AFFINE FUNCTIONS ON ALEXANDROV SURFACES

Yukihiro MASHIKO

(Received January 22, 1998)

0. Introduction

An Alexandrov surface X is by definition a 2-Hausdorff dimensional, connected, locally compact and complete length space of curvature bounded from below in the sense of Alexandrov which has no boundary points. For a point $x \in X, \Sigma_{x}^{\prime}$ is the set of all directions of geodesics emanating from x equipped with the angular metric L. Let Σ_{x} be the metric completion of Σ_{x}^{\prime}. We call it the space of directions at x. This corresponds to the unit tangent sphere in Riemannian geometry. The space of directions Σ_{x} for each $x \in X$ is either a circle of circumference $\leq 2 \pi$ or a segment of length $\leq \pi$ (see [1],[9]). Since, by definition, X has no boundary, we mean that Σ_{x} is a circle for every $x \in X$. A point $x \in X$ is called singular iff the circumference of Σ_{x} is less than 2π, and we denote by $\operatorname{Sing}(X)$ the set of all singular points of X. It is a well known fact in Alexandrov geometry that the pointed Gromov-Hausdorff $\operatorname{limit}^{\lim }{ }_{r \rightarrow 0}(1 / r X, x)$ of the $1 / r$-rescaling of the metric around x is the flat cone $\left(C\left(\Sigma_{x}\right), o^{*}\right)$ over Σ_{x} with vertex o^{*} for every $x \in X$. We call $C\left(\Sigma_{x}\right)$ the tangent cone at x, which corresponds to the tangent space in Riemannian geometry.

A real valued function $\psi: X \longrightarrow R$ on X is called convex iff the following inequality holds for an arbitrary geodesic $\gamma:[a, b] \longrightarrow X$ and arbitrary $\lambda \in[0,1]$:

$$
\begin{equation*}
\psi \circ \gamma((1-\lambda) a+\lambda b) \leq(1-\lambda) \cdot \psi \circ \gamma(a)+\lambda \cdot \psi \circ \gamma(b) . \tag{*}
\end{equation*}
$$

A convex function on X is not in general continuous, because X admits the singular set $\operatorname{Sing}(X)$. Nevertheless, we can introduce the notion of the a-level set of ψ for each $a \in(\inf \psi, \infty)$ (see $\S 0$ of [6]). Every convex function on a complete Riemannian manifold M is always locally Lipschitz. Moreover, M is automatically noncompact if such a convex function is nonconstant. However, an Alexandrov surface X which admits a locally nonconstant convex function is not always noncompact (see Theorem A of [6]). The following results have been established by the author: Let $\psi: X \longrightarrow R$ be a convex function satisfying the condition

$$
\operatorname{int}\left(\bigcap_{a>\inf \psi} \overline{\{x \in X \mid \psi(x) \leq a\}}\right)=\emptyset
$$

Then we conclude the following:
i. $\sup \psi=\infty$.
ii. Each component of the a-level set for each $a \in(\inf \psi, \infty)$ is either a simple closed curve or a line.
iii. For each $a \in(\inf \psi, \infty)$, the a-level set has at most two components. Moreover, if the a-level set for some $a \in(\inf \psi, \infty)$ has two components, then the same holds for all the b-level set with $b \in(\inf \psi, \infty)$, and in each case, the two components are both simple closed curves or both lines.
iv. X is homeomorphic to one of three spaces, $R^{2}, S^{1} \times R$ or $\left(S^{1} \times R\right) / Z_{2}$.

The purpose of the present paper is to determine the metric structure of X admitting a non-trivial affine function. Here, a function $\varphi: X \longrightarrow R$ is by definition affine iff the equality in $(*)$ always holds for arbitrary unit speed geodesic $\gamma:[a, b] \longrightarrow X$ and arbitrary $\lambda \in[0,1]$. Letting $X_{a}^{a}:=\{x \in X \mid \varphi(x)=a\}$ define the a-level set of φ for convenience, we specialize the above result to the case of affine functions as follows:

Theorem 1. If an Alexandrov surface X admits a non-trivial affine function φ : $X \longrightarrow R$, then for every $a \in(-\infty, \infty)$ there is an isometric map

$$
I: X_{a}^{a} \times(-\infty, \infty) \longrightarrow X
$$

such that $I(y, t) \in X_{t}^{t}$ for every $(y, t) \in X_{a}^{a} \times(-\infty, \infty)$. Moreover, X is isometric to either flat R^{2} or flat $S^{1} \times R$.

