DECOMPOSITION THEOREM ON INVERTIBLE SUBSTITUTIONS

Hiromi EI and Shunit ITO

(Received April 21, 1997)

0. Introduction

The decomposition theorem of automorphisms of free group is well known, and we mention the statement in the case of rank 2.

Theorem ([1]). Let $G\{1,2\}$ be a free group generated by symbols 1 and 2. Then any automorphism of $G\{1,2\}$ is decomposed by three automorphisms:

$$
\alpha:\left\{\begin{array}{l}
1 \rightarrow 2 \\
2 \rightarrow 1
\end{array}, \quad \beta:\left\{\begin{array}{l}
1 \rightarrow 12 \\
2 \rightarrow 1
\end{array}, \quad \gamma:\left\{\begin{array}{l}
1 \rightarrow 1 \\
2 \rightarrow 2^{-1}
\end{array}\right.\right.\right.
$$

Recently Zhi-Xiong Wen and Zhi-Ying Wen give the decomposition theorem of invertible substitutions of rank 2 , where we say an automorphism σ is an invertible substitution if words $\sigma(1)$ and $\sigma(2)$ consist of the symbols 1 or 2 .

Theorem ([2]). Any invertible substitution is generated by three invertible substitutions:

$$
\alpha:\left\{\begin{array}{l}
1 \rightarrow 2 \\
2 \rightarrow 1
\end{array}, \quad \beta:\left\{\begin{array}{l}
1 \rightarrow 12 \\
2 \rightarrow 1
\end{array}, \quad \delta:\left\{\begin{array}{l}
1 \rightarrow 21 \\
2 \rightarrow 1
\end{array}\right.\right.\right.
$$

In this paper we give a simple proof of the theorem and a geometrical charactarization of invertible substitutions.

1. Proof of the theorem

Let us introduce the canonical homomorphism $\mathbf{f}: G\{1,2\} \rightarrow \boldsymbol{Z}^{2}$ as follows:

$$
\begin{gathered}
\mathbf{f}\left(i^{ \pm 1}\right):= \pm \boldsymbol{e}_{i}, \quad i=1,2 \\
\mathbf{f}(W):=\mathbf{f}\left(s_{1}\right)+\mathbf{f}\left(s_{2}\right)+\cdots+\mathbf{f}\left(s_{k}\right) \text { for } W=s_{1} s_{2} \cdots s_{k} \in G\{1,2\}
\end{gathered}
$$

where $\left\{e_{1}, e_{2}\right\}$ be canonical basis in \boldsymbol{R}^{2}. Then we know the following property.

Fig. 1. $\mathcal{K}[W], W=1121^{-1} 2^{-1} 1^{-1}$

Property. Let us define the linear representation L_{σ} of σ by

$$
L_{\sigma}=(\mathbf{f}(\sigma(1)), \mathbf{f}(\sigma(2))) .
$$

Then the following commutative relation holds:

A word $W \in G\{1,2\}$ is said to be closed if $\mathbf{f}(W)=0$. Let \mathcal{P} be the family of polygon curve with integer vertices on \boldsymbol{R}^{2}, and let us define the geometrical realization map $\mathcal{K}: G\{1,2\} \rightarrow \mathcal{P}$ by

$$
\mathcal{K}\left[i^{ \pm 1}\right]:=\left\{ \pm \lambda e_{i} \mid 0 \leq \lambda \leq 1\right\}, \quad i=1,2
$$

and for $W=w_{1} w_{2} \cdots w_{k} \in G\{1,2\}$

$$
\mathcal{K}\left[w_{1} w_{2} \cdots w_{k}\right]:=\bigcup_{i=1}^{k}\left\{\mathbf{f}\left(w_{1} w_{2} \cdots w_{i-1}\right)+\mathcal{K}\left[w_{i}\right]\right\}
$$

where $\boldsymbol{x}+\mathbf{S}=\{\boldsymbol{x}+\boldsymbol{s} \mid \boldsymbol{s} \in \mathbf{S}\}$.
If the word W be a closed word, then the definition of $\mathcal{K}[W]$ is modified slightly as follows:

$$
\mathcal{K}[W]:=\mathbf{f}(U)+\mathcal{K}\left[W_{1}\right]
$$

where U is the longest word satisfying $W=U W_{1} U^{-1}$ (See Fig. 1.)
Lemma 1. For any automorphism θ, we have

$$
\begin{equation*}
\mathcal{K}\left[\theta\left(121^{-1} 2^{-1}\right)\right]=\boldsymbol{x}+\mathcal{K}\left[121^{-1} 2^{-1}\right] \text { for some } \boldsymbol{x} \in \boldsymbol{Z}^{2} . \tag{*}
\end{equation*}
$$

Fig. 2. $\mathcal{K}\left[\sigma\left(121^{-1} 2^{-1}\right)\right], \sigma=\alpha, \beta, \gamma$
Proof. From Nielsen's theorem, any automorphism σ is decomposed by generators α, β and γ. On the other hand, it is easy to see that each generator of automorphisms satisfies $(*)$ property. Therefore any composition of generators also has $(*)$ property. (See Fig. 2.)

