ON THE MODIFIED GOERITZ MATRICES OF 2-PERIODIC LINKS

Sang Youl LEE and Chan-Young PARK

(Received April 30, 1997)

1. Introduction

An oriented link $\ell=k_{1} \cup \cdots \cup k_{\mu}$ of μ components in S^{3} is called a 2-periodic link if there is a \mathbb{Z}_{2}-action on the pair $\left(S^{3}, \ell\right)$ such that the fixed point set f of the action is homeomorphic to a 1 -sphere in S^{3} disjoint from ℓ. It is known that f is unknotted. Hence the quotient map $p: S^{3} \rightarrow S^{3} / \mathbb{Z}_{2}$ is an 2-fold cyclic branched covering branched over $p(f)=f_{*}$ and $p(\ell)=\ell_{*}$ is also an oriented link in the orbit space $S^{3} / \mathbb{Z}_{2} \cong S^{3}$, which is called the factor link of ℓ.

In this paper, we express a relationship between the modified Goeritz matrices of a 2-periodic link ℓ and those of its factor link ℓ_{*} and the link $\ell_{*} \cup \bar{f}_{*}$. As an application, we give an alternative proof of the Gordon and Litherland's formular([3]): $\sigma(\ell)-L k(\ell, \bar{f})=\sigma\left(\ell_{*}\right)+\sigma\left(\ell_{*} \cup \bar{f}_{*}\right)$ for the signature $\sigma(\ell)$ of a 2-periodic null homologous oriented link ℓ in a closed 3 -manifold M in the case of a 2 -periodic oriented link in S^{3}. We also show that $n(\ell)=n\left(\ell_{*}\right)+n\left(\ell_{*} \cup \bar{f}_{*}\right)-1$, where $n(\ell)$ denotes the nullity of an oriented link ℓ and \bar{f}_{*} denotes the knot f_{*} with an arbitrary orientation.

2. Preliminaries

Let ℓ be an oriented link in S^{3} and let L be its link diagram in the plane $\mathbb{R}^{2} \subset$ $\mathbb{R}^{3}=S^{3}-\{\infty\}$. Colour the regions of $\mathbb{R}^{2}-L$ alternately black and white. Denote the white regions by $X_{0}, X_{1}, \cdots, X_{w}$ (We always take the unbounded region to be white and denote it by X_{0}). Let $C(L)$ be the set of all crossings of L. Assign an incidence number $\eta(c)= \pm 1$ to each crossing $c \in C(L)$ as in Fig. 2.1 and define a crossing $c \in C(L)$ to be of type I or type II as indicated in Fig. 2.1.

Let $S(L)$ denote the compact surface with boundary L, more precisely, $S(L)$ is built up out of discs and bands. Each disc lies in $S^{2}=\mathbb{R}^{2} \cup\{\infty\}$ and is a closed black region less a small neighbourhood of each crossing. Each crossing gives a small half-twisted band. Let $\beta_{0}(L)$ denote the number of the connected components of the surface $S(L)$.

Let $G^{\prime}(L)=\left(g_{i j}\right)_{0 \leq i, j \leq w}$, where $g_{i j}=-\sum_{c \in C_{L}\left(X_{i}, X_{j}\right)} \eta(c)$ for $i \neq j$ and $g_{i i}=$ $\sum_{c \in C_{L}\left(X_{i}\right)} \eta(c)$, where $C_{L}\left(X_{i}\right)=\left\{c \in C(L) \mid c\right.$ is incident to $\left.X_{i}\right\}$ and $C_{L}\left(X_{i}, X_{j}\right)=$ $\left\{c \in C(L) \mid c\right.$ is incident to both X_{i} and $\left.X_{j}\right\}$.

Fig. 2.1.

The principal minor $G(L)=\left(g_{i j}\right)_{1 \leq i, j \leq w}$ of $G^{\prime}(L)$ is called the Goeritz matrix of ℓ associated to the diagram $L([1],[2])$.

Let $C_{I I}(L)=\left\{c_{1}, c_{2}, \cdots, c_{p}\right\}$ denote the set of all crossings of type II in L and let $A(L)=\operatorname{diag}\left(-\eta\left(c_{1}\right),-\eta\left(c_{2}\right), \cdots,-\eta\left(c_{p}\right)\right)$ be the $p \times p$ diagonal matrix. Then Traldi([5]) defined the modified Goeritz matrix $H(L)$ of ℓ associated to L by $H(L)=G(L) \oplus A(L) \oplus B(L)$, where $B(L)$ denotes the $\left(\beta_{0}(L)-1\right) \times\left(\beta_{0}(L)-1\right)$ zero matrix.

