar{\partial} w_{k}+H_{k}^{n, q}(u),\left\|\bar{\partial} w_{k}\right\|_{k} \quad \text { and } \quad\left\|H_{k}^{n, q}(u)\right\|_{k} \leq 1 \tag{3.6}
\end{equation*}
$$

for any k with $0 \leq k<\infty$. Setting $u_{k}:=H_{k}^{n, q}(u)$, we may assume $u_{k} \neq 0$ for any k. From $\left\|u_{k}\right\| \leq e\left\|u_{k}\right\|_{k} \leq e$, taking a subsequence, $\left\{u_{k}\right\}$ has a weak limit $u_{\infty} \in L^{n, q}(X, G)$ with $\bar{\partial} u_{\infty}=0 .\left\{\bar{\partial} w_{k}\right\}$ also has a weak limit v_{∞}. Since $R^{n, q}(\bar{\partial})$ is closed, there exists $w_{*} \in L^{n, q-1}(X, G)$ with $v_{\infty}=\bar{\partial} w_{*}$. Therefore we obtain

$$
\begin{equation*}
u=\bar{\partial} w_{*}+u_{\infty} \quad \text { in } \quad L^{n, q}(X, G) . \tag{3.7}
\end{equation*}
$$

We show that $* u_{\infty} \in \Gamma\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \otimes \Omega_{X}^{n-q}(G)\right)$ and $u_{\infty} \in \mathcal{H}_{\infty}^{n, q}(X, G)$, which implies $\bar{\partial} w_{*}=0$ by (3.2); i.e., $u_{\infty}=u$.

By Calabi-Nakano-Vesentini's formula on compact Kähler manifolds (cf. [14, Proposition 1.2]), we obtain the following integral formula :

$$
\|\bar{\partial} v\|_{k}^{2}+\left\|\vartheta_{(k)} v\right\|_{k}^{2}=\|\bar{\vartheta} v\|_{k}^{2}+\left(\mathbf{e}\left(\Theta_{G}+d d^{c} \varphi_{k}\right) \Lambda v, v\right)_{k}
$$

for any G-valued smooth (n, q) form v on $X, \Theta_{G}:=\Theta_{E}+\Theta_{F}$ and $k \geq 1$. Since $q\|v\|_{k}^{2}=(L \Lambda v, v)_{k}$, by Proposition 2.5, (ii) and the semi-positivity of Θ_{F} (cf. (3.4)), we obtain the following inequality :

$$
\begin{aligned}
\varepsilon_{k} q\left\|u_{k}\right\|_{k}^{2} & =\left\|\bar{\vartheta} u_{k}\right\|_{k}^{2}+\left(\mathbf{e}\left(\Theta_{G}+d d^{c} \varphi_{k}+\varepsilon_{k} \omega_{X}\right) \Lambda u_{k}, u_{k}\right)_{k} \\
& \geq\left(\mathbf{e}\left(\Theta_{G}+d d^{c} \varphi_{k}+\varepsilon_{k} \omega_{X}\right) \Lambda u_{k}, u_{k}\right)_{k} \geq 0
\end{aligned}
$$

Therefore when k tends to infinity, we obtain

$$
\left\|\bar{\vartheta} u_{k}\right\|_{k}^{2} \leq \varepsilon_{k} q\left\|u_{k}\right\|_{k}^{2} \leq \varepsilon_{k} q \rightarrow 0 .
$$

By $\bar{\vartheta}=-* \bar{\partial} *$ and $\left\|\bar{\partial} * u_{k}\right\|^{2} \leq\left\|\bar{\vartheta} u_{k}\right\|_{k}^{2}, u_{\infty}$ satisfies $\bar{\partial} * u_{\infty}=0$ in the sense of distribution. Therefore $* u_{\infty} \in \Gamma\left(X, \Omega_{X}^{n-q}(G)\right)$. Setting $u^{k}=u_{k} e^{-\varphi_{k} / 2}$ and, if necessary taking a subsequence, u^{k} converges weakly to $u^{\infty} \in L^{n, q}(X, G)$ by $\left\|u_{k}\right\|_{k} \leq 1$. Let V be the analytic subset (might be empty) defined by $\mathcal{I}\left(\varphi_{\infty}\right)$. Since $e^{-\varphi_{\infty}}$ is locally integrable on $X \backslash V, e^{-\varphi_{k}}$ converges to $e^{-\varphi_{\infty}}$ in $L^{1}(K)$ for any compact subset K in $X \backslash V$ by $\varphi_{\infty}<\varphi_{k}$ and Lebesgue's dominant convergence theorem. For every E-valued smooth (n, q) form v with compact support in $X \backslash V$, by setting $K:=\operatorname{Supp}(v)$ and denoting $|v|_{G}$ the pointwise length of v relative to ω_{X} and h_{G}, we obtain from (3.6) :

