Takegoshi, K. Osaka J. Math. 36 (1999), 17-26

TORSION FREENESS THEOREMS FOR HIGHER DIRECT IMAGES OF CANONICAL SHEAVES BY A CERTAIN CONVEX KAHLER MORPHISM

CORE [Metadata, citation and similar papers at core.ac](https://core.ac.uk/display/35271627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1).uk

KENSHO TAKEGOSHI

(Received June 12, 1997)

Introduction

Let $f : X \to Y$ be a morphism of analytic spaces. In this paper any analytic space is always assumed to be reduced unless otherwise stated. In [20] we discussed the torsion freeness of higher direct images of canonical sheaves tensorized with Nakano semi-positive vector bundle under the situation that X is non-singular and f is a proper surjective Kahler morphism. In this case the coherency of the higher di rect image sheaves is guaranteed by Grauert's direct image theorem (cf. [6]). However not much is known about not only coherency but also torsion freeness of higher direct image sheaves by non-proper morphisms except a few special cases (cf. [3], [5], [13], [15], [16], [17]). In this article we study torsion freeness and vanishing theorems of higher direct image sheaves by a certain non-proper morphism.

Let $f : X \to Y$ be as above. A smooth function $\Phi : X \to [a, b), -\infty < a < b <$ $+\infty$, on X is called a relative exhaustion function if $f : \{ \Phi \le c \} \to Y$ is proper for every $c \in (a, b)$. For a positive integer q, $f : X \rightarrow Y$ is said to be *strongly q convex* if there exist a relative exhaustion function $\Phi: X \to [a, b)$ and $d \in (a, b)$ such that Φ is strongly q convex in the sense of Andreotti-Grauert,[1] on $\{\Phi > d\}$. The following coherency theorem for strongly *q* convex morphisms is known (cf. [15], § IV, (IV.8) Théorèm).

Theorem. Let $f: X \rightarrow Y$ be a strongly q convex morphism of analytic spa*ces provided with a relative exhaustion function Φ. Let T be a coherent analytic sheaf on X and let r be an integer with* $r \geq q$ *. Then* $R^r f_* \mathcal{F}$ *is a coherent analytic sheaf on Y* and the canonical homomorphism $R^r f_* : H^r(X(S), \mathcal{F}) \to \Gamma(S, R^r f_* \mathcal{F})$ is *a topological isomorphism for any relatively compact Stein open subset S of Y and* $X(S) := f^{-1}(S)$. In particular, $H^{r}(X(S), \mathcal{F})$ has a structure of separated topologi*cal vector space.*

In order to discuss the torsion freeness of higher direct image sheaves by f we impose the hyper convexity induced by [7] on Φ and show the following theorem.

18 K. TAKEGISHI

Theorem 1. Let $f: X \to Y$ be a strongly q convex surjective morphism of an*alytic spaces of pure dimension provided with a relative exhaustion function Φ and let E be a holomorphic vector bundle on X. Suppose*

- (i) X is non-singular of pure dimension n and is provided with a Kähler metric ω_X *such that* Φ *is weakly hyper p convex relative to* ω_X *on* $\{\Phi > e\}$ *with* $e \in (a, b)$; *i.e., the sum of any p eigen values of the Levi form of* Φ *relative to* ω_X *is nonnegative at any point of {Φ > e}, and*
- (ii) *E is Nakano semi-positive on X (cf* Definition 1.4).

Then for any r \geq $\max\{p,q\}$ *the sheaf homomorphism* \mathcal{L}^r *:* $R^0f_*\Omega^{n-r}_X(E)$ \rightarrow $R^r f_* \Omega_X^n(E)$ induced by the r-times exterior product by ω_X is surjective and the *Hodge star operator relative to* ω_X *yields a splitting sheaf homomorphism* δ^r *:* $R^r f_* \Omega_X^n(E) \to R^0 f_* \Omega_X^{n-r}(E)$ with $\mathcal{L}^r \circ \delta^r = id$. In particular, $R^r f_* \Omega_X^n(E)$ is torsio *free and vanishes if* $r > q_* := \max\{n - m, \max\{p, q\}\}\$ with $m := \dim_{\mathbb{C}} Y$. Further*more* $R^s f_! \mathcal{O}_X(E^*) = 0$ if $s < n - q_* - \dim_{\mathbb{C}} Y$, where $R^{\bullet} f_!$ denotes the direct image *with proper supports and E* is the dual of E.*

Theorem 1 can be shown by determining the structure of $H^r(X(S), \Omega_X^n(E))$ as an $\mathcal{O}(S)$ -torsion free module, for any relatively compact Stein open subset S of Y, which follows from the weak hyper *p* convexity of Φ and the separability of cohomology group guaranteed by Theorem (cf. §2, Theorem 2.1). This can be done by an L^2 -theory for the ∂ operator with ∂ -Neumann condition on bounded domains with smooth boundary, which does not depend on the existence of complete Kahler metrics on $X(S)$. This is a difference of method from the one used in [20]. As a corollary we obtain the following vanishing theorem which is the relative version of Grauert Riemenschneider's vanishing theorem for strongly hyper *q* convex Kahler manifolds (cf. [5], [7], [12] and [18]).

