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0. Introduction

The decomposition theorem of automorphisms of free group is well known, and

we mention the statement in the case of rank 2.

Theorem ([1]). Let G{1,2} be a free group generated by symbols 1 and 2.

Then any automorphism of G{1,2} is decomposed by three automorphisms:

1 -> 2 _ ί l - > 12
/ 3

Recently Zhi-Xiong Wen and Zhi-Ying Wen give the decomposition theorem of

invertible substitutions of rank 2, where we say an automorphism σ is an invertible

substitution if words σ(l) and σ(2) consist of the symbols 1 or 2.

Theorem ([2]). Any invertible substitution is generated by three invertible sub-

stitutions:

In this paper we give a simple proof of the theorem and a geometrical characta-

rization of invertible substitutions.

1. Proof of the theorem

Let us introduce the canonical homomorphism f : G{1,2} —> Z2 as follows:

ί(i±1):=±eu i = l,2

f ( W 0 : = f ( β i ) + f ( « 2 ) +•••+*(«*) for W = Sls2 skeG{l,2}

where {βi,e2} be canonical basis in R2. Then we know the following property.
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Fig. 1. IC[W]9 W = 1121- 1 2- 1 1- 1

PROPERTY. Let us define the linear representation Lσ of σ by

Then the following commutative relation holds:

G{1,2}4G{1,2}
f I if

A word W e G{1,2} is said to be closed if t(W) = 0. Let V be the family of

polygon curve with integer vertices on iZ2, and let us define the geometrical realiza-

tion map /C : G{1,2} -> V by

and for W =

:= {±\ei I 0 < λ < 1}, i = 1,2

G{1,2}

where x + S = {x + s\s e S}.

If the word W be a closed word, then the definition of IC[W] is modified slightly as

follows:

K[W] := f(17) + K[Wλ]

where U is the longest word satisfying W = ί7WΛiί7~1.(See Fig. 1.)

Lemma 1. For any automorphism θ, we have

(*) K[Θ{12\-12-1)] = x + q m - ^ " 1 ] for some x G Z 2 .
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1-1

Fig. 2. 1 )], σ = α, /?, 7

Proof. From Nielsen's theorem, any automorphism σ is decomposed by gener-

ators α, β and 7. On the other hand, it is easy to see that each generator of auto-

morphisms satisfies (*) property. Therefore any composition of generators also has (*)

property. (See Fig. 2.) D

Sublemma 1. Let σ be an invertible substitution and let a linear representation

Lσ of σ be

= (a

Assume that άetLσ — ± 1 and max{α, 6, c, d} — 1. Then the invertible substitution σ

is determined by the composition of ay β and 8 as follows:

l - > 1

2 - > 2

1 ->2

2-» 1

1 -> 12

2-> 1

1 -> 12

2 - > 2

(ί
( i

0
(ί
(ί
ί0

ϊ)

ί)
ϊ)
!)

=> a:

=> β-

= • α ί :

= ^ /9α :

=$aδa :

1

12

\ 2 H 12

or

or

α/3:

Jα :

-{\
21

2

1

21

2

21

The following sublemma is easily obtained from det Lσ = ± 1 .
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Sublemma 2. Let ( & d ) be a linear representation of substitution σ. Assume

that detLσ = ±1 and max{α, 6, c, d] > 2 then we have

max{α, 6, c, d} > max{{α, 6, c, d} \ max{α, 6, c, d}}.

Lemma 2. Lef σ be a substitution and let σ(l) and σ(2) be σ(l) = VFi

σ(2) = W2 Assume that

(1) a //near representation Lσ of σ satisfies a> b> d>0 and a > c > d > 0

(2) d e t L σ = ± l

(3) K,[σ{\2\-12-1)] =x + QUl-^-1], x E Z2

then there exists non empty word U such that

Wι = W2U or UW2.

Before the proof of the lemma, we give a remark of the assumption (3). The word

σ(121~12~1) is a closed word, therefore K [σ(121"~12~1)] is a closed curve in gen-

eral. And the assumption (3) says that the closed curve consists only of the boundary

of unit square.

Proof. We can introduce the orientation of /C[σ(121~12~1)] naturally by using

the order of symbols in the word. And assume det Lσ = 1, then the orientation of

/C[σ(121"12~1)] does not change from the orientation of /C[121"12~1].

(1) The case of Wλ = 1W{ and W2 = 2W2.

Suppose iW îl < 2, where ^V\\ is the length of the word W\, then we can determine

the substitution σ by

1 -> 1 f 1 -> 12
σ :

and these linear representations:

= ( 0 i ° r

This is contradictory to the condition (1).

Let us assume that \W\\ > 3, then W\ and W2 must be decomposed as W\ =

12W[ and W2 = 21W2. By the condition (3) we can easily see from the figure of

/C[σ(121"12-1)] that Wλ is decomposed as Wλ = UW2 (See Fig. 3.)

(2) The case of Wλ = VW{ and W2 = VW^ V φ 0.

Assume that W2 = Q then Wλ is decomposed as W\ — W2U.

