CURVATURES OF THE PRODUCT OF TWO 3-SPHERES WITH DEFORMED METRICS

Shukichi TANNO

(Received March 6, 1997)

1. Introduction

Let $\left(S^{3}, g\right)$ be the 3 -sphere with the canonical metric of constant curvature 1 and let $\left(S^{3} \times S^{3}, \tilde{g}\right)$ be the Riemannian product of two $\left(S^{3}, g\right)$, where \tilde{g} denotes the product metric of two g. In $\S 3$ we consider Riemannian metrics which are left-invariant when we consider $S^{3} \times S^{3}$ as a Lie group $S U(2) \times S U(2)$. In $\S 4$ we study special type of left invariant metrics. Let $\left\{\eta^{1}, \eta^{2}, \eta^{3}\right\}$ be a globally defined orthonormal coframe field on S^{3} and $\left\{\eta^{\overline{1}}, \eta^{\overline{2}}, \eta^{\overline{3}}\right\}$ be one on the second S^{3}. Then the product metric \tilde{g} on $S^{3} \times S^{3}$ is expressed as $\tilde{g}=\sum_{u=1}^{3} \eta^{u} \otimes \eta^{u}+\sum_{v=1}^{3} \eta^{\bar{v}} \otimes \eta^{\bar{v}}$. We consider the following metric

$$
\begin{equation*}
\hat{g}(t)=\tilde{g}+t \sum_{u, v=1}^{3} r_{u \bar{v}}\left(\eta^{u} \otimes \eta^{\bar{v}}+\eta^{\bar{v}} \otimes \eta^{u}\right) \tag{1.1}
\end{equation*}
$$

on $S^{3} \times S^{3}$, where t is a real parameter $\left(-t_{o}<t<t_{o}\right)$ and $r=\left(r_{u \bar{v}}\right)=\left(r_{u v}\right)$ is a constant real 3×3 matrix. If r is symmetric, then we can assume that r is diagonal $\left(r_{u} \delta_{u v}\right)$ after some orthogonal change of frames if necessary.

The deformation given by (1.1) is natural. The purpose of this paper is to report that the phenomena of sectional curvatures for $t>0$ and $t<0$ are completely different in the most simplest case $r=\left(\delta_{u v}\right)$.

Theorem A. Suppose $r=\left(-\delta_{u v}\right)$ in (1.1). Then there is a positive number t_{*} such that $\left\{\hat{g}(t), 0 \leq t<t_{*}\right\}$ is a one parameter family of left invariant metrics on $S^{3} \times S^{3}$ with non-negative sectional curvature. Here, the sections $\{\tilde{X}, \tilde{Y}\}$ with zero sectional curvature are of the form $\tilde{X}=(X, 0)$ and $\tilde{Y}=(0, X)$ for $t \in\left(0, t_{*}\right)$.

Contrary to Theorem A, we have the following:
Theorem B. Suppose $r=\left(\lambda_{u} \delta_{u v}\right)$ with $1=\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}>0$. Then there is a positive number t_{*}^{\prime} such that $\left\{\hat{g}(t), 0 \leq t<t_{*}^{\prime}\right\}$ is a one parameter family of left invariant metrics on $S^{3} \times S^{3}$ with the following properties:
(i) There are planes of the form $\{\tilde{X}, \tilde{Y}\}$ with $\tilde{X}=(X, 0)$ and $\tilde{Y}=(0, \bar{Y})$ with
zero sectional curvature with respect to each $\hat{g}(t)$. If $\lambda_{1}>\lambda_{2}>\lambda_{3}>0$, then the number of such planes is three (at each point).
(ii) For any small positive number there exist a plane Π and some positive number $t_{2}<t$ such that the sectional curvature $\hat{K}(\Pi)$ is negative with respect to $\hat{g}\left(t_{2}\right)$.

The author would like to thank Professor H. Urakawa and Professor K. Masuda for useful discussions on the problems treated here. Also the author thanks the referee for a comment on Proposition $4.3(r \in S O(3)$ was extended to $r \in O(3))$.

2. An orthonormal frame field on $\left(S^{\mathbf{3}}, g\right)$

Let $\left(S^{3}, g\right)$ be the 3 -sphere with the canonical metric of constant curvature 1 . We have an orthonormal frame field $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ on S^{3} satisfying $\left[\xi_{a}, \xi_{b}\right]=2 \xi_{c}$ for $\varepsilon(a, b, c)=1$, where $\varepsilon(a, b, c)$ denotes the sign of the permutation $(a, b, c) \rightarrow(1,2,3)$ (and $\varepsilon(a, b, c)=0$ if the set $\{a, b, c\}$ is different from $\{1,2,3\}$). We denote the dual of $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ by $\left\{\eta^{1}, \eta^{2}, \eta^{3}\right\}$. We define ϕ^{a} by $\phi^{a}=-\nabla \xi_{a}$ for $a=1,2,3$, where ∇ denotes the Riemannian connection with respect to g. Then we have

$$
\begin{align*}
& \phi^{a} \phi^{a} X=-X+\eta^{a}(X) \xi_{a}, \tag{2.1}\\
& g\left(\phi^{a} X, \phi^{a} Y\right)=g(X, Y)-\eta^{a}(X) \eta^{a}(Y), \tag{2.2}\\
& d \eta^{a}(X, Y)=2 g\left(X, \phi^{a} Y\right), \tag{2.3}\\
& \left(\nabla_{X} \phi^{a}\right)(Y)=g(X, Y) \xi_{a}-\eta^{a}(Y) X \tag{2.4}
\end{align*}
$$

for vector fields X and Y on S^{3} and $a=1,2,3$. Furthermore, $\xi_{a}=\phi^{b} \xi_{c}=-\phi^{c} \xi_{b}$ and

$$
\begin{equation*}
\phi^{a}=\phi^{b} \phi^{c}-\xi_{b} \otimes \eta^{c}=-\phi^{c} \phi^{b}+\xi_{c} \otimes \eta^{b} \tag{2.5}
\end{equation*}
$$

hold for $\varepsilon(a, b, c)=1$. For each $a,\left\{\eta^{a}, g\right\}$ is called a Sasakian structure on $\left(S^{3}, g\right)$ and $\left\{\eta^{1}, \eta^{2}, \eta^{3}, g\right\}$ is called a Sasakian 3 -structure (cf. Blair [1], Tanno [3], etc.).

Let $\left(\phi^{a u}{ }_{v}\right)$ be the components of ϕ^{a} with respect to the frame field $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. Then we have $\phi^{a u}{ }_{v}=-\varepsilon(a, u, v)$. Therefore, for example, we obtain

$$
\begin{equation*}
\phi^{a}{ }_{u v} X^{u} Y^{v}=-(X \times Y)^{a}, \tag{2.6}
\end{equation*}
$$

where $X \times Y$ denotes the vector product in $T_{x} S^{3} \simeq E^{3}$ at each point $x \in S^{3}$. Furthermore, one may use $\phi^{a}{ }_{u v}=-\phi^{u}{ }_{a v}$, etc. in the calculations, if necessary; for example, we have

$$
A_{u} B_{v} \phi_{x}^{u a} \phi_{c}^{v x} X_{a} Y^{c}=-\langle A \times X, B \times Y\rangle
$$

where \langle,$\rangle denotes the inner product defined by g$. Here we recall the following
relation:

$$
\langle A \times B, C \times D\rangle=\langle A, C\rangle\langle B, D\rangle-\langle A, D\rangle\langle B, C\rangle,
$$

which will be used in $\S 4$.

3. Riemannian metrics on $S^{\mathbf{3}} \times S^{\mathbf{3}}$

We fix the range of indices as follows:

$$
1 \leq i, j, k, l, x, y \leq 6, \quad 1 \leq a, b, c, u, v \leq 3,
$$

and we denote $\bar{a}=a+3$ generally (i.e., if \bar{a} is used in S^{3} then \bar{a} means simply a; while if \bar{a} is used in $S^{3} \times S^{3}$ then \bar{a} means $a+3$).

We have a globally defined orthonormal frame field $\left\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{\overline{1}}, \xi_{\overline{2}}, \xi_{\overline{3}}\right\}$ and its dual $\left\{\eta^{1}, \eta^{2}, \eta^{3}, \eta^{\overline{1}}, \eta^{\overline{2}}, \eta^{\overline{3}}\right\}$ on the Riemannian product $\left(S^{3} \times S^{3}, \tilde{g}\right)$. Here $\xi_{a}\left(\xi_{\bar{b}}\right.$, resp.) is identified with $\left(\xi_{a}, 0\right)\left(\left(0, \xi_{\bar{b}}\right)\right.$, resp.). The Riemannian connection with respect to \tilde{g} is denoted by $\tilde{\nabla}$. Then we have $\tilde{\nabla} \xi_{a}=\left(\nabla \xi_{a}, 0\right)$ and $\tilde{\nabla} \xi_{\bar{b}}=\left(0, \nabla \xi_{\bar{b}}\right)$, and hence we have $\phi^{a}=-\tilde{\nabla} \xi_{a}$ and $\phi^{\bar{a}}=-\tilde{\nabla} \xi_{\bar{a}}$ for $a=1,2,3$. By $\left(\phi_{k}^{i j}\right)$ we denote the components of ϕ^{i} with respect to $\left\{\xi_{a}, \xi_{\bar{a}}\right\}$. One may notice that if one component $\phi^{i j}{ }_{k}$ has mixed indices $i \leq 3$ and $j \geq 4$ for example, then it vanishes.

