Takegoshi, K. Osaka J. Math. **36** (1999), 17–26

TORSION FREENESS THEOREMS FOR HIGHER DIRECT IMAGES OF CANONICAL SHEAVES BY A CERTAIN CONVEX KÄHLER MORPHISM

KENSHO TAKEGOSHI

(Received June 12, 1997)

Introduction

Let $f: X \to Y$ be a morphism of analytic spaces. In this paper any analytic space is always assumed to be reduced unless otherwise stated. In [20] we discussed the torsion freeness of higher direct images of canonical sheaves tensorized with Nakano semi-positive vector bundle under the situation that X is non-singular and f is a proper surjective Kähler morphism. In this case the coherency of the higher direct image sheaves is guaranteed by Grauert's direct image theorem (cf. [6]). However not much is known about not only coherency but also torsion freeness of higher direct image sheaves by non-proper morphisms except a few special cases (cf. [3], [5], [13], [15], [16], [17]). In this article we study torsion freeness and vanishing theorems of higher direct image sheaves by a certain non-proper morphism.

Let $f: X \to Y$ be as above. A smooth function $\Phi: X \to [a, b), -\infty < a < b \le +\infty$, on X is called a relative exhaustion function if $f: \{\Phi \le c\} \to Y$ is proper for every $c \in (a, b)$. For a positive integer $q, f: X \to Y$ is said to be strongly q convex if there exist a relative exhaustion function $\Phi: X \to [a, b)$ and $d \in (a, b)$ such that Φ is strongly q convex in the sense of Andreotti-Grauert,[1] on $\{\Phi > d\}$. The following coherency theorem for strongly q convex morphisms is known (cf. [15], § IV, (IV.8) Théorèm).

Theorem. Let $f: X \to Y$ be a strongly q convex morphism of analytic spaces provided with a relative exhaustion function Φ . Let \mathcal{F} be a coherent analytic sheaf on X and let r be an integer with $r \ge q$. Then $R^r f_* \mathcal{F}$ is a coherent analytic sheaf on Y and the canonical homomorphism $R^r f_* : H^r(X(S), \mathcal{F}) \to \Gamma(S, R^r f_* \mathcal{F})$ is a topological isomorphism for any relatively compact Stein open subset S of Y and $X(S) := f^{-1}(S)$. In particular, $H^r(X(S), \mathcal{F})$ has a structure of separated topological vector space.

In order to discuss the torsion freeness of higher direct image sheaves by f we impose the hyper convexity induced by [7] on Φ and show the following theorem.

Theorem 1. Let $f : X \to Y$ be a strongly q convex surjective morphism of analytic spaces of pure dimension provided with a relative exhaustion function Φ and let E be a holomorphic vector bundle on X. Suppose

- (i) X is non-singular of pure dimension n and is provided with a Kähler metric ω_X such that Φ is weakly hyper p convex relative to ω_X on {Φ > e} with e ∈ (a, b);
 i.e., the sum of any p eigen values of the Levi form of Φ relative to ω_X is non-negative at any point of {Φ > e}, and
- (ii) E is Nakano semi-positive on X (cf. Definition 1.4).

Then for any $r \ge \max\{p,q\}$ the sheaf homomorphism $\mathcal{L}^r : \mathbb{R}^0 f_* \Omega_X^{n-r}(E) \to \mathbb{R}^r f_* \Omega_X^n(E)$ induced by the r-times exterior product by ω_X is surjective and the Hodge star operator relative to ω_X yields a splitting sheaf homomorphism $\delta^r : \mathbb{R}^r f_* \Omega_X^n(E) \to \mathbb{R}^0 f_* \Omega_X^{n-r}(E)$ with $\mathcal{L}^r \circ \delta^r = \operatorname{id}$. In particular, $\mathbb{R}^r f_* \Omega_X^n(E)$ is torsion free and vanishes if $r > q_* := \max\{n - m, \max\{p,q\}\}$ with $m := \dim_{\mathbb{C}} Y$. Furthermore $\mathbb{R}^s f_! \mathcal{O}_X(E^*) = 0$ if $s < n - q_* - \dim_{\mathbb{C}} Y$, where $\mathbb{R}^{\bullet} f_!$ denotes the direct image with proper supports and E^* is the dual of E.

Theorem 1 can be shown by determining the structure of $H^r(X(S), \Omega_X^n(E))$ as an $\mathcal{O}(S)$ -torsion free module, for any relatively compact Stein open subset S of Y, which follows from the weak hyper p convexity of Φ and the separability of cohomology group guaranteed by Theorem (cf. §2, Theorem 2.1). This can be done by an L^2 -theory for the $\overline{\partial}$ operator with $\overline{\partial}$ -Neumann condition on bounded domains with smooth boundary, which does not depend on the existence of complete Kähler metrics on X(S). This is a difference of method from the one used in [20]. As a corollary we obtain the following vanishing theorem which is the relative version of Grauert-Riemenschneider's vanishing theorem for strongly hyper q convex Kähler manifolds (cf. [5], [7], [12] and [18]).