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left|\left(u_{k},\left\{e^{-\varphi_{\infty} / 2}-e^{-\varphi_{k} / 2}\right\} v\right)\right| & \leq \lim _{k \rightarrow \infty} \sup |v|_{G}\left\|u_{k}\right\|\left\|e^{-\varphi_{\infty} / 2}-e^{-\varphi_{k} / 2}\right\|_{L^{2}(K)} \\
& \leq e \sup _{K}|v|_{G} \lim _{k \rightarrow \infty} \sqrt{\left\|e^{-\varphi_{\infty}}-e^{-\varphi_{k}}\right\|_{L^{1}(K)}}=0 .
\end{aligned}
$$

Here we have used : $(a-b)^{2}<a^{2}-b^{2}$ if $a>b>0$. Hence we get :

$$
\left(u^{\infty}, v\right)=\lim _{k \rightarrow \infty}\left(u^{k}, v\right)=\lim _{k \rightarrow \infty}\left(u_{k}, v e^{-\varphi_{\infty} / 2}\right)=\left(u_{\infty} e^{-\varphi_{\infty} / 2}, v\right)
$$

This implies $u^{\infty}=u_{\infty} e^{-\varphi_{\infty} / 2}$ on $X \backslash V$ as current and so $u_{\infty} \in L_{\infty}^{n, q}(X, G)$ because $u^{\infty} \in L^{n, q}(X, G)$. Therefore we get $* u_{\infty} \in \Gamma\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \otimes \Omega_{X}^{n-q}(G)\right)$.

Furthermore if $w \in L^{n, q-1}(X, G)$ with $\bar{\partial} w \in L_{\infty}^{n, q}(X, G)$, then $w \in L_{k}^{n, q-1}(X, G)$ with $\bar{\partial} w \in L_{k}^{n, q}(X, G)$ for any k with $1 \leq k<\infty$ because φ_{k} is smooth. Therefore by $\vartheta_{k} u_{k}=0$ and Lebesgue's dominant convergence theorem, we obtain :

$$
\begin{aligned}
\left|\left(u_{\infty}, \bar{\partial} w\right)_{\infty}\right| & =\lim _{k \rightarrow \infty}\left|\left(u^{k},\left\{e^{-\varphi_{\infty} / 2}-e^{-\varphi_{k} / 2}\right\} \bar{\partial} w\right)\right| \\
& \leq \lim _{k \rightarrow \infty} \sqrt{\left\|\left\{e^{-\varphi_{\infty}}-e^{-\varphi_{k}}\right\}|\bar{\partial} w|_{G}^{2}\right\|_{L^{1}(X)}}=0 .
\end{aligned}
$$

Therefore $u_{\infty} \in \mathcal{H}_{\infty}^{n, q}(X, G)$ by (3.2). This completes the proof of Theorem 3.5.

Proposition 3.8. Every $u \in \mathcal{H}_{\infty}^{n, q}(X, G)$ with $q \geq 1$ satisfies the following :

$$
\begin{equation*}
\left(\mathbf{e}\left(\Theta_{G}+d d^{c} \varphi\right) \Lambda u, u\right)_{\infty}=0 \tag{3.9}
\end{equation*}
$$

for any smooth real-valued function φ on X.
Proof. By the equations $\bar{\partial} u=\bar{\vartheta} u=0$, we get $\bar{\partial} \vartheta_{G} u=\mathbf{e}\left(\Theta_{G}\right) \Lambda u$ and $\bar{\partial} \mathbf{e}(\bar{\partial} \varphi)^{*} u=\mathbf{e}\left(d d^{c} \varphi\right) \Lambda u$ by [14], Propositions $1.2 \& 1.5$. Since Θ_{G} and $d d^{c} \varphi$ are smooth on X, we obtain $\bar{\partial} \vartheta_{G} u$ and $\bar{\partial} e(\bar{\partial} \varphi)^{*} u \in L_{\infty}^{n, q}(X, G)$ by Lemma 3.3. The conclusion follows from (3.2).