Theorem 2. Let $f: X \to Y$ be a surjective morphism of analytic spaces of pure *dimension provided with a relative exhaustion function* $\Phi: X \to [a, b]$ *and let E be a holomorphic vector bundle on X. Suppose*

- (i) *X is non-singular of pure dimension n and is provided with a Kahler metric* $ω$ *x* such that $Φ$ is strongly hyper q convex relative to $ω$ *x* on ${Φ > e}$ with $e \in (a, b)$; *i.e., the sum of any p eigen values of the Levi form of* Φ *relative to ωx is positive at any point of {Φ >* e}, *and*
- (ii) *E is Nakano semi-positive on X.*

Then $R^r f_* \Omega_X^n(E) = 0$ *if* $r \geq q$, and $R^s f_! \mathcal{O}_X(E^*) = 0$ *if* $s \leq n - q - \dim_{\mathbb{C}} Y$. *Especially* $R^r f_* \Omega_X^n = 0$ *if* $r \ge q$ *, and* $R^s f_! \mathcal{O}_X = 0$ *if* $s \le n - q - \dim_{\mathbb{C}} Y$ *.*

1. An L^2 estimate for the $\bar{\partial}$ operator with $\bar{\partial}$ —Neumann condition **on Kahler manifolds**

Let *M* be a complex manifold of dimension *n* provided with a Kähler metric ω_M and let *E* be a holomorphic vector bundle on *M* provided with a smooth hermitian metric *h* along the fibres of *E*. The curvature form Θ_h relative to *h* is defined by $h_i := \bar{\partial}(h^{-1}\partial h) \in C^{1,1}(M, \text{Hom}(E, E)).$

Let X be a bounded domain with smooth boundary ∂X ; i.e., the closure \overline{X} of X is compact and there exists a smooth function Ψ defined on a neighborhood of \overline{X} such that $X = {\Psi < 0}$ and $d\Psi \neq 0$ on ∂X . We set $X_t := {\Psi < t}$ and $\partial X_t := {\Psi = t}$ for sufficiently small $t \in (-1,1)$. X_t is also a bounded domain with smooth boundary ∂X_t , and clearly $X_0 = X$ and $\partial X_0 = \partial X$.

From now on we fix this situation and use the formulations established in [20], \S 1. Let \langle , \rangle_h denote the pointwise inner product of *E*-valued differential forms relative to ω_M and h. Let $(,)_{h,t}$ (resp. $[,]_{h,t}$) denote the inner product for E-valued differential forms defined by the integral of \langle , \rangle_h on X_t (resp. ∂X_t , which is a smooth and compact real hyper surface of *M*).

The following formula is a variant of [19], §4, Proposition 1 (also cf. [20], §1, Proposition 1.11).

Proposition 1.1. *Let ψ be a real-valued smooth function on a neighborhood of* \overline{X} and set $\eta := e^{\psi}$. If |t| is sufficiently small, then the following holds:

$$
\frac{d}{dt}[\sqrt{\eta}\mathbf{e}(\bar{\partial}\Psi)^*u]_{h,t}^2 = [\eta\sqrt{-1}\mathbf{e}(\partial\bar{\partial}\Psi)\Lambda u, u]_{h,t} + (\eta\sqrt{-1}\mathbf{e}(\Theta_h + \partial\bar{\partial}\psi)\Lambda u, u)_{h,t} \n+ ||\sqrt{\eta}(\bar{\partial} - \mathbf{e}(\partial\psi)^*)u||_{h,t}^2 - ||\sqrt{\eta}(\bar{\partial} + \mathbf{e}(\bar{\partial}\psi))u||_{h,t}^2 \n- ||\sqrt{\eta}\vartheta_h u||_{h,t}^2 - 2\text{Re}[\eta\vartheta_h u, \mathbf{e}(\bar{\partial}\Psi)^*u]_{h,t}
$$

for any $u \in C^{n,r}(M, E)$ *with* $r \geq 1$.