Sublemma 1. Let σ be an invertible substitution and let a linear representation L_{σ} of σ be

$$
L_{\sigma}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) .
$$

Assume that $\operatorname{det} L_{\sigma}= \pm 1$ and $\max \{a, b, c, d\}=1$. Then the invertible substitution σ is determined by the composition of α, β and δ as follows:

$$
\begin{aligned}
& \text { list of } L_{\sigma} \quad \text { list of } \sigma \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \Longrightarrow \alpha \alpha:\left\{\begin{array}{l}
1 \rightarrow 1 \\
2 \rightarrow 2
\end{array}\right. \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \Longrightarrow \alpha:\left\{\begin{array}{l}
1 \rightarrow 2 \\
2 \rightarrow 1
\end{array}\right. \\
& \left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \Longrightarrow \beta:\left\{\begin{array}{l}
1 \rightarrow 12 \\
2 \rightarrow 1
\end{array} \text { or } \quad \delta:\left\{\begin{array}{l}
1 \rightarrow 21 \\
2 \rightarrow 1
\end{array}\right.\right. \\
& \left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \Longrightarrow \alpha \delta:\left\{\begin{array}{ll}
1 \rightarrow 12 \\
2 \rightarrow 2
\end{array} \text { or } \quad \alpha \beta:\left\{\begin{array}{l}
1 \rightarrow 21 \\
2 \rightarrow 2
\end{array}\right.\right. \\
& \left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \Longrightarrow \beta \alpha:\left\{\begin{array}{ll}
1 \rightarrow 1 \\
2 \rightarrow 12
\end{array} \text { or } \quad \delta \alpha:\left\{\begin{array}{l}
1 \rightarrow 1 \\
2 \rightarrow 21
\end{array}\right.\right. \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) \Longrightarrow \alpha \delta \alpha:\left\{\begin{array}{ll}
1 \rightarrow 2 \\
2 \rightarrow 12
\end{array} \text { or } \quad \alpha \beta \alpha:\left\{\begin{array}{l}
1 \rightarrow 2 \\
2 \rightarrow 21
\end{array}\right.\right.
\end{aligned}
$$

The following sublemma is easily obtained from det $L_{\sigma}= \pm 1$.

Sublemma 2. Let $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ be a linear representation of substitution σ. Assume that $\operatorname{det} L_{\sigma}= \pm 1$ and $\max \{a, b, c, d\} \geq 2$ then we have

$$
\max \{a, b, c, d\}>\max \{\{a, b, c, d\} \backslash \max \{a, b, c, d\}\} .
$$

Lemma 2. Let σ be a substitution and let $\sigma(1)$ and $\sigma(2)$ be $\sigma(1)=W_{1}$ and $\sigma(2)=W_{2}$. Assume that
(1) a linear representation L_{σ} of σ satisfies $a>b \geq d \geq 0$ and $a>c \geq d \geq 0$
(2) $\operatorname{det} L_{\sigma}= \pm 1$
(3) $\mathcal{K}\left[\sigma\left(121^{-1} 2^{-1}\right)\right]=\boldsymbol{x}+\mathcal{K}\left[121^{-1} 2^{-1}\right], \quad x \in Z^{2}$
then there exists non empty word U such that

$$
W_{1}=W_{2} U \quad \text { or } \quad U W_{2}
$$

Before the proof of the lemma, we give a remark of the assumption (3). The word $\sigma\left(121^{-1} 2^{-1}\right)$ is a closed word, therefore $\mathcal{K}\left[\sigma\left(121^{-1} 2^{-1}\right)\right]$ is a closed curve in general. And the assumption (3) says that the closed curve consists only of the boundary of unit square.

Proof. We can introduce the orientation of $\mathcal{K}\left[\sigma\left(121^{-1} 2^{-1}\right)\right]$ naturally by using the order of symbols in the word. And assume det $L_{\sigma}=1$, then the orientation of $\mathcal{K}\left[\sigma\left(121^{-1} 2^{-1}\right)\right]$ does not change from the orientation of $\mathcal{K}\left[121^{-1} 2^{-1}\right]$.
(1) The case of $W_{1}=1 W_{1}^{\prime}$ and $W_{2}=2 W_{2}^{\prime}$.

