CURVATURES OF THE PRODUCT OF TWO 3-SPHERES WITH DEFORMED METRICS

Shukichi TANNO

(Received March 6, 1997)

1. Introduction

Let (S^3, g) be the 3-sphere with the canonical metric of constant curvature 1 and let $(S^3 \times S^3, \tilde{g})$ be the Riemannian product of two (S^3, g) , where \tilde{g} denotes the product metric of two g. In §3 we consider Riemannian metrics which are left-invariant when we consider $S^3 \times S^3$ as a Lie group $SU(2) \times SU(2)$. In §4 we study special type of left invariant metrics. Let $\{\eta^1, \eta^2, \eta^3\}$ be a globally defined orthonormal coframe field on S^3 and $\{\eta^{\bar{1}}, \eta^{\bar{2}}, \eta^{\bar{3}}\}$ be one on the second S^3 . Then the product metric \tilde{g} on $S^3 \times S^3$ is expressed as $\tilde{g} = \sum_{u=1}^{3} \eta^u \otimes \eta^u + \sum_{v=1}^{3} \eta^{\bar{v}} \otimes \eta^{\bar{v}}$. We consider the following metric

(1.1)
$$\hat{g}(t) = \tilde{g} + t \sum_{u,v=1}^{3} r_{u\bar{v}}(\eta^u \otimes \eta^{\bar{v}} + \eta^{\bar{v}} \otimes \eta^u)$$

on $S^3 \times S^3$, where t is a real parameter $(-t_o < t < t_o)$ and $r = (r_{u\bar{v}}) = (r_{uv})$ is a constant real 3×3 matrix. If r is symmetric, then we can assume that r is diagonal $(r_u \delta_{uv})$ after some orthogonal change of frames if necessary.

The deformation given by (1.1) is natural. The purpose of this paper is to report that the phenomena of sectional curvatures for t > 0 and t < 0 are completely different in the most simplest case $r = (\delta_{uv})$.

Theorem A. Suppose $r = (-\delta_{uv})$ in (1.1). Then there is a positive number t_* such that $\{\hat{g}(t), 0 \le t < t_*\}$ is a one parameter family of left invariant metrics on $S^3 \times S^3$ with non-negative sectional curvature. Here, the sections $\{\tilde{X}, \tilde{Y}\}$ with zero sectional curvature are of the form $\tilde{X} = (X, 0)$ and $\tilde{Y} = (0, X)$ for $t \in (0, t_*)$.

Contrary to Theorem A, we have the following:

Theorem B. Suppose $r = (\lambda_u \delta_{uv})$ with $1 = \lambda_1 \ge \lambda_2 \ge \lambda_3 > 0$. Then there is a positive number t'_* such that $\{\hat{g}(t), 0 \le t < t'_*\}$ is a one parameter family of left invariant metrics on $S^3 \times S^3$ with the following properties:

(i) There are planes of the form $\{\tilde{X}, \tilde{Y}\}$ with $\tilde{X} = (X, 0)$ and $\tilde{Y} = (0, \bar{Y})$ with

zero sectional curvature with respect to each $\hat{g}(t)$. If $\lambda_1 > \lambda_2 > \lambda_3 > 0$, then the number of such planes is three (at each point).

(ii) For any small positive number t there exist a plane Π and some positive number $t_2 < t$ such that the sectional curvature $\hat{K}(\Pi)$ is negative with respect to $\hat{g}(t_2)$.

The author would like to thank Professor H. Urakawa and Professor K. Masuda for useful discussions on the problems treated here. Also the author thanks the referee for a comment on Proposition 4.3 ($r \in SO(3)$) was extended to $r \in O(3)$).

2. An orthonormal frame field on (S^3, g)

Let (S^3, g) be the 3-sphere with the canonical metric of constant curvature 1. We have an orthonormal frame field $\{\xi_1, \xi_2, \xi_3\}$ on S^3 satisfying $[\xi_a, \xi_b] = 2\xi_c$ for $\varepsilon(a, b, c) = 1$, where $\varepsilon(a, b, c)$ denotes the sign of the permutation $(a, b, c) \rightarrow (1, 2, 3)$ (and $\varepsilon(a, b, c) = 0$ if the set $\{a, b, c\}$ is different from $\{1, 2, 3\}$). We denote the dual of $\{\xi_1, \xi_2, \xi_3\}$ by $\{\eta^1, \eta^2, \eta^3\}$. We define ϕ^a by $\phi^a = -\nabla \xi_a$ for a = 1, 2, 3, where ∇ denotes the Riemannian connection with respect to g. Then we have

(2.1)
$$\phi^a \phi^a X = -X + \eta^a (X) \xi_a,$$

(2.2)
$$g(\phi^a X, \phi^a Y) = g(X, Y) - \eta^a(X)\eta^a(Y),$$

(2.3)
$$d\eta^a(X,Y) = 2g(X,\phi^a Y),$$

(2.4)
$$(\nabla_X \phi^a)(Y) = g(X, Y)\xi_a - \eta^a(Y)X$$

for vector fields X and Y on S^3 and a = 1, 2, 3. Furthermore, $\xi_a = \phi^b \xi_c = -\phi^c \xi_b$ and

(2.5)
$$\phi^a = \phi^b \phi^c - \xi_b \otimes \eta^c = -\phi^c \phi^b + \xi_c \otimes \eta^b$$

hold for $\varepsilon(a, b, c) = 1$. For each a, $\{\eta^a, g\}$ is called a Sasakian structure on (S^3, g) and $\{\eta^1, \eta^2, \eta^3, g\}$ is called a Sasakian 3-structure (cf. Blair [1], Tanno [3], etc.).

Let (ϕ_v^{au}) be the components of ϕ^a with respect to the frame field $\{\xi_1, \xi_2, \xi_3\}$. Then we have $\phi_v^{au} = -\varepsilon(a, u, v)$. Therefore, for example, we obtain

(2.6)
$$\phi^a{}_{uv}X^uY^v = -(X \times Y)^a,$$

where $X \times Y$ denotes the vector product in $T_x S^3 \simeq E^3$ at each point $x \in S^3$. Furthermore, one may use $\phi^a{}_{uv} = -\phi^u{}_{av}$, etc. in the calculations, if necessary; for example, we have

(2.7)
$$A_u B_v \phi^{ua}_{\ x} \phi^{vx}_{\ c} X_a Y^c = -\langle A \times X, B \times Y \rangle,$$

where \langle , \rangle denotes the inner product defined by g. Here we recall the following

relation:

$$\langle A \times B, C \times D \rangle = \langle A, C \rangle \langle B, D \rangle - \langle A, D \rangle \langle B, C \rangle,$$

which will be used in $\S4$.

3. Riemannian metrics on $S^3 \times S^3$

We fix the range of indices as follows:

$$1 \leq i, j, k, l, x, y \leq 6,$$
 $1 \leq a, b, c, u, v \leq 3,$

and we denote $\bar{a} = a + 3$ generally (i.e., if \bar{a} is used in S^3 then \bar{a} means simply a; while if \bar{a} is used in $S^3 \times S^3$ then \bar{a} means a + 3).

We have a globally defined orthonormal frame field $\{\xi_1, \xi_2, \xi_3, \xi_{\bar{1}}, \xi_{\bar{2}}, \xi_{\bar{3}}\}$ and its dual $\{\eta^1, \eta^2, \eta^3, \eta^{\bar{1}}, \eta^{\bar{2}}, \eta^{\bar{3}}\}$ on the Riemannian product $(S^3 \times S^3, \tilde{g})$. Here ξ_a $(\xi_{\bar{b}},$ resp.) is identified with $(\xi_a, 0)$ $((0, \xi_{\bar{b}}),$ resp.). The Riemannian connection with respect to \tilde{g} is denoted by $\tilde{\nabla}$. Then we have $\tilde{\nabla}\xi_a = (\nabla\xi_a, 0)$ and $\tilde{\nabla}\xi_{\bar{b}} = (0, \nabla\xi_{\bar{b}})$, and hence we have $\phi^a = -\tilde{\nabla}\xi_a$ and $\phi^{\bar{a}} = -\tilde{\nabla}\xi_{\bar{a}}$ for a = 1, 2, 3. By (ϕ^{ij}_k) we denote the components of ϕ^i with respect to $\{\xi_a, \xi_{\bar{a}}\}$. One may notice that if one component ϕ^{ij}_k has mixed indices $i \leq 3$ and $j \geq 4$ for example, then it vanishes.