Proof. Similarly to the proof of [20], §1, Proposition 1.11, if $u \in C^{n,r}(M, E)$ and $|t|$ is sufficiently small, then we obtain the following by integration by parts:

$$
\begin{aligned}\n (*) & \|\sqrt{\eta}\bar{\partial}u\|_{h,t}^2 + \|\sqrt{\eta}\vartheta_h u\|_{h,t}^2 - \|\sqrt{\eta}\bar{\vartheta}u\|_{h,t}^2 \\
&= (\eta\sqrt{-1}\mathbf{e}(\Theta_h + \partial\bar{\partial}\psi)\Lambda u, u)_{h,t} - \|\sqrt{\eta}\mathbf{e}(\bar{\partial}\psi)u\|_{h,t}^2 + \|\sqrt{\eta}\mathbf{e}(\partial\psi)^*u\|_{h,t}^2 \\
&- 2\mathrm{Re}\{(\eta\mathbf{e}(\bar{\partial}\psi)u, \bar{\partial}u)_{h,t} + (\eta\mathbf{e}(\partial\psi)^*u, \bar{\vartheta}u)_{h,t}\} \\
&- [\eta\vartheta_h u, \mathbf{e}(\bar{\partial}\Psi)^*u]_{h,t} + [\eta\mathbf{e}(\bar{\partial}\Psi)^*\bar{\partial}u, u]_{h,t} + [\eta\mathbf{e}(\partial\Psi)\bar{\vartheta}u, u]_{h,t} \\
&+ [\eta\mathbf{e}(\bar{\partial}\psi)u, \mathbf{e}(\bar{\partial}\Psi)u]_{h,t} - [\eta\mathbf{e}(\partial\psi)^*u, \mathbf{e}(\partial\Psi)^*u]_{h,t}.\n \end{aligned}
$$

On the other hand, by integration by parts we obtain the following:

$$
(\bar{\partial} \mathbf{e}(\bar{\partial} \Psi)^* u, \eta u)_{h,t} = (\eta \mathbf{e}(\bar{\partial} \Psi)^* u, \vartheta_h u)_{h,t}
$$

20 K. TAKEGISIII

$$
\hspace*{1.5in} - (\eta{\bf e}(\bar{\partial}\varPsi)^*u,{\bf e}(\bar{\partial}\psi)^*u)_{h,t}+[\sqrt{\eta}{\bf e}(\bar{\partial}\varPsi)^*u]_{h,t}^2.
$$

Substituting the formula $[20]$, $\S1$, (1.9) to the left hand side of the above equality and differentiating in *t,* we obtain the following:

$$
\frac{d}{dt}[\sqrt{\eta}\mathbf{e}(\bar{\partial}\Psi)^*u]_{h,t}^2 = [\eta\sqrt{-1}\mathbf{e}(\partial\bar{\partial}\Psi)\Lambda u, u]_{h,t} - [\eta\mathbf{e}(\bar{\partial}\Psi)^*u, \vartheta_h u]_{h,t} - [\eta\mathbf{e}(\partial\Psi)\bar{\vartheta}u, u]_{h,t} \n- [\eta\mathbf{e}(\bar{\partial}\Psi)^*\bar{\partial}u, u]_{h,t} + [\eta\mathbf{e}(\bar{\partial}\Psi)^*u, \mathbf{e}(\bar{\partial}\psi)^*u]_{h,t}.
$$

By the formula [20], §1, (1.4), if $u \in C^{n,r}(M, E)$, then we have the following:

$$
(**) \qquad \langle e(\partial \varphi)^* u, e(\partial \Psi)^* u \rangle_h = \langle e(\bar{\partial} \varphi)u, e(\bar{\partial} \Psi)u \rangle_h + \langle e(\bar{\partial} \Psi)^* u, e(\bar{\partial} \varphi)^* u \rangle_h.
$$

By substituting the above two equalities to $(*)$ we can obtain the desired equality. **D**

Lemma 1.2 (cf. [11], §1.4 and [18], Fact 2.7). Let $\{\lambda_i\}$ be the eigen-values of *a* smooth $(1,1)$ differential form Θ on M relative to ω_M with $\lambda_1 \leq \lambda_2 \leq,...,\leq \lambda_n$ (which are continuous functions on M); i.e., $\Theta(x) = \sum_{j=1}^{n} \lambda_j(x) dz^j \wedge d\bar{z}^j$ with $\omega_X(x) = \sqrt{-1} \sum_{j=1}^n dz^j \wedge d\bar{z}^j$, at $x \in M$. Then if $v(x) = \sum_{j=1}^n v_{A_n, B_r} dz^{A_n} \wedge d\bar{z}^{B_r} \in$ $C^{n,r}(M, E)$ with $r \geq 1$, the following holds:

$$
\langle \sqrt{-1} \mathbf{e}(\Theta) \Lambda v, v \rangle_h(x) = \sum_{|A_n|=n, |B_r|=r} \Bigg(\sum_{j \in B_r} \lambda_j(x) \Bigg) |v_{A_n, B_r}|^2_h.
$$

In particular setting $\delta_r := \sum_{j=1}^r \lambda_j$ *with* $r \geq 1$ *the following holds*

$$
\langle \sqrt{-1} \mathbf{e}(\Theta) \Lambda v, v \rangle_h \ge \delta_r \langle v, v \rangle_h \text{ if } v \in C^{n,r}(M, E).
$$

As a consequence we can obtain the following L^2 -estimate.