Note that every level set of an affine function on X is totally convex, and hence such a set is either a simple closed geodesic or a straight line. In particular $\operatorname{Sing}(X)=$ \emptyset, and hence $C\left(\Sigma_{x}\right)$ is isometric to R^{2} for all $x \in X$. Since $-\varphi$ is also affine, we conclude from (i) that the range of φ is $(-\infty, \infty)$.

The fundamental notion used here is the directional derivative $d \varphi(v)$ of an affine function $\varphi: X \longrightarrow R$ for $v \in \Sigma_{x}^{\prime}$. Set

$$
d \varphi(v):=\left(\varphi \circ \gamma_{v}\right)_{+}^{\prime}(0), v \in \Sigma_{x}^{\prime}, x \in X
$$

where $\gamma_{v}:[0, l(v)] \longrightarrow X$ is a geodesic such that $\gamma_{v}(0)=x$ and $\dot{\gamma}_{v}(0)=v$, and $(\cdot)_{+}^{\prime}$ is the right-hand derivative. Note that we do not take the limit in the above definition since φ is affine. We will show in Lemma 1.1 that $d \varphi: \Sigma_{x}^{\prime} \longrightarrow R$ can be extended continuously to an affine function $d \varphi: C\left(\Sigma_{x}\right) \longrightarrow R$ on the whole tangent cone $C\left(\Sigma_{x}\right)$. Note that we use the same expression $d \varphi(v)$ for $v \in C\left(\Sigma_{x}\right)$. It follows from the compactness of Σ_{x} that the function of the directional derivative $\left.d \varphi\right|_{\Sigma_{x}}: \Sigma_{x} \longrightarrow R$ attains its maximum at some (unique) direction $v_{\varphi, x} \in \Sigma_{x}$ (see Lemma 1.2). This allows us
to introduce the generalized gradient $\nabla \varphi_{x}$ of φ at $x \in X$, that is, $\nabla \varphi_{x} /\left|\nabla \varphi_{x}\right|=v_{\varphi, x}$ realizes the maximum of $\left.d \varphi\right|_{\Sigma_{x}}$. Here we mean by $|\cdot|$ the R^{2}-norm under identifing $C\left(\Sigma_{x}\right)$ with R^{2}. The following lemma on the generalized gradient plays a crucial role in our investigation:

Lemma 2. The following statements are true:
(1)We have for every $x \in X$ and for every $v \in C\left(\Sigma_{x}\right)$

$$
d \varphi(v)=\left|\nabla \varphi_{x} \| v\right| \cos \angle\left(\nabla \varphi_{x}, v\right) .
$$

(2)Let a and b be arbitrary fixed numbers with $a<b$. Then for every $x \in X_{a}^{a}$ and a minimal geodesic $\sigma_{x}:[0, l(x)] \longrightarrow X$ from x to X_{b}^{b}, we have

$$
\dot{\sigma}_{x}(0)=v_{\varphi, x}=\nabla \varphi_{x} /\left|\nabla \varphi_{x}\right|
$$

Hence there is a unique minimal geodesic from x to X_{b}^{b} for every $x \in X_{a}^{a}$.
(3) $\left|\nabla \varphi_{x}\right|$ is constant for all $x \in X$.

To show Theorem 1, the flatness of every geodesic triangle in X is required. Therefore we prove the similarities of geodesic triangles as follows. Let a and b be as in Lemma 2(2), and let $\gamma:[0, l] \longrightarrow X$ be a geodesic from a point on X_{a}^{a} to a point on X_{b}^{b}. For every $s \in(0, l]$, let $\sigma_{s}:[0, l(s)] \longrightarrow X$ be the (unique) minimal geodesic from $\gamma(s)$ to X_{a}^{a}. Then it follows from Lemma 2 (1) and (3) that the angle between σ_{s} and γ is constant for all $s \in(0, l]$. This is true for the angle between σ_{s} and X_{a}^{a}. Let $\triangle(t)$ for $t \in(0, l]$ be a geodesic triangle spanned by geodesics $\left\{\sigma_{s} \mid 0<s \leq t\right\}$. Using this and the first variation formula, we conclude the following:

Proposition 3. With the above notation, $\triangle\left(t_{1}\right)$ and $\triangle\left(t_{2}\right)$ for all $t_{1}, t_{2} \in(0, l]$ are similar triangles, i.e., all ratio of the lengths of corresponding edges are same.