Assume that Wi φ 0, then we can find V such that Wλ = V1W{' and W2 = V2W2',
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(1)

w

(2)

(3)

Fig. 3. K[σ{m-ι2-ιy\

and moreover we see that W" is not empty by the condition (1). Therefore by analo-

gous discussion of case (1) we see that there exist U such that Wi = UW^. (See Fig.

3.)
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We can consider the case of det Lσ — —1 by the same manner. D

Lemma 3. Let σ is an invertible substitution which satisfies the condition (I) of

Lemma 2. Then σ can be decomposed by σ = τ o θi (i € {1,2}) with some invertible

substitution r , where 0; is given by

=β'\2->1 '

Proof. By Lemma 1, the invertible substitution σ satisfies the condition (3) of

Lemma 2 and σ also satisfies the condition (2) from invertibility. So the word W\ is

decomposed as W\ — W2U or UW2 by Lemma 2.

Let us assume that W\ — W2U. Define the substitution r as follows:

(I-+W2
r : \ 2 - > C / '

then we see that σ is decomposed as σ = τoθχ. Both σ and θ\ are invertible, therefore

T is also invertible.

The case of W\ — UW2 is discussed analogously. D

Notice that in the case of Lemma 3 the linear representation LT of r satisfies

c
- t j a n c l a - c < a.

a b )

a — c\

b — a )

Therefore the following relation holds:

max(elements of Lσ) > max(elements of L τ ) .

Theorem 1. Any invertible substitution of rank 2 is decomposed by three invert-

ible substitutions:

l-> 12

Proof. Take any invertible substitution σ. By Sublemma 1 if max(elements of

La)— 1 then σ is decomposed by a, β and δ. Consider the case of max(elements of

Lσ)> 2. By Sublemma 2 we take iχ, jι e {0,1} satisfying
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α > 6 > d > 0 a n d α > c > d > 0 .
o

By Lemma 3 there exist substitutions τ[ and θPl such that

α*1 o σ o or7'1 = r{ o θPl.

Therefore the substitution σ is decomposed as

σ — a11 o r[ o θPl o α j l .

For n := a{l o τ[ let us continue the same procedure. Then there exists τn such that

max(elements of LTn) = 1, and the substitution σ is decomposed as

σ = τn o θPn o α J n o o β p 2 o α 7 2 o o

where pfc G {1,2} and j f c G {0,1}. D

Let us give a remark related to the uniqueness of decompositions. Define the in-

vertible substitution θ by

θ = /?oαo£ (=δoaoβ).

and replace every substitutions βoaoδ and ί o a o ^ in the decomposition of σ by θ .

Then the substitution σ is decomposed uniquely by a, β, δ and θ in our procedure.

In fact, except the case of W\ = W2UW2 we can determine which we take σ = roθ\

o r σ = r o ί 2 . In the case of W\ = W2UW2, σ can be decomposed as

σ — τoδooίoβ — roβooLoδ.

Using the same discussion, we have the following result.

Theorem 2 (geometrical charactarization of invertible substitutions). Let σ be a

substitution. Then σ is invertible if and only if

/C[σ(121"12-1)] = a; + /C[121-12"1] for some x G Z 2

Proof. If σ is invertible then by Lemma 1

K,[σ(\2\-ι2-1)} = x + K[\2\-ι2-1] for some x G Z 2 .

Oppositely, assume that

(**) /C[σ(121"12-1)] = a: + /C[121-12-1] for x G Z 2
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then we know W\ = W^U or UW2 by Lemma 2. In the case of W\ — W2U (resp.

W\ = UW2) determine the substitution r (resp. r ' ) such that

:\2->C/ i r e S p r * ( 2 -* ί/ J

then σ = τoθ\ (resp. σ = τΌ0 2) and r satisfies (**) property. Continue the procedure,

the substitution σ is decomposed by α, β and 5. So σ is invertible. D

2. Interval exchange transformations and invertible substitutions

In this section, we discuss about the dynamical system called an interval exchange

transformation associated with a substitution.

ASSUMPTION. Let us assume that the substitution σ satisfies the following proper-

ties:

(1) d e t L σ = ± l

(2) the charactaristic polynomial is irreducible.

Let μ be the maximum eigenvalue of Lσ and (^) and (1) be column and row

eigenvectors of μ, that is,

Let / be the contracting invariant line of L σ , then I is given by

Let li and I2 be unit seguments spanned by ei and e<ι, that is,

h := {λe2 I 0 < λ < 1}

h := {λei I 0 < λ < 1}.

Let us consider a set of unit seguments on lattice points:

S, = - { „ . „ , a-, (h W

We call the union of elements of S^ the stepped curve of the line / and it is denoted

by

Sβ := (J (x + li).
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Let us consider the finite union of Sβ as follows:

«Λ<+oo,(x,l)λGS/3 1

DEFINITION. On the notation of

σ(l) = s1s2 -sk,

σ(2) =

and

let us define a map Σσ on Q as follows:

for v = 1, 2

Σ
,l r) := L~ι(x) + Σ σ ( β , I r ) , x E Z

and

The map Σ σ is called the canonical form of σ.