Now we define Riemannian metrics $\hat{g}(t)$ on $S^{3} \times S^{3}$ by

$$
\begin{equation*}
\hat{g}_{i j}=\tilde{g}_{i j}+t h_{i j} \tag{3.1}
\end{equation*}
$$

where (and in many places below) we denote $\hat{g}(t)$ simply by \hat{g}, and

$$
\begin{equation*}
h_{i j}=s_{u} \eta_{i}^{u} \eta_{j}^{u}+r_{u \bar{v}}\left(\eta_{i}^{u} \eta_{j}^{\bar{v}}+\eta_{j}^{u} \eta_{i}^{\bar{v}}\right)+\bar{s}_{\bar{v}} \eta_{i}^{\bar{v}} \eta_{j}^{\bar{v}}, \quad r_{\bar{u} v}=r_{v \bar{u}} \tag{3.2}
\end{equation*}
$$

where $r=\left(r_{u \bar{v}}\right)$ is a constant real 3×3 matrix; and $s=\left(s_{u}\right), \bar{s}=\left(\bar{s}_{\bar{v}}\right)$ are constant 3 -vectors. Here t is a sufficiently small real number so that $\hat{g}=\left(\hat{g}_{i j}\right)$ is a Riemannian metric.

In the tensor calculus components of tensor fields are ones with respect to the natural frame of a local coordinate system. Otherwise, components are ones with respect to $\left\{\xi_{a}, \xi_{\bar{a}}\right\}$. This will be understood in the context.

Notice that $\left(h_{i j}\right)$ given above is a general form of $\left(h_{i j}\right)$ with constant coefficients. Indeed, let $h_{i j}=\beta_{k l} \eta_{i}^{k} \eta_{j}^{l}$. Then the first block $\left(\beta_{a b}\right)$ of $\left(\beta_{a b} \eta_{i}^{a} \eta_{j}^{b}\right)$ is diagonalized to ($s_{u} \delta_{u v}$) so that $\beta_{a b} \eta_{i}^{a} \eta_{j}^{b}=s_{u} \eta_{i}^{u} \eta_{j}^{\prime u}$ by some orthogonal transformation $\left\{\xi_{a}\right\} \rightarrow$ $\left\{\xi^{\prime}{ }_{a}\right\}$. Similarly we have $\left(\bar{s}_{\bar{v}}\right)$ so that $\beta_{\bar{a} \bar{b}} \eta_{i}^{\bar{a}} \eta_{j}^{\bar{b}}=\bar{s}_{\bar{v}} \eta_{i}^{\prime \bar{v}} \eta_{j}^{\prime \bar{v}}$. So we have (3.2). Moreover, \hat{g} is a left invariant metric when we consider $S^{3} \times S^{3}$ as a Lie group $S U(2) \times S U(2)$.

The inverse matrix of $\hat{g}=\left(\hat{g}_{i j}\right)$ is denoted by $\hat{g}^{-1}=\left(\hat{g}^{i s}\right)$. Then, the difference $W_{j k}^{i}=\hat{\Gamma}_{j k}^{i}-\tilde{\Gamma}_{j k}^{i}$ of the coefficients of the Riemannian connections with respect to \hat{g} and \tilde{g}, and the Riemannian curvature tensor $\hat{R}_{j k l}^{i}$ are given by

$$
\begin{equation*}
W_{j k}^{i}=(t / 2) \hat{g}^{i s}\left(\tilde{\nabla}_{j} h_{s k}+\tilde{\nabla}_{k} h_{s j}-\tilde{\nabla}_{s} h_{j k}\right), \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\hat{R}_{j k l}^{i}=\tilde{R}_{j k l}^{i}+\tilde{\nabla}_{k} W_{l j}^{i}-\tilde{\nabla}_{l} W_{k j}^{i}+W_{l j}^{s} W_{k s}^{i}-W_{k j}^{s} W_{l s}^{i} . \tag{3.4}
\end{equation*}
$$

We denote components of a vector field \tilde{X} on $S^{3} \times S^{3}$ as

$$
\tilde{X}=\left(\tilde{X}^{i}\right)=(X, \bar{X})=\left(X^{a}, \bar{X}^{\bar{a}}\right)=\left(X^{1}, X^{2}, X^{3} ; \bar{X}^{\overline{1}}, \bar{X}^{\overline{2}}, \bar{X}^{\overline{3}}\right),
$$

where $X\left(\bar{X}\right.$, resp.) is tangent to the first (second, resp.) S^{3}.
Lemma 3.1. $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})$ is given by

$$
\begin{align*}
& \hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})=\hat{g}_{h i} \tilde{R}_{j k l}^{i} \tilde{X}^{h} \tilde{X}^{k} \tilde{Y}^{j} \tilde{Y}^{l} \tag{3.5}\\
& \quad+\left[\tilde{\nabla}_{k}\left(\hat{g}_{h i} W_{l j}^{i}\right)-\tilde{\nabla}_{l}\left(\hat{g}_{h i} W_{k j}^{i}\right)\right] \tilde{X}^{h} \tilde{X}^{k} \tilde{Y}^{j} \tilde{Y}^{l} \\
& \quad-\hat{g}^{x y}\left[\left(\hat{g}_{x p} W_{k h}^{p}\right)\left(\hat{g}_{y q} W_{l j}^{q}\right)-\left(\hat{g}_{x p} W_{l h}^{p}\right)\left(\hat{g}_{y q} W_{k j}^{q}\right)\right] \tilde{X}^{h} \tilde{X}^{k} \tilde{Y}^{j} \tilde{Y}^{l} .
\end{align*}
$$

Proof. First we have
$\hat{g}_{h i}\left[\tilde{\nabla}_{k} W_{l j}^{i}-\tilde{\nabla}_{l} W_{k j}^{i}\right]=\tilde{\nabla}_{k}\left(\hat{g}_{h i} W_{l j}^{i}\right)-\tilde{\nabla}_{l}\left(\hat{g}_{h i} W_{k j}^{i}\right)-t \tilde{\nabla}_{k} h_{h i} \cdot W_{l j}^{i}+t \tilde{\nabla}_{l} h_{h i} \cdot W_{k j}^{i}$.
Next, using (3.3) we obtain $t \tilde{\nabla}_{k} h_{h i}=\hat{g}_{h s} W_{k i}^{s}+\hat{g}_{i s} W_{k h}^{s}$ and

$$
-t \tilde{\nabla}_{k} h_{h i} \cdot W_{l j}^{i}+\hat{g}_{h i} W_{k s}^{i} W_{l j}^{s}=-\hat{g}^{x y}\left(\hat{g}_{x p} W_{k h}^{p}\right)\left(\hat{g}_{y q} W_{l j}^{q}\right) .
$$

Then applying these into (3.4), proof is completed.

Lemma 3.2. $\hat{g}_{i s} W_{j k}^{s}$ is given by

$$
\begin{align*}
\hat{g}_{i s} W_{j k}^{s}= & -t\left[s_{u}\left(\phi^{u}{ }_{i j} \eta_{k}^{u}+\phi^{u}{ }_{i k} \eta_{j}^{u}\right)+\bar{s}_{\bar{v}}\left(\phi^{\bar{v}}{ }_{i j} \eta_{k}^{\bar{v}}+\phi^{\bar{v}}{ }_{i k} \eta_{j}^{\bar{v}}\right)\right. \tag{3.6}\\
& \left.+r_{u \bar{v}}\left(\phi^{u}{ }_{i j} \eta_{k}^{\bar{v}}+\phi^{u}{ }_{i k} \eta_{j}^{\bar{v}}+\phi^{\bar{v}}{ }_{i j} \eta_{k}^{u}+\phi^{\bar{v}}{ }_{i k} \eta_{j}^{u}\right)\right] .
\end{align*}
$$

Proof. One may use relations; $\tilde{\nabla}_{i} \eta_{j}^{u}=\phi^{u}{ }_{i j}$, etc.
We continue some calculations to obtain the sectional curvature for a 2-plane determined by \tilde{X} and \tilde{Y}. Here we assume that $\{\tilde{X}, \tilde{Y}\}$ is orthonormal with respect to \tilde{g}, i.e.,

$$
\langle X, X\rangle+\langle\bar{X}, \bar{X}\rangle=1, \quad\langle Y, Y\rangle+\langle\bar{Y}, \bar{Y}\rangle=1, \quad\langle X, Y\rangle+\langle\bar{X}, \bar{Y}\rangle=0
$$

Lemma 3.3. Let $\{\tilde{X}, \tilde{Y}\}$ be an orthonormal pair with respect to \tilde{g} at a point of $S^{3} \times S^{3}$. Then we can assume $\langle X, Y\rangle=\langle\bar{X}, \bar{Y}\rangle=0$.

Proof. Assume $\langle X, Y\rangle \neq 0$ and consider $\tilde{Z}=\cos \theta \tilde{X}+\sin \theta \tilde{Y}$ and $\tilde{W}=$ $-\sin \theta \tilde{X}+\cos \theta \tilde{Y}$. Then $\langle Z, W\rangle$ for $\tilde{Z}=(Z, \bar{Z})$ and $\tilde{W}=(W, \bar{W})$ is given by

$$
\langle Z, W\rangle=\sin \theta \cos \theta\left(\|Y\|^{2}-\|X\|^{2}\right)+\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\langle X, Y\rangle
$$

If $\|Y\|=\|X\|$, then we may put $\theta=\pi / 4$ to get $\langle Z, W\rangle=0$. Then also $\langle\bar{Z}, \bar{W}\rangle=0$ follows. If $\|Y\| \neq\|X\|$, then we can find θ such that $\langle Z, W\rangle=0$. We have also $\langle\bar{Z}, \bar{W}\rangle=0$.