Now we define Riemannian metrics $\hat{g}(t)$ on $S^3 \times S^3$ by

$$\hat{g}_{ij} = \tilde{g}_{ij} + th_{ij},$$

where (and in many places below) we denote $\hat{g}(t)$ simply by \hat{g} , and

$$(3.2) h_{ij} = s_u \eta_i^u \eta_j^u + r_{u\bar{v}} (\eta_i^u \eta_j^{\bar{v}} + \eta_j^u \eta_i^{\bar{v}}) + \bar{s}_{\bar{v}} \eta_i^{\bar{v}} \eta_j^{\bar{v}}, r_{\bar{u}v} = r_{v\bar{u}v}$$

where $r = (r_{u\bar{v}})$ is a constant real 3×3 matrix; and $s = (s_u)$, $\bar{s} = (\bar{s}_{\bar{v}})$ are constant 3-vectors. Here t is a sufficiently small real number so that $\hat{g} = (\hat{g}_{ij})$ is a Riemannian metric.

In the tensor calculus components of tensor fields are ones with respect to the natural frame of a local coordinate system. Otherwise, components are ones with respect to $\{\xi_a, \xi_{\bar{a}}\}$. This will be understood in the context.

Notice that (h_{ij}) given above is a general form of (h_{ij}) with constant coefficients. Indeed, let $h_{ij} = \beta_{kl}\eta_i^k\eta_j^l$. Then the first block (β_{ab}) of $(\beta_{ab}\eta_i^a\eta_j^b)$ is diagonalized to $(s_u\delta_{uv})$ so that $\beta_{ab}\eta_i^a\eta_j^b = s_u\eta'^u_i\eta'^u_j$ by some orthogonal transformation $\{\xi_a\} \rightarrow \{\xi'_a\}$. Similarly we have $(\bar{s}_{\bar{v}})$ so that $\beta_{\bar{a}\bar{b}}\eta_i^{\bar{a}}\eta_j^{\bar{b}} = \bar{s}_{\bar{v}}\eta'^{\bar{v}}_i\eta'^{\bar{v}}_j$. So we have (3.2). Moreover, \hat{g} is a left invariant metric when we consider $S^3 \times S^3$ as a Lie group $SU(2) \times SU(2)$.

The inverse matrix of $\hat{g} = (\hat{g}_{ij})$ is denoted by $\hat{g}^{-1} = (\hat{g}^{is})$. Then, the difference $W_{jk}^i = \hat{\Gamma}_{jk}^i - \tilde{\Gamma}_{jk}^i$ of the coefficients of the Riemannian connections with respect to \hat{g} and \tilde{g} , and the Riemannian curvature tensor \hat{R}_{jkl}^i are given by

(3.3)
$$W_{jk}^{i} = (t/2)\hat{g}^{is}(\tilde{\nabla}_{j}h_{sk} + \tilde{\nabla}_{k}h_{sj} - \tilde{\nabla}_{s}h_{jk}),$$

S. TANNO

(3.4)
$$\hat{R}^{i}_{jkl} = \tilde{R}^{i}_{jkl} + \tilde{\nabla}_{k}W^{i}_{lj} - \tilde{\nabla}_{l}W^{i}_{kj} + W^{s}_{lj}W^{i}_{ks} - W^{s}_{kj}W^{i}_{ls}$$

We denote components of a vector field \tilde{X} on $S^3 \times S^3$ as

$$\tilde{X} = (\tilde{X}^i) = (X, \bar{X}) = (X^a, \bar{X}^{\bar{a}}) = (X^1, X^2, X^3; \bar{X}^{\bar{1}}, \bar{X}^{\bar{2}}, \bar{X}^{\bar{3}}),$$

where X (\bar{X} , resp.) is tangent to the first (second, resp.) S^3 .

Lemma 3.1. $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y})\tilde{Y}, \tilde{X})$ is given by

$$(3.5) \qquad \hat{g}(\hat{R}(\tilde{X},\tilde{Y})\tilde{Y},\tilde{X}) = \hat{g}_{hi}\tilde{R}^{i}_{jkl}\tilde{X}^{h}\tilde{X}^{k}\tilde{Y}^{j}\tilde{Y}^{l} + [\tilde{\nabla}_{k}(\hat{g}_{hi}W^{i}_{lj}) - \tilde{\nabla}_{l}(\hat{g}_{hi}W^{i}_{kj})]\tilde{X}^{h}\tilde{X}^{k}\tilde{Y}^{j}\tilde{Y}^{l} - \hat{g}^{xy}[(\hat{g}_{xp}W^{p}_{kh})(\hat{g}_{yq}W^{q}_{lj}) - (\hat{g}_{xp}W^{p}_{lh})(\hat{g}_{yq}W^{q}_{kj})]\tilde{X}^{h}\tilde{X}^{k}\tilde{Y}^{j}\tilde{Y}^{l}.$$

Proof. First we have

$$\hat{g}_{hi}[\tilde{\nabla}_k W^i_{lj} - \tilde{\nabla}_l W^i_{kj}] = \tilde{\nabla}_k (\hat{g}_{hi} W^i_{lj}) - \tilde{\nabla}_l (\hat{g}_{hi} W^i_{kj}) - t \tilde{\nabla}_k h_{hi} \cdot W^i_{lj} + t \tilde{\nabla}_l h_{hi} \cdot W^i_{kj}.$$
Next, using (3.3) we obtain $t \tilde{\nabla}_k h_{hi} = \hat{g}_{hs} W^s_{ki} + \hat{g}_{is} W^s_{kh}$ and

$$-t\tilde{\nabla}_k h_{hi} \cdot W^i_{lj} + \hat{g}_{hi} W^i_{ks} W^s_{lj} = -\hat{g}^{xy} (\hat{g}_{xp} W^p_{kh}) (\hat{g}_{yq} W^q_{lj}).$$

Then applying these into (3.4), proof is completed.

Lemma 3.2. $\hat{g}_{is}W^s_{jk}$ is given by

(3.6)
$$\hat{g}_{is}W^{s}_{jk} = -t[s_{u}(\phi^{u}{}_{ij}\eta^{u}_{k} + \phi^{u}{}_{ik}\eta^{u}_{j}) + \bar{s}_{\bar{v}}(\phi^{\bar{v}}{}_{ij}\eta^{\bar{v}}_{k} + \phi^{\bar{v}}{}_{ik}\eta^{\bar{v}}_{j}) + r_{u\bar{v}}(\phi^{u}{}_{ij}\eta^{\bar{v}}_{k} + \phi^{u}{}_{ik}\eta^{\bar{v}}_{j} + \phi^{\bar{v}}{}_{ij}\eta^{u}_{k} + \phi^{\bar{v}}{}_{ik}\eta^{u}_{j})].$$

Proof. One may use relations; $\tilde{\nabla}_i \eta_j^u = \phi^u{}_{ij}$, etc.

We continue some calculations to obtain the sectional curvature for a 2-plane determined by \tilde{X} and \tilde{Y} . Here we assume that $\{\tilde{X}, \tilde{Y}\}$ is orthonormal with respect to \tilde{g} , i.e.,

$$\langle X, X \rangle + \langle \bar{X}, \bar{X} \rangle = 1, \quad \langle Y, Y \rangle + \langle \bar{Y}, \bar{Y} \rangle = 1, \quad \langle X, Y \rangle + \langle \bar{X}, \bar{Y} \rangle = 0.$$

Lemma 3.3. Let $\{\tilde{X}, \tilde{Y}\}$ be an orthonormal pair with respect to \tilde{g} at a point of $S^3 \times S^3$. Then we can assume $\langle X, Y \rangle = \langle \bar{X}, \bar{Y} \rangle = 0$.

Proof. Assume $\langle X, Y \rangle \neq 0$ and consider $\tilde{Z} = \cos \theta \tilde{X} + \sin \theta \tilde{Y}$ and $\tilde{W} = -\sin \theta \tilde{X} + \cos \theta \tilde{Y}$. Then $\langle Z, W \rangle$ for $\tilde{Z} = (Z, \bar{Z})$ and $\tilde{W} = (W, \bar{W})$ is given by

$$\langle Z, W \rangle = \sin \theta \cos \theta (\|Y\|^2 - \|X\|^2) + (\cos^2 \theta - \sin^2 \theta) \langle X, Y \rangle.$$

If ||Y|| = ||X||, then we may put $\theta = \pi/4$ to get $\langle Z, W \rangle = 0$. Then also $\langle \overline{Z}, \overline{W} \rangle = 0$ follows. If $||Y|| \neq ||X||$, then we can find θ such that $\langle Z, W \rangle = 0$. We have also $\langle \overline{Z}, \overline{W} \rangle = 0$.