Theorem 2. Let $f : X \to Y$ be a surjective morphism of analytic spaces of pure dimension provided with a relative exhaustion function $\Phi : X \to [a, b)$ and let E be a holomorphic vector bundle on X. Suppose

- (i) X is non-singular of pure dimension n and is provided with a Kähler metric ω_X such that Φ is strongly hyper q convex relative to ω_X on $\{\Phi > e\}$ with $e \in (a,b)$; i.e., the sum of any p eigen values of the Levi form of Φ relative to ω_X is positive at any point of $\{\Phi > e\}$, and
- (ii) E is Nakano semi-positive on X.

Then $R^r f_* \Omega^n_X(E) = 0$ if $r \ge q$, and $R^s f_! \mathcal{O}_X(E^*) = 0$ if $s \le n - q - \dim_{\mathbb{C}} Y$. Especially $R^r f_* \Omega^n_X = 0$ if $r \ge q$, and $R^s f_! \mathcal{O}_X = 0$ if $s \le n - q - \dim_{\mathbb{C}} Y$.

1. An L^2 estimate for the $\bar{\partial}$ operator with $\bar{\partial}$ -Neumann condition on Kähler manifolds

Let M be a complex manifold of dimension n provided with a Kähler metric ω_M and let E be a holomorphic vector bundle on M provided with a smooth hermitian metric h along the fibres of E. The curvature form Θ_h relative to h is defined by $\Theta_h := \bar{\partial}(h^{-1}\partial h) \in C^{1,1}(M, \operatorname{Hom}(E, E)).$

Let X be a bounded domain with smooth boundary ∂X ; i.e., the closure \overline{X} of X is compact and there exists a smooth function Ψ defined on a neighborhood of \overline{X} such that $X = \{\Psi < 0\}$ and $d\Psi \neq 0$ on ∂X . We set $X_t := \{\Psi < t\}$ and $\partial X_t := \{\Psi = t\}$ for sufficiently small $t \in (-1, 1)$. X_t is also a bounded domain with smooth boundary ∂X_t , and clearly $X_0 = X$ and $\partial X_0 = \partial X$.

From now on we fix this situation and use the formulations established in [20], § 1. Let \langle , \rangle_h denote the pointwise inner product of *E*-valued differential forms relative to ω_M and *h*. Let $(,)_{h,t}$ (resp. $[,]_{h,t}$) denote the inner product for *E*-valued differential forms defined by the integral of \langle , \rangle_h on X_t (resp. ∂X_t , which is a smooth and compact real hyper surface of *M*).

The following formula is a variant of [19], $\S4$, Proposition 1 (also cf. [20], $\S1$, Proposition 1.11).

Proposition 1.1. Let ψ be a real-valued smooth function on a neighborhood of \bar{X} and set $\eta := e^{\psi}$. If |t| is sufficiently small, then the following holds:

$$\begin{aligned} \frac{d}{dt} [\sqrt{\eta} \mathbf{e} (\bar{\partial} \Psi)^* u]_{h,t}^2 &= [\eta \sqrt{-1} \mathbf{e} (\partial \bar{\partial} \Psi) \Lambda u, u]_{h,t} + (\eta \sqrt{-1} \mathbf{e} (\Theta_h + \partial \bar{\partial} \psi) \Lambda u, u)_{h,t} \\ &+ \| \sqrt{\eta} (\bar{\vartheta} - \mathbf{e} (\partial \psi)^*) u \|_{h,t}^2 - \| \sqrt{\eta} (\bar{\partial} + \mathbf{e} (\bar{\partial} \psi)) u \|_{h,t}^2 \\ &- \| \sqrt{\eta} \vartheta_h u \|_{h,t}^2 - 2 \mathrm{Re} [\eta \vartheta_h u, \mathbf{e} (\bar{\partial} \Psi)^* u]_{h,t} \end{aligned}$$

for any $u \in C^{n,r}(M, E)$ with $r \ge 1$.