From now on we assume $\langle X, Y\rangle=\langle\bar{X}, \bar{Y}\rangle=0$ for our orthonormal pair $\{\tilde{X}, \tilde{Y}\}$. Since \tilde{g} is the product of Riemannian metrics of constant curvature 1, we obtain

$$
\begin{align*}
\hat{g}_{h i} \tilde{R}_{j k l}^{i} \tilde{X}^{h} \tilde{X}^{k} \tilde{Y}^{j} \tilde{Y}^{l}= & \|X \times Y\|^{2}+\|\bar{X} \times \bar{Y}\|^{2} \tag{3.7}\\
& +t\left[r(X, \bar{X})+\|Y\|^{2} s(X, X)+\|\bar{Y}\|^{2} \bar{s}(\bar{X}, \bar{X})\right]
\end{align*}
$$

where s and \bar{s} are considered as matrices $s=\left(s_{u} \delta_{u v}\right)$ and $\bar{s}=\left(\bar{s}_{\bar{u}} \delta_{\bar{u} \bar{v}}\right)$. By (2.4), (2.6) and (3.6), the second term of the right hand side of (3.5) is given by

$$
\begin{align*}
{\left[\tilde{\nabla}_{k}\left(\hat{g}_{h i} W_{l j}^{i}\right)-\right.} & \left.\tilde{\nabla}_{l}\left(\hat{g}_{h i} W_{k j}^{i}\right)\right] \tilde{X}^{h} \tilde{X}^{k} \tilde{Y}^{j} \tilde{Y}^{l}=t[r(X, \bar{X}) \tag{3.8}\\
& +2 r(Y, \bar{Y})-6 r(X \times Y, \bar{X} \times \bar{Y}) \\
& +2\|X\|^{2} s(Y, Y)+\|Y\|^{2} s(X, X)-3 s(X \times Y, X \times Y) \\
& \left.+2\|\bar{X}\|^{2} \bar{s}(\bar{Y}, \bar{Y})+\|\bar{Y}\|^{2} \bar{s}(\bar{X}, \bar{X})-3 \bar{s}(\bar{X} \times \bar{Y}, \bar{X} \times \bar{Y})\right] .
\end{align*}
$$

1-forms ($\hat{g}_{j p} W_{k h}^{p} \tilde{X}^{k} \tilde{X}^{h}$) and ($\hat{g}_{j p} W_{l h}^{p} \tilde{X}^{h} \tilde{Y}^{l}$) are expressed as follows:

$$
\begin{gather*}
\left(\hat{g}_{j p} W_{k h}^{p} \tilde{X}^{k} \tilde{X}^{h}\right)=2 t\left(U(\tilde{X})_{u}, \bar{U}(\tilde{X})_{\bar{u}}\right), \tag{3.9}\\
U(\tilde{X})=X \times(r(\bar{X})+s(X)), \quad \bar{U}(\tilde{X})=\bar{X} \times\left({ }^{t} r(X)+\bar{s}(\bar{X})\right), \\
\left(\hat{g}_{j p} W_{l h}^{p} \tilde{X}^{h} \tilde{Y}^{l}\right)=t\left(V(\tilde{X}, \tilde{Y})_{u}, \bar{V}(\tilde{X}, \tilde{Y})_{\bar{u}}\right), \tag{3.10}\\
V(\tilde{X}, \tilde{Y})=X \times(r(\bar{Y})+s(Y))+Y \times(r(\bar{X})+s(X)), \\
\bar{V}(\tilde{X}, \tilde{Y})=\bar{X} \times\left({ }^{t} r(Y)+\bar{s}(\bar{Y})\right)+\bar{Y} \times\left({ }^{t} r(X)+\bar{s}(\bar{X})\right),
\end{gather*}
$$

where ${ }^{t} r$ denotes the transpose of r.
In the next Proposition we study some special type of sections for later use.
Proposition 3.4. $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})$ for an orthonormal pair $\{\tilde{X}=(X, 0), \tilde{Y}=$ $(0, \bar{Y})\}$ with respect to \tilde{g} is given by

$$
\begin{aligned}
& \hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X}) \\
& \quad=t^{2}\left\{\hat{g}^{u v}(X \times r(\bar{Y}))_{u}(X \times r(\bar{Y}))_{v}+\hat{g}^{\bar{u} \bar{v}}\left(\bar{Y} \times{ }^{t} r(X)\right)_{\bar{u}}\left(\bar{Y} \times{ }^{t} r(X)\right)_{\bar{v}}\right. \\
& \left.\quad+\hat{g}^{u \bar{v}}\left[2(X \times r(\bar{Y}))_{u}\left(\bar{Y} \times{ }^{t} r(X)\right)_{\bar{v}}-4(X \times s(X))_{u}(\bar{Y} \times \bar{s}(\bar{Y}))_{\bar{v}}\right]\right\} .
\end{aligned}
$$

Proof. By $\bar{X}=Y=0$ in (3.7) $\sim(3.10)$, we have $\hat{g}_{h i} \tilde{R}_{j k l}^{i} \tilde{X}^{h} \tilde{X}^{k} \tilde{Y}^{j} \tilde{Y}^{l}=0$ and

$$
\begin{aligned}
& {\left[\tilde{\nabla}_{k}\left(\hat{g}_{h i} W_{l j}^{i}\right)-\tilde{\nabla}_{l}\left(\hat{g}_{h i} W_{k j}^{i}\right)\right] \tilde{X}^{h} \tilde{X}^{k} \tilde{Y}^{j} \tilde{Y}^{l}=0,} \\
& \left(\hat{g}_{j p} W_{k h}^{p} \tilde{X}^{k} \tilde{X}^{h}\right)=2 t(X \times s(X), 0), \\
& \left(\hat{g}_{j p} W_{l h}^{p} \tilde{X}^{h} \tilde{Y}^{l}\right)=t\left(X \times r(\bar{Y}), \bar{Y} \times{ }^{t} r(X)\right), \\
& \left(\hat{g}_{j p} W_{k h}^{p} \tilde{Y}^{k} \tilde{Y}^{h}\right)=2 t(0, \bar{Y} \times \bar{s}(\bar{Y})),
\end{aligned}
$$

Substituting these into (3.5), proof is completed.
The sectional curvature $\hat{K}(\tilde{X}, \tilde{Y})$ for an orthonormal pair $\{\tilde{X}, \tilde{Y}\}$ with respect to \tilde{g} at a point of $\left(S^{3} \times S^{3}, \hat{g}(t)\right)$ is given by

$$
\begin{equation*}
\hat{K}(\tilde{X}, \tilde{Y})=\hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X}) / \tilde{D}(\tilde{X}, \tilde{Y}) \tag{3.11}
\end{equation*}
$$

where $\hat{D}(\tilde{X}, \tilde{Y})=\hat{g}(\tilde{X}, \tilde{X}) \hat{g}(\tilde{Y}, \tilde{Y})-\hat{g}(\tilde{X}, \tilde{Y})^{2}$. As far as we are concerned with the sign of sectional curvatures, it suffices to consider $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})$.

4. The case where $s=\bar{s}=0$

In this section we assume $s=\bar{s}=0$ in (3.2), i.e.

$$
\begin{equation*}
\hat{g}=\tilde{g}+t r_{u \bar{v}}\left(\eta^{u} \otimes \eta^{\bar{v}}+\eta^{\bar{v}} \otimes \eta^{u}\right) \tag{4.1}
\end{equation*}
$$

The restriction of \hat{g} to each factor S^{3} is identical with the canonical metric g on S^{3}. By Lemma 3.1 and (3.7) $\sim(3.10)$, we obtain

Proposition 4.1. For the metric (4.1) on $S^{3} \times S^{3}, \hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})$ for an orthonormal pair $\{\tilde{X}, \tilde{Y}\}$ with respect to \tilde{g} is given by

$$
\begin{equation*}
\hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})=\|X \times Y\|^{2}+\|\bar{X} \times \bar{Y}\|^{2}+G_{1} t+G_{2} t^{2} \tag{4.2}
\end{equation*}
$$

where we have put G_{1} and $G_{2}=G_{21}+G_{22}$ as
(4.3) $\quad G_{1}=2[r(X, \bar{X})+r(Y, \bar{Y})-3 r(X \times Y, \bar{X} \times \bar{Y})]$,

$$
\begin{align*}
G_{21}= & -4 \hat{g}^{u v}(X \times r(\bar{X}))_{u}(Y \times r(\bar{Y}))_{v} \tag{4.4}\\
& -4 \hat{g}^{u \bar{v}}\left[(X \times r(\bar{X}))_{u}\left(\bar{Y} \times{ }^{t} r(Y)\right)_{\bar{v}}+(Y \times r(\bar{Y}))_{u}\left(\bar{X} \times{ }^{t} r(X)\right)_{\bar{v}}\right] \\
& -4 \hat{g}^{\bar{u} \bar{v}}\left(\bar{X} \times{ }^{t} r(X)\right)_{\bar{u}}\left(\bar{Y} \times{ }^{t} r(Y)\right)_{\bar{v}},
\end{align*}
$$

$$
\begin{align*}
G_{22}= & \hat{g}^{u v}(X \times r(\bar{Y})+Y \times r(\bar{X}))_{u}(X \times r(\bar{Y})+Y \times r(\bar{X}))_{v} \tag{4.5}\\
& +2 \hat{g}^{u \bar{v}}(X \times r(\bar{Y})+Y \times r(\bar{X}))_{u}\left(\bar{X} \times{ }^{t} r(Y)+\bar{Y} \times{ }^{t} r(X)\right)_{\bar{v}} \\
& +\hat{g}^{\bar{u} \bar{v}}\left(\bar{X} \times{ }^{t} r(Y)+\bar{Y} \times{ }^{t} r(X)\right)_{\bar{u}}\left(\bar{X} \times{ }^{t} r(Y)+\bar{Y} \times{ }^{t} r(X)\right)_{\bar{v}} .
\end{align*}
$$