From now on we assume $\langle X, Y \rangle = \langle \overline{X}, \overline{Y} \rangle = 0$ for our orthonormal pair $\{ \widetilde{X}, \widetilde{Y} \}$. Since \widetilde{g} is the product of Riemannian metrics of constant curvature 1, we obtain

(3.7)
$$\hat{g}_{hi}\tilde{R}^{i}_{jkl}\tilde{X}^{h}\tilde{X}^{k}\tilde{Y}^{j}\tilde{Y}^{l} = \|X \times Y\|^{2} + \|\bar{X} \times \bar{Y}\|^{2} + t[r(X,\bar{X}) + \|Y\|^{2}s(X,X) + \|\bar{Y}\|^{2}\bar{s}(\bar{X},\bar{X})],$$

where s and \bar{s} are considered as matrices $s = (s_u \delta_{uv})$ and $\bar{s} = (\bar{s}_{\bar{u}} \delta_{\bar{u}\bar{v}})$. By (2.4), (2.6) and (3.6), the second term of the right hand side of (3.5) is given by

$$\begin{aligned} (3.8) \quad [\tilde{\nabla}_{k}(\hat{g}_{hi}W_{lj}^{i}) - \tilde{\nabla}_{l}(\hat{g}_{hi}W_{kj}^{i})]\tilde{X}^{h}\tilde{X}^{k}\tilde{Y}^{j}\tilde{Y}^{l} &= t[r(X,\bar{X}) \\ &+ 2r(Y,\bar{Y}) - 6r(X \times Y,\bar{X} \times \bar{Y}) \\ &+ 2\|X\|^{2}s(Y,Y) + \|Y\|^{2}s(X,X) - 3s(X \times Y,X \times Y) \\ &+ 2\|\bar{X}\|^{2}\bar{s}(\bar{Y},\bar{Y}) + \|\bar{Y}\|^{2}\bar{s}(\bar{X},\bar{X}) - 3\bar{s}(\bar{X} \times \bar{Y},\bar{X} \times \bar{Y})]. \end{aligned}$$

1-forms $(\hat{g}_{jp}W_{kh}^p \tilde{X}^k \tilde{X}^h)$ and $(\hat{g}_{jp}W_{lh}^p \tilde{X}^h \tilde{Y}^l)$ are expressed as follows:

$$(3.9) \qquad (\hat{g}_{jp}W^{p}_{kh}\tilde{X}^{k}\tilde{X}^{h}) = 2t(U(\tilde{X})_{u}, \bar{U}(\tilde{X})_{\bar{u}}), \\ U(\tilde{X}) = X \times (r(\bar{X}) + s(X)), \quad \bar{U}(\tilde{X}) = \bar{X} \times ({}^{t}r(X) + \bar{s}(\bar{X})) \\ (\hat{g}_{jp}W^{p}_{lh}\tilde{X}^{h}\tilde{Y}^{l}) = t(V(\tilde{X},\tilde{Y})_{u}, \bar{V}(\tilde{X},\tilde{Y})_{\bar{u}}), \end{cases}$$

$$V(\tilde{X}, \tilde{Y}) = X \times (r(\bar{Y}) + s(Y)) + Y \times (r(\bar{X}) + s(X)),$$

$$\bar{V}(\tilde{X}, \tilde{Y}) = \bar{X} \times ({}^tr(Y) + \bar{s}(\bar{Y})) + \bar{Y} \times ({}^tr(X) + \bar{s}(\bar{X})),$$

where ${}^{t}r$ denotes the transpose of r.

In the next Proposition we study some special type of sections for later use.

Proposition 3.4. $\hat{g}(\hat{R}(\tilde{X},\tilde{Y})\tilde{Y},\tilde{X})$ for an orthonormal pair $\{\tilde{X} = (X,0), \tilde{Y} = (0,\bar{Y})\}$ with respect to \tilde{g} is given by

$$\begin{split} \hat{g}(\hat{R}(\tilde{X},\tilde{Y})\tilde{Y},\tilde{X}) \\ &= t^2 \{ \hat{g}^{uv} (X \times r(\bar{Y}))_u (X \times r(\bar{Y}))_v + \hat{g}^{\bar{u}\bar{v}} (\bar{Y} \times {}^tr(X))_{\bar{u}} (\bar{Y} \times {}^tr(X))_{\bar{v}} \\ &+ \hat{g}^{u\bar{v}} [2(X \times r(\bar{Y}))_u (\bar{Y} \times {}^tr(X))_{\bar{v}} - 4(X \times s(X))_u (\bar{Y} \times \bar{s}(\bar{Y}))_{\bar{v}}] \}. \end{split}$$

Proof. By $\bar{X} = Y = 0$ in (3.7) ~ (3.10), we have $\hat{g}_{hi}\tilde{R}^{i}_{jkl}\tilde{X}^{h}\tilde{X}^{k}\tilde{Y}^{j}\tilde{Y}^{l} = 0$ and $[\tilde{\nabla}_{h}(\hat{a}_{hi}W^{i}_{j}) - \tilde{\nabla}_{l}(\hat{a}_{hi}W^{i}_{j})]\tilde{X}^{h}\tilde{X}^{k}\tilde{Y}^{j}\tilde{Y}^{l} = 0.$

$$\begin{aligned} &(\hat{g}_{jp}W_{kh}^{p}\tilde{X}^{k}\tilde{X}^{h}) = 2t(X\times s(X),0),\\ &(\hat{g}_{jp}W_{lh}^{p}\tilde{X}^{h}\tilde{Y}^{l}) = t(X\times r(\bar{Y}),\bar{Y}\times^{t}r(X)),\\ &(\hat{g}_{jp}W_{kh}^{p}\tilde{Y}^{k}\tilde{Y}^{h}) = 2t(0,\bar{Y}\times\bar{s}(\bar{Y})). \end{aligned}$$

Substituting these into (3.5), proof is completed.

The sectional curvature $\hat{K}(\tilde{X}, \tilde{Y})$ for an orthonormal pair $\{\tilde{X}, \tilde{Y}\}$ with respect to \tilde{g} at a point of $(S^3 \times S^3, \hat{g}(t))$ is given by

(3.11)
$$\hat{K}(\tilde{X},\tilde{Y}) = \hat{g}(\hat{R}(\tilde{X},\tilde{Y})\tilde{Y},\tilde{X})/\tilde{D}(\tilde{X},\tilde{Y}),$$

where $\hat{D}(\tilde{X}, \tilde{Y}) = \hat{g}(\tilde{X}, \tilde{X})\hat{g}(\tilde{Y}, \tilde{Y}) - \hat{g}(\tilde{X}, \tilde{Y})^2$. As far as we are concerned with the sign of sectional curvatures, it suffices to consider $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y})\tilde{Y}, \tilde{X})$.

4. The case where $s = \bar{s} = 0$

In this section we assume $s = \bar{s} = 0$ in (3.2), i.e.

(4.1)
$$\hat{g} = \tilde{g} + t r_{u\bar{v}} (\eta^u \otimes \eta^{\bar{v}} + \eta^{\bar{v}} \otimes \eta^u).$$

The restriction of \hat{g} to each factor S^3 is identical with the canonical metric g on S^3 . By Lemma 3.1 and (3.7) ~ (3.10), we obtain

Proposition 4.1. For the metric (4.1) on $S^3 \times S^3$, $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y})\tilde{Y}, \tilde{X})$ for an orthonormal pair $\{\tilde{X}, \tilde{Y}\}$ with respect to \tilde{g} is given by