Proof. Similarly to the proof of [20], §1, Proposition 1.11, if $u \in C^{n,r}(M, E)$ and |t| is sufficiently small, then we obtain the following by integration by parts:

$$\begin{aligned} (*) \qquad & \|\sqrt{\eta}\bar{\partial}u\|_{h,t}^{2} + \|\sqrt{\eta}\vartheta_{h}u\|_{h,t}^{2} - \|\sqrt{\eta}\bar{\vartheta}u\|_{h,t}^{2} \\ &= (\eta\sqrt{-1}\mathbf{e}(\Theta_{h} + \partial\bar{\partial}\psi)\Lambda u, u)_{h,t} - \|\sqrt{\eta}\mathbf{e}(\bar{\partial}\psi)u\|_{h,t}^{2} + \|\sqrt{\eta}\mathbf{e}(\partial\psi)^{*}u\|_{h,t}^{2} \\ &- 2\mathrm{Re}\{(\eta\mathbf{e}(\bar{\partial}\psi)u, \bar{\partial}u)_{h,t} + (\eta\mathbf{e}(\partial\psi)^{*}u, \bar{\vartheta}u)_{h,t}\} \\ &- [\eta\vartheta_{h}u, \mathbf{e}(\bar{\partial}\Psi)^{*}u]_{h,t} + [\eta\mathbf{e}(\bar{\partial}\Psi)^{*}\bar{\partial}u, u]_{h,t} + [\eta\mathbf{e}(\partial\Psi)\bar{\vartheta}u, u]_{h,t} \\ &+ [\eta\mathbf{e}(\bar{\partial}\psi)u, \mathbf{e}(\bar{\partial}\Psi)u]_{h,t} - [\eta\mathbf{e}(\partial\psi)^{*}u, \mathbf{e}(\partial\Psi)^{*}u]_{h,t}. \end{aligned}$$

On the other hand, by integration by parts we obtain the following:

$$(\bar{\partial} \mathbf{e} (\bar{\partial} \Psi)^* u, \eta u)_{h,t} = (\eta \mathbf{e} (\bar{\partial} \Psi)^* u, \vartheta_h u)_{h,t}$$

$$- (\eta \mathbf{e}(\bar{\partial} \Psi)^* u, \mathbf{e}(\bar{\partial} \psi)^* u)_{h,t} + [\sqrt{\eta} \mathbf{e}(\bar{\partial} \Psi)^* u]_{h,t}^2$$

Substituting the formula [20], $\S1$, (1.9) to the left hand side of the above equality and differentiating in t, we obtain the following:

$$\frac{d}{dt} [\sqrt{\eta} \mathbf{e} (\bar{\partial} \Psi)^* u]_{h,t}^2 = [\eta \sqrt{-1} \mathbf{e} (\partial \bar{\partial} \Psi) \Lambda u, u]_{h,t} - [\eta \mathbf{e} (\bar{\partial} \Psi)^* u, \vartheta_h u]_{h,t} - [\eta \mathbf{e} (\partial \Psi) \bar{\vartheta} u, u]_{h,t} - [\eta \mathbf{e} (\bar{\partial} \Psi)^* \bar{\partial} u, u]_{h,t} + [\eta \mathbf{e} (\bar{\partial} \Psi)^* u, \mathbf{e} (\bar{\partial} \psi)^* u]_{h,t}.$$

By the formula [20], §1, (1.4), if $u \in C^{n,r}(M, E)$, then we have the following:

$$(**) \qquad \langle \mathbf{e}(\partial\varphi)^* u, \mathbf{e}(\partial\Psi)^* u \rangle_h = \langle \mathbf{e}(\bar{\partial}\varphi) u, \mathbf{e}(\bar{\partial}\Psi) u \rangle_h + \langle \mathbf{e}(\bar{\partial}\Psi)^* u, \mathbf{e}(\bar{\partial}\varphi)^* u \rangle_h.$$

By substituting the above two equalities to (*) we can obtain the desired equality. \Box

Lemma 1.2 (cf. [11], §1.4 and [18], Fact 2.7). Let $\{\lambda_j\}$ be the eigen-values of a smooth (1,1) differential form Θ on M relative to ω_M with $\lambda_1 \leq \lambda_2 \leq \ldots, \leq \lambda_n$ (which are continuous functions on M); i.e., $\Theta(x) = \sum_{j=1}^n \lambda_j(x) dz^j \wedge d\bar{z}^j$ with $\omega_X(x) = \sqrt{-1} \sum_{j=1}^n dz^j \wedge d\bar{z}^j$, at $x \in M$. Then if $v(x) = \sum v_{A_n,B_r} dz^{A_n} \wedge d\bar{z}^{B_r} \in C^{n,r}(M, E)$ with $r \geq 1$, the following holds:

$$\langle \sqrt{-1}\mathbf{e}(\Theta)\Lambda v, v \rangle_h(x) = \sum_{|A_n|=n, |B_r|=r} \left(\sum_{j \in B_r} \lambda_j(x)\right) |v_{A_n, B_r}|_h^2.$$

In particular setting $\delta_r := \sum_{j=1}^r \lambda_j$ with $r \ge 1$ the following holds

$$\langle \sqrt{-1}\mathbf{e}(\Theta)\Lambda v, v \rangle_h \ge \delta_r \langle v, v \rangle_h \text{ if } v \in C^{n,r}(M, E).$$

As a consequence we can obtain the following L^2 -estimate.