In $\S 1$ we prove assertions (1)-(3) of Lemma 2, and in $\S 2$ we construct the isometric map I indicated in Theorem 1.

1. Proof of Lemma 2

From this point let X be an Alexandrov surface admitting an affine function φ : $X \longrightarrow R$. We denote by $|x, y|$ the distance between x and y for $x, y \in X$. We use the following fact through this paper:

FACT 1.0. The pointed Gromov-Hausdorff $\operatorname{limit}^{\lim } \lim _{t \rightarrow 0}(1 / t X, x)$ of the $(1 / t)$ -rescaling of the metric around x is the flat cone $\left(C\left(\Sigma_{x}\right), o^{*}\right)$ over Σ_{x} with vertex o^{*} for every $x \in X$.

Since X admits the affine function φ, Σ_{x} is the circle of length 2π for all $x \in X$. Thus $C\left(\Sigma_{x}\right)$ is identified with R^{2}, and Σ_{x} is identified with the unit circle centered at origin of R^{2}. Hence we can denote an arbitrary element of $C\left(\Sigma_{x}\right)$ by λu for some $\lambda \in[0, \infty)$ and some $u \in \Sigma_{x}$.

We first discuss the directions in Σ_{x}^{\prime} for arbitrary fixed $x \in X$. Let u, v be fixed directions in Σ_{x}^{\prime} with $0<L(u, v)<\pi$. Then we choose the direction $w_{\lambda} \in \Sigma_{x}^{\prime}$ for some $\lambda \in(0,1)$ such that (by identifying $C\left(\Sigma_{x}\right)$ with R^{2})

$$
w_{\lambda}=\frac{(1-\lambda) u+\lambda v}{|(1-\lambda) u+\lambda v|},
$$

where $|\cdot|$ denotes the standard norm in R^{2}. Using this notation, the following holds:
Lemma 1.1. We have

$$
d \varphi\left(w_{\lambda}\right)=[(1-\lambda) \cdot d \varphi(u)+\lambda \cdot d \varphi(v)] \cdot \frac{\sin \angle\left(u, w_{\lambda}\right)}{\lambda \sin \angle(u, v)}
$$

Moreover, $d \varphi: \Sigma_{x}^{\prime} \longrightarrow R$ has the continuous extension $d \varphi: \Sigma_{x} \longrightarrow R$, and $d \varphi$: $C\left(\Sigma_{x}\right) \longrightarrow R$ becomes an affine function again.

Proof. Since the directional derivatives are defined locally, we discuss only in (sufficiently small) disk neighborhood U_{x} of x. The bracket part in the above equation follows from the definition of affine functions, and the other part follows from Euclidean geometry on $C\left(\Sigma_{x}\right)$, the sine formula and from Fact 1.0.

With the equation established, the second assertion easily follows. The third assertion follows from the property that $d \varphi(\lambda v)=\lambda d \varphi(v)$ for all $\lambda \in(0, \infty)$ and $v \in \Sigma_{x}$.

For every $x \in X$, we denote by O_{x} the directions in Σ_{x} tangent to $X_{\varphi(x)}^{\varphi(x)}$. Clearly, O_{x} consists of exactly two elements, $O_{1, x}$ and $O_{2, x}$ such that $\angle\left(O_{1, x}, O_{2, x}\right)$ $=\pi$ and $d \varphi\left(O_{1, x}\right)=d \varphi\left(O_{2, x}\right)=0$. Put
$M_{\varphi}^{x}:=\left\{v \in \Sigma_{x} \mid d \varphi(v)=\max _{w \in \Sigma_{x}} d \varphi(w)\right\}$ and $m_{\varphi}^{x}:=\left\{v \in \Sigma_{x} \mid d \varphi(v)=\min _{w \in \Sigma_{x}} d \varphi(w)\right\}$.
Then the configuration of O_{x}, M_{φ}^{x} and m_{φ}^{x} is determined as follows.
Lemma 1.2. For every $v \in M_{\varphi}^{x}$ and $u \in m_{\varphi}^{x}$, we have