The inverse matrix of $\hat{g}=\left(\hat{g}_{i j}\right)$ is given by

$$
\begin{align*}
\hat{g}^{i j}= & \left.\tilde{g}^{i j}+t^{2} \sum_{l=1}^{\infty} t^{2(l-1)} \sum_{z, w=1}^{3}\left[\left(\left(r \cdot{ }^{t} r\right)^{l}\right)_{z w} \xi_{z}^{i} \xi_{w}^{j}+\left({ }^{t} r \cdot r\right)^{l}\right)_{\bar{z} \bar{w}} \xi_{\bar{z}}^{i} \xi_{\bar{w}}^{j}\right] \tag{4.6}\\
& -t \sum_{l=1}^{\infty} t^{2(l-1)} \sum_{z, w=1}^{3}\left(r\left({ }^{t} r \cdot r\right)^{l-1}\right)_{z \bar{w}}\left(\xi_{z}^{i} \xi_{\bar{w}}^{j}+\xi_{z}^{j} \xi_{\bar{w}}^{i}\right),
\end{align*}
$$

where $r \cdot{ }^{t} r$ means $\left(r \cdot{ }^{t} r\right)_{u w}=\sum_{\bar{v}} r_{u \bar{v}} r_{\bar{v} w}=\sum_{\bar{v}} r_{u \bar{v}} r_{w \bar{v}}$ and ${ }^{t} r \cdot r$ means $\left({ }^{t} r \cdot r\right)_{\bar{u} \bar{v}}=$ $\sum r_{w \bar{u}} r_{w \bar{v}}$. So we have $\left({ }^{t} r \cdot r \cdot{ }^{t} r\right)_{\bar{v} z}=\left(r \cdot{ }^{t} r \cdot r\right)_{z \bar{v}}$, etc. Thus, we obtain the following:

Lemma 4.2. (i) Ifr is an orthogonal matrix, then we have

$$
\begin{equation*}
\hat{g}^{-1}=\left[1 /\left(1-t^{2}\right)\right] \tilde{g}^{-1}-\left[t /\left(1-t^{2}\right)\right] \sum_{z, w=1}^{3} r_{z \bar{w}}\left(\xi_{z} \otimes \xi_{\bar{w}}+\xi_{\bar{w}} \otimes \xi_{z}\right) \tag{4.7}
\end{equation*}
$$

(ii) If r is diagonal, i.e., $r=\left(\lambda_{u} \delta_{u v}\right)$, then

$$
\begin{equation*}
\hat{g}^{u v}=\hat{g}^{\bar{u} \bar{v}}=\left[1 /\left(1-\lambda_{u}^{2} t^{2}\right)\right] \delta^{u v}, \quad \hat{g}^{u \bar{v}}=-\left[\lambda_{u} t /\left(1-\lambda_{u}^{2} t^{2}\right)\right] \delta^{u v} \tag{4.8}
\end{equation*}
$$

Proposition 4.3. If $r \in O(3)$, then

$$
\begin{align*}
(1-(\operatorname{det} r) t) \hat{g} & (\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})=(1-(\operatorname{det} r) t)\left(\|X \times Y\|^{2}+\|\bar{X} \times \bar{Y}\|^{2}\right) \tag{4.9}\\
& +2 t(1-(\operatorname{det} r) t)[r(X, \bar{X})+r(Y, \bar{Y})-3 r(X \times Y, \bar{X} \times \bar{Y})] \\
+ & 2 t^{2}\left[\|X \times r(\bar{Y})-Y \times r(\bar{X})\|^{2}-4\langle X \times Y, r(\bar{X}) \times r(\bar{Y})\rangle\right]
\end{align*}
$$

Proof. We apply (4.7) to (4.4) and (4.5). In the calculation one may notice that $r \in O(3)$ satisfies $r\left({ }^{t} r(X) \times \bar{X}\right)=(\operatorname{det} r) X \times r(\bar{X})$, etc.

Proposition 4.4. Let $\{\tilde{X}, \tilde{Y}\}$ be an orthonormal pair with respect to \tilde{g} such that $\tilde{X}=(X, 0)$ and $\tilde{Y}=(0, \bar{Y})$. Then the sectional curvature $\hat{K}(\tilde{X}, \tilde{Y})$ is non-negative.
$\hat{K}(\tilde{X}, \tilde{Y})$ vanishes with respect to $\hat{g}(t)$ for each $t \in\left(-t_{o}, t_{o}\right)$, if and only if $r(\bar{Y})$ is proportional to X and ${ }^{t} r(X)$ is proportional to \bar{Y}. So, let \bar{Y} be a unit eigenvector of the symmetric matrix ${ }^{t} r \cdot r$ corresponding to a non-zero eigenvalue. We define X by $X=r(\bar{Y}) /\|r(\bar{Y})\|$. Then the sectional curvature $\hat{K}(\tilde{X}, \tilde{Y})=0$ for $\tilde{X}=(X, 0)$ and $\tilde{Y}=(0, \bar{Y})$.

Proof. The first part is verified by Proposition 3.4 and the fact that $\hat{g}(t)^{-1}$ is also positive definite. The second part follows from the expression of $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})$.

Corollary 4.5. We assume that ${ }^{t} r \cdot r$ has three different non-zero eigenvalues. Then for each point of $\left(S^{3} \times S^{3}, \hat{g}(t)\right)$, there are only three sections of the form $\{\tilde{X}, \tilde{Y}\}$ with $\tilde{X}=(X, 0)$ and $\tilde{Y}=(0, Y)$ and with vanishing sectional curvature with respect to each $\hat{g}(t), t \in\left(-t_{o}, t_{o}\right)$.

Remark 1. If one expands (4.2) with respect to t up to $\left[t^{3}\right]$, then one obtains

$$
\begin{align*}
& \hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})=\|X \times Y\|^{2}+\|\bar{X} \times \bar{Y}\|^{2} \tag{4.10}\\
& \quad+2 t[r(X, \bar{X})+r(Y, \bar{Y})-3 r(X \times Y, \bar{X} \times \bar{Y})] \\
& \quad+t^{2}\left\{\|X \times r(\bar{Y})-Y \times r(\bar{X})\|^{2}+\left\|^{t} r(X) \times \bar{Y}-{ }^{t} r(Y) \times \bar{X}\right\|^{2}\right. \\
& \left.\quad-4\left[\langle X \times Y, r(\bar{X}) \times r(\bar{Y})\rangle+\left\langle\bar{X} \times \bar{Y},{ }^{t} r(X) \times{ }^{t} r(Y)\right\rangle\right]\right\}+\left[t^{3}\right] .
\end{align*}
$$

5. Proof of Theorem \mathbf{A}

Let $r=\left(-\delta_{u v}\right)$ and let $\{\tilde{X}, \tilde{Y}\}$ be an orthonormal pair with respect to \tilde{g}. We can assume $\langle X, Y\rangle=\langle\bar{X}, \bar{Y}\rangle=0$ by Lemma 3.3. By Proposition 4.1 and Lemma 4.2 we see that $F(t, \tilde{X}, \tilde{Y})=(1+t) \hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})$ is expressed as

$$
\begin{align*}
F(t, \tilde{X}, \tilde{Y})= & \|X\|^{2}\|Y\|^{2}+\|\bar{X}\|^{2}\|\bar{Y}\|^{2} \tag{5.1}\\
& +t\left[\|X\|^{2}\|Y\|^{2}+\|\bar{X}\|^{2}\|\bar{Y}\|^{2}-2\langle X, \bar{X}\rangle-2\langle Y, \bar{Y}\rangle\right. \\
& +6\langle X, \bar{X}\rangle\langle Y, \bar{Y}\rangle-6\langle X, \bar{Y}\rangle\langle\bar{X}, Y\rangle] \\
+ & 2 t^{2}\left[\|X\|^{2}\|\bar{Y}\|^{2}+\|\bar{X}\|^{2}\|Y\|^{2}-\langle X, \bar{X}\rangle-\langle Y, \bar{Y}\rangle\right. \\
& \left.+\langle X, \bar{X}\rangle\langle Y, \bar{Y}\rangle+\langle X, \bar{Y}\rangle\langle\bar{X}, Y\rangle-\langle X, \bar{Y}\rangle^{2}-\langle\bar{X}, Y\rangle^{2}\right] .
\end{align*}
$$

We put $\varepsilon_{0}=1 / 100 \sqrt{2}$. If we have

$$
\|X\|^{2}\|Y\|^{2}+\|\bar{X}\|^{2}\|\bar{Y}\|^{2} \geq \varepsilon_{0}^{2}
$$

then (5.1) shows that we have some real number t_{3} such that $F(t, \tilde{X}, \tilde{Y})>0$ holds for any $t \in\left(-t_{3}, t_{3}\right)$ (where t_{3} is independent of the choice of orthonormal pairs $\{\tilde{X}, \tilde{Y}\}$). So, in the following we suppose

$$
\begin{equation*}
\|X\|^{2}\|Y\|^{2}+\|\bar{X}\|^{2}\|\bar{Y}\|^{2}<\varepsilon_{0}^{2} . \tag{5.2}
\end{equation*}
$$

We can assume $\|\bar{X}\| \leq\|X\|$. Then $\|Y\| \leq\|\bar{Y}\|$ follows from (5.2). Also we have $\|\bar{X}\|\|\bar{Y}\|<\varepsilon_{0}$. By $\|\bar{Y}\| \geq 1 / \sqrt{2}$, we obtain $\|\bar{X}\|<\sqrt{2} \varepsilon_{0}$. Similarly we obtain $\|Y\|<\sqrt{2} \varepsilon_{0}$. Therefore we get $\|X\|^{2}>1-2 \varepsilon_{0}^{2}$ and $\|\bar{Y}\|^{2}>1-2 \varepsilon_{0}^{2}$.