In view of the L^{2}-estimate (3.9), we can show the following vanishing theorem for $\mathcal{H}_{\infty}^{n, q}(X, G)$.

Theorem 3.10. If $q>n-\max \left\{\kappa_{*}(E), \kappa_{*}(F)\right\}$, then $\mathcal{H}_{\infty}^{n, q}(X, G)=0$, where $\kappa_{*}(E)$ is defined by $\kappa_{*}(E):=\max \left\{l: \wedge^{l} c_{R, 1}(E) \neq 0 \in H^{2 l}(X, R)\right\}$ and so on.

Proof. By (3.9), if $u \in \mathcal{H}_{\infty}^{n, q}(X, G)$, then for any smooth real-valued function φ on X and $\varepsilon>0$ we obtain

$$
\begin{equation*}
0<\left(\mathbf{e}\left(\Theta_{G}+d d^{c} \varphi+\varepsilon \omega_{X}\right) \Lambda u, u\right)_{\infty}=q \varepsilon\|u\|_{\infty} \tag{3.11}
\end{equation*}
$$

and particularly

$$
\begin{equation*}
\left(\mathbf{e}\left(\Theta_{F}\right) \Lambda u, u\right)_{\infty}=0 \tag{3.12}
\end{equation*}
$$

If $q>n-\kappa_{*}(F)$, then the integrand of (3.12) is non-negative on X and positive at least one point of X by (3.4) (cf. [16], p. 277, Fact 2.7). Therefore u should vanish on X identically because $* u$ is holomorphic and X is connected.

Assume $q>n-\kappa_{*}(E)$ and $u \neq 0 \in \mathcal{H}_{\infty}^{n, q}(X, G)$. For any $\varepsilon>0$ we set :

$$
p(\varepsilon):=\int_{X}\left(\Theta_{G}+\varepsilon \omega_{X}\right)^{n} / \int_{X} \omega_{X}^{n}
$$

Since E is nef, for any $\varepsilon>0$ there exists a smooth real-valued function φ_{ε} on X so that $\Theta_{G}+d d^{c} \varphi_{\varepsilon}+\varepsilon \omega_{X}$ is a Kähler metric. Furthermore by [21], there exists a smooth real-valued function ψ_{ε} on X such that $\gamma_{\varepsilon}:=\Theta_{G}+d d^{c}\left(\varphi_{\varepsilon}+\psi_{\varepsilon}\right)+\varepsilon \omega_{X}$ is a Kähler metric on X with

$$
\begin{equation*}
\gamma_{\varepsilon}^{n}=p(\varepsilon) \omega^{n} \tag{3.13}
\end{equation*}
$$

Let $\left\{\lambda_{\varepsilon, j}\right\}$ be the eigenvalues of γ_{ε} relative to ω_{X} and let $\delta_{\varepsilon, \mu}$ be a continuous function defined as in Lemma 3.3 relative to $\left\{\lambda_{\varepsilon, j}\right\}$ for any $\varepsilon>0$ and $1 \leq \mu \leq n$.

Set $U(\varepsilon):=\left\{\delta_{\varepsilon, q}<2 q \varepsilon\right\}$ for any $\varepsilon>0$. By applying $\varphi_{\varepsilon}+\psi_{\varepsilon}$ to (3.11), and Lemma 3.3 we can show

$$
0<\|u\|_{\infty}^{2} \leq 2 \int_{U(\varepsilon)}|u|_{G}^{2} e^{-\varphi_{\infty}} d v_{X}
$$

This implies $U(\varepsilon) \neq \phi$ for any $\varepsilon>0$. We claim that there exists a positive constant C_{1} not depending on ε such that $\int_{U(\varepsilon)} d v_{X} \geq C_{1}>0$ for any $\varepsilon>0$. If $\int_{U(\varepsilon)} d v_{X}$ converges to zero, then $\int_{U(\varepsilon)}|u|^{2} e^{-\varphi_{\infty}} d v_{X}$ also tends to zero because $|u|_{G}^{2} e^{-\varphi_{\infty}}$ is integrable. However this contradicts to the above inequality.