(4.2)
$$\hat{g}(\hat{R}(\tilde{X}, \tilde{Y})\tilde{Y}, \tilde{X}) = \|X \times Y\|^2 + \|\bar{X} \times \bar{Y}\|^2 + G_1 t + G_2 t^2,$$

where we have put G_1 and $G_2 = G_{21} + G_{22}$ as

(4.3)
$$G_1 = 2[r(X, \bar{X}) + r(Y, \bar{Y}) - 3r(X \times Y, \bar{X} \times \bar{Y})],$$

$$(4.4) \quad G_{21} = -4\hat{g}^{uv}(X \times r(\bar{X}))_u(Y \times r(\bar{Y}))_v -4\hat{g}^{u\bar{v}}[(X \times r(\bar{X}))_u(\bar{Y} \times {}^tr(Y))_{\bar{v}} + (Y \times r(\bar{Y}))_u(\bar{X} \times {}^tr(X))_{\bar{v}}] -4\hat{g}^{\bar{u}\bar{v}}(\bar{X} \times {}^tr(X))_{\bar{u}}(\bar{Y} \times {}^tr(Y))_{\bar{v}}, (4.5) \quad G = \hat{c}^{uv}(X - (\bar{X}) + X - (\bar{X})) + (X - (\bar{X})) + (X - (\bar{X}))$$

$$(4.5) \quad G_{22} = \hat{g}^{uv} (X \times r(\bar{Y}) + Y \times r(\bar{X}))_u (X \times r(\bar{Y}) + Y \times r(\bar{X}))_v$$
$$+ 2\hat{g}^{u\bar{v}} (X \times r(\bar{Y}) + Y \times r(\bar{X}))_u (\bar{X} \times {}^tr(Y) + \bar{Y} \times {}^tr(X))_{\bar{v}}$$
$$+ \hat{g}^{\bar{u}\bar{v}} (\bar{X} \times {}^tr(Y) + \bar{Y} \times {}^tr(X))_{\bar{u}} (\bar{X} \times {}^tr(Y) + \bar{Y} \times {}^tr(X))_{\bar{v}}.$$

268

The inverse matrix of $\hat{g} = (\hat{g}_{ij})$ is given by

$$(4.6) \qquad \hat{g}^{ij} = \tilde{g}^{ij} + t^2 \sum_{l=1}^{\infty} t^{2(l-1)} \sum_{z,w=1}^{3} [((r \cdot {}^t r)^l)_{zw} \xi_z^i \xi_w^j + (({}^t r \cdot r)^l)_{\bar{z}\bar{w}} \xi_{\bar{z}}^i \xi_{\bar{w}}^j] \\ - t \sum_{l=1}^{\infty} t^{2(l-1)} \sum_{z,w=1}^{3} (r({}^t r \cdot r)^{l-1})_{z\bar{w}} (\xi_z^i \xi_{\bar{w}}^j + \xi_z^j \xi_{\bar{w}}^i),$$

where $r \cdot {}^t r$ means $(r \cdot {}^t r)_{uw} = \sum_{\bar{v}} r_{u\bar{v}} r_{\bar{v}w} = \sum_{\bar{v}} r_{u\bar{v}} r_{w\bar{v}}$ and ${}^t r \cdot r$ means $({}^t r \cdot r)_{\bar{u}\bar{v}} = \sum_{\bar{v}} r_{w\bar{u}} r_{w\bar{v}}$. So we have $({}^t r \cdot r \cdot {}^t r)_{\bar{v}z} = (r \cdot {}^t r \cdot r)_{z\bar{v}}$, etc. Thus, we obtain the following:

Lemma 4.2. (i) If r is an orthogonal matrix, then we have

(4.7)
$$\hat{g}^{-1} = [1/(1-t^2)]\tilde{g}^{-1} - [t/(1-t^2)]\sum_{z,w=1}^3 r_{z\bar{w}}(\xi_z \otimes \xi_{\bar{w}} + \xi_{\bar{w}} \otimes \xi_z).$$

(ii) If r is diagonal, i.e., $r = (\lambda_u \delta_{uv})$, then

(4.8)
$$\hat{g}^{uv} = \hat{g}^{\bar{u}\bar{v}} = [1/(1-\lambda_u^2 t^2)]\delta^{uv}, \quad \hat{g}^{u\bar{v}} = -[\lambda_u t/(1-\lambda_u^2 t^2)]\delta^{uv}.$$

Proposition 4.3. If $r \in O(3)$, then

$$(4.9) \ (1 - (\det r)t)\hat{g}(\hat{R}(\bar{X},\bar{Y})\bar{Y},\bar{X}) = (1 - (\det r)t)(||X \times Y||^2 + ||\bar{X} \times \bar{Y}||^2) + 2t(1 - (\det r)t)[r(X,\bar{X}) + r(Y,\bar{Y}) - 3r(X \times Y,\bar{X} \times \bar{Y})] + 2t^2[||X \times r(\bar{Y}) - Y \times r(\bar{X})||^2 - 4\langle X \times Y, r(\bar{X}) \times r(\bar{Y})\rangle].$$

Proof. We apply (4.7) to (4.4) and (4.5). In the calculation one may notice that $r \in O(3)$ satisfies $r({}^{t}r(X) \times \overline{X}) = (\det r)X \times r(\overline{X})$, etc.

Proposition 4.4. Let $\{\tilde{X}, \tilde{Y}\}$ be an orthonormal pair with respect to \tilde{g} such that $\tilde{X} = (X, 0)$ and $\tilde{Y} = (0, \bar{Y})$. Then the sectional curvature $\hat{K}(\tilde{X}, \tilde{Y})$ is non-negative. $\hat{K}(\tilde{X}, \tilde{Y})$ vanishes with respect to $\hat{g}(t)$ for each $t \in (-t_o, t_o)$, if and only if $r(\bar{Y})$ is proportional to X and ${}^tr(X)$ is proportional to \bar{Y} . So, let \bar{Y} be a unit eigenvector of the symmetric matrix ${}^tr \cdot r$ corresponding to a non-zero eigenvalue. We define X by $X = r(\bar{Y})/||r(\bar{Y})||$. Then the sectional curvature $\hat{K}(\tilde{X}, \tilde{Y}) = 0$ for $\tilde{X} = (X, 0)$ and $\tilde{Y} = (0, \bar{Y})$.

Proof. The first part is verified by Proposition 3.4 and the fact that $\hat{g}(t)^{-1}$ is also positive definite. The second part follows from the expression of $\hat{g}(\hat{R}(\tilde{X},\tilde{Y})\tilde{Y},\tilde{X})$.

S. TANNO

Corollary 4.5. We assume that ${}^{t}r \cdot r$ has three different non-zero eigenvalues. Then for each point of $(S^3 \times S^3, \hat{g}(t))$, there are only three sections of the form $\{\tilde{X}, \tilde{Y}\}$ with $\tilde{X} = (X, 0)$ and $\tilde{Y} = (0, Y)$ and with vanishing sectional curvature with respect to each $\hat{g}(t)$, $t \in (-t_o, t_o)$.

REMARK 1. If one expands (4.2) with respect to t up to $[t^3]$, then one obtains

$$\begin{aligned} (4.10) \quad \hat{g}(\hat{R}(\bar{X},\bar{Y})\bar{Y},\bar{X}) &= \|X \times Y\|^2 + \|\bar{X} \times \bar{Y}\|^2 \\ &+ 2t[r(X,\bar{X}) + r(Y,\bar{Y}) - 3r(X \times Y,\bar{X} \times \bar{Y})] \\ &+ t^2 \{\|X \times r(\bar{Y}) - Y \times r(\bar{X})\|^2 + \|^t r(X) \times \bar{Y} - {}^t r(Y) \times \bar{X}\|^2 \\ &- 4[\langle X \times Y, r(\bar{X}) \times r(\bar{Y}) \rangle + \langle \bar{X} \times \bar{Y}, {}^t r(X) \times {}^t r(Y) \rangle] \} + [t^3]. \end{aligned}$$

5. Proof of Theorem A

Let $r = (-\delta_{uv})$ and let $\{\tilde{X}, \tilde{Y}\}$ be an orthonormal pair with respect to \tilde{g} . We can assume $\langle X, Y \rangle = \langle \bar{X}, \bar{Y} \rangle = 0$ by Lemma 3.3. By Proposition 4.1 and Lemma 4.2 we see that $F(t, \tilde{X}, \tilde{Y}) = (1+t)\hat{g}(\hat{R}(\tilde{X}, \tilde{Y})\tilde{Y}, \tilde{X})$ is expressed as

(5.1)
$$F(t, \tilde{X}, \tilde{Y}) = \|X\|^2 \|Y\|^2 + \|\bar{X}\|^2 \|\bar{Y}\|^2 + t[\|X\|^2 \|Y\|^2 + \|\bar{X}\|^2 \|\bar{Y}\|^2 - 2\langle X, \bar{X} \rangle - 2\langle Y, \bar{Y} \rangle + 6\langle X, \bar{X} \rangle \langle Y, \bar{Y} \rangle - 6\langle X, \bar{Y} \rangle \langle \bar{X}, Y \rangle] + 2t^2 [\|X\|^2 \|\bar{Y}\|^2 + \|\bar{X}\|^2 \|Y\|^2 - \langle X, \bar{X} \rangle - \langle Y, \bar{Y} \rangle + \langle X, \bar{X} \rangle \langle Y, \bar{Y} \rangle + \langle X, \bar{Y} \rangle \langle \bar{X}, Y \rangle - \langle X, \bar{Y} \rangle^2 - \langle \bar{X}, Y \rangle^2].$$