Two integral matrices H_{1} and H_{2} are said to be equivalent, denoted by $H_{1} \approx H_{2}$, if they can be transformed into each other by a finite number of the following two types of transformations and their inverses:
(I) $H \rightarrow U H U^{t}$, where U is a unimodular matrix of integers,
(II) $\quad H \rightarrow H \oplus\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

If L_{1} and L_{2} are link diagrams of ambient isotopic links, then $H\left(L_{1}\right)$ and $H\left(L_{2}\right)$ are equivalent([5]).

The signature $\sigma(\ell)$ and the nullity $n(\ell)$ of an oriented link ℓ in S^{3} are given by the formulars: $\sigma(\ell)=\sigma(H(L)), n(\ell)=n(H(L))+1$, where $\sigma(H(L))$ and $n(H(L))$ are the signature and nullity of the matrix $H(L)$ respectively([4], [5]). The absolute value of the determinant of the modified Goeritz matrix $H(L)$ associated to a diagram L of a link ℓ is clearly an invariant of the link type ℓ, denoted by $|\operatorname{det}(\ell)|$.

3. The modified Goeritz matrices of 2 -periodic links

Let $\ell=k_{1} \cup \cdots \cup k_{\mu}$ be a 2 -periodic oriented link of μ components in S^{3}. Then we may assume that the homeomorphism of the pair (S^{3}, ℓ) induced by the periodic \mathbb{Z}_{2}-action is the standard rotation ϕ of \mathbb{R}^{3} through π about the z-axis and hence the fixed point set f is the z-axis $\cup \infty$. We choose the standard orientation on the z-axis and denote it by \bar{f}. Define $L k(\ell, \bar{f})=\sum_{i=1}^{\mu} \operatorname{link}\left(k_{i}, \bar{f}\right)$, where $\operatorname{link}\left(k_{i}, \bar{f}\right)$ denotes the linking number of k_{i} and \bar{f}.

Applying an isotopy deformation if necessary, we may assume that ℓ is represented by a 2-periodic oriented diagram L in an annulus in \mathbb{R}^{2}, which is divided into 2 pieces L_{1} and L_{2} such that $\varphi\left(L_{1}\right)=L_{2}, \varphi\left(L_{2}\right)=L_{1}$, where φ is the rotation of \mathbb{R}^{2} through π about the origin. Let $a_{1}, a_{2}, \cdots, a_{r}, a_{r+1}, \cdots, a_{m}$ denote the intersec-

black region
L
Fig. 3.1.
tion points of L with the line $\theta=0$ and let $\varphi\left(a_{i}\right)=b_{i}, i=1,2, \cdots, m$, as shown in Fig. 3.1. Note that $L k(\ell, \bar{f})=2 r-m$.

Colour the regions of $\mathbb{R}^{2}-L$ alternately black and white. Without the loss of generality we may assume that the surface $S(L)$ is connected and the orientation of ℓ is as indicated in Fig. 3.1. If not, by applying ambient isotopy deformations in $\mathbb{R}^{3}-f$, i.e., the Reidemeister moves in $\mathbb{R}^{2}-\{0\}$ (hence $L k(\ell, \bar{f})$ is not changed), L can be deformed to L^{\prime} so that L^{\prime} is also a 2 -periodic link diagram of ℓ, which has the required orientation and $S\left(L^{\prime}\right)$ is connected. Now let $\varphi_{*}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} / \varphi\left(\cong \mathbb{R}^{2}\right)$ be the quotient map and let $\varphi_{*}(L)=L_{*}$. Then L_{*} is a link diagram of the factor link ℓ_{*} of ℓ.

