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1. Introduction

Let / : M —> N be a C°°-stable map of a closed orientable 3-manifold M into a
surface N (possibly non-orientable, open, or with boundary). It is known that the local
singularities of / consist of three types: definite fold points, indefinite fold points, and
cusp points (for example, see [1,7,8]). Burlet and de Rham have studied smooth maps
with only definite fold points as the singularities, which are called special generic maps
(see [1]). Saeki has studied simple stable maps, which are characterized as stable maps
with no cusp points such that every connected component of the fiber f~1(x) contains
at most one singular point for all x e iV(see [7,8]). Note that special generic maps
which are stable are simple stable.

Simple stable maps have been studied by Saeki (see [7,8]). For example, it is
known that a closed orientable 3-manifold admits a simple stable map if and only if it
is a graph manifold (see [7, Theorem 3.1]). In [8, section 6], Saeki has studied simple
stable maps of homology 3-spheres into the plane R2 whose singular sets have a few
connected components.

For a simple stable map f : M —> N9 the singular set S(f) is a link in M.
The components of the link S( / ) , each of which is called a fold, are classified into
definite ones and indefinite ones: the former consists of only definite fold points, and
the latter indefinite fold points. The indefinite folds are further classified into two types,
(I) and (II), according to the behavior of / in a neighborhood of a given fold. This
classification is important in this paper.

It is already known that f\s(f) is an immersion with normal crossings for a sim-
ple stable map / . In this paper, we count the number of its crossings and show that
this number is congruent modulo 2 to the number of indefinite folds of type (II) in
S(f). Note that in [2, Propositions A and C(b)], Chess has considered (not necessarily
simple) stable maps without cusps of odd dimensional manifolds into the plane and
has obtained the same result as ours for such maps. Here we prove the result using
a method totally different from [2]. We also note that our result is applicable also to
maps into arbitrary surfaces.

In general, it is important to study the behavior of f\s(f) of a stable map / in the
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global study of differentiable maps. For example, for a stable map / : M —> N of an

n-manifold M (n > 3) into a 3-manifold N, the number modulo 2 of triple points of

f\s(f) n a s t> e e n studied in [9].

This paper is organized as follows. In section 2, we recall some basic definitions

and facts about simple stable maps and introduce the notion of the Stein factorization,

which is an important tool for the investigation of simple stable maps. In section 3, we

introduce a new notion of the "generalized" rotation number for families of immersed

oriented circles in a surface (possibly non-orientable or with boundary). This notion

is a natural generalization of the well-known rotation number for families of immersed

oriented circles in the plane R2. A similar notion has been defined for immersions of

closed n-manifolds (possibly disconnected) into oriented (n+1)-manifolds in [4], where

a theorem including Theorem 3.16 in the present paper is also proved. In this paper,

we define the generalized rotation number using a different method, including the case

where the target surfaces are non-orientable. The generalized rotation number of a

family of immersed oriented circles is closely related to the number of its crossings,

which is an important tool in this paper. The referee has given the author a suggestion

for simplifying the proofs of Theorems 3.2 and 3.3 (the case where the surface is

orientable and closed). That was a great help for the author to prove the other cases.

In section 4, we prove the main result, using the notion of the generalized rotation

number. In section 5, we give some examples of immersions of branched surfaces into

(unbranched) surfaces (for the definition, see [8]), from which we can construct simple

stable maps. These examples show that the number of crossings of f\s(f) f° r a simple

stable map / can be even and odd; i.e., the both possibilities are realized.

Throughout the paper, all manifolds and maps are differentiable of class C°° and

all the homology groups are with integral coefficients, unless otherwise indicated. For

a manifold X, we denote by iάχ the identity map of X. We denote by the symbol

" = " a diffeomorphism between manifolds.

2. Preliminaries

We give a brief definition of simple stable maps (for a definition of stable maps,

see [1,5]).

DEFINITION 2.1. Let M be an orientable closed 3-manifold and TV a surface

(possibly non-orientable, open, or with boundary). A map / : M —>• N is simple stable

if it satisfies the following local and global conditions: For all p e M, there exist local

coordinates (u,x,y) centered at p and (X,Y) centered at f(p) such that / has one of

the following forms:
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(Lo)

(Li)
(L2)

X
X

X

of = u,
of = u,
0 f = u,

Y
Y

Y

0 f — X

of = χ2

of = x2

+ y2

-y2

(P : regular point),
(p : definite fold point),

(p : indefinite fold point),

and

(Gi) f\s(f) i s a n immersion with normal crossings, where S(f) is the singular

set of /; i.e., S(f) is the set of the points of M where the rank of the differential df

is strictly less than 2, and

(G2) for all p £ S(f), the connected component of f~1(f(p)) containing p has

only the point p as singular points.

We set So(f) = {definite fold points of /} and Sχ(f) = {indefinite fold points of

/}. Clearly we have S(f) = S0(f) U Si(/). Note that 5(/), 5 0 (/), and 5i(/) are

smooth links in M. We call a component of 5Ό(/) a definite fold and a component of

5i(/) an indefinite fold.

In the rest of this section we will summarize some known results. For precise

proofs, see [5].

Let us observe the behavior of a simple stable map / in a neighborhood of S(f).

First, let / C S(f) be a definite fold. We set D = {(x,y) e R2\x2 + y2 < 1} and define

r : D —>- [0,1] by r(x, y) = x2 + y2. Then the behavior of / in a neighborhood of / is

right-left equivalent (for a definition, see [7,8]) to the map jo(rx id 5 i) : D x S1 —> N9

where j : [0,1] x S1 —» N is an immersion. Note that / corresponds to {cjxS1, where

c = (0,0) e D (see Figure 2.1).

Second, let / C S(f) be an indefinite fold. Let X be the 2-sphere with three open

holes. We consider a Morse function h : X —> R as in Figure 2.2. Note that a is the

unique critical point of h.