We put $\varepsilon_0 = 1/100\sqrt{2}$. If we have

$$||X||^2 ||Y||^2 + ||\bar{X}||^2 ||\bar{Y}||^2 \ge \varepsilon_0^2,$$

then (5.1) shows that we have some real number t_3 such that $F(t, \tilde{X}, \tilde{Y}) > 0$ holds for any $t \in (-t_3, t_3)$ (where t_3 is independent of the choice of orthonormal pairs $\{\tilde{X}, \tilde{Y}\}$). So, in the following we suppose

(5.2)
$$\|X\|^2 \|Y\|^2 + \|\bar{X}\|^2 \|\bar{Y}\|^2 < \varepsilon_0^2$$

We can assume $\|\bar{X}\| \leq \|X\|$. Then $\|Y\| \leq \|\bar{Y}\|$ follows from (5.2). Also we have $\|\bar{X}\|\|\bar{Y}\| < \varepsilon_0$. By $\|\bar{Y}\| \geq 1/\sqrt{2}$, we obtain $\|\bar{X}\| < \sqrt{2}\varepsilon_0$. Similarly we obtain $\|Y\| < \sqrt{2}\varepsilon_0$. Therefore we get $\|X\|^2 > 1 - 2\varepsilon_0^2$ and $\|\bar{Y}\|^2 > 1 - 2\varepsilon_0^2$.

If $\overline{X} = Y = 0$, then Proposition 4.4 shows that $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y})\tilde{Y}, \tilde{X})$ is non-negative. So, in the following in this section we assume $\overline{X} \neq 0$ or $Y \neq 0$. By symmetry we assume $Y \neq 0$. Now for any orthonormal pair $\{\tilde{X}, \tilde{Y}\}$ we can change the frames $\{\xi_u, \xi_{\bar{u}}\} \rightarrow \{\xi'_u, \xi'_{\bar{u}}\}$ by an orthogonal 3×3 matrix A (i.e., $\xi'_u = A^v_u \xi_v, \xi'_{\bar{u}} = A^v_u \xi_{\bar{v}}$) so that

(5.3)
$$\tilde{X} = (\sqrt{1 - \varepsilon_1^2}, 0, 0; \bar{X}_1, \bar{X}_2, \bar{X}_3), \quad \tilde{Y} = (0, \varepsilon_2, 0; \bar{Y}_1, \bar{Y}_2, \bar{Y}_3)$$

with the property; $X_1 = ||X|| = \sqrt{1 - \varepsilon_1^2}, Y_2 = ||Y|| = \varepsilon_2 > 0$ and

(5.4)
$$\bar{X}_1^2 + \bar{X}_2^2 + \bar{X}_3^2 = \varepsilon_1^2, \qquad \bar{Y}_1^2 + \bar{Y}_2^2 + \bar{Y}_3^2 = 1 - \varepsilon_2^2,$$

 $\bar{X}_1 \bar{Y}_1 + \bar{X}_2 \bar{Y}_2 + \bar{X}_3 \bar{Y}_3 = 0,$

where $\varepsilon_1 = \|\bar{X}\| < \sqrt{2}\varepsilon_0 = 1/100$ and $\varepsilon_2 < 1/100$. Notice that the expression of $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y})\tilde{Y}, \tilde{X})$ is unchanged. By (5.1) we obtain

(5.5)
$$F(t, \tilde{X}, \tilde{Y}) = F_0 + F_1 t + F_2 t^2,$$

where we put $F_0, F_1 = F_1(t, \tilde{X}, \tilde{Y})$ and $F_2 = F_2(t, \tilde{X}, \tilde{Y})$ as

$$\begin{split} F_0 &= \varepsilon_1^2 + \varepsilon_2^2 - 2\varepsilon_1^2 \varepsilon_2^2, \\ F_1 &= -2X_1 \bar{X}_1 - 2\varepsilon_2 \bar{Y}_2 + 6\varepsilon_2 X_1 (\bar{X}_1 \bar{Y}_2 - \bar{X}_2 \bar{Y}_1) + \varepsilon_1^2 + \varepsilon_2^2 - 2\varepsilon_1^2 \varepsilon_2^2, \\ F_2 &= 2[\varepsilon_2 X_1 (\bar{X}_1 \bar{Y}_2 + \bar{X}_2 \bar{Y}_1) + \varepsilon_2^2 (\bar{X}_1^2 + \bar{X}_3^2) + X_1^2 (\bar{Y}_2^2 + \bar{Y}_3^2) - X_1 \bar{X}_1 - \varepsilon_2 \bar{Y}_2]. \end{split}$$

We consider t in the range 0 < t < 1/100.

First we assume $\varepsilon_1 = 0$, i.e., $\bar{X}_1 = \bar{X}_2 = \bar{X}_3 = 0$ with respect to the expression (5.3). Putting $\varepsilon = \varepsilon_2$, we obtain

$$F(t, \tilde{X}, \tilde{Y}) = \varepsilon^2 + (\varepsilon^2 - 2\varepsilon \bar{Y}_2)t + 2(\bar{Y}_2^2 + \bar{Y}_3^2 - \varepsilon \bar{Y}_2)t^2.$$

By using an inequality $-2\varepsilon \bar{Y}_2 t^2 \ge -(\varepsilon^2 + \bar{Y}_2^2)t^2$, we get

$$F(t, \tilde{X}, \tilde{Y}) \ge (\varepsilon - \bar{Y}_2 t)^2 + 2\bar{Y}_3^2 t^2 + \varepsilon^2 t(1 - t) > 0.$$

Therefore, sectional curvatures are positive in this case. So, in the following in this section we assume $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$.

Lemma 5.1. For fixed t, ε_1 and ε_2 , if $F(t, \tilde{X}, \tilde{Y}) = F(t, \varepsilon_1, \varepsilon_2, \bar{X}_1, \bar{X}_2, \bar{X}_3, \bar{Y}_1, \bar{Y}_2, \bar{Y}_3)$ attains its minimum at $(t, \tilde{X}^*, \tilde{Y}^*) = (t, \varepsilon_1, \varepsilon_2, \bar{X}_1^*, \bar{X}_2^*, \bar{X}_3^*, \bar{Y}_1^*, \bar{Y}_2^*, \bar{Y}_3^*)$, then $\bar{X}_3^* = \bar{Y}_3^* = 0$.

Proof. First we consider the following deformation;

$$\begin{split} \bar{X}_1(\theta) &= \cos\theta \, \bar{X}_1^* - \sin\theta \bar{X}_3^*, \qquad \bar{X}_3(\theta) = \sin\theta \, \bar{X}_1^* + \cos\theta \bar{X}_3^*, \\ \bar{Y}_1(\theta) &= \cos\theta \, \bar{Y}_1^* - \sin\theta \bar{Y}_3^*, \qquad \bar{Y}_3(\theta) = \sin\theta \, \bar{Y}_1^* + \cos\theta \bar{Y}_3^*, \end{split}$$

and $\bar{X}_2(\theta) = \bar{X}_2^*$, $\bar{Y}_2(\theta) = \bar{Y}_2^*$ for $\theta \in (-\delta, \delta)$. Calculating $(dF(t, \tilde{X}(\theta), \tilde{Y}(\theta))/d\theta)(0) = 0$ and noticing $X_1 > 0$, we obtain

$$\bar{X}_3^* + 3\varepsilon_2(\bar{X}_2^*\bar{Y}_3^* - \bar{X}_3^*\bar{Y}_2^*) + [\bar{X}_3^* + 2X_1\bar{Y}_1^*\bar{Y}_3^* - \varepsilon_2(\bar{X}_2^*\bar{Y}_3^* + \bar{X}_3^*\bar{Y}_2^*)]t = 0.$$

Therefore we get

$$[1 - 3\varepsilon_2 \bar{Y}_2^* + (1 - \varepsilon_2 \bar{Y}_2^*)t]\bar{X}_3^* = [-3\varepsilon_2 \bar{X}_2^* + (\varepsilon_2 \bar{X}_2^* - 2X_1 \bar{Y}_1^*)t]\bar{Y}_3^*,$$

and hence $(1 - 3\varepsilon_2)|\bar{X}_3^*| \leq [3\varepsilon_1\varepsilon_2 + (2 + \varepsilon_1\varepsilon_2)t]|\bar{Y}_3^*|$. Consequently, we obtain $(3/4)|\bar{X}_3^*| \leq (3/100)|\bar{Y}_3^*|$, and $|\bar{X}_3^*| \leq (1/25)|\bar{Y}_3^*|$.