Proposition 1.3. Suppose the defining function Ψ of X is weakly hyper p-convex relative to ω_M on a neighborhood of ∂X and ψ is a smooth function on \overline{X} . Then the following holds:

$$(\eta\sqrt{-1}\mathbf{e}(\Theta+\partial\bar{\partial}\psi)\Lambda u,u)_{h,X}+\|\sqrt{\eta}(\bar{\vartheta}+\mathbf{e}(\partial\psi)^*)u\|_{h,X}^2$$

$$\leq \|\sqrt{\eta}(\bar{\partial}+\mathbf{e}(\bar{\partial}\psi))u\|_{h,X}^2+\|\sqrt{\eta}\vartheta_h u\|_{h,X}^2$$

for any $u \in \text{Dom}(\bar{\partial}) \cap \text{Dom}(\vartheta_h) \subset L^{n,r}(X,E)$ with $r \ge p$ and $\eta := e^{\psi}$.

Proof. Since ψ and its derivatives are bounded on X, and $C^{n,r}(\bar{X}, E) \cap$ $\operatorname{Dom}(\vartheta_h) := \{ u \in C^{n,r}(\bar{X}, E); \mathbf{e}(\bar{\partial}\Psi)^* u = 0 \text{ on } \partial X \}$ is dense in $\operatorname{Dom}(\bar{\partial}) \cap \operatorname{Dom}(\vartheta_h)$ relative to the graph norm $||v||_{h,X} + ||\bar{\partial}v||_{h,X} + ||\vartheta_h v||_{h,X}$ (cf. [8], Chap 1), we have only to show the above estimate for the forms contained in $C^{n,r}(\bar{X}, E) \cap \text{Dom}(\vartheta_h)$. By Lemma 1.2 and the weak hyper *r*-convexity of Ψ , if $u \in C^{n,r}(\bar{X}, E)$, then $\langle \sqrt{-1} \mathbf{e}(\partial \bar{\partial} \Psi) \Lambda u, u \rangle_h$ is non-negative on ∂X . Hence the desired estimate follows from Proposition 1.1 immediately in view of the boundary condition $\mathbf{e}(\bar{\partial}\Psi)^* u = 0$ on ∂X .

DEFINITION 1.4. (E, h) is said to be Nakano semi-positive if the curvature form Θ_h relative to h is a positive semi-definite quadratic form on each fibre of $E \otimes TM$, where TM is the holomorphic tangent bundle of M.

In line bundle case the Nakano semi-positivity coincides with the semi-positivity in the sense of Kodaira. The following lemma is used in the next section.

Lemma 1.5 (cf. [11], § 1.4). Suppose (E,h) is Nakano semi-positive on M. Then there exists a non-negative continuous function ε_r on M such that

$$\langle \sqrt{-1} \mathbf{e}(\Theta_h) \Lambda u, u \rangle_h \ge \varepsilon_r \langle u, u \rangle_h$$

for any $u \in C^{n,r}(X, E)$ with $r \ge 1$.

2. A criterion for the separability for cohomology groups of canonical sheaves on a certain non-compact Kähler manifold

In this section we show the following theorem.

Theorem 2.1. Let X be a complex manifold of dimension n provided with a Kähler metric ω_X and let (E,h) be a holomorphic vector bundle on X. Suppose

- (i) There exist non-negative smooth functions Φ and φ on X such that
 - (1) Φ is weakly hyper p convex relative to ω_X on $\{\Phi > 0\}$ and φ is plurisubharmonic on X,
 - (2) $\Psi := \Phi + \varphi$ is an exhaustion function of X; i.e., $X_c := \{\Psi < c\}$ is relatively compact for any c with $0 < c < \sup_X \Psi \le +\infty$, and

(ii) (E,h) is Nakano semi-positive on X.

Then for any $r \ge p$, the space of E-valued harmonic (n,r) forms $\mathcal{H}^{n,r}(X, E, \Psi)$ defined by

$$\mathcal{H}^{n,r}(X, E, \Psi) := \{ u \in C^{n,r}(X, E); \bar{\partial}u = \vartheta_h u = 0 \text{ and } \mathbf{e}(\bar{\partial}\Psi)^* u = 0 \text{ on } X \}$$

represents $H^r(X, \Omega^n_X(E))$ if and only if $H^r(X, \Omega^n_X(E))$ has a structure of separated topological vector space.

We need the following propositions to show Theorem 2.1.