We set Vi = X xψi S1 = X x [0, l]/(x, 0) - (<^(z), 1) (i = 1,2), where <^ = i d x

and ψ2 : X —> X is the rotation of π around the vertical line passing through α (see

Figure 2.2). Note that ft o ^ = ft. Then we define gι = h xψi iάsi : V* -* R x S 1 ,

DxS1

N

Figure 2.1
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R

h(a)

I

*p2i rotation of π around the vertical line /

Figure 2.2

which is induced from the map h x id[0,i] : X x [0,1] —> R x [0,1] through the

identifications (x,0) ~ (<fi(x), 1) (x G X) and (y,0) ~ (y, 1) (y G R). Note that # is

well-defined. Then the behavior of / in a neighborhood of I is right-left equivalent to

either j o gι : Vι -> N or j o g2 : V2 -> N, where j : R x S1 —>> N is an immersion.

Note that / corresponds to {a} x 5 1 in both cases.

By the observation above, indefinite folds are classified into two types. We say

that an indefinite fold / is of type (I) if / is equivalent to j o gλ on some neighborhood

of I, and of type (II) if it is equivalent to j o g2. This classification is important in this

paper. We put S(*\f) = {points of indefinite folds of type (I)} and Sf I } (/) = {points

of indefinite folds of type (II)}. Clearly we have Sι(f) = S?(f) U S^\f).

Now we recall the notion of the Stein factorization of a stable map / : M —> N.

For p and p' G M, we define p ~/ p' if f(p) = f(p') and p and p' are in the same

connected component of f~1(f(p)) = f~1(f(pf))- Let W/(= Mj ~/) be the quotient

space of M under this equivalence relation and we denote by qf : M —> Wf the

quotient map. By the definition of the relation, we have a unique map / : Wf —> N

such that / = f o qf. The quotient space Wf or the commutative diagram

NM

Wf

is called the Stein factorization of / [1, 5, 6]. In general, Wf is not a manifold.

However, if / : M —>• A/" is a simple stable map, then W/ turns out to be a branched

surface (for the definition, see [7,8]). Points of Wf are classified into inner, boundary,

and branching points. See Figure 2.3.

We set Σo(/) = {boundary points of Wf}, Σ i ( / ) = {branching points of Wf},

and Σ(/) = Σ o ( / ) U Σ i ( / ) . The set Σ(/) (or Σ o ( / ) , Σi(/)) is a disjoint union

of simple closed curves in Wf. If / is a connected component of Σo(/), then the

regular neighborhood N(l) of / in Wf is homeomorphic to [0,1] x S 1 , where {0} x S 1

corresponds to /. Let / be a connected component of Σ i ( / ) . Set Y = {rexp(y/^16) G
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*
X

x: inner point

X y--γ
1 :

t: boundary point *: branching point

Figure 2.3

Figure 2.4

C|0 < r < 1,0 = 0,±2π/3} and ω = 0 (<E Y). Let r : Y -» y be the restriction

of the complex conjugation of C to y. Note that r is a homeomorphism. Then the

regular neighborhood N(l) of I in Wf is homeomoφhic to either Y xS1 orYxτS
ι =

7x[0, l]/(y,0) ~ (τ(y), 1), where {α JxS 1 corresponds to / in both cases. We say that

a connected component / of Σχ(/) is of type (I) if N(l) is homeomorphic to Y x 5 1 ,

and of type (II) if it is homeomoφhic to 7 x τ S1. We set Σ^ (/) = {points of

components of Σi(/) of type (I)}, and Σ^ (/) = {points of components of Σi(/) of

type (II)}. It is easy to observe that qf{S(f)) = Σ(/), qf(Si(f)) = Σi(/) (i = 1,2),

qf(S?\f)) = Σ»(/), and qf(S[U)(f)) = Σ?I}(/). Moreover, qf\s{f) : S(f) -> Σ(/)
is a homeomoφhism. That is, definite (or indefinite) fold points of M correspond to

boundary (resp. branching) points of Wf, and indefinite folds of type (I) (or (II))

correspond to connected components of Σ i ( / ) of type (I) (resp. (II)).

We can introduce a natural "differentiable structure" on Wf (see [7]). Then the

map / : Wf -> N turns out to be an immersion and qf\s(f) : S(f) —> Wf an embed-

ding.

Orientability of branched surfaces is also defined. A branched surface Wf is ori-

entable if Wf — Σ i ( / ) , which is a surface in an ordinary sense, can be oriented so that

a neighborhood of Σχ(/) is oriented as in Figure 2.4.

In the above argument, we have always considered branched surfaces Wf which

are the quotient spaces of simple stable maps /. For a general branched surface W



690 Y. YONEBAYASHI

(see [7,8]), points of W are similarly classified into inner, boundary, and branching

points as in Figure 2.3. We define Σ0(W) = {boundary points of W}9 Σι(W) =

{branching points of W}, and Σ(W) = Σ0(W) U Σχ(W). The sets Σ{*\w) and
Π ) (C Σ^W)) are defined similarly. Orientability of W is also defined similarly.

3. Generalized rotation number

In this section, we define generalized rotation numbers for families of immersed

oriented circles in surfaces. For a family L of immersed oriented circles in a manifold

X, we denote by [L] the homology class in H\(X) represented by L.

First we define the generalized rotation number r(L) of a family L of immersed

oriented circles in an oriented closed surface. Let Fg be the oriented closed surface of

genus g, and we fix a Riemannian metric on Fg. Let TχFg be the unit tangent sphere

bundle over Fg, i.e., T\Fg = { D G TxFg\x G Fg, \v\ — 1}, and a a fiber over a point

of Fg. Let L be a union of n immersed oriented circles in Fg. We call n the number

of transverse components of L and we denote n by $tL. We denote by v(L) the unit

vector field along L such that at each point of L, v(L) is tangent to L and is consistent

with the orientation of L. Note that a (or v(L)) can be considered as a circle (resp. a

family of circles) in TχFg. We induce the orientation of a (or v(L)) from that of Fg

(resp. L).