In the case of $L k(\ell, \bar{f}) \equiv 1(\bmod 2)$ we denote the white regions as follows. We denote the unbounded white region by X_{0}^{0}. Notice that the bounded region containing the origin is then a black region. Let $X_{1}^{1}, X_{1}^{2}, \cdots, X_{1}^{k}$ denote the white regions in $L_{1} \subset L$ which do not intersect the line $\theta=0$, and let $X_{1}^{k+1}, X_{1}^{k+2}, \cdots, X_{1}^{w}(w=$ $k+(m-1) / 2)$ denote the white regions in L which intersect the line $\theta=0$. For each $j=1,2, \cdots, w$, let $X_{2}^{j}=\varphi\left(X_{1}^{j}\right)$. Note that $\varphi\left(X_{0}^{0}\right)=X_{0}^{0}$ (see Fig. 3.1). For $p \neq q$ or $i \neq j$, let $g_{p q}^{i j}=-\sum_{c \in C_{L}\left(X_{p}^{i}, X_{q}^{j}\right)} \eta(c)$. For $p=q$ and $i=j$, let $g_{p p}^{i i}=\sum_{c \in C_{L}\left(X_{p}^{i}\right)} \eta(c)$. Denote $M=\left(g_{11}^{i j}\right)_{1 \leq i, j \leq k}, N=\left(g_{11}^{i j}\right)_{k+1 \leq i, j \leq w}, P=$ $\left(g_{11}^{i j}\right)_{1 \leq i \leq k, k+1 \leq j \leq w}, Q=\left(g_{12}^{i j}\right)_{1 \leq i \leq k, k+1 \leq j \leq w}, R=\left(g_{12}^{i j}\right)_{k+1 \leq i, j \leq w}, A\left(L_{1}\right)=$ $\operatorname{diag}\left(-\eta\left(c_{1}\right),-\eta\left(c_{2}\right), \cdots,-\eta\left(c_{s}\right)\right)$, where $c_{i} \in C_{I I}\left(L_{1}\right)$, and I_{k} the $k \times k(k \geq 1)$ identity matrix.

In these notations we have the following Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Let ℓ be an oriented 2-periodic link with $L k(\ell, \bar{f}) \equiv 1(\bmod 2)$ and let L be the 2-periodic diagram of ℓ as shown in Fig. 3.1 and let $\varphi_{*}(L)=L_{*}$. Then
(1)

$$
H(L)=\left(\begin{array}{cccc}
M & P & O & Q \\
P^{t} & N & Q^{t} & R \\
O & Q & M & P \\
Q^{t} & R & P^{t} & N
\end{array}\right) \oplus A\left(L_{1}\right) \oplus A\left(L_{1}\right)
$$

(2)

$$
T H(L) T^{-1}=U\left[H\left(L_{*}\right) \oplus\left(\begin{array}{cc}
M & P-Q \\
P^{t}-Q^{t} & N-R
\end{array}\right) \oplus A\left(L_{1}\right)\right] U^{t}
$$

where $T=I_{w} \otimes\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right) \oplus I_{s} \oplus I_{s}$ and U is a unimodular integral matrix.
Proof. (1) For $p, q=0,1,2$, let $G_{p q}=\left(g_{p q}^{i j}\right)_{1 \leq i, j \leq w}$. Then $G^{\prime}(L)=$ $\left(G_{p q}\right)_{0 \leq p, q \leq 2}$. It is easy to see that the Goeritz matrix $G(L)$ of ℓ associated to L is the matrix of the form: for an integral matrix X,

$$
G(L)=\left(\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right)=\left(\begin{array}{cccc}
M & P & O & Q \\
P^{t} & N & X & R \\
O & X^{t} & M & P \\
Q^{t} & R^{t} & P^{t} & N
\end{array}\right)
$$