$$
\angle\left(O_{x}, v\right)=\angle\left(O_{x}, u\right)=\frac{\pi}{2}
$$

Hence each of the sets M_{φ}^{x} and m_{φ}^{x} consists of only one element.
Proof. Suppose that $\angle\left(O_{x}, v\right) \neq \pi / 2$ for some $v \in M_{\varphi}^{x}$. Since $\angle\left(O_{1, x}, O_{2, x}\right)=\pi$, we can choose a direction $w \in \Sigma_{x}$ such that $d \varphi(w)>0$ and $\angle\left(O_{x}, w\right)=\pi / 2$. Here we assume that $\angle\left(O_{1, x}, v\right)>\pi / 2$. Then, under identifying $C\left(\Sigma_{x}\right)$ with R^{2}, we have $w=\left[(1-\lambda) O_{1, x}+\lambda v\right] /\left|(1-\lambda) O_{1, x}+\lambda v\right|$ for some $\lambda \in(0,1)$. Therefore, from the equation in Lemma 1.1, we have

$$
\begin{gathered}
d \varphi(w)=\left[(1-\lambda) d \varphi\left(O_{1, x}\right)+\lambda \cdot d \varphi(v)\right] \cdot \frac{\sin \angle\left(O_{1, x}, w\right)}{\lambda \sin \angle\left(O_{1, x}, v\right)} \\
=\frac{1}{\sin \angle\left(O_{1, x}, v\right)} \cdot d \varphi(v)>d \varphi(v)
\end{gathered}
$$

This contradicts the choice of $v \in M_{\varphi}^{x}$.
Since $-\varphi$ is also affine, $\angle\left(O_{x}, u\right)=\pi / 2$ follows for every $u \in m_{\varphi}^{x}$.
Proof of Lemma 2 (1). We see from Lemma 1.1 that $d \varphi$ is an affine function on $C\left(\Sigma_{x}\right)$ isometric to R^{2}. We can easily see a fact that every affine function on R^{2} satisfies the equation in Lemma 2 (1).

Proof of Lemma 2 (2). Suppose that $\dot{\sigma}_{x}(0) \neq \nabla \varphi_{x}$ for some minimal geodesic $\sigma_{x}:[0, l(x)] \longrightarrow X$ from x to X_{b}^{b}. Then we construct a broken geodesic segment

$$
\xi=\bigcup_{i} \gamma_{i}:[0, l(\xi)] \longrightarrow X
$$

such that $(\varphi \circ \xi)_{+}^{\prime}(s)>d \varphi\left(\dot{\sigma}_{x}(0)\right)$ for every $s \in[0, l(\xi))$ and $\xi(0)=x, \xi(l(\xi)) \in X_{b}^{b}$. The construction of ξ is achieved by inductive steps as follows. First of all, we note that $d \varphi(\dot{\gamma}(s))$ is constant in s on each geodesic $\gamma:[0, l(\gamma)] \longrightarrow X$. By the continuity of $d \varphi: \Sigma_{x} \longrightarrow R$, we can find a direction $v_{1} \in \Sigma_{x}^{\prime}$ such that $d \varphi\left(v_{1}\right)>d \varphi\left(\dot{\sigma}_{x}(0)\right)$. Let $\gamma_{1}:\left[0, l_{1}\right] \longrightarrow X$ be a maximal geodesic tangent to v_{1}. If $\gamma_{i}\left(l_{i}\right)$ does not reach X_{b}^{b} for the i-th maximal geodesic $\gamma_{i}:\left[0, l_{i}\right] \longrightarrow X$ tangent to $v_{i} \in \Sigma_{\gamma_{i}(0)}$, then using the continuity of $d \varphi: \Sigma_{x} \longrightarrow R$ and Lemma 2(1), we can find a direction $v_{i+1} \in \Sigma_{\gamma_{i}\left(l_{i}\right)}$ such that $d \varphi\left(v_{i+1}\right)>d \varphi\left(\dot{\sigma}_{x}(0)\right)$, and we denote the maximal geodesic tangent to v_{i+1} by $\gamma_{i+1}:\left[0, l_{i+1}\right] \longrightarrow X$. Then, put a broken geodesic segment $\xi:=$ $\bigcup_{i} \gamma_{i}:\left[0, \sum_{i} l_{i}\right] \longrightarrow X$, and $x_{1}:=\xi\left(\sum_{i} l_{i}\right), l(\xi):=\sum_{i} l_{i}$.