REMARK 3.1. Let Zi,..., l2g be immersed oriented circles in Fg such that [Zi],...,

[l2g] are generators of Hι(Fg). Then [v(Zi)],..., [v^p)], [α] are generators of H\(TιFg).

Note that [a] is of order 2 - 2# and that Hι{TιFg) is isomorphic to Hι{Fg) Θ Z/(2 -

2g)Z. If p : T iF p -> Fg denotes the bundle projection, then ker(p* : Hι(TλFg) ->-

H\{Fg)) is isomorphic to Z/(2 — 2^)Z and is generated by [α].

Theorem 3.2. Let Fg, L, and a be as above. If [L] — 0 in Hι(Fg), then there

exists an integer r(L) such that [v(L)] = τ(L) [a] in Hι{T\Fg). The integer r(L) is

uniquely determined modulo 2 — 2g. We call r(L) £ Z/(2 — 2g)Z the (generalized)

rotation number of the family L of immersed oriented circles.

Proof. Let p : TχF9 -> F9 be the projection of the unit tangent sphere bundle.

Then it is clear that [L] = 0 in ί f i( i^) if and only if p*([v(L)]) = 0 in Hι{TλFg).

From Remark 3.1, the result follows immediately. Π

It is easily shown that r(L) changes its sign if Fg changes its orientation. Note

that r(L) does not depend on the choice of a Riemannian metric on Fg and that r(L)

is a regular homotopy invariant of L.

Theorem 3.3. Let L be a family of immersed oriented circles in Fg. We suppose

that L has only normal crossings and we denote by x the number of its crossings. If
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[L] = 0 in H^Fg), then

x = r(L) - tftL (mod 2) .

Proof. We transform L in a neighborhood of each crossing as in Figure 3.1.

crossing;
point

Figure 3.1

Note that [L] and [v(L)] do not change under this transformation. Moreover, both

x and jtίi change their parity at each time of the transformation. Thus we have only

to prove the theorem in the case where L is a disjoint union of oriented simple closed

curves. To complete the proof, we show the following lemma.

Lemma 3.4. Let L be a disjoint union of oriented simple closed curves in Fg. If

[L] = 0 in Hι(Fg), then there exists a decomposition L = L\ U U L m (1 < m < oo)

such that (1) each Li is a disjoint union of oriented simple closed curves,

(2) Li Π Lj = Qforiφ j, and

(3) for each i, there exists a compact connected codimension-0 submanifold Ai of Fg

such that dAi — Li as oriented l-dimensional manifolds, where the orientation of Aι

is induced from that of Fg.

Proof. We fix a point XQ £ Fg — L. For each x £ Fg — L, we define n(x)

as follows. Let 7 C Fg be a piecewise smooth oriented path from xo to x which

transversely intersects L at finitely many points. Each intersection point p £ L Π 7 has

its own sign (either + 1 or —1) according to the orientations of L, 7, and Fg. Then

we define n(x) to be the sum of all the signs of L Π 7. If L Π 7 = 0, then we set

n(x) = 0. This definition does not depend on the choice of 7. If 7' is another choice,

then consider the oriented closed curve 7 — 7' as in Figure 3.2. Since [L] = 0 in

Hι(Fg), the intersection number (7 — j') - L is equal to 0, which means that n(x)

obtained from 7 is equal to that obtained from 7'. It is then obvious that n{x) is

constant on each connected component of Fg — L. Thus each connected component X

of Fg—L has its own integer n(X). Moreover, if X\ and X2 are connected components

of Fg - L next to each other (i.e., ~X[ Π Ύ^ φ 0), then n{Xλ) - n(X2) = ± 1 . The

number §(Fg — L) of connected components of Fg — L is finite, so there exists a

connected component X such that n(X) is maximum. We set A\—X and L\ — dA\.

Then the orientation of L\ as the oriented boundary of A\ coincides with that as a
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component of the family L of oriented simple closed curves, since the sign of each

intersection point of dA\ with a path going out of A± is always equal to —1. Thus,

we have obtained L\ and A i as in the lemma. If V = L — L\ is not empty, then

[I/] = [L] — [cλAi] = 0 in Hχ(Fg). Thus we can continue the argument on V and obtain

Li and A{ inductively, and the conditions (1), (2), and (3) are obviously satisfied. •

We complete the proof of Theorem 3.3 as follows. Let L = L\ U U Lm and

J4I, ..., Am C Fg be as in Lemma 3.4. For each L{, [v(LJ] = χ(Ai) [a] in Hι(TιFg),

where χ{Aι) denotes the Euler characteristic of A{. This is shown by Poincare-Hopf's

theorem (or see [3, Proposition 3]). Thus [v(L)] = (Σ£Lχ χ(A<)) * [α] If M is an

orientable compact surface of genus gι with λ̂  boundary components, then χ(A{) =

2-2gι- λ<. Thus

r(L)-$tL = ^2χ(Ai) - fUtL (mod2-25)

- 29i - λ4) - ttti

fttL (mod 2)

= 0 .

This completes the proof of Theorem 3.3. •

Next, we define the generalized rotation number r(L) for a family L of immersed

oriented circles in an oriented compact surface with nonempty boundary. Let F9ik be

the oriented compact surface of genus g with k (k > 1) boundary components and

L C Fg^ a family of immersed oriented circles. Let T\Fg^ be the unit tangent sphere

bundle and a a fiber over a point of F9ίk Let v(L) be the unit vector field along L

such that at each point of L, v(L) is tangent to L and is consistent with the orientation

of L. Note that a (or v(L)) can be considered as a circle (resp. a family of circles) in

T\Fg,k' We orient a and v(L) as in the previous case.
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REMARK 3.5. Let /i,...,/2p+fc-i be immersed oriented circles in Fg^ such that

[Zi],...,[Z20+*-i] are generators of H^F^k). Then [v(/i)],..., [v(l2g+k-i)], W are

generators of Hι(TιF9ik) Note that [a] is of infinite order and that Hι(TιF9ik) is

isomorphic to Hι(F9ik) θ Z. If p : TιFg^ -» î ,fc denotes the bundle projection, then

it is easily observed that ker(p* : H\(T\Fg^) —> Hι(F9ik)) is isomoφhic to Z and is

generated by [a].