Proposition 1.3. *Suppose the defining function Ψ of X is weakly hyper p-convex relative to* ω_M *on a neighborhood of* ∂X *and* ψ *is a smooth function on* \overline{X} *. Then the following holds:*

$$
(\eta\sqrt{-1}\mathbf{e}(\Theta+\partial\bar{\partial}\psi)\Lambda u,u)_{h,X}+\|\sqrt{\eta}(\bar{\partial}+\mathbf{e}(\partial\psi)^*)u\|_{h,X}^2
$$

\$\leq \|\sqrt{\eta}(\bar{\partial}+\mathbf{e}(\bar{\partial}\psi))u\|_{h,X}^2+\|\sqrt{\eta}\vartheta_h u\|_{h,X}^2

for any $u \in \text{Dom}(\bar{\partial}) \cap \text{Dom}(\vartheta_h) \subset L^{n,r}(X,E)$ with $r \geq p$ and $\eta := e^{\psi}$.

Proof. Since ψ and its derivatives are bounded on X, and $C^{n,r}(\bar{X},E)$ \cap $Dom(\vartheta_h) := \{u \in C^{n,r}(\bar{X},E); e(\bar{\partial}\Psi)^*u = 0 \text{ on } \partial X\}$ is dense in $Dom(\bar{\partial}) \cap Dom(\vartheta_h)$

relative to the graph norm $\|v\|_{h,X} + \|\partial v\|_{h,X} + \|\vartheta_h v\|_{h,X}$ (cf. [8], Chap 1), we have only to show the above estimate for the forms contained in $C^{n,r}(\bar{X}, E) \cap \text{Dom}(\vartheta_h)$. By Lemma 1.2 and the weak hyper *r*-convexity of Ψ , if $u \in C^{n,r}(\bar{X}, E)$, then $\langle \sqrt{-1}e(\partial \overline{\partial} \Psi) \Lambda u, u \rangle_h$ is non-negative on ∂X . Hence the desired estimate follows from Proposition 1.1 immediately in view of the boundary condition $e(\overline{\partial}\Psi)^*u = 0$ on ∂X . **D**

DEFINITION 1.4. (E, h) is said to be Nakano semi-positive if the curvature form *Θ_h* relative to *h* is a positive semi-definite quadratic form on each fibre of $E \otimes TM$, where *TM* is the holomorphic tangent bundle of *M.*

In line bundle case the Nakano semi-positivity coincides with the semi-positivity in the sense of Kodaira. The following lemma is used in the next section.

Lemma 1.5 (cf. [11], § 1.4). *Suppose* (E, h) is Nakano semi-positive on M. *Then there exists a non-negative continuous function ε^r on M such that*

$$
\langle \sqrt{-1}e(\Theta_h)\Lambda u, u\rangle_h \geq \varepsilon_r \langle u, u\rangle_h
$$

for any $u \in C^{n,r}(X,E)$ *with* $r \geq 1$.

2. A criterion for the separability for cohomology groups of canonical sheaves on a certain non-compact Kahler manifold

In this section we show the following theorem.

Theorem 2.1. *Let X be a complex manifold of dimension n provided with a Kähler metric* ω_X and let (E, h) be a holomorphic vector bundle on X. Suppose

- (i) There exist non-negative smooth functions Φ and φ on X such that
	- (1) Φ is weakly hyper p convex relative to ω_X on $\{\Phi > 0\}$ and φ is plurisub*harmonic on X,*
	- (2) $\Psi := \Phi + \varphi$ is an exhaustion function of X; i.e., $X_c := \{ \Psi < c \}$ is rela*tively compact for any c with* $0 < c < \sup_X \Psi \leq +\infty$, and

(ii) *(E, h) is Nakano semi-positive on X.*

Then for any $r \geq p$ *, the space of E-valued harmonic* (n,r) forms $\mathcal{H}^{n,r}(X,E,\Psi)$ de*fined by*

$$
\mathcal{H}^{n,r}(X,E,\Psi) := \{ u \in C^{n,r}(X,E); \overline{\partial}u = \vartheta_h u = 0 \text{ and } \mathbf{e}(\overline{\partial}\Psi)^* u = 0 \text{ on } X \}
$$

represents $H^{r}(X, \Omega_X^n(E))$ if and only if $H^{r}(X, \Omega_X^n(E))$ has a structure of separated *topological vector space.*

We need the following propositions to show Theorem 2.1.