For $k+1 \leq i \leq w$ and $1 \leq j \leq w, X_{1}^{i}$ and X_{2}^{j} are incident if and only if $\varphi\left(X_{1}^{i}\right)=X_{2}^{i}$ and $\varphi\left(X_{2}^{j}\right)=X_{1}^{j}$ are incident, and their corresponding crossing types are the same. Thus $g_{12}^{i j}=g_{21}^{i j}$ for $k+1 \leq i \leq w, 1 \leq j \leq w$. Hence $X=\left(g_{12}^{i j}\right)_{k+1 \leq i \leq w, 1 \leq j \leq k}=$ $\left(g_{21}^{i j}\right)_{k+1 \leq i \leq w, 1 \leq j \leq k}=Q^{t}$ and $R^{t}=\left(g_{21}^{i j}\right)_{k+1 \leq i, j \leq w}=\left(g_{12}^{i j}\right)_{k+1 \leq i, j \leq w}=R$. It is obvious that $A(L)=A\left(L_{1}\right) \oplus A\left(L_{1}\right)$.
(2) Note that the colouring of the diagram L induces the colouring of the di$\operatorname{agram} L_{*}$ of ℓ_{*}. Let $X^{0}=\varphi_{*}\left(X_{0}^{0}\right), X^{j}=\varphi_{*}\left(X_{1}^{j}\right)$ for each $j=1, \cdots, w$. Then $\left\{X^{j} \mid j=0,1, \cdots, w\right\}$ is the set of all white regions of L_{*}. Hence $G\left(L_{*}\right)=$ $\left(g_{i j}\right)_{1 \leq i, j \leq w}$, where $g_{i j}=-\sum_{c \in C_{L_{*}}\left(X^{i}, X^{j}\right)} \eta(c)(i \neq j), g_{i i}=\sum_{c \in C_{L_{*}}\left(X^{i}\right)} \eta(c)$. If $1 \leq i \leq k$, then X_{1}^{i} intersect neither the line $\theta=0$ nor the line $\theta=\pi$. So $\left(g_{i j}\right)_{1 \leq i, j \leq k}=\left(g_{11}^{i j}\right)_{1 \leq i, j \leq k}=M$. Notice that for $k+1 \leq j \leq w$, the region X^{j} of L_{*} is $\varphi_{*}\left(\left(X_{1}^{j} \cup X_{2}^{j}\right) \cap L_{1}\right)$. So $\left(g_{i j}\right)_{1 \leq i \leq k, k+1 \leq j \leq w}=\left(g_{11}^{i \bar{j}}+g_{12}^{\overline{i j}}\right)_{1 \leq i \leq k, k+1 \leq j \leq w}=$ $P+Q$. Let $\bar{g}_{p q}^{i j}=-\sum_{c \in C_{L_{1}}\left(X_{p}^{i}, X_{q}^{j}\right)} \eta(c)$, and $\overline{\bar{g}}_{p q}^{i j}=-\sum_{c \in C_{L_{2}}\left(X_{p}^{i}, X_{q}^{j}\right)} \eta(c)$. Then $\left(g_{i j}\right)_{k+1 \leq i, j \leq w}=\left(\bar{g}_{11}^{i j}+\bar{g}_{22}^{i j}+\bar{g}_{12}^{i j}\right)_{k+1 \leq i, j \leq w}=\left(\bar{g}_{11}^{i j}+\overline{\bar{g}}_{11}^{i j}\right)_{k+1 \leq i, j \leq w}+\left(g_{12}^{i j}\right)_{k+1 \leq i, j \leq w}$ $=N+R$. Since $A\left(L_{*}\right)=A\left(L_{1}\right), H\left(L_{*}\right)=\left(\begin{array}{cc}M & P+\bar{Q} \\ P^{t}+Q^{t} & N+R\end{array}\right) \oplus A\left(L_{1}\right)$ and so the result follows by easy calculations.

black region
$\mathrm{L} * \cup \overline{\mathrm{~F}}{ }_{*}$
Fig. 3.2.

Now we consider the modified Goeritz matrix of the oriented link $\ell_{*} \cup \bar{f}_{*}$ in $S^{3} / \mathbb{Z}_{2} \cong S^{3}$, where $\bar{f}_{*}=p(\bar{f})$. From Fig. 3.1 we can obtain the diagram $L_{*} \cup \bar{F}_{*}$ in Fig. 3.2 as a diagram of $\ell_{*} \cup \bar{f}_{*}$ and denote the white regions of the coloured diagram $L_{*} \cup \bar{F}_{*}$ by $X^{0}, X^{1}, \cdots, X^{w+m}$ as indicated in Fig. 3.2. Then we obtain the following

Lemma 3.2. Let $L_{*} \cup \bar{F}_{*}$ be the diagram of $\ell_{*} \cup \bar{f}_{*}$ shown in Fig. 3.2. Then

$$
V H\left(L_{*} \cup \bar{F}_{*}\right) V^{t}=\left(\begin{array}{cc}
M & P-Q \\
P^{t}-Q^{t} & N-R
\end{array}\right) \oplus A\left(L_{1}\right) \oplus\left(\begin{array}{cc}
N_{2} & I_{(m-1) / 2} \\
I_{(m-1) / 2} & O
\end{array}\right)
$$

$\oplus E \oplus(2)$,
where V is an unimodular integral matrix, N_{2} is an integral matrix, $E=-I_{r} \oplus$ I_{m-r-1} if r is even, and $E=-I_{r+1} \oplus I_{m-r}$ if r is odd.