If $\bar{X}=Y=0$, then Proposition 4.4 shows that $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})$ is non-negative. So, in the following in this section we assume $\bar{X} \neq 0$ or $Y \neq 0$. By symmetry we assume $Y \neq 0$.

Now for any orthonormal pair $\{\tilde{X}, \tilde{Y}\}$ we can change the frames $\left\{\xi_{u}, \xi_{\bar{u}}\right\} \rightarrow$ $\left\{\xi_{u}^{\prime}, \xi_{\bar{u}}^{\prime}\right\}$ by an orthogonal 3×3 matrix A (i.e., $\xi_{u}^{\prime}=A_{u}^{v} \xi_{v}, \xi_{\bar{u}}^{\prime}=A_{u}^{v} \xi_{\bar{v}}$) so that

$$
\begin{equation*}
\tilde{X}=\left(\sqrt{1-\varepsilon_{1}^{2}}, 0,0 ; \bar{X}_{1}, \bar{X}_{2}, \bar{X}_{3}\right), \quad \tilde{Y}=\left(0, \varepsilon_{2}, 0 ; \bar{Y}_{1}, \bar{Y}_{2}, \bar{Y}_{3}\right) \tag{5.3}
\end{equation*}
$$

with the property; $X_{1}=\|X\|=\sqrt{1-\varepsilon_{1}^{2}}, Y_{2}=\|Y\|=\varepsilon_{2}>0$ and

$$
\begin{align*}
& \bar{X}_{1}^{2}+\bar{X}_{2}^{2}+\bar{X}_{3}^{2}=\varepsilon_{1}^{2}, \quad \bar{Y}_{1}^{2}+\bar{Y}_{2}^{2}+\bar{Y}_{3}^{2}=1-\varepsilon_{2}^{2}, \tag{5.4}\\
& \bar{X}_{1} \bar{Y}_{1}+\bar{X}_{2} \bar{Y}_{2}+\bar{X}_{3} \bar{Y}_{3}=0,
\end{align*}
$$

where $\varepsilon_{1}=\|\bar{X}\|<\sqrt{2} \varepsilon_{0}=1 / 100$ and $\varepsilon_{2}<1 / 100$.
Notice that the expression of $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})$ is unchanged. By (5.1) we obtain

$$
\begin{equation*}
F(t, \tilde{X}, \tilde{Y})=F_{0}+F_{1} t+F_{2} t^{2} \tag{5.5}
\end{equation*}
$$

where we put $F_{0}, F_{1}=F_{1}(t, \tilde{X}, \tilde{Y})$ and $F_{2}=F_{2}(t, \tilde{X}, \tilde{Y})$ as

$$
\begin{aligned}
& F_{0}=\varepsilon_{1}^{2}+\varepsilon_{2}^{2}-2 \varepsilon_{1}^{2} \varepsilon_{2}^{2} \\
& F_{1}=-2 X_{1} \bar{X}_{1}-2 \varepsilon_{2} \bar{Y}_{2}+6 \varepsilon_{2} X_{1}\left(\bar{X}_{1} \bar{Y}_{2}-\bar{X}_{2} \bar{Y}_{1}\right)+\varepsilon_{1}^{2}+\varepsilon_{2}^{2}-2 \varepsilon_{1}^{2} \varepsilon_{2}^{2}, \\
& F_{2}=2\left[\varepsilon_{2} X_{1}\left(\bar{X}_{1} \bar{Y}_{2}+\bar{X}_{2} \bar{Y}_{1}\right)+\varepsilon_{2}^{2}\left(\bar{X}_{1}^{2}+\bar{X}_{3}^{2}\right)+X_{1}^{2}\left(\bar{Y}_{2}^{2}+\bar{Y}_{3}^{2}\right)-X_{1} \bar{X}_{1}-\varepsilon_{2} \bar{Y}_{2}\right] .
\end{aligned}
$$

We consider t in the range $0<t<1 / 100$.
First we assume $\varepsilon_{1}=0$, i.e., $\bar{X}_{1}=\bar{X}_{2}=\bar{X}_{3}=0$ with respect to the expression (5.3). Putting $\varepsilon=\varepsilon_{2}$, we obtain

$$
F(t, \tilde{X}, \tilde{Y})=\varepsilon^{2}+\left(\varepsilon^{2}-2 \varepsilon \bar{Y}_{2}\right) t+2\left(\bar{Y}_{2}^{2}+\bar{Y}_{3}^{2}-\varepsilon \bar{Y}_{2}\right) t^{2}
$$

By using an inequality $-2 \varepsilon \bar{Y}_{2} t^{2} \geq-\left(\varepsilon^{2}+\bar{Y}_{2}^{2}\right) t^{2}$, we get

$$
F(t, \tilde{X}, \tilde{Y}) \geq\left(\varepsilon-\bar{Y}_{2} t\right)^{2}+2 \bar{Y}_{3}^{2} t^{2}+\varepsilon^{2} t(1-t)>0 .
$$

Therefore, sectional curvatures are positive in this case. So, in the following in this section we assume $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$.

Lemma 5.1. For fixed t, ε_{1} and ε_{2}, if $F(t, \tilde{X}, \tilde{Y})=F\left(t, \varepsilon_{1}, \varepsilon_{2}, \bar{X}_{1}, \bar{X}_{2}, \bar{X}_{3}, \bar{Y}_{1}\right.$, $\left.\bar{Y}_{2}, \bar{Y}_{3}\right)$ attains its minimum at $\left(t, \tilde{X}^{*}, \tilde{Y}^{*}\right)=\left(t, \varepsilon_{1}, \varepsilon_{2}, \bar{X}_{1}^{*}, \bar{X}_{2}^{*}, \bar{X}_{3}^{*}, \bar{Y}_{1}^{*}, \bar{Y}_{2}^{*}, \bar{Y}_{3}^{*}\right)$, then $\bar{X}_{3}^{*}=\bar{Y}_{3}^{*}=0$.

Proof. First we consider the following deformation;

$$
\begin{array}{lc}
\bar{X}_{1}(\theta)=\cos \theta \bar{X}_{1}^{*}-\sin \theta \bar{X}_{3}^{*}, & \bar{X}_{3}(\theta)=\sin \theta \bar{X}_{1}^{*}+\cos \theta \bar{X}_{3}^{*}, \\
\bar{Y}_{1}(\theta)=\cos \theta \bar{Y}_{1}^{*}-\sin \theta \bar{Y}_{3}^{*}, & \bar{Y}_{3}(\theta)=\sin \theta \bar{Y}_{1}^{*}+\cos \theta \bar{Y}_{3}^{*},
\end{array}
$$

and $\bar{X}_{2}(\theta)=\bar{X}_{2}^{*}, \bar{Y}_{2}(\theta)=\bar{Y}_{2}^{*}$ for $\theta \in(-\delta, \delta)$. Calculating $(d F(t, \tilde{X}(\theta), \tilde{Y}(\theta)) / d \theta)(0)$ $=0$ and noticing $X_{1}>0$, we obtain

$$
\bar{X}_{3}^{*}+3 \varepsilon_{2}\left(\bar{X}_{2}^{*} \bar{Y}_{3}^{*}-\bar{X}_{3}^{*} \bar{Y}_{2}^{*}\right)+\left[\bar{X}_{3}^{*}+2 X_{1} \bar{Y}_{1}^{*} \bar{Y}_{3}^{*}-\varepsilon_{2}\left(\bar{X}_{2}^{*} \bar{Y}_{3}^{*}+\bar{X}_{3}^{*} \bar{Y}_{2}^{*}\right)\right] t=0 .
$$

Therefore we get

$$
\left[1-3 \varepsilon_{2} \bar{Y}_{2}^{*}+\left(1-\varepsilon_{2} \bar{Y}_{2}^{*}\right) t\right] \bar{X}_{3}^{*}=\left[-3 \varepsilon_{2} \bar{X}_{2}^{*}+\left(\varepsilon_{2} \bar{X}_{2}^{*}-2 X_{1} \bar{Y}_{1}^{*}\right) t\right] \bar{Y}_{3}^{*},
$$

and hence $\left(1-3 \varepsilon_{2}\right)\left|\bar{X}_{3}^{*}\right| \leq\left[3 \varepsilon_{1} \varepsilon_{2}+\left(2+\varepsilon_{1} \varepsilon_{2}\right) t\right]\left|\bar{Y}_{3}^{*}\right|$. Consequently, we obtain $(3 / 4)\left|\bar{X}_{3}^{*}\right| \leq(3 / 100)\left|\bar{Y}_{3}^{*}\right|$, and $\left|\bar{X}_{3}^{*}\right| \leq(1 / 25)\left|\bar{Y}_{3}^{*}\right|$.