Proposition 2.2. For any non-critical value c > 0 of Ψ and $r \ge p$ if $u \in Dom(\bar{\partial}) \cap Dom(\vartheta_h) \subset L_2^{n,r}(X_c, E)$ satisfies $\bar{\partial}u = \vartheta_h u = 0$, then u satisfies the following:

$$\begin{split} \langle \sqrt{-1} \mathbf{e}(\Theta_h) \Lambda u, u \rangle_h &\equiv 0, \ \langle \sqrt{-1} \mathbf{e}(\partial \bar{\partial} \Phi) \Lambda u, u \rangle_h \equiv 0, \ \langle \sqrt{-1} \mathbf{e}(\partial \bar{\partial} \varphi) \Lambda u, u \rangle_h \equiv 0, \\ \mathbf{e}(\bar{\partial} \Phi)^* u &\equiv 0, \ \mathbf{e}(\bar{\partial} \varphi)^* u \equiv 0 \ and \ \bar{\vartheta} u \equiv 0 \ on \ X_c. \end{split}$$

Proof. Since Ψ is weakly hyper p convex relative to ω_X on the whole space X in view of the plurisubharmonicity of φ , setting $\psi \equiv 0$ in Proposition 1.3 we obtain the first and sixth equations by Lemma 1.5. By setting $\psi = \Phi$ in Proposition 1.3 the second and fourth ones can be derived from Lemma 1.2 and the equality (**) used in the proof of Proposition 1.1. The third and fifth ones can be obtained similarly.

Proposition 2.3. For any $r \ge p$ let $\mathcal{H}^{n,r}(X, E, \Psi)$ be the space of E-valued harmonic forms defined in Theorem 2.1. Then the following assertions hold:

- (i) Assume $u \in C^{n,r}(X, E)$ satisfies $\mathbf{e}(\bar{\partial}\Psi)^* u = 0$ on X. Then $\bar{\partial}u = \vartheta_h u = 0$ if and only if $\bar{\vartheta}u = 0$ and $\sqrt{-1}\langle \mathbf{e}(\Theta_h + \partial \bar{\partial}\Psi)\Lambda u, u \rangle_h = 0$ on X
- (ii) If $u \in \mathcal{H}^{n,r}(X, E, \Psi)$, then $\langle \sqrt{-1}\mathbf{e}(\partial \bar{\partial} e^{\psi})\Lambda u, u \rangle_h \equiv 0$ on X for any smooth plurisubharmonic function ψ on X. In particular $\mathcal{H}^{n,r}(X, E, \Psi)$ does not depend on the choice of φ .
- (iii) $\mathcal{H}^{n,r}(X, E, \Psi)$ is a torsion free $\mathcal{O}(X)$ -module and the Hodge star operator * relative to ω_X yields an injective $\mathcal{O}(X)$ -homomorphism from $\mathcal{H}^{n,r}(X, E, \Phi)$ to $\Gamma(X, \Omega_X^{n-r}(E))$.
- (iv) The canonical homomorphism $\iota^r : \mathcal{H}^{n,r}(X, E, \Psi) \longrightarrow H^r(X, \Omega^n_X(E))$ induced by Dolbeault's isomorphism theorem is injective (this property depends on neither the curvature condition of E nor the Kähler property of ω_X and depends only on the condition $\mathbf{e}(\bar{\partial}\Psi)^* u = 0$).

Since Proposition 2.3 can be shown similarly to [20], $\S4$, Theorem 4.3 in view of Proposition 1.1, the details is left to the reader.

Proof of Theorem 2.1. We first show the necessity of Theorem. If the canonical homomorphism $\iota^r : \mathcal{H}^{n,r}(X, E, \Psi) \longrightarrow H^r(X, \Omega^n_X(E))$ induced by Dolbeault's isomorphism theorem yields an isomorphism, then any $\bar{\partial}$ -closed form $v \in C^{n,r}(X, E)$ has the following decomposition:

(#)
$$v = u + \bar{\partial}w$$
 for $u \in \mathcal{H}^{n,r}(X, E, \Psi)$ and $w \in C^{n,r-1}(X, E)$

Suppose the above v is contained in the closure of $\bar{\partial}C^{n,r-1}(X,E)$ relative to the Fréchet-Schwartz topology. Then there exists a sequence of smooth forms $\{w_k\}_{k\geq 1} \in C^{n,r-1}(X,E)$ such that $\bar{\partial}w_k$ converges strongly to v in L^2 -sense on every compact

22

subset of X. Hence for any non-critical value c of Ψ , by integration by parts on X_c we obtain

$$(u,u)_h = (v - \bar{\partial}w, u)_h = (v,u)_h = \lim_{k \to \infty} (\bar{\partial}w_k, u)_h = \lim_{k \to \infty} (w_k, \vartheta_h u)_h = 0$$

Here we note that every boundary integral on $\partial X_c = \{\Psi = c\}$ arising from integration by parts vanishes in view of the equation $\mathbf{e}(\bar{\partial}\Psi)^*u = 0$. Therefore $u \equiv 0$ on X and so $v = \bar{\partial}w$. This implies that $\bar{\partial}C^{n,r-1}(X, E)$ is closed and so the cohomology group is Hausdorff.