Theorem 3.6. Let L be a family of immersed oriented circles in Fg^. If [L] = 0

in Hι(Fg^), then there exists a unique integer r(L) such that [v(L)] = r{L) * M in

H\(T\F9^)' We call r(L) G Z the (generalized) rotation number of the family L of

immersed oriented circles.

We can prove the above theorem by an argument similar to that in the proof of

Theorem 3.2, so we omit the proof here. It is easily shown that r(L) changes its sign

if Fg,k changes its orientation. Note that r(L) does not depend on the choice of a

Riemannian metric on Fg^ and that r(L) is a regular homotopy invariant of L.

Theorem 3.7. Let L be a family of immersed oriented circles in F9ik with only

normal crossings. We denote by (JtL the number of its transverse components and by x

the number of its crossings. If[L]=0 in Hι(F9ik)> then

x = r(L) - jjitL (mod 2) .

Proof. Let i : FQik -> Fg> be an orientation-preserving embedding (g < g1). By

the embedding i, we can consider L to be a family of immersed oriented circles in Fg>.

Thus, by Theorem 3.3,

x = r{i(L)) - fox, (mod 2) .

To complete the proof, we show that the rotation number r(L) G Z is congruent

modulo 2 to the rotation number r(i(L)) e Z/(2 - 2g')Z. Let p : TλFg,k -> Fg,k

denote the bundle projection and p* : Hι(TιF9ik) —• Hι(F9ik) the induced homo-

morphism. Furthermore, let p1 : T\Fg> ~> F9> denote the bundle projection and p+ :

Hι(TιFgt) -> Hι{Fg>) the induced homomorphism. Let Tλi : TιFg,k -> TλFg> denote

the map induced from the embedding z, and we consider the induced homomorphism

(Γii)* : ί f i ( T i F ^ ) -> Hι(TλFg>). Then it is easily shown that (Tiz)*(ker(p*)) =

ker(p^) and the restriction of (XΊz)* to ker(p*) is equivalent to the natural projection

of Z onto Z/(2 - 2# ;)Z. Then it follows that r(L) is equal to r{i(L)) if considered

as elements of Z/(2 — 2gf)Z. Thus r(L) is congruent modulo 2 to r(i(L)), which

completes the proof. •
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Let us consider the case where L is a family of immersed oriented circles in a

non-orientable closed surface. Let Ng be the non-orientable closed surface of non-

orientable genus g and L C Ng a family of immersed oriented circles. Let T\Ng be

the unit tangent sphere bundle and a a fiber over a point of Ng. Let v(L) be the unit

vector field along L such that at each point of L, v(L) is tangent to L and is consistent

with the orientation of L. Note that a (or v(L)) can be considered as a circle (resp.

a family of circles) in T\Ng. We induce the orientation of v(L) from that of L. We

choose the orientation of a arbitrarily.

REMARK 3.8. If A: is a non-negative integer, then N2k+i — F^Ni and N2k+2

= F^N2. That is, we obtain non-orientable closed surfaces as follows. Let a be the

oriented boundary of the oriented surface Fk,\. Let M be the compact Mobius band

and b its boundary. Furthermore, let K be the Klein bottle with one open hole and c

its boundary. Then N2k+i is obtained from Fj^i and M by gluing a and b, and N2k+2

is obtained from Fk,\ and K by gluing a and c (see Figure 3.3).

Figure 3.3

REMARK 3.9. Note that H1{T1N2k+\) is isomorphic to Z2k Θ Z/4Z and i/i(Ti

N2ΛH-2) to Z 2 f c + 1 θ Z / 2 Z θ Z / 2 Z . This is observed as follows. We consider FkΛ,M C

N2k+\ as in Remark 3.8. Let h,...,l2k be immersed oriented circles in F/^i such

that [/1],..., [/2fc] arc generators of Hι(Fk,i). Let m be an immersed oriented circle

in M such that [m] is a generator of ϋΓi (M) (for example, we choose the center cir-

cle of the Mobius band M). Then [Zi],..., [Z2fc], [m] are generators of H\(N2k+ι) and

[v(ii)],..., [v(Z2fc)], [v(m)] are generators of iίi(Γi7V2 f c + 1). Note that [m] G Hι(N2k+i)

is of order 2, [v(m)j G iJi(TiiV2 f c +i) is of order 4, and [a] = 2[v(m)] in #i(TiiV 2 f c + 1 ).

Similarly, we consider Fk,\,K C N2k+2. Let ii,...,Z2fc be as above and mi and

m 2 embedded oriented circles in K as in Figure 3.4, where the regular neighbor-

hood N(mι) of mi is diffeomorphic to the Mobius band and the regular neighborhood
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N(πi2) of m2 to the annulus. Note that ΊΠ\ and m^ are generators of H\{K). Then

[ii], -.., [hk], [mi], [m2] are generators of H1(N2k+2) and [v(Zi)],..., [v(Z2fc)], [v(mi)],

[v(m2)],[α] are generators of -ffi(ϊiJV2A.+2). Note that [m2] G Hι{N2k+2) is of or-

der 2 and that [v(m2)], [α] G H1(TιN2k+2) are of order 2. Note that [α] is of order

2 in both cases. If p : T\Ng ^ Ng denotes the bundle projection, then ker(p* :

Hι(TιNg) -+ Hι(Ng)) is isomorphic to Z/2Z and is generated by [a].

Figure 3.4

Theorem 3.10. Let L be a family of immersed oriented circles in Ng. If [L] = 0

in Hi(Ng), then there exists an integer r(L) such that [v(L)] = r(L) [α] in ffi(TiiV^).