Suppose $\left|W_{1}\right| \leq 2$, where $\left|W_{1}\right|$ is the length of the word W_{1}, then we can determine the substitution σ by

$$
\sigma:\left\{\begin{array}{l}
1 \rightarrow 1 \\
2 \rightarrow 2
\end{array} \quad \text { or } \quad \sigma:\left\{\begin{array}{l}
1 \rightarrow 12 \\
2 \rightarrow 2
\end{array},\right.\right.
$$

and these linear representations:

$$
L_{\sigma}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { or } \quad L_{\sigma}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

This is contradictory to the condition (1).
Let us assume that $\left|W_{1}\right| \geq 3$, then W_{1} and W_{2} must be decomposed as $W_{1}=$ $12 W_{1}^{\prime}$ and $W_{2}=21 W_{2}^{\prime}$. By the condition (3) we can easily see from the figure of $\mathcal{K}\left[\sigma\left(121^{-1} 2^{-1}\right)\right]$ that W_{1} is decomposed as $W_{1}=U W_{2}$. (See Fig. 3.)
(2) The case of $W_{1}=V W_{1}^{\prime}$ and $W_{2}=V W_{2}^{\prime}, V \neq \emptyset$.

Assume that $W_{2}^{\prime}=\emptyset$ then W_{1} is decomposed as $W_{1}=W_{2} U$.
Assume that $W_{2}^{\prime} \neq \emptyset$, then we can find V such that $W_{1}=V 1 W_{1}^{\prime \prime}$ and $W_{2}=V 2 W_{2}^{\prime \prime}$,
(1)

(2)
(3)

Fig. 3. $\mathcal{K}\left[\sigma\left(121^{-1} 2^{-1}\right)\right]$
and moreover we see that $W_{1}^{\prime \prime}$ is not empty by the condition (1). Therefore by analogous discussion of case (1) we see that there exist U such that $W_{1}=U W_{2}$. (See Fig. 3.)

We can consider the case of det $L_{\sigma}=-1$ by the same manner.
Lemma 3. Let σ is an invertible substitution which satisfies the condition (1) of Lemma 2. Then σ can be decomposed by $\sigma=\tau \circ \theta_{i}(i \in\{1,2\})$ with some invertible substitution τ, where θ_{i} is given by

$$
\theta_{1}=\beta:\left\{\begin{array}{l}
1 \rightarrow 12 \\
2 \rightarrow 1
\end{array}, \quad \theta_{2}=\delta:\left\{\begin{array}{l}
1 \rightarrow 21 \\
2 \rightarrow 1
\end{array}\right.\right.
$$

Proof. By Lemma 1, the invertible substitution σ satisfies the condition (3) of Lemma 2 and σ also satisfies the condition (2) from invertibility. So the word W_{1} is decomposed as $W_{1}=W_{2} U$ or $U W_{2}$ by Lemma 2 .
Let us assume that $W_{1}=W_{2} U$. Define the substitution τ as follows:

$$
\tau:\left\{\begin{array}{l}
1 \rightarrow W_{2} \\
2 \rightarrow U
\end{array}\right.
$$

then we see that σ is decomposed as $\sigma=\tau \circ \theta_{1}$. Both σ and θ_{1} are invertible, therefore τ is also invertible.
The case of $W_{1}=U W_{2}$ is discussed analogously.
Notice that in the case of Lemma 3 the linear representation L_{τ} of τ satisfies

$$
\mathrm{Ł}_{\tau}=\left(\begin{array}{ll}
c & a-c \\
d & b-d
\end{array}\right) \quad \text { and } \quad a-c<a
$$

Therefore the following relation holds:

$$
\max \left(\text { elements of } Ł_{\sigma}\right)>\max \left(\text { elements of } Ł_{\tau}\right)
$$

Theorem 1. Any invertible substitution of rank 2 is decomposed by three invertible substitutions:

$$
\alpha:\left\{\begin{array}{l}
1 \rightarrow 2 \\
2 \rightarrow 1
\end{array}, \quad \beta:\left\{\begin{array}{l}
1 \rightarrow 12 \\
2 \rightarrow 1
\end{array}, \quad \delta:\left\{\begin{array}{l}
1 \rightarrow 21 \\
2 \rightarrow 1
\end{array}\right.\right.\right.
$$

Proof. Take any invertible substitution σ. By Sublemma 1 if $\max ($ elements of $\left.L_{\sigma}\right)=1$ then σ is decomposed by α, β and δ. Consider the case of $\max ($ elements of $\left.L_{\sigma}\right) \geq 2$. By Sublemma 2 we take $i_{1}, j_{1} \in\{0,1\}$ satisfying

$$
L_{\alpha^{i_{1} \circ \sigma \circ \alpha^{j_{1}}}}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right), \quad a>b \geq d \geq 0 \text { and } a>c \geq d \geq 0
$$