The sufficiency of Theorem is shown as follows. In view of Proposition 2.3, (iv) we have only to show that any $\bar{\partial}$ -closed form $v \in C^{n,r}(X, E)$ admits the decomposition (\sharp) under the Hausdorff property of $H^r(X, \Omega^n_X(E))$. From now on we fix an increasing sequence $\{c_k\}_{k\geq 1}$ of non-critical values of Ψ such that $\lim_{k\to\infty} c_k = \sup_X \Psi$. Setting $X_k := X_{c_k}$, let $N_k^{n,r}(\bar{\partial})$ (resp. $N_k^{n,r}(\vartheta_h)$) be the null space of $\bar{\partial}$ (resp. ϑ_h) in $\text{Dom}(\bar{\partial})$ (resp. $\text{Dom}(\vartheta_h)$) $\subset L_2^{n,r}(X_k, E)$. $N_k^{n,r}(\bar{\partial})$ is decomposed as follows:

$$N_k^{n,r}(\bar{\partial}) = H_k^{n,r}(E) \bigoplus [\text{Range}(\bar{\partial})] \quad \text{for} \quad H_k^{n,r}(E) := N_k^{n,r}(\bar{\partial}) \cap N_k^{n,r}(\vartheta_h)$$

Hence setting $v_k := v|_{X_k}$, v_k is decomposed as follows:

$$v_k = u_k + v_k^*$$
 with $u_k \in H_k^{n,r}(E)$ and $v_k^* \in [\operatorname{Range}(\bar{\partial})]$

Applying Proposition 2.2 to X_k , it follows that $H_k^{n,r}(E) \subset \mathcal{H}^{n,q}(X_k, E, \Psi)$ and $u|_{X_k} \in H_k^{n,r}(E)$ if $u \in H_l^{n,r}(E)$ and $l > k \ge 1$ (cf. [4], Chap. 1). In particular $u_{k+1} = u_k$ and $v_{k+1}^* = v_k^*$ on X_k for any $k \ge 1$. Setting $u := u_k$ and $v^* := v_k^*$ on X_k for any $k \ge 1$. Setting $u := u_k$ and $v^* := v_k^*$ on X_k for any $k \ge 1$ we obtain $v = u + v^*$ and $u \in \mathcal{H}^{n,r}(X, E, \Psi)$. Since Ψ is an exhaustion function of X, we can take a smooth strictly increasing function λ : $[0, \sup \Psi) \to [0, +\infty)$ such that v and $u \in L_2^{n,r}(X, E, he^{-\lambda(\Psi)})$. Setting $g := he^{-\lambda(\Psi)}$, u satisfies $\bar{\partial}u = \vartheta_g u = 0$ in $L_2^{n,r}(X, E, g)$ by $\vartheta_g = \vartheta_h + \lambda'(\Psi)\mathbf{e}(\bar{\partial}\Psi)^*$, which implies $v^* \in [\operatorname{Range}(\bar{\partial})] \subset L_2^{n,r}(X, E, g)$. Therefore there exists $w \in C^{n,r-1}(X, E)$ with $v^* = \bar{\partial}w$ by the Hausdorff property of $H^r(X, \Omega_X^n(E))$ by [20], Proposition 4.6. Finally we have obtained the decomposition (\sharp) .

Setting $\Phi \equiv 0$ in Theorem 2.1 we obtain the following theorem.

Theorem 2.4. Let X be a weakly 1-complete manifold of dimension n; i.e., X admits a smooth plurisubharmonic exhaustion function Ψ . Suppose X admits a Kähler metric ω_X and E is a Nakano semi-positive vector bundle on X. Then for any $r \ge 1$, $\mathcal{H}^{n,r}(X, E, \Psi)$ represents $H^r(X, \Omega^n_X(E))$ if and only if $H^r(X, \Omega^n_X(E))$ has a structure of separated topological vector space.

REMARK 2.5. If X is holomorphically convex, then the sufficiency of Theorem

2.1 has already shown in [20], Theorem 5.2. On the other hand it is interesting that there exists a class of weakly 1-complete Kähler manifolds X being not holomorphically convex whose canonical line bundle is flat and $H^r(X, \mathcal{O}_X)$ is either Hausdorff or not (cf. [9], [10], [21])