Proof. Let $G^{\prime}\left(L_{*} \cup \bar{F}_{*}\right)=\left(g_{i j}\right)_{0 \leq i, j \leq w+m}$, where $g_{i j}=-\sum_{c \in C_{L_{*} \cup \bar{F}_{*}}\left(X^{i}, X^{j}\right)} \eta(c)$. We may identify X^{i} in $L_{*} \cup \bar{F}_{*}$ with X_{1}^{i} in L for $i=1, \cdots, w$. Let $\bar{g}_{p q}^{i j}=$ $-\sum_{c \in C_{L_{1}}\left(X_{p}^{i}, X_{q}^{j}\right)} \eta(c)$ for $p, q=0,1,2$ and $L_{1} \subset L$. Denote $E_{1}=\left(g_{0 j}\right)_{1 \leq j \leq k}=$ $\left(g_{01}^{0 j}\right)_{1 \leq j \leq k}, E_{2}=\left(g_{0 j}\right)_{k+1 \leq j \leq w}=\left(\bar{g}_{01}^{0 j}\right)_{k+1 \leq j \leq w}, E_{3}=\left(g_{0 w+j}\right)_{1 \leq j \leq(m-1) / 2}=$ $\left(\bar{g}_{02}^{0 k+j}\right)_{1 \leq j \leq(m-1) / 2}$, and $E_{4}=\left(g_{0 j}\right)_{w+(m-1) / 2+1 \leq j \leq w+m}=\left(\begin{array}{llll}-2 & 0 & \cdots & 0\end{array}\right)$. Notice that $E_{2}+E_{3}=\left(g_{01}^{0 j}\right)_{k+1 \leq j \leq w}$.

For $1 \leq i, j \leq k,\left(g_{i j}\right)=\left(g_{11}^{i j}\right)=M$. For $1 \leq i \leq k$ and $k+1 \leq j \leq w$, $\left(g_{i j}\right)=\left(g_{11}^{i \bar{j}}\right)=\bar{P}$. For $1 \leq i \leq k$ and $1 \leq j \leq(m-1) / 2$, since $g_{i w+j}=g_{12}^{i k+j}$,
$\left(g_{i w+j}\right)=\left(g_{12}^{i k+j}\right)=\left(g_{12}^{s t}\right)_{1 \leq s \leq k, k+1 \leq t \leq w}=Q$.
For $1 \leq i \leq k$ and $w+(m-1) / 2+1 \leq j \leq w+m, X^{i}$ and X^{j} are not incident for each pair of i and j. Thus $\left(g_{i j}\right)=O$, the $k \times(m-1) / 2$ zero matrix.

If $k+1 \leq i \leq w$ and $w+(m-1) / 2+1 \leq j \leq w+m$, then the regions X^{i} and X^{j} are incident exactly at one crossing only for $j=w+(m-1) / 2+i$ and $j=w+$ $(m-1) / 2+i+1$ whose incidence number is -1 for $j=w+(m-1) / 2+i$ and 1 for $j=w+(m-1) / 2+i+1$. So $\left(g_{i j}\right)=J$, where J is the $(m-1) / 2 \times((m-1) / 2+1)$ matrix of the form:for $m=1, J=\emptyset$ and for $m>1$,

$$
J=\left(\begin{array}{cccccc}
1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -1
\end{array}\right)
$$

Similarly for $w+1 \leq i \leq w+(m-1) / 2$ and $w+(m-1) / 2+1 \leq j \leq w+m$, $\left(g_{i j}\right)=J$.