Furthermore since $\int_{X} \mathbf{e}\left(\gamma_{\varepsilon}\right) \omega_{X}^{n-1}=\int_{X} \mathbf{e}\left(\Theta_{G}+\varepsilon \omega_{X}\right) \omega_{X}^{n-1}$ is non-negative and bounded from above, there exists positive constant C_{2} and C_{3} not depending on ε such that $0<\delta_{\varepsilon, n} \leq C_{2}$ on an open subset $Q(\varepsilon) \subseteq U(\varepsilon)$ with $\int_{Q(\varepsilon)} d v_{X} \geq C_{3}>0$. Hence we obtain

$$
\begin{equation*}
\prod_{j=1}^{n} \lambda_{\varepsilon, j} \leq(2 q)^{q} C_{2}^{n-q} \varepsilon^{q} \quad \text { on } \quad Q(\varepsilon) \quad \text { for any } \varepsilon>0 \tag{3.14}
\end{equation*}
$$

On the other hand since $P(\varepsilon)=\prod_{j=1}^{n} \lambda_{\varepsilon, j}$ is a polynomial in ε of degree n and E is nef, letting $P(\varepsilon)=\sum_{i=0}^{n} a_{i} \varepsilon^{i}$ we obtain : $a_{i}>0$ if $i \geq n-\kappa$ and $a_{i}=0$ if $i<n-\kappa$ by the definition of $\kappa=\kappa_{*}(E)$ and (3.13). This implies that

$$
\begin{equation*}
a_{n-\kappa} \varepsilon^{n-\kappa} \leq \prod_{j=1}^{n} \lambda_{\varepsilon, j} \quad \text { on } \quad X \tag{3.15}
\end{equation*}
$$

By (3.14) and (3.15) we can get $a_{n-\kappa} \varepsilon^{n-\kappa} \leq(2 q)^{q} C_{2}^{n-q} \varepsilon^{q}$, which is a contradiction as ε tends to zero because $q>n-\kappa$. The idea of this proof is due to Enoki [5]. This completes the proof of Theorem 3.10.

Next we show the following injectivity theorem.

Theorem 3.16.

(i) If the j-times tensor product $E^{\otimes j}$ of E admits a non-trivial holomorphic section σ with

$$
C(\sigma):=\operatorname{ess} \cdot \sup _{X}|\sigma|_{E \otimes j}^{2} e^{-j \varphi_{\infty}}<\infty
$$

then the homomorphism

$$
\mathcal{H}_{\infty}^{n, q}(\sigma): \mathcal{H}_{\infty}^{n, q}\left(X, E^{\otimes i} \bigotimes F\right) \longrightarrow H_{\infty}^{n, q}\left(X, E^{\otimes(i+j)} \bigotimes F\right)
$$

induced by the tensor product with σ is well defined and particularly injective for any $q \geq 0, i$ and $j \geq 1$.
(ii) If the k-times tensor product $F^{\otimes k}$ of F admits a non-trivial holomorphic section θ, then

$$
\mathcal{H}_{\infty}^{n, q}(\theta): \mathcal{H}_{\infty}^{n, q}\left(X, E \bigotimes F^{\otimes j}\right) \longrightarrow H_{\infty}^{n, q}\left(X, E \bigotimes F^{\otimes(j+k)}\right)
$$

induced by the tensor product with θ is well defined and particularly injective for any $q \geq 0, j$ and $k \geq 1$.

Proof of (i). For $u \in \mathcal{H}_{\infty}^{n, q}\left(X, E^{\otimes i} \otimes F\right)$, setting $v=\sigma \otimes u$ we have only to show $(v, \bar{\partial} w)_{\infty}=0$ for any $w \in L_{\infty}^{n, q-1}\left(X, E^{\otimes(i+j)} \otimes F\right)$ with $\bar{\partial} w \in$ $L_{\infty}^{n, q}\left(X, E^{\otimes(i+j)} \otimes F\right)$. Since $\bar{\partial} v=\bar{\vartheta} v=0$, and Θ_{F} is semi-positive, by Calabi-Nakano-Vesentini's formula, Lemma 3.3 and Proposition 3.8, we can conclude :

$$
\begin{aligned}
\left\|\vartheta_{(k)} v\right\|_{k}^{2} & =\left(\mathbf{e}\left((i+j)\left(\Theta_{E}+d d^{c} \varphi_{k}\right)+\Theta_{F}\right) \Lambda v, v\right)_{k} \\
& \leq\left(\frac{i+j}{i}\right)\left(\mathbf{e}\left(i\left(\Theta_{E}+d d^{c} \varphi_{k}+\varepsilon_{k} \omega_{X}\right)+\Theta_{F}\right) \Lambda v, v\right)_{k} \\
& \leq \varepsilon_{k} q C(\sigma)\left(\frac{i+j}{i}\right)\|u\|_{\infty}^{2} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
\end{aligned}
$$

Hence by Lebesgue's dominant convergence theorem we have

$$
(v, \bar{\partial} w)_{\infty}=\lim _{k \rightarrow \infty}(v, \bar{\partial} w)_{k}=\lim _{k \rightarrow \infty}\left(\vartheta_{(k)} v, w\right)_{k}=0
$$

Proof of (ii). Since the length of θ is bounded, the proof can be done similarly. This completes the proof of Theorem 3.16.