By Lemma 3 there exist substitutions τ_{1}^{\prime} and $\theta_{p_{1}}$ such that

$$
\alpha^{i_{1}} \circ \sigma \circ \alpha^{j_{1}}=\tau_{1}^{\prime} \circ \theta_{p_{1}}
$$

Therefore the substitution σ is decomposed as

$$
\sigma=\alpha^{i_{1}} \circ \tau_{1}^{\prime} \circ \theta_{p_{1}} \circ \alpha^{j_{1}}
$$

For $\tau_{1}:=\alpha^{i_{1}} \circ \tau_{1}^{\prime}$ let us continue the same procedure. Then there exists τ_{n} such that $\max \left(\right.$ elements of $\left.L_{\tau_{n}}\right)=1$, and the substitution σ is decomposed as

$$
\sigma=\tau_{n} \circ \theta_{p_{n}} \circ \alpha^{j_{n}} \circ \cdots \circ \theta_{p_{2}} \circ \alpha^{j_{2}} \circ \theta_{p_{1}} \circ \alpha^{j_{1}} .
$$

where $p_{k} \in\{1,2\}$ and $j_{k} \in\{0,1\}$.
Let us give a remark related to the uniqueness of decompositions. Define the invertible substitution Θ by

$$
\Theta=\beta \circ \alpha \circ \delta(=\delta \circ \alpha \circ \beta) .
$$

and replace every substitutions $\beta \circ \alpha \circ \delta$ and $\delta \circ \alpha \circ \beta$ in the decomposition of σ by Θ. Then the substitution σ is decomposed uniquely by α, β, δ and Θ in our procedure. In fact, except the case of $W_{1}=W_{2} U W_{2}$ we can determine which we take $\sigma=\tau \circ \theta_{1}$ or $\sigma=\tau \circ \theta_{2}$. In the case of $W_{1}=W_{2} U W_{2}, \sigma$ can be decomposed as

$$
\sigma=\tau \circ \delta \circ \alpha \circ \beta=\tau \circ \beta \circ \alpha \circ \delta
$$

Using the same discussion, we have the following result.
Theorem 2 (geometrical charactarization of invertible substitutions). Let σ be a substitution. Then σ is invertible if and only if

$$
\mathcal{K}\left[\sigma\left(121^{-1} 2^{-1}\right)\right]=\boldsymbol{x}+\mathcal{K}\left[121^{-1} 2^{-1}\right] \text { for some } \boldsymbol{x} \in \boldsymbol{Z}^{2}
$$

Proof. If σ is invertible then by Lemma 1

$$
\mathcal{K}\left[\sigma\left(121^{-1} 2^{-1}\right)\right]=\boldsymbol{x}+\mathcal{K}\left[121^{-1} 2^{-1}\right] \quad \text { for some } \quad \boldsymbol{x} \in \boldsymbol{Z}^{2} .
$$

Oppositely, assume that

$$
\begin{equation*}
\mathcal{K}\left[\sigma\left(121^{-1} 2^{-1}\right)\right]=x+\mathcal{K}\left[121^{-1} 2^{-1}\right] \quad \text { for } \quad x \in Z^{2} \tag{**}
\end{equation*}
$$

then we know $W_{1}=W_{2} U$ or $U W_{2}$ by Lemma 2. In the case of $W_{1}=W_{2} U$ (resp. $W_{1}=U W_{2}$) determine the substitution $\tau\left(\right.$ resp. $\left.\tau^{\prime}\right)$ such that

$$
\tau:\left\{\begin{array} { l }
{ 1 \rightarrow W _ { 2 } } \\
{ 2 \rightarrow U }
\end{array} \quad \left(\text { resp. } \tau^{\prime}:\left\{\begin{array}{l}
1 \rightarrow W_{2} \\
2 \rightarrow U
\end{array}\right)\right.\right.
$$

then $\sigma=\tau \circ \theta_{1}$ (resp. $\sigma=\tau^{\prime} \circ \theta_{2}$) and τ satisfies (**) property. Continue the procedure, the substitution σ is decomposed by α, β and δ. So σ is invertible.

2. Interval exchange transformations and invertible substitutions

In this section, we discuss about the dynamical system called an interval exchange transformation associated with a substitution.

Assumption. Let us assume that the substitution σ satisfies the following properties:
(1) $\operatorname{det} L_{\sigma}= \pm 1$
(2) the charactaristic polynomial is irreducible.