REMARK. The canonical form of σ has another expression, which is for r = 1, 2

Σ σ ( 0 Λ )

Σ ί-Σ^+^Ol + ί Σ ί-
By the definition of canonical form, Arnoux-Ito ([3]) gives following propositions.

Let U and W be ZY = (ei,Ii) + (e 2 ,I 2 ) and Z/; = (0,li) + (0,! 2). We define the

geometrical realization map K : Q —> {polygons on R2} as follows:

K : (x, l r ) h^ x + l r for r = 1,2
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and let Ua,β be a projection from R2 to the line I along Q).

Let us define domains, which is finite union of intervals on / in general, as follows:

ΠQ | / 3[K(0,l i)] = D | 0 ) '

Π β f / ? [K(β i , l < ) ]=Di 0 )

D (o) ._ I I D (o) _ I I D (o) '
u *~ Ui=l,2 u i — Ui=l,2 u i

and

Πβ l / 9[K(Σ σ(0,I j))] = D | 1 ) '

Then the following general interval exchange transformation on D^o) and Ό^ are

well-defined:

x i—> x - Haββi if x £ vf'

W{1) : D ^ —-> D^1)

and the following propositions hold.

Proposition 1 ([3]).

(1) ΣσU D U and ΣσU' D W

Moreover, ΣσU - U = ΣσU' - W.

(2) Assume that (x,h) G Sβ then we have Σσ(a?,Ii) G Q.

(3) Assume that {x,h) Φ {x1 ,\j) t n e n w e n a v e

Proposition 2 ([3]). Let W^i)\Ό{o) be the induced transformation ofW^ to the

set Ό(°\ Then we have

(1) ^ ( I ) I D ( O ) = W / ( O )

(2) W^d)|D(o) has σ-structure, that is, for i = 1, 2

C DiJ) for 1 < j < k and WfoΌ™ = D [ 0 ) '

C Dί;> /or 1 < / < i αnrf = D
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K[ΣαW] K[ΣβW] K[ΣδU']

Fig. 4. W{( i )

Using the decomposition theorem in section one, we obtain the following other

charactarization of invertible substitutions.

Theorem 3. A substitution σ is an invertible substitution if and only if the inter-

val exchange transformation Wμ) associated with σ is 2-state interval exchange trans-

formation.

Proof. If σ is an invertible substitution then from the decomposition theorem the

substitution σ is decomposed by the generators a, β and δ. So it is enough to show

that the interval exchange transformations associated with α, β and δ are 2-state inter-

val exchange transformations. (See Fig. 4.)

Oppositely, assume the interval exchange transformation W(\) assosiated with σ is

2-state interval exchange transformation. Without the loss of a generality, we assume

that Lσ = ( ft ^ ) satisfies a > b > d and a > c > d by taking α ι o α o α 7 if necessary
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(1) (2) (3) (4)

e

Fig. 5. K[ΣσU']

where i, j G {0,1}.

From the fact that a + b > c + d, that is,

the number of li in K[ΣσW] > the number of 12 in K[ΣσU']

and K[ΣσW] belongs in the stepped curve Sβ from Proposition 1 (2), we see that

there are no (x,l 2) such that (05,12) and (cc-l-ei,l2) G ΣσU\ and ΣσU has the same

property by Proposition 1 (1). Let us consider 4 cases;

• The ends of K[ΣσW] are not constructed by 12 (1)

• One of the ends of K[ΣσW] is constructed by 12 (2) (3)

• Both of the ends of K[ΣσlC] are constructed by 12 (4)

(See Fig. 5.)

The case of (4) is impossible since ΣσU does not contain both (x,h) and (x +

ei, l 2 ) for any x.

For the case of (1) and (2), if (a?,l2) is in ΣσW then (x,li) is also in ΣσW from the

connectedness of K[ΣσU']. So by the definition of Σσ we have

Then there exists Σ*Lj fs{

 s u c n m a t /*, — Y^l=j fSi

 a n c^ Ŷ operating L σ we have

Therefore we have
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f(tι) = f(sk) and tt = sk.

Continue the same procedure, we obtain

This means that Wi is decomposed as WΊ =

For the case of (3), if (x + e2,b) is in Σ σ W then (cc -f ei,l i) is also in ΣσW from

the connectedness of K[ΣσW]. So by the remark we have

Then by the same procedure as the case of (1) and (2), W\ is decomposed as W\ —

W^U. Using same discussion as Lemma 3 in section one, there exists θ{ and r which

decompose σ as σ = r o θi% And notice that

Σ σ = Σ^. o Σ r

we can say the substitution r also has 2-state interval exchange transformation, since

the interval exchange transformations associated with σ and θi are 2-state interval ex-

change transformations. Continue the same procedure, there exists τn which satisfies

that

max(elements of LTn) = 1

and we obtain that

σ — τn o θPn o ajn o o ΘP2 o aJ2 o θPl o ajl

where pk e {1,2} and j k e {0,1}.

So the substituiton σ is invertible. D
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