Remark. If the almost plurisubharmonic function φ_{∞} is determined independently of the choice of $\left\{\varepsilon_{k}\right\}$, then from the above proof it can be verified that $\mathcal{H}_{\infty}^{n, q}(\sigma): \mathcal{H}_{\infty}^{n, q}\left(X, E^{\otimes i} \otimes F\right) \longrightarrow \mathcal{H}_{\infty}^{n, q}\left(X, E^{\otimes(i+j)} \otimes F\right)$ is well defined.

Comment. In the situation of this section, setting $F=$ the trivial line bundle, Enoki claims that $H^{n, q}(X, E)=0$ if $q>n-\kappa_{*}(E)$, which implies that $H^{q}\left(X, \Omega_{X}^{n}(E)\right)=0$ if $q>n-\kappa_{*}(E)$ (cf. [5, Theorem 0.1]). His idea of the proof consists of two parts ; i.e., an L^{2}-estimate for the harmonic forms in $H^{n, q}(X, E)$ and the argument used to show Theorem 3.10. In fact he claims the following L^{2}-estimate (cf.[5, Proposition 3.1]) :

Let E be a holomorphic line bundle provided with a smooth hermitian metric h_{E} on a compact Kähler manifold X of dimension n provided with a Kähler metric ω_{X}. Then for any real-valued smooth function φ on X and $u \in H^{n, q}(X, E)$ with $q \geq 1$, setting $\eta:=e^{\varphi}$ the following inequality holds

$$
\left(\eta \mathbf{e}\left(\Theta_{E}+d d^{c} \varphi\right) \Lambda u, u\right) \leq 0 .
$$

Here we should note that any specific condition for the curvature of $\left(E, h_{E}\right)$ is not assumed to show the above inequality in his proof. However the sign of the left hand side can not be always determined in the following sense.

First for any E-valued smooth (n, q) form v on X we can obtain the following integral formula (cf. [17, §1, Proposition 1.11]) :

$$
\|\sqrt{\eta}(\bar{\partial}+\mathbf{e}(\bar{\partial} \varphi)) v\|^{2}+\left\|\sqrt{\eta} \vartheta_{h} v\right\|^{2}=\left\|\sqrt{\eta}\left(\bar{\vartheta}-\mathbf{e}(\partial \varphi)^{*}\right) v\right\|^{2}+\left(\eta \mathbf{e}\left(\Theta_{E}+d d^{c} \varphi\right) \Lambda v, v\right)
$$

Hence if $u \in H^{n, q}(X, E)$, by setting $w=* u$ and using $\mathbf{e}(\partial \varphi)^{*}=* \mathbf{e}(\bar{\partial} \varphi) *$ we can verify the following from the above formula :

$$
\begin{aligned}
\left(\eta \mathbf{e}\left(\Theta_{E}+d d^{c} \varphi\right) \Lambda u, u\right) & =-\left\|\sqrt{\eta}\left(\bar{\vartheta}-\mathbf{e}(\partial \varphi)^{*}\right) u\right\|^{2}+\|\sqrt{\eta} \mathbf{e}(\bar{\partial} \varphi) u\|^{2} \\
& =-\|\sqrt{\eta}(\bar{\partial}+\mathbf{e}(\bar{\partial} \varphi)) w\|^{2}+\left\|\sqrt{\eta} \mathbf{e}(\partial \varphi)^{*} w\right\|^{2} .
\end{aligned}
$$