Next, we consider the following deformation;

$$
\begin{array}{lc}
\bar{X}_{2}(\tau)=\cos \tau \bar{X}_{2}^{*}-\sin \tau \bar{X}_{3}^{*}, & \bar{X}_{3}(\tau)=\sin \tau \bar{X}_{2}^{*}+\cos \tau \bar{X}_{3}^{*}, \\
\bar{Y}_{2}(\tau)=\cos \tau \bar{Y}_{2}^{*}-\sin \tau \bar{Y}_{3}^{*}, & \bar{Y}_{3}(\tau)=\sin \tau \bar{Y}_{2}^{*}+\cos \tau \bar{Y}_{3}^{*},
\end{array}
$$

and $\bar{X}_{1}(\tau)=\bar{X}_{1}^{*}, \bar{Y}_{1}(\tau)=\bar{Y}_{1}^{*}$ for $\tau \in(-\delta, \delta)$. Calculating $(d F(t, \tilde{X}(\tau), \tilde{Y}(\tau)) / d \tau)(0)$ $=0$ and noticing $\varepsilon_{2}>0$, we obtain

$$
\bar{Y}_{3}^{*}-3 X_{1}\left(\bar{X}_{1}^{*} \bar{Y}_{3}^{*}-\bar{X}_{3}^{*} \bar{Y}_{1}^{*}\right)+\left[\bar{Y}_{3}^{*}+2 \varepsilon_{2} \bar{X}_{2}^{*} \bar{X}_{3}^{*}-X_{1}\left(\bar{X}_{3}^{*} \bar{Y}_{1}^{*}+\bar{X}_{1}^{*} \bar{Y}_{3}^{*}\right)\right] t=0 .
$$

If $\bar{Y}_{3}^{*}>0(<0$, resp. $)$, we can show

$$
\begin{aligned}
& \bar{Y}_{3}^{*}-3 X_{1}\left(\bar{X}_{1}^{*} \bar{Y}_{3}^{*}-\bar{X}_{3}^{*} \bar{Y}_{1}^{*}\right)>0, \quad(<0, \text { resp. }) \\
& \bar{Y}_{3}^{*}+2 \varepsilon_{2} \bar{X}_{2}^{*} \bar{X}_{3}^{*}-X_{1}\left(\bar{X}_{3}^{*} \bar{Y}_{1}^{*}+\bar{X}_{1}^{*} \bar{Y}_{3}^{*}\right)>0, \quad(<0, \text { resp. })
\end{aligned}
$$

using the inequality $\left|\bar{X}_{3}^{*}\right| \leq(1 / 25)\left|\bar{Y}_{3}^{*}\right|$. This is a contradiction. So we have $\bar{Y}_{3}^{*}=0$ and $\bar{X}_{3}^{*}=0$.

In the following we consider \tilde{X} and \tilde{Y} of the form;

$$
\begin{equation*}
\bar{X}=\left(\bar{X}_{1}, \bar{X}_{2}, 0\right), \quad \bar{Y}=\left(\bar{Y}_{1}, \bar{Y}_{2}, 0\right) \tag{5.6}
\end{equation*}
$$

and we put $\rho=\left|\bar{Y}_{2}\right|$. Then we have

$$
\bar{X}_{1}^{2}=\rho^{2} \varepsilon_{1}^{2} /\left(1-\varepsilon_{2}^{2}\right), \quad \bar{X}_{2}^{2}=\left(1-\varepsilon_{2}^{2}-\rho^{2}\right) \varepsilon_{1}^{2} /\left(1-\varepsilon_{2}^{2}\right), \quad \bar{Y}_{1}^{2}=1-\varepsilon_{2}^{2}-\rho^{2} .
$$

We consider the following two cases (i) and (ii).
(i) The case where $\rho \leq 4 \max \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$.

Lemma 5.2. There is a positive number t_{4} such that $F(t, \tilde{X}, \tilde{Y})>0$ holds for any $t \in\left(0, t_{4}\right)$.

Proof. We put $\hat{\varepsilon}=\max \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$. For example we have

$$
\left|X_{1} \bar{X}_{1}\right|<\left|\bar{X}_{1}\right|<2 \rho \varepsilon_{1} \leq 8 \hat{\varepsilon} \varepsilon_{1} \leq 4\left(\hat{\varepsilon}^{2}+\varepsilon_{1}^{2}\right) .
$$

Therefore, we see that $\left|F_{1}\right|<a\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right)$ holds for some positive number a. Similarly, we see that $\left|F_{2}\right|<a^{\prime}\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right)$ holds for some positive number a^{\prime}. Then (5.5) shows

$$
F(t, \tilde{X}, \tilde{Y})>\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right)\left(1-a t-a^{\prime} t^{2}\right)-2 \varepsilon_{1}^{2} \varepsilon_{2}^{2},
$$

where a and a^{\prime} are universal constant. So, we have some t_{4} so that $1-a t-a^{\prime} t^{2}$ $>1 / 2$ for $t \in\left(0, t_{4}\right)$. Since $-2 \varepsilon_{1}^{2} \varepsilon_{2}^{2}>-\varepsilon_{1} \varepsilon_{2}$, we have $F(t, \tilde{X}, \tilde{Y})>0$ for any $t \in\left(0, t_{4}\right)$.
(ii) The case where $\rho \geq 4 \max \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$.

Lemma 5.3. For fixed t, ε_{1} and ε_{2}, if $F(t, \tilde{X}, \tilde{Y})=F\left(t, \varepsilon_{1}, \varepsilon_{2}, \bar{X}_{1}, \bar{X}_{2}, 0, \bar{Y}_{1}, \bar{Y}_{2}, 0\right)$ attains its minimum at $\left(t, \tilde{X}^{*}, \tilde{Y}^{*}\right)=\left(t, \varepsilon_{1}, \varepsilon_{2}, \bar{X}_{1}^{*}, \bar{X}_{2}^{*}, 0, \bar{Y}_{1}^{*}, \bar{Y}_{2}^{*}, 0\right)$, then we have $\bar{X}_{1}^{*}>0$ and $\bar{Y}_{2}^{*}>0$.

Proof. We compare $\bar{X}^{*}=\left(\bar{X}_{1}^{*}, \bar{X}_{2}^{*}, 0\right)$ and $\bar{Y}^{*}=\left(\bar{Y}_{1}^{*}, \bar{Y}_{2}^{*}, 0\right)$ with

$$
\bar{X}=\left(-\bar{X}_{1}^{*}, \bar{X}_{2}^{*}, 0\right), \quad \bar{Y}=\left(-\bar{Y}_{1}^{*}, \bar{Y}_{2}^{*}, 0\right)
$$

By (5.5), $F(t, \tilde{X}, \tilde{Y}) \geq F\left(t, \tilde{X}^{*}, \tilde{Y}^{*}\right)$ is expressed as

$$
\bar{X}_{1}^{*}-3 \varepsilon_{2}\left(\bar{X}_{1}^{*} \bar{Y}_{2}^{*}-\bar{X}_{2}^{*} \bar{Y}_{1}^{*}\right)-\left[\varepsilon_{2}\left(\bar{X}_{1}^{*} \bar{Y}_{2}^{*}+\bar{X}_{2}^{*} \bar{Y}_{1}^{*}\right)-\bar{X}_{1}^{*}\right] t \geq 0,
$$

which is equivalent to

$$
\left[1-3 \varepsilon_{2} \bar{Y}_{2}^{*}+\left(1-\varepsilon_{2} \bar{Y}_{2}^{*}\right) t\right] \bar{X}_{1}^{*} \geq(t-3) \varepsilon_{2} \bar{X}_{2}^{*} \bar{Y}_{1}^{*}
$$

If $\bar{X}_{1}^{*} \leq 0$, then we have $\left(1-3 \varepsilon_{2}\right)\left|\bar{X}_{1}^{*}\right| \leq 3 \varepsilon_{1} \varepsilon_{2}$. By $\left|\bar{X}_{1}^{*}\right|=\rho \varepsilon_{1} / \sqrt{1-\varepsilon_{2}^{2}}$, we obtain

$$
\rho \leq 3 \varepsilon_{2} \sqrt{1-\varepsilon_{2}^{2}} /\left(1-3 \varepsilon_{2}\right)<3 \varepsilon_{2} /\left(1-3 \varepsilon_{2}\right) .
$$

This contradicts $\rho \geq 4 \max \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ and we have $\bar{X}_{1}^{*}>0$.
Next we compare $\bar{X}^{*}=\left(\bar{X}_{1}^{*}, \bar{X}_{2}^{*}, 0\right)$ and $\bar{Y}^{*}=\left(\bar{Y}_{1}^{*}, \bar{Y}_{2}^{*}, 0\right)$ with

$$
\bar{X}=\left(\bar{X}_{1}^{*},-\bar{X}_{2}^{*}, 0\right), \quad \bar{Y}=\left(\bar{Y}_{1}^{*},-\bar{Y}_{2}^{*}, 0\right) .
$$

By (5.5), $F(t, \tilde{X}, \tilde{Y}) \geq F\left(t, \tilde{X}^{*}, \tilde{Y}^{*}\right)$ is expressed as

$$
\bar{Y}_{2}^{*}-3 X_{1}\left(\bar{X}_{1}^{*} \bar{Y}_{2}^{*}-\bar{X}_{2}^{*} \bar{Y}_{1}^{*}\right)-\left[X_{1}\left(\bar{X}_{1}^{*} \bar{Y}_{2}^{*}+\bar{X}_{2}^{*} \bar{Y}_{1}^{*}\right)-\bar{Y}_{2}^{*}\right] t \geq 0,
$$

which is equivalent to

$$
\left[1-3 X_{1} \bar{X}_{1}^{*}+\left(1-X_{1} \bar{X}_{1}^{*}\right) t\right] \bar{Y}_{2}^{*} \geq(t-3) X_{1} \bar{Y}_{1}^{*} \bar{X}_{2}^{*}
$$

If $\bar{Y}_{2}^{*} \leq 0$, then we have $\left(1-3 \varepsilon_{1}\right)\left|\bar{Y}_{2}^{*}\right| \leq 3 \varepsilon_{1}$. This contradicts $\rho=\left|\bar{Y}_{2}^{*}\right| \geq$ $4 \max \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ and we have $\bar{Y}_{2}^{*}>0$.