22 K. TAKEGISHI

Proposition 2.2. For any non-critical value $c > 0$ of Ψ and $r \geq p$ if $u \in \mathbb{R}$ $Dom(\bar{\partial}) \cap Dom(\vartheta_h) \subset L_2^{n,r}(X_c, E)$ satisfies $\bar{\partial}u = \vartheta_h u = 0$, then u satisfies the fol*lowing:*

$$
\langle \sqrt{-1} \mathbf{e}(\Theta_h) \Lambda u, u \rangle_h \equiv 0, \ \langle \sqrt{-1} \mathbf{e}(\partial \overline{\partial} \Phi) \Lambda u, u \rangle_h \equiv 0, \ \langle \sqrt{-1} \mathbf{e}(\partial \overline{\partial} \varphi) \Lambda u, u \rangle_h \equiv 0,
$$

$$
\mathbf{e}(\overline{\partial} \Phi)^* u \equiv 0, \ \mathbf{e}(\overline{\partial} \varphi)^* u \equiv 0 \ \text{and} \ \overline{\partial} u \equiv 0 \ \text{on} \ X_c.
$$

Proof. Since Ψ is weakly hyper p convex relative to ω_X on the whole space X in view of the plurisubharmonicity of φ , setting $\psi \equiv 0$ in Proposition 1.3 we obtain the first and sixth equations by Lemma 1.5. By setting $\psi = \Phi$ in Proposition 1.3 the second and fourth ones can be derived from Lemma 1.2 and the equality $(**)$ used in the proof of Proposition 1.1. The third and fifth ones can be obtained similarly. \Box

Proposition 2.3. For any $r \geq p$ let $\mathcal{H}^{n,r}(X,E,\Psi)$ be the space of E-valued har*monic forms defined in Theorem 2.1. Then the following assertions hold:*

- (i) Assume $u \in C^{n,r}(X,E)$ satisfies $e(\overline{\partial}\Psi)^*u = 0$ on X. Then $\overline{\partial}u = \vartheta_h u = 0$ if *and only if* $\bar{\vartheta}u = 0$ *and* $\sqrt{-1} \langle e(\Theta_h + \partial \bar{\partial} \Psi) \Lambda u, u \rangle_h = 0$ *on* X
- (ii) If $u \in \mathcal{H}^{n,r}(X,E,\Psi)$, then $\langle \sqrt{-1}e(\partial \bar{\partial}e^{\psi})\Lambda u, u \rangle_h \equiv 0$ on X for any smooth *plurisubharmonic function* ψ *on X. In particular* $\mathcal{H}^{n,r}(X,E,\Psi)$ does not de*pend on the choice of ψ.*
- (iii) $\mathcal{H}^{n,r}(X,E,\Psi)$ is a torsion free $\mathcal{O}(X)$ -module and the Hodge star operator * *relative to* ω_X yields an injective $\mathcal{O}(X)$ -homomorphism from $\mathcal{H}^{n,r}(X,E,\Phi)$ to $\varGamma(X,\Omega_X^{n-r}(E))$
- (iv) The canonical homomorphism $\iota^r : \mathcal{H}^{n,r}(X,E,\Psi) \longrightarrow H^r(X,\Omega_X^n(E))$ induced *by Dolbeault's isomorphism theorem is injective* (*this property depends on neither the curvature condition of E nor the Kähler property of* ω_X *and depends only on the condition* $e(\partial \Psi)^* u = 0$).

Since Proposition 2.3 can be shown similarly to [20], §4, Theorem 4.3 in view of Proposition 1.1, the details is left to the reader.

Proof of Theorem 2.1. We first show the necessity of Theorem. If the canonical homomorphism $\iota^r : \mathcal{H}^{n,r}(X,E,\Psi) \longrightarrow H^r(X,\Omega_X^n(E))$ induced by Dolbeault's isomorphism theorem yields an isomorphism, then any $\overline{\partial}$ -closed form $v \in C^{n,r}(X, E)$ has the following decomposition:

$$
(\sharp) \qquad v = u + \bar{\partial}w \quad \text{for} \quad u \in \mathcal{H}^{n,r}(X,E,\Psi) \quad \text{and} \quad w \in C^{n,r-1}(X,E)
$$

Suppose the above *v* is contained in the closure of $\overline{\partial} C^{n,r-1}(X,E)$ relative to the Fréchet-Schwartz topology. Then there exists a sequence of smooth forms ${w_k}_{k≥1}$ ∈ $C^{n,r-1}(X,E)$ such that $\bar{\partial}_w_k$ converges strongly to v in L^2 -sense on every compact

subset of *X*. Hence for any non-critical value c of Ψ , by integration by parts on X_c we obtain

$$
(u,u)_h = (v - \overline{\partial}w, u)_h = (v,u)_h = \lim_{k \to \infty} (\overline{\partial}w_k, u)_h = \lim_{k \to \infty} (w_k, \vartheta_h u)_h = 0
$$

Here we note that every boundary integral on $\partial X_c = {\Psi = c}$ arising from integration by parts vanishes in view of the equation $\mathbf{e}(\overline{\partial}\Psi)^*u = 0$. Therefore $u \equiv 0$ on X and so $v = \overline{\partial}w$. This implies that $\overline{\partial}C^{n,r-1}(X,E)$ is closed and so the cohomology group is Hausdorff.