Here we note that $\bar{\partial} w$ is primitive ; i.e., $\Lambda \bar{\partial} w=0$ by $\bar{\partial} u=0$ and $\bar{\vartheta}=-\sqrt{-1}[\bar{\partial}, \Lambda]$. For any E-valued smooth $(n-q, 1)$ form α, let $\alpha=\alpha_{1}+\alpha_{2}$ be the primitive decomposition of the form ; i.e., $\Lambda \alpha_{1}=0$ and $\alpha_{2}=1 /(q+1) L \Lambda \alpha$ (cf.[20, Chap.V, Theorem 1.8]). Here the coefficient $1 /(q+1)$ of α_{2} is crucial. Since $\mathbf{e}(\partial \varphi)^{*}=\sqrt{-1}[\mathbf{e}(\bar{\partial} \varphi), \Lambda]$, by applying the decomposition to $\alpha:=\mathbf{e}(\bar{\partial} \varphi) w$ and the above equality it can be verified that

$$
\left(\eta \mathbf{e}\left(\Theta_{E}+d d^{c} \varphi\right) \Lambda u, u\right)=-\left\|\sqrt{\eta}\left(\bar{\partial} w+\alpha_{1}\right)\right\|^{2}+q\left\|\sqrt{\eta} \alpha_{2}\right\|^{2}
$$

and

$$
\alpha_{2}=0 \quad \text { if and only if } \mathbf{e}(\bar{\partial} \varphi) u=0
$$

Therefore if $u \in H^{n, q}(X, E)$ satisfies the equality

$$
\left(\eta \mathbf{e}\left(\Theta_{E}+d d^{c} \varphi\right) \Lambda u, u\right)=-\left\|\sqrt{\eta}\left(\bar{\partial} w+\alpha_{1}\right)\right\|^{2} \leq 0
$$

for any real-valued smooth function φ on X as he claims (see the last line of his proof of Proposition 3.1 in [5]), then by the above observations an E^{*} (the dual of E)-valued harmonic $(0, n-q)$ form $\overline{*(h u)}$ satisfies the $\bar{\partial}$-Neumann condition on every open ball with smooth boundary contained in any local coordinate neighborhood of X. Hence such a form should vanish on it in view of the solvability for $\bar{\partial}$ on open balls and its boundary condition (cf.[17, $\S 4$. Theorem 4.3, (iv)]), and so identically on X by a unique continuation property for harmonic forms, which implies $H^{q}\left(X, \Omega_{X}^{n}(E)\right)=0$. However $H^{q}\left(X, \Omega_{X}^{n}(E)\right)$ does not vanish without any specific condition in general.

4. On cohomology groups of nef line bundles on compact Kähler manifolds

First we state the following Lefschetz type theorem (cf. [5, Theorem 0.3]).

Theorem 4.1. Let X be a connected compact Kähler manifold of dimension n provided with a Kähler metric ω_{X}. Let E (resp. F) be a nef (resp. semi-positive) line bundle provided with a smooth metric h_{E} (resp. h_{F} with $\Theta_{F}=d d^{c}\left(-\log h_{F}\right) \geq 0$) on X. Let φ_{∞} be an almost plurisubharmonic function with $\Theta_{E}+d d^{c} \varphi_{\infty} \gtrsim 0$ determined in Proposition 2.5 and let $\mathcal{I}\left(\varphi_{\infty}\right)$ be the multiplier ideal sheaf associated to φ_{∞}. Then for any $q \geq 1$ the homomorphism

$$
L^{q}: \Gamma\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \bigotimes \Omega_{X}^{n-q}(E \bigotimes F)\right) \longrightarrow{\operatorname{Image} \iota^{q}\left(\varphi_{\infty}\right) \subset H^{q}\left(X, \Omega_{X}^{n}(E \bigotimes F)\right), ~(\bigotimes)}
$$

is surjective and the Hodge star operator relative to ω_{X} yields a splitting homomorphism
with $L^{q} \circ \delta^{q}=$ id, where $\iota^{q}\left(\varphi_{\infty}\right): H^{q}\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \otimes \Omega_{X}^{n}(E \otimes F)\right) \longrightarrow H^{q}(X$, $\left.\Omega_{X}^{n}(E \otimes F)\right)$ is the canonical homomorphism induced by $\iota: \mathcal{I}\left(\varphi_{\infty}\right) \otimes \Omega_{X}^{n}(E \otimes F)$ $\hookrightarrow \Omega_{X}^{n}(E \otimes F)$.

Proof. The conclusion follows from Theorem 3.5 because the image of $\iota^{q}\left(\varphi_{\infty}\right)$ can be identified with $\mathcal{H}_{\infty}^{n, q}(X, E \bigotimes F)$ by the commutative diagram in 1.7, Theorem.