Let μ be the maximum eigenvalue of L_{σ} and $\binom{1}{\alpha}$ and $\binom{1}{\beta}$ be column and row eigenvectors of μ, that is,

$$
L_{\sigma}\binom{1}{\alpha}=\mu\binom{1}{\alpha} \quad \text { and } \quad{ }^{t} L_{\sigma}\binom{1}{\beta}=\mu\binom{1}{\beta}
$$

Let l be the contracting invariant line of L_{σ}, then l is given by

$$
l=\left\{\binom{x}{y} \left\lvert\,\left(\binom{x}{y},\binom{1}{\beta}\right)=0\right.\right\} .
$$

Let \mathbf{l}_{1} and \mathbf{l}_{2} be unit seguments spanned by \boldsymbol{e}_{1} and \boldsymbol{e}_{2}, that is,

$$
\begin{aligned}
& \mathbf{I}_{1}:=\left\{\lambda \boldsymbol{e}_{2} \mid 0 \leq \lambda \leq 1\right\} \\
& \mathbf{l}_{2}:=\left\{\lambda \boldsymbol{e}_{1} \mid 0 \leq \lambda \leq 1\right\} .
\end{aligned}
$$

Let us consider a set of unit seguments on lattice points:

$$
\mathrm{S}_{\beta}:=\left\{\begin{array}{l|l}
(\boldsymbol{x}, \mathbf{l}) \in Z^{2} \times\left\{\mathbf{I}_{\mathbf{1}}, \mathbf{l}_{2}\right\} & \begin{array}{l}
\left(\boldsymbol{x},\binom{1}{\beta}\right) \geq 0 \\
\left(\boldsymbol{x}-\boldsymbol{e}_{i},\binom{1}{\beta}\right)<0 \text { if } \mathbf{I}=\mathbf{I}_{i}
\end{array}
\end{array}\right\} .
$$

We call the union of elements of S_{β} the stepped curve of the line l and it is denoted by

$$
S_{\beta}:=\bigcup_{\left(\boldsymbol{x}, \mathbf{l}_{\mathbf{i}}\right) \in \mathrm{S}_{\beta}}\left(x+\mathbf{I}_{i}\right)
$$

Let us consider the finite union of S_{β} as follows:

$$
\mathcal{G}:=\left\{\begin{array}{l|l}
\sum_{\lambda \in \Lambda}(\boldsymbol{x}, \mathbf{I})_{\lambda} & \begin{array}{l}
\sharp \Lambda<+\infty,(\boldsymbol{x}, \mathbf{l})_{\lambda} \in \mathrm{S}_{\beta} \\
(\boldsymbol{x}, \mathbf{I})_{\lambda} \neq(\boldsymbol{x}, \mathbf{I})_{\lambda^{\prime}} \text { if } \lambda \neq \lambda^{\prime}
\end{array}
\end{array}\right\} .
$$

Defintion. On the notation of

$$
\begin{aligned}
& \sigma(1)=s_{1} s_{2} \cdots s_{k}, \\
& \sigma(2)=t_{1} t_{2} \cdots t_{l}
\end{aligned}
$$

and

$$
L_{\sigma}^{-1}=\left(\boldsymbol{f}_{1}, \boldsymbol{f}_{2}\right)
$$

let us define a $\operatorname{map} \Sigma_{\sigma}$ on \mathcal{G} as follows:
for $r=1,2$

$$
\begin{aligned}
& \Sigma_{\sigma}:\left(\mathbf{0}, \mathbf{l}_{r}\right) \mapsto\left\{\left\{\sum_{j ; s_{j}=r}\left(\sum_{i=j+1}^{k} f_{s_{i}}, \mathbf{l}_{1}\right)\right\}+\left\{\sum_{j^{\prime} ; t_{j^{\prime}}=r}\left(\sum_{i=j^{\prime}+1}^{l} f_{t_{i}}, \mathbf{l}_{2}\right)\right\}\right\} \\
& \Sigma_{\sigma}\left(\boldsymbol{x}, \mathbf{l}_{r}\right):=L_{\sigma}^{-1}(\boldsymbol{x})+\Sigma_{\sigma}\left(\mathbf{0}, \mathbf{l}_{r}\right), \boldsymbol{x} \in \boldsymbol{Z}^{2}
\end{aligned}
$$

and

$$
\Sigma_{\sigma}\left(\sum_{p}\left(\boldsymbol{x}_{p}, \mathbf{1}_{r_{p}}\right)\right):=\sum_{p} \Sigma_{\sigma}\left(\mathbf{0}, \mathbf{l}_{r_{p}}\right) .
$$

The map Σ_{σ} is called the canonical form of σ.
Remark. The canonical form of σ has another expression, which is for $r=1,2$

$$
\begin{aligned}
& \Sigma_{\sigma}\left(\mathbf{0}, \mathbf{l}_{r}\right) \\
& =\left\{\left\{\sum_{j ; s_{j}=r}\left(-\sum_{i=1}^{j} \boldsymbol{f}_{s_{i}}+\boldsymbol{e}_{1}, \mathbf{l}_{1}\right)\right\}+\left\{\sum_{j^{\prime} ; t_{j^{\prime}}=r}\left(-\sum_{i=1}^{j^{\prime}} \boldsymbol{f}_{t_{i}}+\boldsymbol{e}_{2}, \mathbf{l}_{2}\right)\right\}\right\}
\end{aligned}
$$