77*e integer r(L) is uniquely determined modulo 2. We cα// r(L) G Z/2Z ί/ze (gener-

alized) rotation number of the family L of immersed oriented circles.

We can prove the above theorem by an argument similar to that in the proof of

Theorem 3.2, so we omit the proof here. Note that the definition of r(L) does not de-

pend on the choice of a Riemannian metric on Ng nor on the choice of the orientation

of a and that r(L) is a regular homotopy invariant of L.

Theorem 3.11. Let L be a family of immersed oriented circles in Ng with only

normal crossings. We denote by (jtL the number of its transverse components and by x

the number of its crossings. If[L] = 0 in Hι(N9), then

x = r(L) - jJtL (mod 2) .

Proof. First, we consider the case g = 2k + 1. Let Fk^,M C N2h+i be as in

Remark 3.8.

Case 1. The family L is contained in F ^ i .

Since the homomorphism Hι(Fktι) —> i/i(7V2fc+i) induced by the inclusion is

injective, we see that L is null homologous in Fk,i. Then the result follows from

Theorem 3.7.

Set 7 = F M Π M = <9FM = dM.
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components of L
contained in M

Figure 3.5

Figure 3.6

Case 2. The family L is not contained in Fk,i and L Π 7 = 0.
By applying the transformation as in Figure 3.1 to L, we may assume that L is

a disjoint union of oriented simple closed curves. Let us first show that the regular
neighborhood N(l) of each component / of L is diffeomorphic to the annulus. For
each point x € A^jt+i — L, we can define n(x) G Z/2Z as in the proof of Lemma
3.4, using the intersection number modulo 2. Suppose that N(l) is not diffeomorphic
to the annulus. Then N(l) is diffeomorphic to the Mobius band. Let p and p' be
distinct points of N(l) — I. Since N(l) — I is connected, we have n(p) = n(pf). On the
other hand, there exists a smooth path in N(l) connecting p and p' which intersects /
transversely at one point. This implies that n(p) — n(pf) = 1, which is a contradiction.
Thus N(l) is diffeomorphic to the annulus. Then it is not difficult to show, using
standard arguments, that each component / of L contained in M either bounds a disk
embedded in M or is boundary parallel (see Figure 3.5). Thus, by isotopy, we may
assume that L is contained in Ffc,i, which reduces this case to Case 1 above.

Case 3. The family L is not contained in Fk,i and L Π 7 φ 0.
By an isotopy of L, we may assume that 7 does not pass through the crossings of

L and that 7 and L intersect transversely at finitely many points.
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! 7

(c)

I

Λ J—•—[ .'

Figure 3.7

Let Z be a component of L which intersects 7. We consider the transformation as

follows. Let c be a component of ί Π M and we denote by po a n d Pi the end points

of c. We assume that c is oriented from po to pi. Let 5 be an arc embedded in 7

connecting po and pi, where we assume that it is oriented from pi to po (see Figure

3.6). Then we consider the transformation of / as in Figure 3.7 in a neighborhood of

δ. It is not difficult to observe that the difference x — (r(L) — #tL) does not change

modulo 2 under this transformation and that the number of intersection points of L

with 7 decreases by 2. Thus, iterating such a transformation finitely many times, we

may assume that L Π 7 = 0, which reduces this case to Case 2 above. This completes

the proof in the case where g = 2k + 1.

In the case where g = 2k + 2, let a\ and α2 be the oriented boundary components

of the oriented surface Ffc?2 Let M\ (i — 1,2) be the compact Mobius band and 6i

its boundary. Then N2k+2 is obtained from Ffc>2, Afi and M 2 by gluing α̂  and 6̂

ii = l,2)(see Figure 3.8). Note that N2k+2 = N^Fk^Nλ. If we set 7 = dFk,2 =

γ U <9M2, then we can prove the theorem in this case by a similar argument. •

Let us consider the case where L is a family of immersed oriented circles in a non-

orίentable compact surface with nonempty boundary. Let Ng^ be the non-orientable

compact surface of genus g with k (k > 1) boundary components and L C N9ik a

family of immersed oriented circles. Let TιNg^ be the unit tangent sphere bundle

and a a fiber over a point of Ng^- Let v(L) be the unit vector field along L such
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Figure 3.8

that at each point of L, v(L) is tangent to L and is consistent with the orientation of

L. Note that a (or v(L)) can be considered as a circle (resp. a family of circles) in

TiNg^k- We induce the orientation of v(L) from that of L. We choose the orientation

of a arbitrarily. Note that Hι(TιNg,k) is isomorphic to Hι(Ng,k) Θ Z/2Z and that

[a] e Hι(TιNg,k) is of order 2. If p : TιNg^ -> Ng^ denotes the bundle projection,

then ker(p* : H\(T\Ngk) -» H\{Ngk)) is isomorphic to Z/2Z and is generated by

H

Theorem 3.12. Let L be a family of immersed oriented circles in Ng^ If [L] =

0 in Hι(Ng^k), then there exists an integer r(L) such that [v(L)] = r(L) [α] in

Hι(TιNgik) The integer r(L) is uniquely determined modulo 2. We call r(L) G Z/2Z

the (generalized) rotation number of the family L of immersed oriented circles.

Theorem 3.13. Let L be a family of immersed oriented circles in N9^ with only

normal crossings. We denote by $tL the number of its transverse components and by x

the number of its crossings. If [L] = 0 in Hι(N9jk), then

x = r(L) - %tL (mod 2) .

The proofs of the theorems above are obvious now (see the proofs of Theorems

3.6 and 3.7), so we omit them here. Note that the definition of r(L) does not depend

on the choice of a Riemannian metric on N9^ nor on the choice of the orientation of

a and that r(L) is a regular homotopy invariant of L.