Next, we consider the following deformation;

$$\bar{X}_{2}(\tau) = \cos\tau \,\bar{X}_{2}^{*} - \sin\tau \bar{X}_{3}^{*}, \qquad \bar{X}_{3}(\tau) = \sin\tau \,\bar{X}_{2}^{*} + \cos\tau \bar{X}_{3}^{*},$$
$$\bar{Y}_{2}(\tau) = \cos\tau \,\bar{Y}_{2}^{*} - \sin\tau \bar{Y}_{3}^{*}, \qquad \bar{Y}_{3}(\tau) = \sin\tau \,\bar{Y}_{2}^{*} + \cos\tau \bar{Y}_{3}^{*},$$

and $\bar{X}_1(\tau) = \bar{X}_1^*$, $\bar{Y}_1(\tau) = \bar{Y}_1^*$ for $\tau \in (-\delta, \delta)$. Calculating $(dF(t, \tilde{X}(\tau), \tilde{Y}(\tau))/d\tau)(0) = 0$ and noticing $\varepsilon_2 > 0$, we obtain

$$\bar{Y}_3^* - 3X_1(\bar{X}_1^*\bar{Y}_3^* - \bar{X}_3^*\bar{Y}_1^*) + [\bar{Y}_3^* + 2\varepsilon_2\bar{X}_2^*\bar{X}_3^* - X_1(\bar{X}_3^*\bar{Y}_1^* + \bar{X}_1^*\bar{Y}_3^*)]t = 0.$$

If $\bar{Y}_3^* > 0$ (< 0, resp.), we can show

$$\begin{split} \bar{Y}_3^* &- 3X_1(\bar{X}_1^*\bar{Y}_3^* - \bar{X}_3^*\bar{Y}_1^*) > 0, \quad (<0, \text{ resp.}) \\ \bar{Y}_3^* &+ 2\varepsilon_2\bar{X}_2^*\bar{X}_3^* - X_1(\bar{X}_3^*\bar{Y}_1^* + \bar{X}_1^*\bar{Y}_3^*) > 0, \quad (<0, \text{ resp.}) \end{split}$$

using the inequality $|\bar{X}_3^*| \le (1/25)|\bar{Y}_3^*|$. This is a contradiction. So we have $\bar{Y}_3^* = 0$ and $\bar{X}_3^* = 0$.

In the following we consider \tilde{X} and \tilde{Y} of the form;

(5.6)
$$\bar{X} = (\bar{X}_1, \bar{X}_2, 0), \quad \bar{Y} = (\bar{Y}_1, \bar{Y}_2, 0)$$

and we put $\rho = |\bar{Y}_2|$. Then we have

$$\bar{X}_1^2 = \rho^2 \varepsilon_1^2 / (1 - \varepsilon_2^2), \qquad \bar{X}_2^2 = (1 - \varepsilon_2^2 - \rho^2) \varepsilon_1^2 / (1 - \varepsilon_2^2), \qquad \bar{Y}_1^2 = 1 - \varepsilon_2^2 - \rho^2.$$

We consider the following two cases (i) and (ii).

(i) The case where $\rho \leq 4 \max{\{\varepsilon_1, \varepsilon_2\}}$.

Lemma 5.2. There is a positive number t_4 such that $F(t, \tilde{X}, \tilde{Y}) > 0$ holds for any $t \in (0, t_4)$.

Proof. We put $\hat{\varepsilon} = \max{\{\varepsilon_1, \varepsilon_2\}}$. For example we have

$$|X_1\bar{X}_1| < |\bar{X}_1| < 2\rho\varepsilon_1 \le 8\hat{\varepsilon}\varepsilon_1 \le 4(\hat{\varepsilon}^2 + \varepsilon_1^2).$$

Therefore, we see that $|F_1| < a(\varepsilon_1^2 + \varepsilon_2^2)$ holds for some positive number *a*. Similarly, we see that $|F_2| < a'(\varepsilon_1^2 + \varepsilon_2^2)$ holds for some positive number *a'*. Then (5.5) shows

 $F(t, \tilde{X}, \tilde{Y}) > (\varepsilon_1^2 + \varepsilon_2^2)(1 - at - a't^2) - 2\varepsilon_1^2 \varepsilon_2^2,$

where a and a' are universal constant. So, we have some t_4 so that $1 - at - a't^2 > 1/2$ for $t \in (0, t_4)$. Since $-2\varepsilon_1^2 \varepsilon_2^2 > -\varepsilon_1 \varepsilon_2$, we have $F(t, \tilde{X}, \tilde{Y}) > 0$ for any $t \in (0, t_4)$.

(ii) The case where $\rho \ge 4 \max{\{\varepsilon_1, \varepsilon_2\}}$.

Lemma 5.3. For fixed t, ε_1 and ε_2 , if $F(t, \tilde{X}, \tilde{Y}) = F(t, \varepsilon_1, \varepsilon_2, \bar{X}_1, \bar{X}_2, 0, \bar{Y}_1, \bar{Y}_2, 0)$ attains its minimum at $(t, \tilde{X}^*, \tilde{Y}^*) = (t, \varepsilon_1, \varepsilon_2, \bar{X}_1^*, \bar{X}_2^*, 0, \bar{Y}_1^*, \bar{Y}_2^*, 0)$, then we have $\bar{X}_1^* > 0$ and $\bar{Y}_2^* > 0$.

Proof. We compare $\bar{X}^* = (\bar{X}_1^*, \bar{X}_2^*, 0)$ and $\bar{Y}^* = (\bar{Y}_1^*, \bar{Y}_2^*, 0)$ with

$$\bar{X} = (-\bar{X}_1^*, \bar{X}_2^*, 0), \qquad \bar{Y} = (-\bar{Y}_1^*, \bar{Y}_2^*, 0).$$

By (5.5), $F(t, \tilde{X}, \tilde{Y}) \ge F(t, \tilde{X}^*, \tilde{Y}^*)$ is expressed as

$$\bar{X}_1^* - 3\varepsilon_2(\bar{X}_1^*\bar{Y}_2^* - \bar{X}_2^*\bar{Y}_1^*) - [\varepsilon_2(\bar{X}_1^*\bar{Y}_2^* + \bar{X}_2^*\bar{Y}_1^*) - \bar{X}_1^*]t \ge 0,$$

which is equivalent to

$$[1 - 3\varepsilon_2 \bar{Y}_2^* + (1 - \varepsilon_2 \bar{Y}_2^*)t]\bar{X}_1^* \ge (t - 3)\varepsilon_2 \bar{X}_2^* \bar{Y}_1^*.$$

If $\bar{X}_1^* \leq 0$, then we have $(1 - 3\varepsilon_2)|\bar{X}_1^*| \leq 3\varepsilon_1\varepsilon_2$. By $|\bar{X}_1^*| = \rho\varepsilon_1/\sqrt{1 - \varepsilon_2^2}$, we obtain

$$\rho \leq 3\varepsilon_2 \sqrt{1-\varepsilon_2^2} / (1-3\varepsilon_2) < 3\varepsilon_2 / (1-3\varepsilon_2).$$

This contradicts $\rho \geq 4 \max\{\varepsilon_1, \varepsilon_2\}$ and we have $\bar{X}_1^* > 0$. Next we compare $\bar{X}^* = (\bar{X}_1^*, \bar{X}_2^*, 0)$ and $\bar{Y}^* = (\bar{Y}_1^*, \bar{Y}_2^*, 0)$ with

$$\bar{X} = (\bar{X}_1^*, -\bar{X}_2^*, 0), \qquad \bar{Y} = (\bar{Y}_1^*, -\bar{Y}_2^*, 0).$$

By (5.5), $F(t, \tilde{X}, \tilde{Y}) \ge F(t, \tilde{X}^*, \tilde{Y}^*)$ is expressed as

$$\bar{Y}_2^* - 3X_1(\bar{X}_1^*\bar{Y}_2^* - \bar{X}_2^*\bar{Y}_1^*) - [X_1(\bar{X}_1^*\bar{Y}_2^* + \bar{X}_2^*\bar{Y}_1^*) - \bar{Y}_2^*]t \ge 0,$$

S. TANNO

which is equivalent to

$$[1 - 3X_1\bar{X}_1^* + (1 - X_1\bar{X}_1^*)t]\bar{Y}_2^* \ge (t - 3)X_1\bar{Y}_1^*\bar{X}_2^*.$$

If $\bar{Y}_2^* \leq 0$, then we have $(1 - 3\varepsilon_1)|\bar{Y}_2^*| \leq 3\varepsilon_1$. This contradicts $\rho = |\bar{Y}_2^*| \geq 4 \max\{\varepsilon_1, \varepsilon_2\}$ and we have $\bar{Y}_2^* > 0$.