By the definition of canonical form, Arnoux-Ito ([3]) gives following propositions.
Let \mathcal{U} and \mathcal{U}^{\prime} be $\mathcal{U}=\left(\boldsymbol{e}_{1}, \mathbf{l}_{1}\right)+\left(\boldsymbol{e}_{2}, \mathbf{l}_{2}\right)$ and $\mathcal{U}^{\prime}=\left(\mathbf{0}, \mathbf{l}_{1}\right)+\left(\mathbf{0}, \mathbf{l}_{2}\right)$. We define the geometrical realization map $\mathbf{K}: \mathcal{G} \rightarrow$ polygons on $\left.\boldsymbol{R}^{2}\right\}$ as follows:

$$
\begin{gathered}
\mathbf{K}:\left(\boldsymbol{x}, \mathbf{l}_{r}\right) \mapsto \boldsymbol{x}+\mathbf{l}_{r} \text { for } r=1,2 \\
\mathbf{K}\left[\sum_{i}\left(\boldsymbol{x}_{i}, \mathbf{l}_{r_{i}}\right)\right]:=\bigcup_{i}\left(\boldsymbol{x}_{i}+\mathbf{l}_{r_{i}}\right),
\end{gathered}
$$

and let $\Pi_{\alpha, \beta}$ be a projection from \boldsymbol{R}^{2} to the line l along $\binom{1}{\alpha}$.
Let us define domains, which is finite union of intervals on l in general, as follows:

$$
\begin{gathered}
\Pi_{\alpha, \beta}\left[\mathbf{K}\left(\mathbf{0}, \mathbf{l}_{i}\right)\right]=\mathbf{D}_{i}^{(0)^{\prime}} \\
\Pi_{\alpha, \beta}\left[\mathbf{K}\left(\boldsymbol{e}_{i}, \mathbf{l}_{i}\right)\right]=\mathbf{D}_{i}^{(0)} \\
\mathbf{D}^{(0)}:=\bigcup_{i=1,2} \mathbf{D}_{i}^{(0)}=\bigcup_{i=1,2} \mathbf{D}_{i}^{(0)^{\prime}}
\end{gathered}
$$

and

$$
\begin{gathered}
\Pi_{\alpha, \beta}\left[\mathbf{K}\left(\Sigma_{\sigma}\left(\mathbf{0}, \mathbf{l}_{i}\right)\right)\right]=\mathbf{D}_{i}^{(1)^{\prime}} \\
\Pi_{\alpha, \beta}\left[\mathbf{K}\left(\Sigma_{\sigma}\left(\boldsymbol{e}_{i}, \mathbf{l}_{i}\right)\right)\right]=\mathbf{D}_{i}^{(1)} \\
\mathbf{D}^{(1)}:=\bigcup_{i=1,2} \mathbf{D}_{i}^{(1)}=\bigcup_{i=1,2} \mathbf{D}_{i}^{(1)^{\prime}} .
\end{gathered}
$$

Then the following general interval exchange transformation on $\mathbf{D}^{(0)}$ and $\mathbf{D}^{(1)}$ are well-defined:

$$
\begin{aligned}
W_{(0)}: \mathbf{D}^{(0)} & \longrightarrow \mathbf{D}^{(0)} \\
\boldsymbol{x} & \longmapsto \boldsymbol{x}-\Pi_{\alpha, \beta} \boldsymbol{e}_{i} \quad \text { if } \quad \boldsymbol{x} \in \mathbf{D}_{i}^{(0)} \\
W_{(1)}: \mathbf{D}^{(1)} & \longrightarrow \mathbf{D}^{(1)} \\
\boldsymbol{x} & \longmapsto \boldsymbol{x}-\Pi_{\alpha, \beta} \boldsymbol{f}_{i} \quad \text { if } \quad \boldsymbol{x} \in \mathbf{D}_{i}^{(1)},
\end{aligned}
$$

and the following propositions hold.
Proposition 1 ([3]).
(1) $\Sigma_{\sigma} \mathcal{U} \supset \mathcal{U}$ and $\Sigma_{\sigma} \mathcal{U}^{\prime} \supset \mathcal{U}^{\prime}$

$$
\text { Moreover, } \Sigma_{\sigma} \mathcal{U}-\mathcal{U}=\Sigma_{\sigma} \mathcal{U}^{\prime}-\mathcal{U}^{\prime} .
$$