Let us consider the case where L is a family of immersed oriented circles in the

oriented plane R2. Let TχR2 be the unit tangent sphere bundle and a a fiber over

a point of R2. Let v(L) be the unit vector field along L such that at each point of

L, v(L) is tangent to L and is consistent with the orientation of L. Note that a (or
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v(L)) can be considered as a circle (resp. a family of circles) in XΊR2. We induce

the orientation of a (or v(L)) from that of R2 (resp. L). Note that Hι(T{R2) is

isomorphic to Z and is generated by [a].

Theorem 3.14. Let L be a family of immersed oriented circles in the oriented

plane R2. Then there exists a unique integer r(L) such that [v(L)] = r(L) [a] in

Hι(T\R2). We call r(L) G Z the rotation number of the family L of immersed oriented

circles.

The proof is obvious. Moreover, it is easily shown that r(L) changes its sign if the

plane R2 changes its orientation. Note that the definition of r(L) does not depend on

the choice of a Riemannian metric on R2 and that r(L) is a regular homotopy invariant

of L.

Theorem 3.15. Let L be a family of immersed oriented circles in the oriented

plane R2 with only normal crossings. We denote by %χL the number of its transverse

components and by x the number of its crossings. Then

x = r(L) - %tL (mod 2) .

Theorem 3.14 coincides with the definition of the (well-known) rotation number,

and Theorem 3.15 is also well-known. Thus, the results in this section can be consid-

ered as generalizations of the results known for the usual rotation number.

We have the following consequence of the above arguments. Let X be an oriented

compact surface with boundary dX. We induce the orientation of dX from that of X.

Theorem 3.16. Let F9 be the oriented closed surface of genus g and f : X —>

Fg an orientation-preserving immersion. Then the rotation number r(f(dX)) of f(dX)

is congruent modulo 2 — 2g to χ(X), where χ(X) denotes the Euler characteristic of

X.

Proof. Let p : T\X -> X denote the bundle projection and p* : H\(T\X) ->

Hχ{X) the induced homomorphism. Let p' : TιFg —» Fg denote the bundle projection

and p^ : Hι(T\Fg) —> H\(Fg) the induced homomorphism. Furthermore, let T\f :

T\X —> TiFg denote the map induced from the immersion /, and we consider the

induced homomorphism (7i/)* : Hι(TχX) -> Hι(TιFg). Then it is easily seen that

(^i/)*(ker(p*)) = ker(//J and the restriction of (TΊ/)* to ker(p*) is equivalent to the

natural projection of Z onto Z/(2 - 2g)Z. It follows that r(dX) is equal to r(f(dX))

if they are considered as elements of Z/(2 — 2^)Z. By Poincare-Hopf's theorem, we

have r(dX) = χ(X), which completes the proof. •

We obtain the following theorems by similar arguments.
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Theorem 3.17. Let F9ik be the oriented compact surface of genus g with k

(k > 1) boundary components and f : X —>> Fg^ an orientation-preserving immersion.

Then the rotation number r(f(dX)) of f(dX) is equal to χ(X).

Theorem 3.18. Let N be a non-orientable compact surface (possibly with bound-

ary) and f : X -> N an immersion. Then the rotation number r(f(ΘX)) of f(dX) is

congruent modulo 2 to χ(X).

Theorem 3.19. Let f : X —>• R2 be an orientation-preserving immersion. Then

the rotation number r(f(dX)) of f(dX) is equal to χ(X).

4. Main theorem

In this section, we present and prove the main theorems of this paper. Let / :

M -» N be a simple stable map of an orientable closed 3-manifold M into a compact

surface N (possibly with boundary or non-orientable).

Theorem 4.1. If the Stein factorization Wf is orientable, then the number of

crossings of the immersion f\s(f) has the same parity as ftS^ίf), where (1 denotes the

number of connected components.

Let W be an orientable branched surface and h : W -> N an immersion.

Theorem 4.2. The number of crossings of the immersion /I|Σ(W) has the same

parity as ^

Theorem 4.1 is easily proved from Theorem 4.2 (note that f(S(f)) = f(Σ(Wf))

and that ^S^\f) = tfΣ^W/)). To prove Theorem 4.2, we show the following propo-

sitions.

Proposition 4.3. Let W be an oriented branched surface. If we orient Σ(W) as

in Figure 4.1, then [Σ(W)} = 0 in

Figure 4.1
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By Proposition 4.3, we can define the generalized rotation number r(h(Σ(W))) of

h(Σ(W)).

Proposition 4.4. The generalized rotation number r(h(Σ(W))) of h(Σ(W)) is

congruent to $Σ(W) + ()Σf \W) modulo 2.

Theorem 4.2 is easily obtained from Theorems 3.3, 3.7, 3.11, 3.13 and Proposition

4.4. Note that for L = h(Σ(W)), we have jjtL = %th(Σ(W)) = $Σ(W).

Proof of Proposition 4.3. We prove the proposition by induction on JJ

When j)Σi(VF) = 0, W is an orientable compact surface and the proposition is obvious.

When #Σi(W) > 0, we choose a connected component / of Σι(W). We consider the

branched surface W — intiV(Z) = W, where N(l) denotes the regular neighborhood of

I in W.

(i) The case / C Σ^(W). In this case N(l) ^ Y x S1 and %dN(l) = 3, where

dN(l) denotes the set of the boundary points of N(l). Let α, 6, and c be the connected

components of dN(l) (see Figure 4.2(i)). We consider the orientation of W induced

from that of W. We choose the orientations of α, b and c as the oriented boundary of

W. Then [I] = -[a] = [b] = [c] in Hλ(W). Note that tJΣ 0(W) = JtΣ0(WO + 3 and

l. Then

[Έ(W)\ =

=

= 0 (in Hλ{W)),

where the last equality follows from the induction hypothesis.

(ii) The case I C Σ^l)(W). In this case N(l) ^ Y xτ S1 and idN(l) = 2. Let

a and b be the connected components of dN(l) (see Figure 4.2(ii)). We consider the

orientation of W' induced from that of W as in case (i). We choose the orientations

of a and b as the oriented boundary of W. Then [I] = —[a] and 2[l] — [b] in Hι(W).