Now let $N_{1}=\left(g_{i j}\right)_{k+1 \leq i, j \leq w}, N_{2}=\left(g_{i j}\right)_{w+1 \leq i, j \leq w+(m-1) / 2}, R_{1}=$ $\left(g_{i j}\right)_{k+1 \leq i \leq w, w+1 \leq j \leq w+(m-1) / 2}, K=\left(g_{i j}\right)_{w+(m-1) / 2+1 \leq i, j \leq w+m}$. Then

$$
G^{\prime}\left(L_{*} \cup \bar{F}_{*}\right)=\left(g_{i j}\right)_{0 \leq i, j \leq w+m}=\left(\begin{array}{ccccc}
-a & E_{1} & E_{2} & E_{3} & E_{4} \\
E_{1}^{t} & M & P & Q & O \\
E_{2}^{t} & P^{t} & N_{1} & R_{1} & J \\
E_{3}^{t} & Q^{t} & R_{1}^{t} & N_{2} & J \\
E_{4}^{t} & O & J^{t} & J^{t} & K
\end{array}\right) \text {, }
$$

where a is the sum of all entries of the row matrices E_{1}, E_{2}, E_{3}, and E_{4}.
For $w+(m-1) / 2+1 \leq i, j \leq w+m, g_{i j}=0(i \neq j)$ and $g_{i i}=-d_{i}$, where d_{i} is the sum of all the i-th rows of E_{4}^{t} and $2 J^{t}$. But $d_{w+m}=-2$ and the other d_{i} 's are all zero. Hence $K=\left(\begin{array}{cc}O & O \\ O & 2\end{array}\right)$.

Now by deleting the first row and the first column of $G^{\prime}\left(L_{*} \cup \bar{F}_{*}\right)$, we obtain the Goeritz matrix $G\left(L_{*} \cup \bar{F}_{*}\right)$ of $\ell_{*} \cup \bar{f}_{*}$ associated to $L_{*} \cup \bar{F}_{*}$.

Let E be the diagonal matrix whose diagonal entry corresponding to each type II crossing c in the diagram $L_{*} \cup \bar{F}_{*}$ generated by intersecting L_{*} with \bar{F}_{*} is $-\eta(c)$. If r is even, then the number of these type II crossings with incidence number +1 is equal to r and the number of these type II crossings with incidence number -1 is equal to $m-r-1$ and hence $E=-I_{r} \oplus I_{m-r-1}$. Similarly for r odd, we have $E=$ $-I_{r+1} \oplus I_{m-r}$. Thus $A\left(L_{*} \cup \bar{F}_{*}\right)=A\left(L_{1}\right) \oplus E$. Since $S\left(L_{*}\right)$ is connected, $S\left(L_{*} \cup \bar{F}\right)$ is also connected. Hence $B\left(L_{*} \cup \bar{F}\right)$ is the empty matrix. Therefore $H\left(L_{*} \cup \bar{F}_{*}\right)=$ $G\left(L_{*} \cup \bar{F}_{*}\right) \oplus A\left(L_{*} \cup \bar{F}_{*}\right)=G\left(L_{*} \cup \bar{F}_{*}\right) \oplus A\left(L_{1}\right) \oplus E$.

It is not difficult to see that $R_{1}+R_{1}^{t}=R, N_{1}+N_{2}=N$ and there is a unimodular integral matrix V such that $V H\left(L_{*} \cup \bar{F}_{*}\right) V^{t}=$

$$
\left(\begin{array}{cc}
M & P-Q \\
P^{t}-Q^{t} & N-R
\end{array}\right) \oplus A\left(L_{1}\right) \oplus\left(\begin{array}{cc}
N_{2} & I_{(m-1) / 2} \\
I_{(m-1) / 2} & O
\end{array}\right) \oplus E \oplus(2) .
$$

Theorem 3.3. Let ℓ be an oriented 2-periodic link in S^{3} with the fixed point set \bar{f} and let ℓ_{*} be the factor link of ℓ. Then there exist 2-periodic diagrams L and $L_{*} \cup$ \bar{F}_{*} of ℓ and $\ell_{*} \cup \bar{f}_{*}$ satisfying the following:
(1) $L k(\ell, \bar{f}) \equiv 1 \quad(\bmod 2)$.

$$
S\left[H(L) \oplus\left(\begin{array}{cc}
I_{a} & O \\
O & -I_{b}
\end{array}\right) \oplus(2)\right] S^{-1} \approx\left(\begin{array}{cc}
H\left(L_{*}\right) & O \\
O & H\left(L_{*} \cup \bar{F}_{*}\right)
\end{array}\right)
$$

(2) $L k(\ell, \bar{f}) \equiv 0 \quad(\bmod 2)$.