3. Proof of Theorems 1 and 2

Let the situation be the same as in Theorem 1 stated in the introduction. We fix the Kähler metric ω_X and the metric h of E satisfying the hypothesis respectively. By composing an arbitrarily smooth convex increasing function with Φ we may assume that (1) $\Phi \ge 0$ on X, and (2) Φ is strongly q-convex and weakly hyper p-convex on $\{\Phi > 0\}$ relative to ω_X . We take a Stein open covering $\{V_\alpha, \tau_\alpha, S_\alpha, \mathbb{C}^{d(\alpha)}\}_{\alpha \in A}$ of Ysuch that τ_α is an isomorphism from V_α to a subvariety $S_\alpha \subset (\mathbb{C}^{d(\alpha)}, (z^1, ..., z^{d(\alpha)}))$ for any $\alpha \in A$. Setting $\varphi_\alpha := (\tau^\alpha \circ f)^* (\sum_{j=1}^{d(\alpha)} |z^j|^2)$, $\Psi_\alpha := \Phi + \varphi_\alpha$ and $X(V_\alpha) :=$ $f^{-1}(V_\alpha)$, each pair $\{X(V_\alpha), \Psi_\alpha\}$ satisfies the condition of Theorem 2.1, (i).

For any $r \geq \max\{p,q\}$, by the theorem stated in the introduction and Theorem 2.1, the homomorphism $\iota^r : \mathcal{H}^{n,r}(X(V_\alpha), E, \Psi_\alpha) \to H^r(X(V_\alpha), \Omega^n_X(E))$ induces an isomorphims as an $\mathcal{O}(V_{\alpha})$ -module. Furthermore for any Stein open subset $W \subset V_{\alpha}$ provided with an strictly plurisubharmonic exhaustion function ψ_W , we claim that the restriction homomorphism $r_{V_{\alpha},W}$: $\mathcal{H}^{n,r}(X(V_{\alpha}), E, \Psi_{\alpha}) \rightarrow \mathcal{H}^{n,r}(f^{-1}(W), E, \Phi +$ $f^*\psi_W$) can be well-defined and commutes with the restriction homomorphism of cohomology group. By the surjectivity of f, for any α there exists an open dense subset $U_{\alpha} \subset V_{\alpha}$ such that U_{α} is non-singular and $f : f^{-1}(U_{\alpha}) \to U_{\alpha}$ is smooth. By Proposition 2.3, (ii) and § 1, (1.4) in [20], $u \in \mathcal{H}^{n,r}(X(V_{\alpha}), E, \Psi_{\alpha})$ satisfies the equation: $\sqrt{-1} \langle \mathbf{e}(\partial \bar{\partial} \varphi_{\alpha}) \Lambda u, u \rangle_h = \sum_{j=1}^{d(\alpha)} |\mathbf{e}(\partial (\tau^{\alpha} \circ f)^* z^j)^* u|_h^2 \equiv 0 \text{ on } X(V_{\alpha})$ for any α . Hence $d(\tau^{\alpha} \circ f)^* z^j \wedge *u \equiv 0$ on $X(V_{\alpha})$ for any j and α , where * is the star operator relative to ω_X . This implies that (1) $\mathcal{H}^{n,r}(X(V_\alpha), E, \Psi_\alpha) = 0$ if $r > \max\{n - m, \max\{p, q\}\}$ with $m = \dim_{\mathbb{C}} Y$, (2) any point $x \in U_{\alpha}$ admits a neighborhood $V_x \subset U_{lpha}$ and a non-vanishing holomorphic m form $heta_x$ on V_x so that *u can be divided by $f^*\theta_x$ on $f^{-1}(V_x)$ for any $u \in \mathcal{H}^{n,r}(X(V_\alpha), E, \Psi_\alpha)$ if $\max\{p,q\} \leq r \leq n-m$. Hence $u \in \mathcal{H}^{n,r}(X(V_{\alpha}), E, \Psi_{\alpha})$ satisfies $\mathbf{e}(\bar{\partial}(f^*\psi_W))^* u \equiv 0$ on X(W); i.e., $u|_{X(W)} \in \mathcal{H}^{n,r}(X(W), E, \Phi + f^*\psi_W)$, which implies our claim.