Note that $Σ0(W) = $Σ0(W) + 2 and ttΣi(W')~= ftΣ^W) - 1. Then

= 0 ( inf

where the last equality follows from the induction hypothesis. This completes the proof

of Proposition 4.3. •
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0)

Proof of Proposition 4.4. We prove the proposition also by induction on

When t)Σi(W) = 0, W is an orientable compact surface and the proposition is easily

proved by using Theorems 3.16, 3.17, and 3.18. When J|Σi(W) > 0, we choose a

connected component / of Έι(W). We consider the branched surface W' as above and

the immersion h! : W —> N, which is the restriction of h to W.

(i) The case / C Σ^(W). In this case, we put dN(l) = a U b U c and orient α, b

and c as in the proof of Proposition 4.3. Clearly we have [h(l)] = —[h(a)] = [h(b)] —

[Λ(c)] in Hλ(N) and [v(Λ(l))] = -[v(Λ(α))] = [v(Λ(6))] = [v(Λ(c))] in

Furthermore, we have

[a]

for some integer k by our induction hypothesis. Thus we have

[v(Λ(Σ(W0))] = [v(Λ(Σ(W")))l - [v(Λ(o))] -

= [v(Λ'(Σ(W")))l

IIΣ^ίW) + 2k) • [a]

Note that tfΣ(W") = JΣ(W) + 2 and flΣf^W') = ^?°(W). Therefore we have

r(h(Σ(W))) = $Σ(W) + tΣ^(W) mod 2.

(ii) The case / C Σ(^\W). In this case, we put dN(l) = a U b and orient α and

6 as in the proof of Proposition 4.3. Clearly we have [h(l)] = — [h(a)} and 2[h(l)} =

[h(b)\ in H^N) and [v(Λ(Z))] = ~[v(ft(o))] and 2[v(/ι(/))] = [v(Λ(6))] in

Furthermore, we have

[v(ti(Σ(W')))] - (tΣ(W) + + 2k) • [a]
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for some integer k by our induction hypothesis. Thus we have

[v(Λ(0)l

+ 1 + $Σ™(W) - 1 + 2k) [α]

Note that tfΣ(W) = HΣ(W0 + 1 and %Σf\Wr) = 0fl)(W) - 1. Thus we have
r(h(Σ(W))) = t)Σ(W) + t t Σ ^ ί ^ ) mod 2. This completes the proof of Proposition

4.4 and hence Theorems 4.1 and 4.2. •

We can extend Theorem 4.1 to the case where the target surface N is open as

follows. Note that Theorem 4.2 can be extended in the same way.

Theorem 4.5. Let f : M —>• N be a simple stable map of an orientable closed

3-manifold into a surface (possibly non-orientable, open, or with boundary). If the

Stein factorization Wf is orientable, then the number of crossings of the immersion

f\S(f) has the same parity as tfSf7)(/)

Proof. We have only to prove the theorem in the case where N is open. Since

M is compact, f(M) is contained in a certain compact surface N' embedded in N.

Therefore, we may consider / to be a simple stable map / : M —>> N1', which reduces

this case to Theorem 4.1. •

We have the following consequence of the above results.

Corollary 4.6. Let f : M —>• N be a simple stable map and suppose that the

Stein factorization Wf is orientable. If it is special generic (see section 1 or [I]) or

full-definite (see [8, section 5]), then the number of crossings of f\s(f) ^ even.

The proof is obvious, since we have tt5ffI)(/) = 0 in the above situations.

Corollary 4.7. If Wf is orientable and ftS^tf) is odd, then the immersion

f\s(f) cannot be an embedding.

REMARK 4.8. Let / : M -» N be a simple stable map. If N is orientable, then

the Stein factorization Wf is orientable, since an orientation of Wf is induced from that

of N by the immersion / : Wf —)> N. When N is not orientable, Wf is not necessarily
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orientable. For example, let S2 = {{x,y, z) G R3\x2+y2+z2 = 1} be the unit 2-sphere

and h : S2 —» [—2,2] the Morse function which maps (x,y,z) to z. Let φ : S2 -^ S2

be the map defined by φ(x,y,z) = (x,-y,-z), and define 7 : [-2,2] ->- [-2,2] by

η{q) = —q. Then the map h x id/ : S2 x / —> [-2, 2] x / induces a simple stable map

/ : S2 xφS
1 -> [-2,2] xΊS\ where / = [0,1], S2 xψS

1 = S2 x //(p,0) - (φ(p), 1),

and [-2,2] x 7 S 1 = [-2,2] x //(g,0) ~ (7(2), 1). Note that the source manifold

5 2 x^ S1 is diffeomorphic to S2 x S1 and the target manifold [-2,2] x 7 S1 to the

Mobius band. It is easily observed that the Stein factorization Wf is diffeomorphic

to the Mobius band, whose boundary coincides with Σ(/). Since Σ(/) is not null

homologous in Wf, we cannot define the generalized rotation number r(/(Σ(/))) of

The author does not know the answer to the following question.

QUESTION 4.9. Can we extend Theorem 4.1 (or 4.5) to the case where Wf

is non-orientable? If not, can we construct a simple stable map / : M —>> N such

that (Wf is non-orientable and) the number of crossings of the immersion f\s(f) is not

congruent modulo 2 to f1^

5. Immersions of branched surfaces

In this section, we give some examples of immersions of branched surfaces into

(unbranched) surfaces. Let h : W —>> N be an immersion of a branched surface W into

a surface N such that ft|s(w) is an immersion with normal crossings. Let p : M —)• W

be a fold map (for a definition, see [8]) of a closed orientable 3-manifold into W. Then

it is known that h o p : M —>• iV is a simple stable map (see [7,8]). For each example

of h : W —> N in this section, we can construct a closed orientable 3-manifold M, a

fold map p : M —> W, and hence a simple stable map h o p : M —> TV. This fact has

been proved by Mata-Lorenzo (for a sketch of the proof, see [6, section 3]). Therefore,

in this section we will give examples of h : W —> N only. These examples show that

the number of crossings of f\s(f) f°Γ a simple stable map / can be even and odd; i.e.,

the both possibilities are realized.