The sufficiency of Theorem is shown as follows. In view of Proposition 2.3, (iv) we have only to show that any $\overline{\partial}$ -closed form $v \in C^{n,r}(X,E)$ admits the decom position (\sharp) under the Hausdorff property of $H^r(X, \Omega_X^n(E))$. From now on we fix an increasing sequence ${c_k}_{k\geq 1}$ of non-critical values of Ψ such that $\lim_{k\to\infty} c_k =$ $\sup_X \Psi$. Setting $X_k := X_{c_k}$, let $N_k^{n,r}(\bar{\partial})$ (resp. $N_k^{n,r}(\vartheta_h)$) be the null space of $\bar{\partial}$ (resp. ϑ_h) in Dom $(\bar{\partial})$ (resp. Dom (ϑ_h)) $\subset L_2^{n,r}(X_k,E)$. $N_k^{n,r}(\bar{\partial})$ is decomposed as follows:

$$
N_k^{n,r}(\bar{\partial}) = H_k^{n,r}(E) \bigoplus [\text{Range}(\bar{\partial})] \quad \text{for} \quad H_k^{n,r}(E) := N_k^{n,r}(\bar{\partial}) \cap N_k^{n,r}(\vartheta_h)
$$

Hence setting $v_k := v|_{X_k}, v_k$ is decomposed as follows:

$$
v_k = u_k + v_k^* \quad \text{with} \quad u_k \in H_k^{n,r}(E) \quad \text{and} \quad v_k^* \in [\text{Range}(\bar{\partial})]
$$

Applying Proposition 2.2 to X_k , it follows that $H_k^{n,r}(E) \subset \mathcal{H}^{n,q}(X_k,E,\Psi)$ and $u|_{X_k} \in H_k^{n,r}(E)$ if $u \in H_l^{n,r}(E)$ and $l > k \ge 1$ (cf. [4], Chap. 1). In particular $u_{k+1} = u_k$ and $v^*_{k+1} = v^*_k$ on X_k for any $k \ge 1$. Setting $u := u_k$ and $v^* := v^*_k$ on X_k for any $k \geq 1$ we obtain $v = u + v^*$ and $u \in \mathcal{H}^{n,r}(X,E,\Psi)$. Since Ψ is an exhaustion function of X, we can take a smooth strictly increasing function λ : $[0, \sup \Psi) \to [0, +\infty)$ such that *v* and $u \in L_2^{n,r}(X, E, he^{-\lambda(\Psi)})$. Setting $g := he^{-\lambda(\Psi)}$. *u* satisfies $\bar{\partial}u = \vartheta_g u = 0$ in $L_2^{n,r}(X, E, g)$ by $\vartheta_g = \vartheta_h + \lambda'(\Psi) e(\bar{\partial} \Psi)^*$, which implies $v^* \in \text{[Range}(\bar{\partial}) \subset L_2^{n,r}(X,E,g)$. Therefore there exists $w \in C^{n,r-1}(X,E)$ with $v^* = \overline{\partial}w$ by the Hausdorff property of $H^r(X, \Omega_\mathbf{Y}^n(E))$ by [20], Proposition 4.6. Fi nally we have obtained the decomposition (\sharp) .

Setting $\Phi \equiv 0$ in Theorem 2.1 we obtain the following theorem.

Theorem 2.4. *Let X be a weakly 1-complete manifold of dimension n\ i.e., X admits a smooth plurisubharmonic exhaustion function Ψ. Suppose X admits a Kάhler metric* ω_X and E is a Nakano semi-positive vector bundle on X. Then for any $r > 1$, $\mathcal{H}^{n,r}(X,E,\Psi)$ represents $H^r(X,\Omega_X^n(E))$ if and only if $H^r(X,\Omega_X^n(E))$ has a struc*ture of separated topological vector space.*

REMARK 2.5. If *X* is holomorphically convex, then the sufficiency of Theorem

24 K. TAKEGISHI

2.1 has already shown in [20], Theorem 5.2. On the other hand it is interesting that there exists a class of weakly 1-complete Kahler manifolds *X* being not holomorphi cally convex whose canonical line bundle is flat and $H^r(X, \mathcal{O}_X)$ is either Hausdorff or not (cf. [9], [10], [21])