Denoting the sheafification of the data $\{\mathcal{H}^{n,r}(X(V_{\alpha}), E, \Psi_{\alpha}), r_{V_{\alpha},W}\}$ with the restriction homomorphism $r_{V_{\alpha},W} : \mathcal{H}^{n,r}(X(V_{\alpha}), E, \Psi_{\alpha}) \to \mathcal{H}^{n,r}(f^{-1}(W), E, \Phi + f^*\psi_W), W \subset V_{\alpha}$ by $R^0f_*\mathcal{H}^{n,r}(E, \Phi)$, we obtain a sheaf isomorphism ι^r : $R^0f_*\mathcal{H}^{n,r}(E,\Phi) \to R^rf_*\Omega^n_X(E)$ of \mathcal{O}_Y -module. Furthermore for any relatively compact Stein open subset S provided with a smooth strictly plurisubharmonic exhaustion function ψ_S clearly the canonical homomorphism from $\mathcal{H}^{n,r}(f^{-1}(S), E, \Phi + f^*\psi_S)$ to $\Gamma(S, R^0f_*\mathcal{H}^{n,r}(E,\Phi))$ is an isomorphism. By Proposition 2.3, (iii), the operator * induces a sheaf homomorphism $\sigma^r : R^0f_*\mathcal{H}^{n,r}(E,\Phi) \to R^0f_*\Omega^{n-r}_X(E)$ with $\mathcal{L}^r \circ \sigma^r = \text{id because } L^r \circ * = c(n,r)\text{id}, c(n,q) \neq 0 \in \mathbb{C}$, on (n,r) forms. Finally $\delta^r := \sigma^r \circ (\iota^r)^{-1} : R^rf_*\Omega^n_X(E) \to R^0f_*\Omega^{n-r}_X(E)$ is the desired splitting sheaf

homomorphism. The vanishing theorems follow from the above observation and the duality theorem by Ramis and Ruget (cf. [13] and also [3]). This completes the proof of Theorem 1.

To show Theorem 2 we have only to show $\mathcal{H}^{n,r}(f^{-1}(S), E, \Phi + f^*\psi_S) = 0$ for any Stein open subset (S, ψ_S) of Y because $f : X \to Y$ is a strongly q convex morphism. By the strong hyper q convexity of Φ , this follows from Lemma 1.2 and Proposition 2.2 (cf. [2], [14]). This completes the proof of Theorem 2.

References

- A. Andreotti and H. Grauert: Théorèmes de finitude pour la cohomologie des espaces complexes, Bull.Soc. Math. France, 90 (1960), 193–259.
- [2] N. Aronszajn: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. 36 (1957), 235–249.
- [3] J.L. Ermine: Cohérence de certaines images directes à supports propres dans le cas d'un morphisme fortment p-convexe, Ann. Scuola Norm. Sup. Pisa, 6 (1979), 1–18.
- [4] G.B. Folland and J.J. Kohn: The Neumann problem for the Cauchy-Riemann complex, Princeton Univ. Press, 1972.
- [5] A. Fujiki: A coherency theorem for direct images with proper supports in the case of a *1-convex map*, Publ. Res. Inst. Math. Sci. 18 (1982), 451–476 (31–56).
- [6] H. Grauert: Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publ. Math. I. H. E. S, 5 (1960).
- [7] H. Grauert and O. Riemenschneider: Kählersche Mannigfaltigkeiten mit hyper-q-konvexen Rand, Problems in Analysis (Lecture Symp. in honor of S. Bochner, 1969), Princeton Univ. N. J. (1970), 61–79.
- [8] L. Hörmander: L^2 estimates and existence theorems for the $\bar{\partial}$ operator, Acta math. 113 (1965), 89–152.
- H. Kazama: On pseudoconvexity of complex abelian Lie groups, J. Math. Soc. Japan, 25 (1973), 329–333.
- [10] H. Kazama: $\bar{\partial}$ cohomology of (H, C) groups, Publ. RIMS, Kyoto Univ. **20** (1984), 297–317.
- [11] T. Ohsawa: Cohomology vanishing theorems on weakly 1-complete manifolds, Publ. RIMS, Kyoto Univ. 19 (1983), 1181–1201.
- [12] T. Ohsawa: A vanishing theorem for proper direct images, RIMS, Kyoto Univ. 23 (1987), 243–250.
- [13] J.P. Ramis and G. Ruget: Residus et dualite, Invent. Math. 26 (1974), 89-131.
- [14] O. Riemenschneider: A generalization of Kodaira's embedding theorem, Math. Ann. 200 (1973), 99–102.
- [15] P. Siegfried: Un Théorème de finitude pour les morphisms q-convexes, Comment. Math. Helv. 49 (1974), 417-459.
- [16] T.Y. Siu: The 1-convex generalization of Grauert's direct image theorem, Math. Ann. 190 (1971), 203–214.
- [17] T.Y. Siu: A pseudoconvex-pseudoconcave generalization of Grauert's direct image theorem, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 649–664.
- [18] K. Takegoshi: Relative vanishing theorems in analytic spaces, Duke Math.J. 52 (1985), 273–279.
- [19] K. Takegoshi: Application of a certain integral formula to complex analysis, Prospects in Comple Analysis, Proc. 25-th Taniguchi International Symposium, Katata/Kyoto, Lecture Notes in Math. 1469 (1991), Springer, 94–114.
- [20] K. Takegoshi: Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann. 303 (1995), 389–416.

[21] C. Vogt: Line bundles on toroidal groups, J. Reine Angew. Math. 335 (1982), 197-215.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560–0043, Japan e-mail: kensho@math.wani.osaka-u.ac.jp