It may happen that the endpoint x_{1} of ξ does not reach to X_{b}^{b}. We then join x to x_{1} by a minimal geodesic $\alpha:\left[0,\left|x, x_{1}\right|\right] \longrightarrow X$. By the minimizing property of α, we see that $d \varphi\left(\dot{\alpha}\left(\left|x, x_{1}\right|\right)\right) \geq(\varphi \circ \xi)_{+}^{\prime}(s)$ for all $s \in[0, l(\xi)]$. Since $d \varphi\left(\dot{\alpha}\left(\left|x, x_{1}\right|\right)\right)>$ $d \varphi\left(\dot{\sigma}_{x}(0)\right)$, using the continuity of $d \varphi: \Sigma_{x} \longrightarrow R$, we can find a direction $w_{1} \in \Sigma_{x}^{\prime}$ with $d \varphi\left(w_{1}\right)>d \varphi\left(\dot{\sigma}_{x}(0)\right)$, and hence we proceed with inductive steps to construct ξ.

From the above reason, we may assume that $x_{1} \in X_{b}^{b}$. Clearly, we have

$$
\int_{0}^{l(\xi)}(\varphi \circ \xi)_{+}^{\prime}(s) d s>\int_{0}^{l(\xi)} d \varphi\left(\dot{\sigma}_{x}(0)\right) d s
$$

Moreover, we conclude that $l(x)>l(\xi)$ since $\varphi \circ \xi$ is almost everywhere differentiable. This contradicts the minimizing property of σ_{x}.

Proof. Proof of Lemma 2 (3) We prove that $\left|\nabla \varphi_{x_{1}}\right|=\left|\nabla \varphi_{x_{2}}\right|$ for every $x_{1}, x_{2} \in$ X. The first step of the proof is to show that $\left|\nabla \varphi_{x}\right|$ is constant for all $x \in X_{a}^{a}$ and for arbitrary fixed $a \in(-\infty, \infty)$. Choose $x_{1}, x_{2} \in X_{a}^{a}$ and let $\tau:\left[0,\left|x_{1}, x_{2}\right|\right] \longrightarrow X$ be a minimal geodesic from x_{1} to x_{2}. Necessarily, $\tau \subset X_{a}^{a}$. Set $\sigma_{s}:[0, l(s)] \longrightarrow X$ for the minimal geodesic from $\tau(s)$ to X_{b}^{b}. Then it follows from (1) and (2) of Lemma 2 and the first variation formula that the function $g=g(s):=l(s)$ is differentiable in $s \in\left(0,\left|x_{1}, x_{2}\right|\right)$, and $\frac{d g}{d s}=0$ for all $s \in\left(0,\left|x_{1}, x_{2}\right|\right)$. This therefore implies that $\left|\nabla \varphi_{x_{1}}\right|=(b-a) / l(0)=(b-a) / l\left(\left|x_{1}, x_{2}\right|\right)=\left|\nabla \varphi_{x_{2}}\right|$.

The second step of the proof is to show that $\left|\nabla \varphi_{x_{1}}\right|=\left|\nabla \varphi_{x_{2}}\right|$ when $x_{1} \in X_{a}^{a}$ and $x_{2} \in X_{b}^{b}$ for distinct numbers $a, b \in(-\infty, \infty)$. Here we assume $a<b$. Set $\sigma_{x_{1}}:\left[0, l\left(x_{1}\right)\right] \longrightarrow X$ for the minimal geodesic from x_{1} to X_{b}^{b} and $z:=\sigma_{x_{1}}\left(l\left(x_{1}\right)\right)$. Then it follows from (1) and (2) of Lemma 2 that $\left|\nabla \varphi_{x_{1}}\right|=\left|\nabla \varphi_{z}\right|$. From the first step of the proof, we see that $\left|\nabla \varphi_{z}\right|=\left|\nabla \varphi_{x_{2}}\right|$, and hence $\left|\nabla \varphi_{x_{1}}\right|=\left|\nabla \varphi_{x_{2}}\right|$.

2. Proof of Theorem 1

In this section, we construct a isometric map I in Theorem 1. Lemma 2 (2) guarantees that for an arbitrary fixed $a \in(-\infty, \infty)$ there exist the gradient flow ϕ_{x} : $(-\infty, \infty) \longrightarrow X$ passing through $x \in X_{a}^{a}$ such that $\phi_{x}(t) \in X_{t}^{t}$ for every $t \in$ $(-\infty, \infty)$. Then the required bijective map $I: X_{a}^{a} \times(-\infty, \infty) \longrightarrow X$ is obtained by $I(x, t):=\phi_{x}(t)$ for $(x, t) \in X_{a}^{a} \times(-\infty, \infty)$. We will verify that the map I : $X_{a}^{a} \times(-\infty, \infty) \longrightarrow X$ satisfies the following:

$$
\left|I\left(x_{1}, t_{1}\right), I\left(x_{2}, t_{2}\right)\right|^{2}=\left|x_{1}, x_{2}\right|^{2}+\left|t_{1}-t_{2}\right|^{2}
$$

for every $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in X_{a}^{a} \times(-\infty, \infty)$.
It follows from Lemma 2 and the first variation formula that this flow ϕ_{x} satisfies the following:

$$
\begin{align*}
& \phi_{x} \text { is perpendicular to } X_{t}^{t} \text { for every } t \in(-\infty, \infty) \text {. } \tag{2.1}\\
& \left|\phi_{x_{1}}(t), \phi_{x_{2}}(t)\right| \text { is constant for all } t \in(-\infty, \infty) \tag{2.2}
\end{align*}
$$

We first normalize φ so that $\left|\nabla \varphi_{x}\right|=1$ for all $x \in X$. From (2.2), we may assume without loss of generality that the geodesic $\gamma:[0, l] \longrightarrow X$ in Proposition 3 is a minimal geodesic from $I\left(x_{2}, t_{2}\right) \in X_{b}^{b}$ to $I\left(x_{1}, t_{1}\right) \in X_{a}^{a}$. Put $\theta:=\angle\left(\gamma, X_{b}^{b}\right) \in$ $[0, \pi / 2]$. Then it suffices to prove the distance-preserving property of I in the case that $\theta \neq 0, \pi / 2$. With the same notation as in Proposition 3, if we denote by $\bar{\triangle}$ the $1 / t$ rescaling limit triangle of $\Delta(t)$ for $t \rightarrow 0+$, fixing the vertex $\gamma(0)$ of $\Delta(t)$, it follows from Proposition 3 that $\bar{\triangle}$ and $\triangle(l)$ are similar triangles. Moreover, it follows from Fact 1.0 that $\bar{\Delta}$ is a flat right triangle with an inner angle θ. Together with this and the similarity of $\bar{\triangle}$ and $\triangle(l)$, we observe that

$$
\begin{aligned}
& \left|I\left(x_{1}, t_{1}\right), I\left(x_{2}, t_{2}\right)\right|^{2}=\frac{1}{\cos ^{2} \theta}\left|x_{1}, x_{2}\right|^{2} \\
& \quad=\left|x_{1}, x_{2}\right|^{2}+\tan ^{2} \theta\left|x_{1}, x_{2}\right|^{2}
\end{aligned}
$$

Using again the similarity of $\bar{\triangle}$ and $\triangle(l)$, we have $\tan \theta=\left|t_{1}-t_{2}\right| /\left|x_{1}, x_{2}\right|$. Hence the proof is complete.

References

[1] Yu.D.Burago, M.Gromov and G.Perelman: A. D. Alexandrov's spaces with curvatures bounded below (english version), Russian Math. Surveys, 47:2 (1992), 1-58
[2] J.Cheeger and D.Gromoll: On the structure of complete manifolds of nonnegative curvature, Ann. of Math. 96 (1972), 413-443
[3] J.Cheeger and D.Gromoll: The splitting theorem for manifolds of nonnegative Ricci curvature, J. Diff. Geom. 61 (1971), 119-128
[4] R.E.Greene and K.Shiohama: Convex functions on complete noncompact manifolds: Topological structure, Invent. Math. 63 (1981), 129-157
[5] R.E.Greene and K.Shiohama: The isometry groups of manifolds admitting nonconstant convex functions, J. Math. Soc. Japan, 39 (no.1) (1987), 1-16
[6] Y.Mashiko: Convex functions on Alexandrov surfaces, to appear in Trans. AMS
[7] Y.Otsu and T.Shioya: The Riemannian structure of Alexandrov spaces, J. Diff. Geom. 39 (1994), 629-658
[8] V.A.Sharafutdinov: The Pogorelov-Klingenberg theorem for manifolds homeomorphic to R^{n}, Transl. from Sib. Mat. Zhur. 18 (4) (1977), 649-657
[9] K.Shiohama: An Introduction to the Geometry of Alexandrov Spaces, Seoul National univ. Lecture notes series 8, 1992

[^0]
[^0]: Faculty of Science and Engineering
 Saga University
 1 Honjyoumachi.
 Saga 840-8502,Japan
 e-mail: mashiko@ms.saga-u.ac.jp