Let $\ell \circ u$ denote the splittable 2-periodic link consisting of ℓ and the unknot u and let h^{-}denote the left handed Hopf link. Then

$$
S\left[H(L \cup U) \oplus\left(\begin{array}{cc}
I_{a} & O \\
O & -I_{b+1}
\end{array}\right) \oplus(2)\right] S^{-1} \approx\left(\begin{array}{cc}
H\left(L_{*}\right) & O \\
O & H\left(\left(L_{*} \cup \bar{F}_{*}\right) \sharp D^{-}\right)
\end{array}\right) \oplus(0)
$$

where S is an invertible rational matrix, $L_{*}=\varphi_{*}(L), L \cup U$ and D^{-}are diagrams of $\ell \circ u$ and h^{-}respectively, and $a-b+1=-L k(\ell, \bar{f})$.

Proof. (1) It follows from Lemma 3.1 and 3.2 that

$$
T H(L) T^{-1} \oplus\left(\begin{array}{cc}
N_{2} & I_{(m-1) / 2} \\
I_{(m-1) / 2} & O
\end{array}\right) \oplus E \oplus(2)=X\left[H\left(L_{*}\right) \oplus H\left(L_{*} \cup \bar{F}_{*}\right)\right] X^{t},
$$

where X is a unimodular integral matrix. Note that

$$
\left(\begin{array}{cc}
N_{2} & I_{(m-1) / 2} \\
I_{(m-1) / 2} & O
\end{array}\right) \oplus E \oplus(2)=Y\left[\left(\begin{array}{cc}
I_{a} & O \\
O & -I_{b}
\end{array}\right) \oplus(2)\right] Y^{-1}
$$

$a-b=m-2 r-1=-L k(\ell, \bar{f})-1$, where Y is an invertible rational matrix. This leads to the result.
(2) Let $L \cup U$ be the 2-periodic diagram of $\ell \circ u$ as shown in Fig. 3.3, where U denotes the diagram of the unknot u. Note that $L k(\ell \cup u, \bar{f})=L k(\ell, \bar{f})-1 \equiv 1$ $(\bmod 2)$. By (1), we obtain

$$
S\left[H(L \cup U) \oplus\left(\begin{array}{cc}
I_{a} & O \\
O & -I_{b}
\end{array}\right) \oplus(2)\right] S^{-1}=\left(\begin{array}{cc}
H\left(L_{*} \cup U_{*}\right) & O \\
O & H\left(\left(L_{*} \cup U_{*}\right) \cup \bar{F}_{*}\right)
\end{array}\right)
$$

and $a-(b+1)+1=L k(\ell \circ u, \bar{f})=-L k(\ell, \bar{f})-1$. Since $L_{*} \cup U_{*}$ and $\left(L_{*} \cup U_{*}\right) \cup \bar{F}_{*}$ are ambient isotopic to a splittable link diagram $L_{*} \circ U_{*}$ and the connected sum $\left(L_{*} \cup\right.$

$L \cup U$
Fig. 3.3.
$\left.\bar{F}_{*}\right) \sharp D^{-}, H\left(L_{*} \cup U_{*}\right) \approx H\left(L_{*}\right) \oplus(0)$ and $H\left(\left(L_{*} \cup U_{*}\right) \cup \bar{F}_{*}\right) \approx H\left(\left(L_{*} \cup \bar{F}_{*}\right) \sharp D^{-}\right)$. This implies the result.

Corollary 3.4. Let ℓ be a 2 -periodic oriented link in S^{3} and let ℓ_{*} be its factor link. Then
(1) $\sigma(\ell)-L k(\ell, \bar{f})=\sigma\left(\ell_{*}\right)+\sigma\left(\ell_{*} \cup \bar{f}_{*}\right)$.
(2) $n(\ell)=n\left(\ell_{*}\right)+n\left(\ell_{*} \cup \bar{f}_{*}\right)-1$, where \bar{f}_{*} denotes the knot f_{*} with an arbitrary orientation.

Proof. (1) Case I. $L k(\ell, \bar{f}) \equiv 1 \quad(\bmod 2)$. The relation of (1) in Theorem 3.3 gives that $\sigma(\ell)+a-b+1=\sigma\left(\ell_{*}\right)+\sigma\left(\ell_{*} \cup \bar{f}_{*}\right)$. Since $a-b+1=-L k(\ell, \bar{f})$, the result follows.