3. Proof of Theorems 1 and 2

Let the situation be the same as in Theorem 1 stated in the introduction. We fix the Kähler metric ω_X and the metric h of E satisfying the hypothesis respectively. By composing an arbitrarily smooth convex increasing function with *Φ* we may assume that (1) $\Phi > 0$ on X, and (2) Φ is strongly q-convex and weakly hyper p-convex on $\{\Phi > 0\}$ relative to ω_X . We take a Stein open covering $\{V_\alpha, \tau_\alpha, S_\alpha, \mathbb{C}^{d(\alpha)}\}_{\alpha \in A}$ of *Y* such that τ_α is an isomorphism from V_α to a subvariety $S_\alpha \subset (\mathbb{C}^{d(\alpha)}, (z^1, ..., z^{d(\alpha)}))$ for any $\alpha \in A$. Setting $\varphi_{\alpha} := (\tau^{\alpha} \circ f)^{*} \left(\sum_{j=1}^{d(\alpha)} |z^{j}|^{2} \right)$, $\Psi_{\alpha} := \Phi + \varphi_{\alpha}$ and $X(V_{\alpha}) :=$ $f^{-1}(V_\alpha)$, each pair $\{X(V_\alpha), \Psi_\alpha\}$ satisfies the condition of Theorem 2.1, (i).

For any $r \geq \max\{p, q\}$, by the theorem stated in the introduction and Theorem 2.1, the homomorphism $\iota^r : \mathcal{H}^{n,r}(X(V_\alpha), E, \Psi_\alpha) \to H^r(X(V_\alpha), \Omega_X^n(E))$ induces an isomorphims as an $\mathcal{O}(V_\alpha)$ -module. Furthermore for any Stein open subset $W \subset V_\alpha$ provided with an strictly plurisubharmonic exhaustion function ψ_W , we claim that the restriction homomorphism $r_{V_\alpha,W}$: $\mathcal{H}^{n,r}(X(V_\alpha),E,\Psi_\alpha) \rightarrow \mathcal{H}^{n,r}(f^{-1}(W),E,\Phi +$ $f^*\psi_W$) can be well-defined and commutes with the restriction homomorphism of cohomology group. By the surjectivity of f, for any α there exists an open dense subset $U_{\alpha} \subset V_{\alpha}$ such that U_{α} is non-singular and $f : f^{-1}(U_{\alpha}) \to U_{\alpha}$ is smooth. By Proposition 2.3, (ii) and § 1, (1.4) in [20], $u \in \mathcal{H}^{n,r}(X(V_\alpha), E, \Psi_\alpha)$ satisfies the equation: $\sqrt{-1} \langle e(\partial \overline{\partial} \varphi_\alpha) \Lambda u, u \rangle_h = \sum_{j=1}^{d(\alpha)} |e(\overline{\partial (\tau^\alpha \circ f)^* z^j})^* u|_h^2 \equiv 0$ on $X(V_\alpha)$ for any α . Hence $d(\tau^{\alpha} \circ f)^* z^j \wedge *u \equiv 0$ on $X(V_{\alpha})$ for any j and α , where $*$ is the star operator relative to ω_X . This implies that (1) $\mathcal{H}^{n,r}(X(V_\alpha),E,\Psi_\alpha) = 0$ if r > max $\{n - m, \max\{p, q\}\}\$ with $m = \dim_{\mathbb{C}} Y$, (2) any point $x \in U_\alpha$ admit is a neighborhood $V_x \subset U_\alpha$ and a non-vanishing holomorphic m form θ_x on V_x so that *u can be divided by $f^*\theta_x$ on $f^{-1}(V_x)$ for any $u \in \mathcal{H}^{n,r}(X(V_\alpha), E, \Psi_\alpha)$ if $\max\{p,q\} \leq r \leq n-m$. Hence $u \in \mathcal{H}^{n,r}(X(V_\alpha), E, \Psi_\alpha)$ satisfies $e(\bar{\partial}(f^*\psi_W))^*u \equiv 0$ on $X(W)$; i.e., $u|_{X(W)} \in \mathcal{H}^{n,r}(X(W), E, \Phi + f^* \psi_W)$, which implies our claim.

Denoting the sheafification of the data $\{H^{n,r}(X(V_\alpha),E,\Psi_\alpha),r_{V_\alpha,W}\}$ with the restriction homomorphism $r_{V_\alpha,W}$: $\mathcal{H}^{n,r}(X(V_\alpha),E,\Psi_\alpha) \rightarrow \mathcal{H}^{n,r}(f^{-1}(W),E,\Phi+$ $f^*\psi_W$), $W \subset V_\alpha$ by $R^0f_*\mathcal{H}^{n,r}(E,\Phi)$, we obtain a sheaf isomorphism ι^r : $R^0 f_* \mathcal{H}^{n,r}(E, \Phi) \to R^r f_* \Omega_X^n(E)$ of \mathcal{O}_Y -module. Furthermore for any relatively com pact Stein open subset *S* provided with a smooth strictly plurisubharmonic exhaustion function ψ_S clearly the canonical homomorphism from $\mathcal{H}^{n,r}(f^{-1}(S), E, \Phi + f^* \psi_S)$ to $\Gamma(S, R^0 f_* \mathcal{H}^{n,r}(E, \Phi))$ is an isomorphism. By Proposition 2.3, (iii), the operator * induces a sheaf homomorphism σ^r : $R^0 f_* \mathcal{H}^{n,r}(E, \Phi) \to R^0 f_* \Omega_X^{n-r}(E)$ with $\mathcal{L}^r \circ \sigma^r = \text{id}$ because $L^r \circ * = c(n,r) \text{id}$, $c(n,q) \neq 0 \in \mathbb{C}$, on (n,r) forms. Final ly $\delta^r := \sigma^r \circ (t^r)^{-1} : R^r f_* \Omega_X^n(E) \to R^0 f_* \Omega_X^{n-r}(E)$ is the desired splitting shea