In the following we consider \tilde{X} and \tilde{Y} of the form;

$$\begin{split} \bar{X}_1 &= \rho \varepsilon_1 / \sqrt{1 - \varepsilon_2^2}, \qquad \bar{X}_2 &= \beta \varepsilon_1 \sqrt{1 - \varepsilon_2^2 - \rho^2} / \sqrt{1 - \varepsilon_2^2}, \\ \bar{Y}_1 &= -\beta \sqrt{1 - \varepsilon_2^2 - \rho^2}, \qquad \bar{Y}_2 &= \rho, \end{split}$$

where $\beta = \pm 1$. Now F_1 and F_2 in (5.5) are expressed as

(5.7)
$$F_{1} = -2\rho\varepsilon_{1}\sqrt{1-\varepsilon_{1}^{2}}/\sqrt{1-\varepsilon_{2}^{2}} - 2\rho\varepsilon_{2} + 6\varepsilon_{1}\varepsilon_{2}\sqrt{1-\varepsilon_{1}^{2}}\sqrt{1-\varepsilon_{2}^{2}} + \varepsilon_{1}^{2} + \varepsilon_{2}^{2} - 2\varepsilon_{1}^{2}\varepsilon_{2}^{2},$$

$$F_{2}/2 = -\varepsilon_{1}\varepsilon_{2}\sqrt{1-\varepsilon_{1}^{2}}\sqrt{1-\varepsilon_{2}^{2}} + \rho\varepsilon_{1}(2\rho\varepsilon_{2}-1)\sqrt{1-\varepsilon_{1}^{2}}/\sqrt{1-\varepsilon_{2}^{2}} + \rho^{2}\varepsilon_{1}^{2}\varepsilon_{2}^{2}/(1-\varepsilon_{2}^{2}) + (1-\varepsilon_{1}^{2})\rho^{2} - \rho\varepsilon_{2}.$$

Lemma 5.4. We have $F_2 > 0$.

Proof. We neglect some positive terms of the right hand side of (5.7) and use an inequality $1/\sqrt{1-\varepsilon_2^2} < 1+\varepsilon_2^2$. Then we obtain

$$F_2/2 > -\varepsilon_1\varepsilon_2 - \rho\varepsilon_1(1+\varepsilon_2^2) + (1-\varepsilon_1^2)\rho^2 - \rho\varepsilon_2$$

= $(\rho^2/4 - \varepsilon_1\varepsilon_2) + \rho[(1/4 - \varepsilon_1^2)\rho - \varepsilon_1\varepsilon_2^2] + \rho(\rho/2 - \varepsilon_1 - \varepsilon_2) > 0.$

Therefore we have $F_2 > 0$.

Lemma 5.5. For fixed ρ , ε_1 and ε_2 , if $F(t, \tilde{X}, \tilde{Y}) = F_2 t^2 + F_1 t + F_0$ takes its minimum at \hat{t} , then we have $\hat{t} > (\varepsilon_1 + \varepsilon_2)/16$.

Proof. We estimate $\hat{t} = -F_1/2F_2$. Since $\sqrt{1-\mu} = 1 - \mu/2 - \mu^2/8 + [\mu^3]$ and $1/\sqrt{1-\mu} = 1 + \mu/2 + 3\mu^2/8 + [\mu^3]$, we see that F_1 and F_2 are expressed as

$$F_{1} = -2\rho(\varepsilon_{1} + \varepsilon_{2}) + \varepsilon_{1}^{2} + \varepsilon_{2}^{2} + 6\varepsilon_{1}\varepsilon_{2} + \rho\varepsilon_{1}(\varepsilon_{1}^{2} - \varepsilon_{2}^{2}) -\varepsilon_{1}\varepsilon_{2}(3\varepsilon_{1}^{2} + 2\varepsilon_{1}\varepsilon_{2} + 3\varepsilon_{2}^{2}) + (\rho\varepsilon_{1}/4)(\varepsilon_{1}^{2} - \varepsilon_{2}^{2})(\varepsilon_{1}^{2} + 3\varepsilon_{2}^{2}) + [*],$$
(5.7)
$$F_{2}/2 = \rho^{2} - \rho(\varepsilon_{1} + \varepsilon_{2}) - \varepsilon_{1}\varepsilon_{2} + \rho^{2}\varepsilon_{1}(2\varepsilon_{2} - \varepsilon_{1}) + (\rho\varepsilon_{1}/2)(\varepsilon_{1}^{2} - \varepsilon_{2}^{2})$$

PRODUCT OF TWO 3-SPHERES

+
$$(\varepsilon_1\varepsilon_2/2)(\varepsilon_1^2 + \varepsilon_2^2) + \rho^2\varepsilon_1\varepsilon_2(\varepsilon_1\varepsilon_2 - \varepsilon_1^2 + \varepsilon_2^2)$$

+ $(\rho\varepsilon_1/8)(\varepsilon_1^2 - \varepsilon_2^2)(\varepsilon_1^2 + 3\varepsilon_2^2) + [*],$

where [*] denotes terms of higher order $\varepsilon_1^a \varepsilon_2^b$ with $a + b \ge 6$. First we see that the terms of higher order $\varepsilon_1^a \varepsilon_2^b$ with $a + b \ge 3$ in F_1 are covered by $2(\varepsilon_1^2 + \varepsilon_2^2)$. So we have

$$-F_1 > 2\rho(\varepsilon_1 + \varepsilon_2) - 3\varepsilon_1^2 - 3\varepsilon_2^2 - 6\varepsilon_1\varepsilon_2$$

= $2\rho(\varepsilon_1 + \varepsilon_2) - 3(\varepsilon_1 + \varepsilon_2)^2$
= $(\rho/2)(\varepsilon_1 + \varepsilon_2) + 3(\varepsilon_1 + \varepsilon_2)(\rho/2 - \varepsilon_1 - \varepsilon_2)$
 $\ge (\rho/2)(\varepsilon_1 + \varepsilon_2).$

Next neglecting the negative terms in (5.7') and putting $\hat{\varepsilon} = \max{\{\varepsilon_1, \varepsilon_2\}}$, we obtain

$$F_2/2 < \rho^2 + 2\rho^2 \varepsilon_1 \varepsilon_2 + (\rho/2)\varepsilon_1^3 + 16\hat{\varepsilon}^4$$

$$< \rho^2 + 2\rho^2 \varepsilon_1 \varepsilon_2 + (\rho^2/8)\varepsilon_1^2 + \rho^2 \hat{\varepsilon}^2 < 2\rho^2 < 2\rho^2$$

Therefore we get $-F_1/2F_2 > (\varepsilon_1 + \varepsilon_2)/16$.

Finally we show $F(t, \tilde{X}, \tilde{Y}) > 0$ for $t \in (0, 1/100)$. We rewrite $F(t, \tilde{X}, \tilde{Y})$ as $F(t, \tilde{X}, \tilde{Y}) = J_2 \rho^2 + J_1 \rho + J_0$, where we have put

$$\begin{split} J_0 &= (\varepsilon_1^2 + \varepsilon_2^2 - 2\varepsilon_1^2 \varepsilon_2^2)(1+t) + 2\varepsilon_1 \varepsilon_2 t(3-t)\sqrt{1-\varepsilon_1^2}\sqrt{1-\varepsilon_2^2}, \\ J_1 &= -2t(1+t)\left(\varepsilon_2 + \varepsilon_1\sqrt{1-\varepsilon_1^2} \middle/ \sqrt{1-\varepsilon_2^2}\right), \\ J_2 &= 2t^2 \left[1-\varepsilon_1^2 + 2\varepsilon_1 \varepsilon_2\sqrt{1-\varepsilon_1^2} \middle/ \sqrt{1-\varepsilon_2^2} + \varepsilon_1^2 \varepsilon_2^2/(1-\varepsilon_2^2)\right]. \end{split}$$