CASE II. $L k(\ell, \bar{f}) \equiv 0 \quad(\bmod 2)$. The relation of (2) in Theorem 3.3 gives that $\sigma(\ell \circ u)+a-b=\sigma\left(\ell_{*}\right)+\sigma\left(\left(\ell_{*} \cup \bar{f}_{*}\right) \sharp h^{-}\right)$. Note that $\sigma(\ell \circ u)=\sigma(\ell), \sigma\left(\left(\ell_{*} \cup\right.\right.$ $\left.\left.\bar{f}_{*}\right) \sharp h^{-}\right)=\sigma\left(\ell_{*} \cup \bar{f}_{*}\right)+\sigma\left(h^{-}\right)=\sigma\left(\ell_{*} \cup \bar{f}_{*}\right)-1$ (see [4, Lemma 7.2, 7.4]). Since $a-b=-L k(\ell, \bar{f})-1$, the result follows.
(2) Since $n(H(L))=n(\ell)+1, n(H(L \cup U))=n(H(L \circ U))=n(H(L))+$ $1, n\left(H\left(L_{*}\right) \oplus(0)\right)=n\left(\ell_{*}\right)+1$, and $n\left(H\left(\left(L_{*} \cup \bar{F}_{*}\right) \sharp D^{-}\right)\right)=n\left(\ell_{*} \cup \bar{f}_{*}\right)+n\left(h^{-}\right)-1=$ $n\left(\ell_{*} \cup \bar{f}_{*}\right)-1$ (see [4, Lemma 6.3, 6.4]), Theorem 3.3 implies the result.

Now reversing the orientation of the fixed point set f only changes the sign of some diagonal entries of the diagonal matrix $A\left(L_{*} \cup \bar{F}_{*}\right)$ in $H\left(L_{*} \cup \bar{F}_{*}\right)$. This implies that the equations do not depend on the choice of the orientation of f.

Remark 3.5. Let $k_{*} \cup f_{*}$ be an oriented link in S^{3}, where f_{*} is the unknot. Then the inverse image of k_{*} in the 2 -fold cyclic cover $M_{2}\left(f_{*}\right)$ branched over f_{*} gives a 2 -
periodic oriented link k in S^{3}. Clearly any 2-periodic link in S^{3} arises in this way. If k_{*} is a knot, then by Corollary 3.4(2) $n(k)=n\left(k_{*} \cup f_{*}\right)$.

It is well known that $|\operatorname{det}(G(K))|=\operatorname{order}\left(H_{1}\left(M_{2}(k) ; \mathbb{Z}\right)\right)$ for any diagram K of a knot k, where $\operatorname{order}\left(H_{1}\left(M_{2}(k) ; \mathbb{Z}\right)\right)$ denotes the order of the first homology group $H_{1}\left(M_{2}(k) ; \mathbb{Z}\right)$ of the 2 -fold cyclic cover $M_{2}(k)$ branched over k with integer coefficients. Now if k_{*} is a knot and $L k\left(k_{*}, f_{*}\right)$ is an odd integer, then k is also a knot and $n(k)=n\left(k_{*} \cup f_{*}\right)=1$. Furthermore, $|\operatorname{det}(H(K))|=|\operatorname{det}(G(K))|$ for any diagram K of the knot k. So by Theorem 3.3 (1) we obtain that

$$
\operatorname{order}\left(H_{1}\left(M_{2}(k) ; \mathbb{Z}\right)\right)=\frac{1}{2} \operatorname{order}\left(H_{1}\left(M_{2}\left(k_{*}\right) ; \mathbb{Z}\right)\right)\left|\operatorname{det}\left(k_{*} \cup f_{*}\right)\right| .
$$

References

[1] L. Goeritz: Knoten und quadratische formen, Math. Z. 36 (1933), 647-654.
[2] C.McA. Gordon and R.A. Litherland: On the signature of a link, Invent. Math. 47 (1978), 53-69.
[3] C.McA. Gordon and R.A. Litherland: On a theorem of Murasugi, Pac. J. Math. 82 (1979), 69-74.
[4] K. Murasugi: On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387-422.
[5] Lorenzo Traldi: On the Goeritz matrix of a link, Math. Z. 188 (1985), 203-213.
S.Y. Lee

Department of Mathematics
College of Natural Sciences
Kyungpook National University
Taegu 702-701, Korea
C.-Y. Park

Department of Mathematics
College of Natural Sciences
Kyungpook National University
Taegu 702-701, Korea