REMARK 5.1. A fold map p : M -> W is a projection in the sense that M

can be considered as the total space of an S1 -bundle with singular fibers, whose base

space is W. Note that M is not uniquely determined for a given branched surface W.

Nevertheless, there is some relationship between the topologies of M and W (see [6]).

EXAMPLE 5.2. Let W\ be the orientable branched surface whose associated graph

(for the definition, see [8]) is as in Figure 5.1(a). This branched surface is obtained as

follows. Let X and Y be the closed orientable surfaces of genera 4 and 5 respectively

(i.e., X = F 4 , Y = F 5 ) and A and B compact surfaces of genus 3 with one boundary
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component embedded in X and Y respectively. Then the branched surface W\ is ob-

tained from X and Y by identifying A and B (i.e., Wλ = XUY/A ~ J3). If we define

the immersions / and g of X and Y respectively into F<ι as in Figure 5.1(b), then /

and g induce the immersion h : W\ —>• i^. Note that / U is equivalent to g\β>

Figure 5.1 (a)

ιv, = A u v/A - o

Figure 5.1(b)

EXAMPLE 5.3. Let W2 be the orientable branched surface whose associated graph

is as in Figure 5.2(a). This branched surface is obtained as follows. Let X = F2,2 be

the oriented compact surface of genus 2 with oriented boundary components ίi and Z2,

and N(li) (i = 1,2) the regular neighborhood of U in X. Let Y = F11 be the oriented

compact surface of genus 1 with one oriented boundary component Z3 and N(l3) the

regular neighborhood of £3 in Y. Let πi\ : l\ -> l2 and m 2 : h -> 3̂ be orientation-

reversing difΐeomorphisms. Then we obtain the branched surface W2 = l U 7 / m i , m 2

by using the gluing maps mi and m 2 such that iV(/2) and N(l^) are on the same side

of the branching. Note that W2 contains the oriented closed surface X' (= X/m\) of
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genus 3 and that W2 can be obtained from X' and Y by attaching Z3 to l\ (C Xf). We

define immersions / : X' -> F2 and g : Y —> F 2 as in Figure 5.2(b), which induce the

immersion Λ : W2 —> F2. Note that f\ι± (= /|/2) is equivalent to g\ι3.

Gw2 =

X' a F3 =

Figure 5.2(b)

EXAMPLE 5.4. Let VF3 be the orientable branched surface whose associated graph

is as in Figure 5.3(a). This branched surface is obtained as follows. Let X be the ori-

ented disk with boundary l± and Y the oriented annulus with boundary components /2

and /3. Let / : l2 —>• h be an orientation-reversing double cover. Then the branched

surface W3 is obtained from X and Y by gluing lχ and l2 by / (i.e., W3 = X U F//) .

We can construct an immersion h : W3 —»• R2 as in Figure 5.3(b). Note that /I|Σ(W 3) i s

an immersion with a normal crossing.
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=O—-*

Figure 5.3(a)

Figure 5.3(b)

EXAMPLE 5.5. Let W4 be the orientable branched surface whose associated graph

is as in Figure 5.4(a). This branched surface is obtained as follows. Let X and Y be

oriented annuli with boundary components /1, /2, m\ and 7712. Let fi : k -* mi

(i = 1,2) be orientation-reversing double covers. Then the branched surface W4 is ob-

tained from X and Y by using the gluing maps /1 and fa (i.e., W4 = X U Y/fι, /2)

In Figure 5.4(b), h\γ : Y -» h(Y) is a diffeomoφhism and h\χ : X ->- h(X) is a

double cover of an annulus. The map c : F\ —> F\ is a double covering map such

that c | 7 : 7 —> c(7) = 5 1 is a double cover and that c|^(m i) is an immersion with

a normal crossing (i = 1,2), where 7 is a simple closed curve on F\ as depicted in

Figure 5.4(b). Then the maps h and h! (= co h) are immersions of W4 into F±. Note

that /I ; |Σ(V^4) is a n immersion with normal crossings.

Gw4

 =

Figure 5.4(a)

h mi X m2 \ h '

7 t t c(7)T

Figure 5.4(b)
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REMARK 5.6. In the examples above, tfEf^Wi) = $Σ(ll)(W2) = 0, ^l)(Ws)

= 1, and $Έ{11){WA) = 2. Note that Theorem 4.2 can be easily checked for all these

examples.

REMARK 5.7. Let W5 be the orientable branched surface whose associated graph

is as in Figure 5.5. This branched surface is obtained as follows. Let X{ (i = 1,2) be

the oriented compact surface of genus gι with one boundary component lit Then the

branched surface W$ is obtained from X± and X2 by using an orientation-reversing

double cover f : h —> l2 (that is, W5 = X\ U X2/'/). However, VF5 can never

be immersed into any compact or open surfaces. This is shown as follows. If there

exists an immersion h of W5 into a compact surface N, then h induces immersions of

X\ and X2. Then the generalized rotation number r(h(li)) of h(l{) must be odd by

Theorems 3.16, 3.17, and 3.18, since χ(Xi) is odd (i = 1,2). On the other hand, we

have [v(h(h))] = -2[v(ft(ϊ2))] in H^N) and hence r(h(h)) = -2r(h(l2)), which

is a contradiction. If there exists an immersion h of W5 into an open surface N, then

there exists a compact surface Nf C N such that /ι(Ws) C iV7, which reduces this case

to the case where TV is compact.

Figure 5.5

The example constructed in Remark 5.7 is a generalization of Saeki's example [8,

Example 3.10]. He has considered the case where Xι and X2 are the 2-disks. The

argument there is quite similar to the above one.
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