We denote $V\left(\varphi_{\infty}\right)$ the compact analytic subset of X defined by the multiplier ideal sheaf $\mathcal{I}\left(\varphi_{\infty}\right)$ and define $d\left(\varphi_{\infty}\right):=\max \left\{\operatorname{dim}_{\mathbb{C}} V\left(\varphi_{\infty}\right)_{\alpha}: V\left(\varphi_{\infty}\right)_{\alpha}\right.$ is any irreducible component of $\left.V\left(\varphi_{\infty}\right)\right\}$ (we set $d\left(\varphi_{\infty}\right)=-1$ if $V\left(\varphi_{\infty}\right)=\phi$; i.e., $\left.\mathcal{I}\left(\varphi_{\infty}\right) \cong \mathcal{O}_{X}\right)$. It is clear that $d\left(j \varphi_{\infty}\right) \leq d\left(k \varphi_{\infty}\right)$ if $1 \leq j<k$, and $\iota^{q}\left(\varphi_{\infty}\right)$ is bijective (resp. surjective) if $q>d\left(\varphi_{\infty}\right)+1$ (resp. $q>d\left(\varphi_{\infty}\right)$). If the Lelong number of φ_{∞} is less than one everywhere on X, then $d\left(\varphi_{\infty}\right)=-1$ (cf. [3, (5.6) Lemma]). Under the hypothesis of Theorem 4.1, by Theorem 3.10 we can obtain the following vanishing theorem immediately (cf. [5], [9], [15], [19]).

Theorem 4.2. Suppose $q>n-\max \left\{\kappa_{*}(E), \kappa_{*}(F)\right\}$. Then

$$
\iota^{q}\left(\varphi_{\infty}\right): H^{q}\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \bigotimes \Omega_{X}^{n}(E \bigotimes F)\right) \longrightarrow H^{q}\left(X, \Omega_{X}^{n}(E \bigotimes F)\right)
$$

is the zero homomorphism. Especially the following assertions hold :
(i) If $\iota^{q}\left(\varphi_{\infty}\right)$ is surjective (resp. injective) and $q>n-\max \left\{\kappa_{*}(E), \kappa_{*}(F)\right\}$, then

$$
H^{q}\left(X, \Omega_{X}^{n}(E \bigotimes F)\right)=0 \quad\left(\text { resp. } H^{q}\left(X, \mathcal{I}\left(\varphi_{\infty}\right) \bigotimes \Omega_{X}^{n}(E \bigotimes F)\right)=0\right)
$$

(ii) If $q>\max \left\{n-\max \left\{\kappa_{*}(E), \kappa_{*}(F)\right\}, d\left(\varphi_{\infty}\right)\right\}$, then

$$
H^{q}\left(X, \Omega_{X}^{n}(E \bigotimes F)\right)=0
$$

where $\kappa_{*}(E)\left(\right.$ resp. $\left.\kappa_{*}(F)\right)$ is the numerical Kodaira dimension of E (resp. F).

Remark 1. The homomorphism $\iota^{q}\left(\varphi_{\infty}\right)$ is not always injective (cf. [4, Example 1.7]).

At last we can get the following theorem from Theorem 3.16 (cf. [5, Theorem $0.2]$ and [10, Theorem 2.2]).

Theorem 4.3. Under the hypothesis of Theorem 4.1 the following assertions hold :
(i) Suppose a non-trivial holomorphic section σ of $E^{\otimes j}$ satisfies ess. $\sup _{X}|\sigma|_{E^{\otimes j}}^{2}$ $\times e^{-j \varphi_{\infty}}<\infty$ and $q>d\left((i+j) \varphi_{\infty}\right)+1$. Then the homomorphism

$$
H^{n, q}(\sigma): H^{q}\left(X, \Omega_{X}^{n}\left(E^{\otimes i} \bigotimes F\right)\right) \longrightarrow H^{q}\left(X, \Omega_{X}^{n}\left(E^{\otimes(i+j)} \bigotimes F\right)\right)
$$

induced by the tensor product with σ is injective for any i and $j \geq 1$.
(ii) Suppose θ is a non-trivial holomorphic section of $F^{\otimes j}$ and $q>d\left(\varphi_{\infty}\right)+1$. Then the homomorphism

$$
H^{n, q}(\theta): H^{q}\left(X, \Omega_{X}^{n}\left(E \bigotimes F^{\otimes i}\right)\right) \longrightarrow H^{q}\left(X, \Omega_{X}^{n}\left(E \bigotimes F^{\otimes(i+j)}\right)\right)
$$

induced by the tensor product with θ is injective for any i and $j \geq 1$.