(2) Assume that $\left(\boldsymbol{x}, \mathbf{l}_{i}\right) \in \mathrm{S}_{\beta}$ then we have $\Sigma_{\sigma}\left(\boldsymbol{x}, \mathbf{l}_{i}\right) \in \mathcal{G}$.
(3) Assume that $\left(\boldsymbol{x}, \mathbf{1}_{i}\right) \neq\left(\boldsymbol{x}^{\prime}, \mathbf{l}_{j}\right)$ then we have

$$
\Sigma_{\sigma}\left(\boldsymbol{x}, \mathbf{1}_{i}\right) \cap \Sigma_{\sigma}\left(\boldsymbol{x}^{\prime}, \mathbf{1}_{j}\right)=\emptyset
$$

Proposition 2 ([3]). Let $\left.W_{(1)}\right|_{\mathbf{D}^{(0)}}$ be the induced transformation of $W_{(1)}$ to the set $\mathbf{D}^{(0)}$. Then we have
(1) $\left.W_{(1)}\right|_{\mathbf{D}^{(0)}}=W_{(0)}$
(2) $\left.W_{(1)}\right|_{\mathbf{D}}{ }^{(0)}$ has σ-structure, that is, for $i=1,2$

$$
\begin{aligned}
& W_{(1)}^{j-1} \mathbf{D}_{1}^{(0)} \subset \mathbf{D}_{s_{j}}^{(1)} \text { for } 1 \leq j \leq k \text { and } W_{(1)}^{k} \mathbf{D}_{1}^{(0)}=\mathbf{D}_{1}^{(0)^{\prime}} \\
& W_{(1)}^{j^{\prime}-1} \mathbf{D}_{2}^{(0)} \subset \mathbf{D}_{t_{j^{\prime}}}^{(1)} \text { for } 1 \leq j^{\prime} \leq l \text { and } W_{(1)}^{l} \mathbf{D}_{2}^{(0)}=\mathbf{D}_{2}^{(0)^{\prime}}
\end{aligned}
$$

Fig. 4. $W_{(1)}$

Using the decomposition theorem in section one, we obtain the following other charactarization of invertible substitutions.

Theorem 3. A substitution σ is an invertible substitution if and only if the interval exchange transformation $W_{(1)}$ associated with σ is 2-state interval exchange transformation.

Proof. If σ is an invertible substitution then from the decomposition theorem the substitution σ is decomposed by the generators α, β and δ. So it is enough to show that the interval exchange transformations associated with α, β and δ are 2 -state interval exchange transformations. (See Fig. 4.)

Oppositely, assume the interval exchange transformation $W_{(1)}$ assosiated with σ is 2-state interval exchange transformation. Without the loss of a generality, we assume that $L_{\sigma}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ satisfies $a>b \geq d$ and $a>c \geq d$ by taking $\alpha^{i} \circ \sigma \circ \alpha^{j}$ if necessary

Fig. 5. $\mathbf{K}\left[\Sigma_{\sigma} \mathcal{U}^{\prime}\right]$
where $i, j \in\{0,1\}$.
From the fact that $a+b>c+d$, that is,

$$
\text { the number of } \mathbf{1}_{1} \text { in } \mathbf{K}\left[\Sigma_{\sigma} \mathcal{U}^{\prime}\right]>\text { the number of } \mathbf{1}_{2} \text { in } \mathbf{K}\left[\Sigma_{\sigma} \mathcal{U}^{\prime}\right]
$$

and $\mathbf{K}\left[\Sigma_{\sigma} \mathcal{U}^{\prime}\right]$ belongs in the stepped curve \boldsymbol{S}_{β} from Proposition 1 (2), we see that there are no $\left(\boldsymbol{x}, \mathbf{l}_{2}\right)$ such that $\left(\boldsymbol{x}, \mathbf{l}_{2}\right)$ and $\left(\boldsymbol{x}+\boldsymbol{e}_{1}, \mathbf{l}_{2}\right) \in \Sigma_{\sigma} \mathcal{U}^{\prime}$, and $\Sigma_{\sigma} \mathcal{U}$ has the same property by Proposition 1 (1). Let us consider 4 cases;

- The ends of $\mathbf{K}\left[\Sigma_{\sigma} \mathcal{U}^{\prime}\right]$ are not constructed by $\mathbf{l}_{2} \ldots$
- One of the ends of $\mathbf{K}\left[\Sigma_{\sigma} \mathcal{U}^{\prime}\right]$ is constructed by $\mathbf{l}_{2} \cdots \cdots$ (2) (3)
- Both of the ends of $\mathbf{K}\left[\Sigma_{\sigma} \mathcal{U}^{\prime}\right]$ are constructed by $\mathbf{l}_{2} \cdots$ (4)

(See Fig. 5.)