In the following we consider \tilde{X} and \tilde{Y} of the form;

$$
\begin{array}{ll}
\bar{X}_{1}=\rho \varepsilon_{1} / \sqrt{1-\varepsilon_{2}^{2}}, & \bar{X}_{2}=\beta \varepsilon_{1} \sqrt{1-\varepsilon_{2}^{2}-\rho^{2}} / \sqrt{1-\varepsilon_{2}^{2}} \\
\bar{Y}_{1}=-\beta \sqrt{1-\varepsilon_{2}^{2}-\rho^{2}}, & \bar{Y}_{2}=\rho
\end{array}
$$

where $\beta= \pm 1$. Now F_{1} and F_{2} in (5.5) are expressed as

$$
\begin{align*}
F_{1}= & -2 \rho \varepsilon_{1} \sqrt{1-\varepsilon_{1}^{2}} / \sqrt{1-\varepsilon_{2}^{2}}-2 \rho \varepsilon_{2}+6 \varepsilon_{1} \varepsilon_{2} \sqrt{1-\varepsilon_{1}^{2}} \sqrt{1-\varepsilon_{2}^{2}} \\
& +\varepsilon_{1}^{2}+\varepsilon_{2}^{2}-2 \varepsilon_{1}^{2} \varepsilon_{2}^{2} \\
F_{2} / 2= & -\varepsilon_{1} \varepsilon_{2} \sqrt{1-\varepsilon_{1}^{2}} \sqrt{1-\varepsilon_{2}^{2}}+\rho \varepsilon_{1}\left(2 \rho \varepsilon_{2}-1\right) \sqrt{1-\varepsilon_{1}^{2}} / \sqrt{1-\varepsilon_{2}^{2}} \tag{5.7}\\
& +\rho^{2} \varepsilon_{1}^{2} \varepsilon_{2}^{2} /\left(1-\varepsilon_{2}^{2}\right)+\left(1-\varepsilon_{1}^{2}\right) \rho^{2}-\rho \varepsilon_{2} .
\end{align*}
$$

Lemma 5.4. We have $F_{2}>0$.
Proof. We neglect some positive terms of the right hand side of (5.7) and use an inequality $1 / \sqrt{1-\varepsilon_{2}^{2}}<1+\varepsilon_{2}^{2}$. Then we obtain

$$
\begin{aligned}
F_{2} / 2 & >-\varepsilon_{1} \varepsilon_{2}-\rho \varepsilon_{1}\left(1+\varepsilon_{2}^{2}\right)+\left(1-\varepsilon_{1}^{2}\right) \rho^{2}-\rho \varepsilon_{2} \\
& =\left(\rho^{2} / 4-\varepsilon_{1} \varepsilon_{2}\right)+\rho\left[\left(1 / 4-\varepsilon_{1}^{2}\right) \rho-\varepsilon_{1} \varepsilon_{2}^{2}\right]+\rho\left(\rho / 2-\varepsilon_{1}-\varepsilon_{2}\right)>0 .
\end{aligned}
$$

Therefore we have $F_{2}>0$.
Lemma 5.5. For fixed ρ, ε_{1} and ε_{2}, if $F(t, \tilde{X}, \tilde{Y})=F_{2} t^{2}+F_{1} t+F_{0}$ takes its minimum at \hat{t}, then we have $\hat{t}>\left(\varepsilon_{1}+\varepsilon_{2}\right) / 16$.

Proof. We estimate $\hat{t}=-F_{1} / 2 F_{2}$. Since $\sqrt{1-\mu}=1-\mu / 2-\mu^{2} / 8+\left[\mu^{3}\right]$ and $1 / \sqrt{1-\mu}=1+\mu / 2+3 \mu^{2} / 8+\left[\mu^{3}\right]$, we see that F_{1} and F_{2} are expressed as

$$
\begin{aligned}
F_{1}= & -2 \rho\left(\varepsilon_{1}+\varepsilon_{2}\right)+\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+6 \varepsilon_{1} \varepsilon_{2}+\rho \varepsilon_{1}\left(\varepsilon_{1}^{2}-\varepsilon_{2}^{2}\right) \\
& -\varepsilon_{1} \varepsilon_{2}\left(3 \varepsilon_{1}^{2}+2 \varepsilon_{1} \varepsilon_{2}+3 \varepsilon_{2}^{2}\right)+\left(\rho \varepsilon_{1} / 4\right)\left(\varepsilon_{1}^{2}-\varepsilon_{2}^{2}\right)\left(\varepsilon_{1}^{2}+3 \varepsilon_{2}^{2}\right)+[*],
\end{aligned}
$$

(5.7') $F_{2} / 2=\rho^{2}-\rho\left(\varepsilon_{1}+\varepsilon_{2}\right)-\varepsilon_{1} \varepsilon_{2}+\rho^{2} \varepsilon_{1}\left(2 \varepsilon_{2}-\varepsilon_{1}\right)+\left(\rho \varepsilon_{1} / 2\right)\left(\varepsilon_{1}^{2}-\varepsilon_{2}^{2}\right)$

$$
\begin{aligned}
& +\left(\varepsilon_{1} \varepsilon_{2} / 2\right)\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right)+\rho^{2} \varepsilon_{1} \varepsilon_{2}\left(\varepsilon_{1} \varepsilon_{2}-\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right) \\
& +\left(\rho \varepsilon_{1} / 8\right)\left(\varepsilon_{1}^{2}-\varepsilon_{2}^{2}\right)\left(\varepsilon_{1}^{2}+3 \varepsilon_{2}^{2}\right)+[*],
\end{aligned}
$$

where [*] denotes terms of higher order $\varepsilon_{1}^{a} \varepsilon_{2}^{b}$ with $a+b \geq 6$. First we see that the terms of higher order $\varepsilon_{1}^{a} \varepsilon_{2}^{b}$ with $a+b \geq 3$ in F_{1} are covered by $2\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}\right)$. So we have

$$
\begin{aligned}
-F_{1} & >2 \rho\left(\varepsilon_{1}+\varepsilon_{2}\right)-3 \varepsilon_{1}^{2}-3 \varepsilon_{2}^{2}-6 \varepsilon_{1} \varepsilon_{2} \\
& =2 \rho\left(\varepsilon_{1}+\varepsilon_{2}\right)-3\left(\varepsilon_{1}+\varepsilon_{2}\right)^{2} \\
& =(\rho / 2)\left(\varepsilon_{1}+\varepsilon_{2}\right)+3\left(\varepsilon_{1}+\varepsilon_{2}\right)\left(\rho / 2-\varepsilon_{1}-\varepsilon_{2}\right) \\
& \geq(\rho / 2)\left(\varepsilon_{1}+\varepsilon_{2}\right)
\end{aligned}
$$

Next neglecting the negative terms in (5.7') and putting $\hat{\varepsilon}=\max \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$, we obtain

$$
\begin{aligned}
F_{2} / 2 & <\rho^{2}+2 \rho^{2} \varepsilon_{1} \varepsilon_{2}+(\rho / 2) \varepsilon_{1}^{3}+16 \hat{\varepsilon}^{4} \\
& <\rho^{2}+2 \rho^{2} \varepsilon_{1} \varepsilon_{2}+\left(\rho^{2} / 8\right) \varepsilon_{1}^{2}+\rho^{2} \hat{\varepsilon}^{2}<2 \rho^{2}<2 \rho
\end{aligned}
$$

Therefore we get $-F_{1} / 2 F_{2}>\left(\varepsilon_{1}+\varepsilon_{2}\right) / 16$.
Finally we show $F(t, \tilde{X}, \tilde{Y})>0$ for $t \in(0,1 / 100)$. We rewrite $F(t, \tilde{X}, \tilde{Y})$ as $F(t, \tilde{X}, \tilde{Y})=J_{2} \rho^{2}+J_{1} \rho+J_{0}$, where we have put

$$
\begin{aligned}
& J_{0}=\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}-2 \varepsilon_{1}^{2} \varepsilon_{2}^{2}\right)(1+t)+2 \varepsilon_{1} \varepsilon_{2} t(3-t) \sqrt{1-\varepsilon_{1}^{2}} \sqrt{1-\varepsilon_{2}^{2}}, \\
& J_{1}=-2 t(1+t)\left(\varepsilon_{2}+\varepsilon_{1} \sqrt{1-\varepsilon_{1}^{2}} / \sqrt{1-\varepsilon_{2}^{2}}\right), \\
& J_{2}=2 t^{2}\left[1-\varepsilon_{1}^{2}+2 \varepsilon_{1} \varepsilon_{2} \sqrt{1-\varepsilon_{1}^{2}} / \sqrt{1-\varepsilon_{2}^{2}}+\varepsilon_{1}^{2} \varepsilon_{2}^{2} /\left(1-\varepsilon_{2}^{2}\right)\right] .
\end{aligned}
$$