Clearly we have $J_2 > 0$. To show $F(t, \tilde{X}, \tilde{Y}) > 0$, it suffices to show that the discriminant $D = J_1^2 - 4J_0J_2$ is negative. After some calculation we obtain

$$D/4t^{2} = -(\varepsilon_{1} - \varepsilon_{2})^{2}(1 - \varepsilon_{1}^{2} + 3\varepsilon_{1}\varepsilon_{2}) - 4t\varepsilon_{1}\varepsilon_{2}(2 - 3\varepsilon_{1}^{2} + 4\varepsilon_{1}\varepsilon_{2} - \varepsilon_{2}^{2}) + t^{2}[(\varepsilon_{1} - \varepsilon_{2})^{2} + 8\varepsilon_{1}\varepsilon_{2} - (\varepsilon_{1}^{4} + 7\varepsilon_{1}^{3}\varepsilon_{2} - 9\varepsilon_{1}^{2}\varepsilon_{2}^{2} + \varepsilon_{1}\varepsilon_{2}^{3})] + [*],$$

where [*] denotes terms of higher order $\varepsilon_1^a \varepsilon_2^b$ with $a + b \ge 6$. We see that $\hat{\varepsilon}^5 > [*]$ holds. Neglecting some negative terms we obtain

(5.8)

$$D/4t^{2} < -(\varepsilon_{1} - \varepsilon_{2})^{2}(1 - \varepsilon_{1}^{2}) - 4t\varepsilon_{1}\varepsilon_{2}(2 - 3\varepsilon_{1}^{2} - \varepsilon_{2}^{2}) + t^{2}[(\varepsilon_{1} - \varepsilon_{2})^{2} + 8\varepsilon_{1}\varepsilon_{2} + 9\varepsilon_{1}^{2}\varepsilon_{2}^{2}] + \hat{\varepsilon}^{5} \\ < -(9/10)[(\varepsilon_{1} - \varepsilon_{2})^{2} + 8t\varepsilon_{1}\varepsilon_{2}] + \hat{\varepsilon}^{5}.$$

By Lemma 5.5, it suffices to show D < 0 for $t = (\varepsilon_1 + \varepsilon_2)/16$. By symmetry of ε_1 and ε_2 in (5.8) we can assume $\hat{\varepsilon} = \varepsilon_2 \ge \varepsilon_1$. Then the inequality

$$-(9/20)[2(\varepsilon_1-\varepsilon_2)^2+\varepsilon_1\varepsilon_2(\varepsilon_1+\varepsilon_2)]+\hat{\varepsilon}^5<0$$

is verified by considering two cases; $\varepsilon_1 \leq \hat{\varepsilon}/2$ and $\varepsilon_1 \geq \hat{\varepsilon}/2$.

Proof of Theorem A. We define t_* by $t_* = \min\{t_3, t_4, 1/100\}$. Then sectional curvatures are non-negative. Furthermore, by Proposition 4.4 and the above discussion, we see that the sections $\{\tilde{X}, \tilde{Y}\}$ with zero sectional curvature are of the form $\tilde{X} = (X, 0)$ and $\tilde{Y} = (0, X)$ for $t \in (0, t_*)$.

REMARK 1. For $\varepsilon_1 = \varepsilon_2 = \varepsilon$, we consider $\tilde{X} = (\rho, 0, 0; \varepsilon, 0, 0)$ and $\tilde{Y} = (0, \varepsilon, 0; 0, \rho, 0)$ where $\rho = \sqrt{1 - \varepsilon^2}$. Then F_1 and F_2 are expressed as

$$F_1 = -4\rho\varepsilon + 8\varepsilon^2(1-\varepsilon^2), \qquad F_2 = 2-4\rho\varepsilon - 2\varepsilon^2 + 2\varepsilon^4.$$

Therefore, $\hat{t} = -F_1/2F_2 = \varepsilon + \varepsilon^3/2 + [\varepsilon^4]$ and for $t = \varepsilon + \varepsilon^3/2$, we obtain

$$F(t, \tilde{X}, \tilde{Y}) = 4\varepsilon^3 - 2\varepsilon^4 + [\varepsilon^5].$$

6. Proof of Theorem B

Suppose $r = (\lambda_u \delta_{uv})$ with $1 = \lambda_1 \ge \lambda_2 \ge \lambda_3 > 0$. (i) follows from Proposition 4.4 and Corollary 4.5. To prove (ii) we define $\{\tilde{X}, \tilde{Y}\}$ by

$$\begin{split} \tilde{X} &= (X_1, 0, 0; -t, 0, 0), \qquad X_1 = \sqrt{1 - t^2}, \\ \tilde{Y} &= (0, -\lambda_2 t, 0; 0, \bar{Y}_2, 0), \qquad \bar{Y}_2 = \sqrt{1 - \lambda_2^2 t^2}. \end{split}$$

By Proposition 4.1 and Lemma 4.2, we have the following:

$$\begin{split} \|X\|^2 \|Y\|^2 + \|\bar{X}\|^2 \|\bar{Y}\|^2 &= t^2 + \lambda_2^2 t^2 - 2\lambda_2^2 t^4, \\ G_1 &= 2(-X_1 t - \lambda_2^2 \bar{Y}_2 t - 3\lambda_2 \lambda_3 X_1 \bar{Y}_2 t^2), \\ G_2 &= [1/(1 - \lambda_3^2 t^2)] \{\lambda_2^2 (t^2 - X_1 \bar{Y}_2)^2 + (\lambda_2^2 t^2 - X_1 \bar{Y}_2)^2 \\ &+ 2\lambda_2 \lambda_3 (t^2 - X_1 \bar{Y}_2) (\lambda_2^2 t^2 - X_1 \bar{Y}_2) t\}. \end{split}$$

Therefore, using $X_1 = 1 - t^2/2 + [t^4]$ and $\bar{Y}_2 = 1 - \lambda_2^2 t^2/2 + [t^4]$, we get

(6.1)
$$(1 - \lambda_3^2 t^2) \hat{g}(\hat{R}(\tilde{X}, \tilde{Y})\tilde{Y}, \tilde{X}) = -4\lambda_2\lambda_3 t^3 - (8\lambda_2^2 - \lambda_2^2\lambda_3^2 - \lambda_3^2)t^4 + [t^5],$$

where $[t^5]$ denotes the term of higher order. So, for a sufficiently small t, we obtain $\hat{g}(\hat{R}(\tilde{X}, \tilde{Y})\tilde{Y}, \tilde{X}) < 0$ for $\hat{g}(t)$ and $\{\tilde{X}, \tilde{Y}\}$. This proves Proposition B.

REMARK 1. By (6.1) we see that (ii) of Theorem B works for the cases;

$$(\lambda_1, \lambda_2, \lambda_3) = (+, +, 0), (+, -, 0), (+, -, -).$$

REMARK 2. Hopf problem asks whether $S^2 \times S^2$ admits a Riemannian metric of positive sectional curvature. One of the related problems is whether $S^3 \times S^3$ admits a Riemannian metric of positive sectional curvature. On the other hand, Hopf conjecture says that the Euler-Poincaré characteristic of a compact oriented 2n-dimensional Riemannian manifold is > 0 ($\geq 0, \leq 0, < 0$ for n = 2r + 1; \geq $0, \geq 0, > 0$ for n = 2r, respectively), if and only if the sectional curvature is > 0 ($\geq 0, \leq 0, < 0$, respectively). If 2n = 4, the Hopf conjecture is true. However, for $2n \geq 6$ this conjecture is open, and some people focus their study on 6-dimensional or 8-dimensional case (cf. Klembeck [2], etc.). $S^3 \times S^3$ lies at a point of intersection of the above two problems.

Let $\hat{g}(t)$ be one defined by (1.1). Then, $(SU(2) \times SU(2), \hat{g}(t))$ admits Killing vector fields which are right invariant vector fields on $SU(2) \times SU(2)$. Since the Euler-Poincaré characteristic of $S^3 \times S^3$ is zero, $(SU(2) \times SU(2), \hat{g}(t))$ can not be of positive sectional curvature (cf. Weinstein [4]). Therefore, we have one question if it is possible to deform $\hat{g}(t)$ in Theorem A to a Riemannian metric which is not left invariant and has positive sectional curvature.

References

- [1] D.E. Blair: Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin/New York, 1976.
- P. Klembeck: On Geroch's counterexample to the algebraic Hopf conjecture, Proc. Amer. Math. Soc. 59 (1976), 334–336.
- [3] S. Tanno: The identity map as a harmonic map of a (4r+3)-sphere with deformed metrics, Kodai Math. J. 16 (1993), 171–180.
- [4] A. Weinstein: A fixed point theorem for positively curved manifolds, J. Math. Mech. 18 (1968), 149-153.

Department of Mathematics Tokyo Institute of Technology Meguro-ku, Tokyo, 152 Japan