The case of (4) is impossible since $\Sigma_{\sigma} \mathcal{U}$ does not contain both $\left(\boldsymbol{x}, \mathbf{1}_{2}\right)$ and $(\boldsymbol{x}+$ $\boldsymbol{e}_{1}, \mathbf{l}_{2}$) for any \boldsymbol{x}.
For the case of (1) and (2), if $\left(\boldsymbol{x}, \mathbf{l}_{2}\right)$ is in $\Sigma_{\sigma} \mathcal{U}^{\prime}$ then $\left(\boldsymbol{x}, \mathbf{l}_{1}\right)$ is also in $\Sigma_{\sigma} \mathcal{U}^{\prime}$ from the connectedness of $\mathbf{K}\left[\Sigma_{\sigma} \mathcal{U}^{\prime}\right]$. So by the definition of Σ_{σ} we have

$$
\left\{f_{s_{k}}, f_{s_{k}}+f_{s_{k-1}}, \cdots, \sum_{i=1}^{k} f_{s_{i}}\right\} \supset\left\{f_{t_{i}}, f_{t_{l}}+f_{t_{l-1}}, \cdots, \sum_{i=1}^{l} f_{t_{i}}\right\} .
$$

Then there exists $\sum_{i=j}^{k} f_{s_{i}}$ such that $f_{t_{l}}=\sum_{i=j}^{k} \boldsymbol{f}_{s_{i}}$ and by operating L_{σ} we have

$$
\mathbf{f}\left(t_{l}\right)=\sum_{i=j}^{k} \mathbf{f}\left(s_{i}\right), \quad \mathbf{f}\left(t_{l}\right), \mathbf{f}\left(s_{i}\right) \in\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\} .
$$

Therefore we have

$$
\mathbf{f}\left(t_{l}\right)=\mathbf{f}\left(s_{k}\right) \quad \text { and } \quad t_{l}=s_{k}
$$

Continue the same procedure, we obtain

$$
t_{l}=s_{k}, t_{l-1}=s_{k-1}, \cdots, t_{1}=s_{k-l+1}
$$

This means that W_{1} is decomposed as $W_{1}=U W_{2}$.
For the case of (3), if $\left(x+e_{2}, \mathbf{l}_{2}\right)$ is in $\Sigma_{\sigma} \mathcal{U}^{\prime}$ then $\left(x+e_{1}, \mathbf{l}_{1}\right)$ is also in $\Sigma_{\sigma} \mathcal{U}^{\prime}$ from the connectedness of $\mathbf{K}\left[\Sigma_{\sigma} \mathcal{U}^{\prime}\right]$. So by the remark we have

$$
\left\{f_{s_{1}}, f_{s_{1}}+f_{s_{2}}, \cdots, \sum_{i=1}^{k} f_{s_{i}}\right\} \supset\left\{f_{t_{1}}, f_{t_{1}}+f_{t_{2}}, \cdots, \sum_{i=1}^{l} f_{t_{i}}\right\}
$$

Then by the same procedure as the case of (1) and (2), W_{1} is decomposed as $W_{1}=$ $W_{2} U$. Using same discussion as Lemma 3 in section one, there exists θ_{i} and τ which decompose σ as $\sigma=\tau \circ \theta_{i}$. And notice that

$$
\Sigma_{\sigma}=\Sigma_{\theta_{i}} \circ \Sigma_{\tau}
$$

we can say the substitution τ also has 2 -state interval exchange transformation, since the interval exchange transformations associated with σ and θ_{i} are 2 -state interval exchange transformations. Continue the same procedure, there exists τ_{n} which satisfies that

$$
\max \left(\text { elements of } L_{\tau_{n}}\right)=1
$$

and we obtain that

$$
\sigma=\tau_{n} \circ \theta_{p_{n}} \circ \alpha^{j_{n}} \circ \cdots \circ \theta_{p_{2}} \circ \alpha^{j_{2}} \circ \theta_{p_{1}} \circ \alpha^{j_{1}}
$$

where $p_{k} \in\{1,2\}$ and $j_{k} \in\{0,1\}$.
So the substituiton σ is invertible.

References

[1] Marshall Hall, Jr.: The theory of groups, The Macmillan Company 1959, 90-112.
[2] Z.-X. Wen and Z.-Y. Wen: Local isomorphisms of invertible substitutions, C. R. Acad. Sci. Paris, 318 Série I (1994), 299-304.
[3] P. Arnoux and S. Ito: Pisot substitutions and Rauzy fractals, prétirage, Institut de Mathématiques de Luminy, 18 (1998).
H. Ei

Department of mathematics Tsuda College
2-1-1 Tsudamachi Kodaira
Tokyo, 187-8577, Japan
S. Ito

Department of mathematics
Tsuda College
2-1-1 Tsudamachi Kodaira
Tokyo, 187-8577, Japan