homomorphism. The vanishing theorems follow from the above observation and the d uality theorem by Ramis and Ruget (cf. [13] and also [3]). This completes the proof of Theorem 1.

To show Theorem 2 we have only to show $\mathcal{H}^{n,r}(f^{-1}(S), E, \Phi + f^* \psi_S) = 0$ for any Stein open subset (S, ψ_S) of *Y* because $f : X \to Y$ is a strongly q convex morphism. By the strong hyper *q* convexity of Φ, this follows from Lemma 1.2 and Propo sition 2.2 (cf. [2], [14]). This completes the proof of Theorem 2.

References

- [1] A. Andreotti and H. Grauert: *Thέoremes de finitude pour la cohomologie des espaces complexes,* Bull.Soc. Math. France, 90 (1960), 193-259.
- [2] N. Aronszajn: *A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order,* J. Math. Pures Appl. 36 (1957), 235-249.
- [3] J.L. Ermine: *Coherence de certaines images directes a supports propres dans le cas d'un morphisme fortment p-convexe,* Ann. Scuola Norm. Sup. Pisa, 6 (1979), 1-18.
- [4] G.B. Folland and JJ. Kohn: The Neumann problem for the Cauchy-Riemann complex, Princeton Univ. Press, 1972.
- [5] A. Fujiki: *A coherency theorem for direct images with proper supports in the case of a 1-convex map,* Publ. Res. Inst. Math. Sci. 18 (1982), 451-476 (31-56).
- [6] H. Grauert: *Ein Theorem der analytischen Garbentheorie und die Modulrdume komplexer Strukturen,* Publ. Math. I. H. E. S, 5 (1960).
- [7] H. Grauert and O. Riemenschneider: *Kdhlersche Mannigfaltigkeiten mit hyper-q-konvexen* Rand,Problems in Analysis (Lecture Symp. in honor of S. Bochner, 1969),Princeton Univ. N. J. (1970), 61-79.
- [8] L. Hörmander: L^2 estimates and existence theorems for the $\bar{\partial}$ operator, Acta math. 113 (1965), 89-152.
- [9] H. Kazama: *On pseudoconvexity of complex abelian Lie groups,* J. Math. Soc. Japan, 25 (1973), 329-333.
- [10] H. Kazama: $\bar{\partial}$ cohomology of (H, C) groups, Publ. RIMS, Kyoto Univ. 20 (1984), 297-317.
- [11] T. Ohsawa: *Cohomology vanishing theorems on weakly 1-complete manifolds,* Publ. RIMS, Kyoto Univ. **19** (1983), 1181-1201.
- [12] T. Ohsawa: *A vanishing theorem for proper direct images,* RIMS, Kyoto Univ. **23** (1987), 243-250.
- [13] J.P. Ramis and G. Ruget: *Residus et dualite,* Invent. Math. 26 (1974), 89-131.
- [14] O. Riemenschneider: *A generalization of Kodaira's embedding theorem,* Math. Ann. **200** (1973), 99-102.
- [15] P. Siegfried: *Un Thέoreme de finitude pour les morphisms q-convexes,* Comment. Math. Helv. **49** (1974), 417-459.
- [16] T.Y. Siu: *The 1-convex generalization of Grauert's direct image theorem,* Math. Ann. **190** (1971), 203-214.
- [17] T.Y. Siu: *A pseudoconvex-pseudoconcave generalization of Grauert's direct image theorem,* Ann. Scuola Norm. Sup. Pisa, 26 (1972), 649-664.
- [18] K. Takegoshi: *Relative vanishing theorems in analytic spaces,* Duke Math.J. 52 (1985), 273 279.
- [19] K. Takegoshi: *Application of a certain integral formula to complex analysis,* Prospects in Comple Analysis, Proc. 25-th Taniguchi International Symposium, Katata/Kyoto, Lecture Notes in Math. **1469** (1991), Springer, 94-114.
- [20] K. Takegoshi: *Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kahler morphisms,* Math. Ann. **303** (1995), 389-416.

[21] C. Vogt: *Line bundles on toroidal groups,* J. Reine Angew. Math. 335 (1982), 197-215.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043, Japan e-mail: kensho@math.wani.osaka-u.ac.jp