Clearly we have $J_{2}>0$. To show $F(t, \tilde{X}, \tilde{Y})>0$, it suffices to show that the discriminant $D=J_{1}^{2}-4 J_{0} J_{2}$ is negative. After some calculation we obtain

$$
\begin{aligned}
D / 4 t^{2}= & -\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}\left(1-\varepsilon_{1}^{2}+3 \varepsilon_{1} \varepsilon_{2}\right)-4 t \varepsilon_{1} \varepsilon_{2}\left(2-3 \varepsilon_{1}^{2}+4 \varepsilon_{1} \varepsilon_{2}-\varepsilon_{2}^{2}\right) \\
& +t^{2}\left[\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}+8 \varepsilon_{1} \varepsilon_{2}-\left(\varepsilon_{1}^{4}+7 \varepsilon_{1}^{3} \varepsilon_{2}-9 \varepsilon_{1}^{2} \varepsilon_{2}^{2}+\varepsilon_{1} \varepsilon_{2}^{3}\right)\right]+[*]
\end{aligned}
$$

where [$*$] denotes terms of higher order $\varepsilon_{1}^{a} \varepsilon_{2}^{b}$ with $a+b \geq 6$. We see that $\hat{\varepsilon}^{5}>[*]$ holds. Neglecting some negative terms we obtain

$$
\begin{align*}
D / 4 t^{2}< & -\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}\left(1-\varepsilon_{1}^{2}\right)-4 t \varepsilon_{1} \varepsilon_{2}\left(2-3 \varepsilon_{1}^{2}-\varepsilon_{2}^{2}\right) \\
& +t^{2}\left[\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}+8 \varepsilon_{1} \varepsilon_{2}+9 \varepsilon_{1}^{2} \varepsilon_{2}^{2}\right]+\hat{\varepsilon}^{5} \\
< & -(9 / 10)\left[\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}+8 t \varepsilon_{1} \varepsilon_{2}\right]+\hat{\varepsilon}^{5} . \tag{5.8}
\end{align*}
$$

By Lemma 5.5 , it suffices to show $D<0$ for $t=\left(\varepsilon_{1}+\varepsilon_{2}\right) / 16$. By symmetry of ε_{1} and ε_{2} in (5.8) we can assume $\hat{\varepsilon}=\varepsilon_{2} \geq \varepsilon_{1}$. Then the inequality

$$
-(9 / 20)\left[2\left(\varepsilon_{1}-\varepsilon_{2}\right)^{2}+\varepsilon_{1} \varepsilon_{2}\left(\varepsilon_{1}+\varepsilon_{2}\right)\right]+\hat{\varepsilon}^{5}<0
$$

is verified by considering two cases; $\varepsilon_{1} \leq \hat{\varepsilon} / 2$ and $\varepsilon_{1} \geq \hat{\varepsilon} / 2$.
Proof of Theorem A. We define t_{*} by $t_{*}=\min \left\{t_{3}, t_{4}, 1 / 100\right\}$. Then sectional curvatures are non-negative. Furthermore, by Proposition 4.4 and the above discussion, we see that the sections $\{\tilde{X}, \tilde{Y}\}$ with zero sectional curvature are of the form $\tilde{X}=(X, 0)$ and $\tilde{Y}=(0, X)$ for $t \in\left(0, t_{*}\right)$.

Remark 1. For $\varepsilon_{1}=\varepsilon_{2}=\varepsilon$, we consider $\tilde{X}=(\rho, 0,0 ; \varepsilon, 0,0)$ and $\tilde{Y}=$ $(0, \varepsilon, 0 ; 0, \rho, 0)$ where $\rho=\sqrt{1-\varepsilon^{2}}$. Then F_{1} and F_{2} are expressed as

$$
F_{1}=-4 \rho \varepsilon+8 \varepsilon^{2}\left(1-\varepsilon^{2}\right), \quad F_{2}=2-4 \rho \varepsilon-2 \varepsilon^{2}+2 \varepsilon^{4} .
$$

Therefore, $\hat{t}=-F_{1} / 2 F_{2}=\varepsilon+\varepsilon^{3} / 2+\left[\varepsilon^{4}\right]$ and for $t=\varepsilon+\varepsilon^{3} / 2$, we obtain

$$
F(t, \tilde{X}, \tilde{Y})=4 \varepsilon^{3}-2 \varepsilon^{4}+\left[\varepsilon^{5}\right]
$$

6. Proof of Theorem B

Suppose $r=\left(\lambda_{u} \delta_{u v}\right)$ with $1=\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}>0$. (i) follows from Proposition 4.4 and Corollary 4.5. To prove (ii) we define $\{\tilde{X}, \tilde{Y}\}$ by

$$
\begin{array}{lr}
\tilde{X}=\left(X_{1}, 0,0 ;-t, 0,0\right), & X_{1}=\sqrt{1-t^{2}} \\
\tilde{Y}=\left(0,-\lambda_{2} t, 0 ; 0, \bar{Y}_{2}, 0\right), & \bar{Y}_{2}=\sqrt{1-\lambda_{2}^{2} t^{2}}
\end{array}
$$

By Proposition 4.1 and Lemma 4.2, we have the following:

$$
\begin{aligned}
& \|X\|^{2}\|Y\|^{2}+\|\bar{X}\|^{2}\|\bar{Y}\|^{2}=t^{2}+\lambda_{2}^{2} t^{2}-2 \lambda_{2}^{2} t^{4}, \\
& G_{1}=2\left(-X_{1} t-\lambda_{2}^{2} \bar{Y}_{2} t-3 \lambda_{2} \lambda_{3} X_{1} \bar{Y}_{2} t^{2}\right), \\
& G_{2}=\left[1 /\left(1-\lambda_{3}^{2} t^{2}\right)\right]\left\{\lambda_{2}^{2}\left(t^{2}-X_{1} \bar{Y}_{2}\right)^{2}+\left(\lambda_{2}^{2} t^{2}-X_{1} \bar{Y}_{2}\right)^{2}\right. \\
& \left.\quad+2 \lambda_{2} \lambda_{3}\left(t^{2}-X_{1} \bar{Y}_{2}\right)\left(\lambda_{2}^{2} t^{2}-X_{1} \bar{Y}_{2}\right) t\right\} .
\end{aligned}
$$

Therefore, using $X_{1}=1-t^{2} / 2+\left[t^{4}\right]$ and $\bar{Y}_{2}=1-\lambda_{2}^{2} t^{2} / 2+\left[t^{4}\right]$, we get

$$
\begin{equation*}
\left(1-\lambda_{3}^{2} t^{2}\right) \hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})=-4 \lambda_{2} \lambda_{3} t^{3}-\left(8 \lambda_{2}^{2}-\lambda_{2}^{2} \lambda_{3}^{2}-\lambda_{3}^{2}\right) t^{4}+\left[t^{5}\right] \tag{6.1}
\end{equation*}
$$

where $\left[t^{5}\right]$ denotes the term of higher order. So, for a sufficiently small t, we obtain $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y}) \tilde{Y}, \tilde{X})<0$ for $\hat{g}(t)$ and $\{\tilde{X}, \tilde{Y}\}$. This proves Proposition B.

Remark 1. By (6.1) we see that (ii) of Theorem B works for the cases;

$$
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=(+,+, 0),(+,-, 0),(+,-,-) .
$$

Remark 2. Hopf problem asks whether $S^{2} \times S^{2}$ admits a Riemannian metric of positive sectional curvature. One of the related problems is whether $S^{3} \times S^{3}$ admits a Riemannian metric of positive sectional curvature. On the other hand, Hopf conjecture says that the Euler-Poincaré characteristic of a compact oriented $2 n$-dimensional Riemannian manifold is $>0(\geq 0, \leq 0,<0$ for $n=2 r+1 ; \geq$ $0, \geq 0,>0$ for $n=2 r$, respectively), if and only if the sectional curvature is >0 ($\geq 0, \leq 0,<0$, respectively). If $2 n=4$, the Hopf conjecture is true. However, for $2 n \geq 6$ this conjecture is open, and some people focus their study on 6 -dimensional or 8 -dimensional case (cf. Klembeck [2], etc.). $S^{3} \times S^{3}$ lies at a point of intersection of the above two problems.

Let $\hat{g}(t)$ be one defined by (1.1). Then, $(S U(2) \times S U(2), \hat{g}(t))$ admits Killing vector fields which are right invariant vector fields on $S U(2) \times S U(2)$. Since the Euler-Poincaré characteristic of $S^{3} \times S^{3}$ is zero, $(S U(2) \times S U(2), \hat{g}(t))$ can not be of positive sectional curvature (cf. Weinstein [4]). Therefore, we have one question if it is possible to deform $\hat{g}(t)$ in Theorem A to a Riemannian metric which is not left invariant and has positive sectional curvature.

References

[1] D.E. Blair: Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin/New York, 1976.
[2] P. Klembeck: On Geroch's counterexample to the algebraic Hopf conjecture, Proc. Amer. Math. Soc. 59 (1976), 334-336.
[3] S. Tanno: The identity map as a harmonic map of a $(4 r+3)$-sphere with deformed metrics, Kodai Math. J. 16 (1993), 171-180.
[4] A. Weinstein: A fixed point theorem for positively curved manifolds, J. Math. Mech. 18 (1968), 149-153.