Remark 2. Theorems 4.2 and 4.3 yield us an indication about KawamataViehweg type vanishing theorem for nef line bundles on compact Kähler manifolds ; i.e., $H^{q}\left(X, \Omega_{X}^{n}(L)\right)=0$ if a holomorphic line bundle L on a compact Kähler manifold X with $\operatorname{dim}_{C} X=n$ is nef and good; i.e., $\kappa(L)=\kappa_{*}(L)$ and $q>n-\kappa_{*}(L)$, where $\kappa(L)$ is the Kodaira dimension of L. In this situation by replacing X by a bimeromorphic Kähler model of X there exist a surjective morphism $\pi: X \rightarrow Y$ with connected fibres from X to a projective algebraic manifold Y with $\operatorname{dim}_{C} Y=$ $\kappa_{*}(L)$ and a nef-big \mathbb{Q}-divisor B on Y such that (i) $L=\pi^{*} B$, (ii) $k B=A+D$ with a very ample divisor A and an effective divisor D on Y for $k \gg 0$ (cf. [13, §2, Proposition 2.14]). This implies that $L^{\otimes k}$ is written by the tensor product of a semi-positive line bundle $\pi^{*}[A]$ and a pseudo effective one $\pi^{*}[D]$, and admits a non-trivial section θ which vanishes along $\pi^{*} D$ (cf. Theorem 4.3 and [17, §6]).

References

[1] J.P. Demailly: Regularization of closed positive currents and intersection theory, J. Algebraic Geometry, 1 (1992), 361-409.
[2] J.P. Demailly: A numerical criterion for very ample line bundles, J. Differential Geometry, 37 (1993), 323-374.
[3] J.P. Demailly: L^{2} vanishing theorems for positive line bundles and adjunction theory, Transcendental methods in algebraic geometry, CIME Session, Cetraro, Italy, (1994).
[4] J.P. Demailly, T. Peternell and M. Schneider: Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geometry, 3 (1994), 295-345.
[5] I. Enoki: Kawamata-Viehweg vanishing theorem for compact Kähler manifolds, Einstein metrics and Yang-Mills connections (ed. T. Mabuchi, S. Mukai), Marcel Dekker, (1993), 59-68.
[6] M. Fukushima and M. Okada: On Dirichelet forms for plurisubharmonic functions, Acta Math., 159 (1987), 171-213.
[7] R.C. Gunning and H. Rossi: Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.
[8] L. Hörmander: L^{2} estimates and existence theorems for the $\partial \bar{\partial}$ operator, Acta Math. 113 (1965), 89-152.
[9] U. Kawamata: A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 221 (1982), 43-46.
[10] Kollár: Higher direct images of dualizing sheaves I, Ann. Math. 123 (1986), 11-42.
[11] A.M. Nadel: Multiplier ideal sheaves and Kähler Einstein metrics of positive scalar curvature, Ann. Math. 132 (1990), 549-596.
[12] A.M. Nadel: Relative bounds for Fano varieties of the second kind, Einstein metrics and Yang-Mills connections (ed. T. Mabuchi, S. Mukai), Marcel Dekker, (1993), 181-191.
[13] N. Nakayama: The lower semi-continuity of the plurigenera of complex varieties, Advanced Studies in Pure Math. 10 (1987), Algebraic Geometry, Sendai, (1985), 551-590.
[14] T. Ohsawa and K. Takegoshi: Hodge spectral sequence on pseudoconvex domains, Math. Z. 197 (1988), 1-12.
[15] K.-I. Sugiyama: A geometry of Kähler cones, Math. Ann. 281 (1988), 135-144.
[16] K. Takegoshi: Relative vanishing theorems in analytic spaces, Duke Math. J. 52 (1985), 273-279.
[17] K. Takegoshi: Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann. 303 (1995), 389-416.
[18] G. Tian: On Kähler-Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$, Invent. Math. 89 (1987), 225-246.
[19] E. Viehweg: Vanishing theorems, Journ. Reine Angew. Math. 335 (1982), 1-8.
[20] R.O. Wells: Differential analysis on complex manifolds, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973.
[21] S.T. Yau: On the Ricci curvature of a compact Kähler manifold and the complex MongeAmpère equation, I, Comm. Pure Appl. Math. 31 (1978), 339-411.

Department of Mathematics Graduate School of Science Osaka University
Toyonaka, Osaka 560, Japan

