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Abstract
Let X be a Calabi-Yau threefold and the symmetric trilinear form on the sec-

ond cohomology groug?(X, Z) defined by the cup product. We investigate the in-
terplay between the Chern classéX), c3(X) and the trilinear formu, and demon-
strate some numerical relations between them. When thes dabin w(X, X, X) has

a linear factor oveiR, some properties of the linear form and the residual quadrat
form are also obtained.

1. Introduction

This paper is concerned with the interplay of the symmetiiméar form i on the
second cohomology groupl?(X, Z) and the Chern classes(X), c3(X) of a Calabi—
Yau threefold X. It is an open problem whether or not the number of topoldgica
types of Calabi-Yau threefolds is bounded and the originativation of this work
was to investigate topological types of Calabi-Yau thriisfovia the trilinear formu
on H?(X, Z). The role that the trilinear formx plays in the geography of 6-manifolds
is indeed prominent as C.T.C. Wall proved the following bed¢ed theorem by using
surgery methods and homotopy information associated \miglse surgeries.

Theorem 1.1(C.T.C. Wall [14]) Diffeomorphism classes of simply-connected
spin oriented closed 6-manifolds X with torsion-free cohomology correspond dije
tively to isomorphism classes of systems of invariants istimg of
(1) free Abelian groups (X, Z) and H3(X, Z),

(2) a symmetric trilinear fromu: H?(X,Z)®3 — H8(X,Z) = Z defined byu(x,y,2) :=
xUyuz,

(3) alinear map p: H3(X,Z) — H8(X,Z) = Z defined by p(x) := p1(X)Ux, where
p1(X) € H4(X, z) is the first Pontrjagin class of X

subject to for any x, y € H = H3(X, Z),

wX, X, ¥) + uX,y,y) =0 (mod 2), 4(x, X, X)— pu(x) =0 (mod 24).

The isomorphism E{(X, Z) =~ Z above is given by pairing the cohomology class with
the fundamental clasgX] with natural orientation.
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At present the classification of trilinear forms, which isdifficult as that of diffeo-
morphism classes of 6-manifolds, is unknown. In the lightte# essential role of the
K3 lattice in the study of K3 surfaces, we would like to propdbe following ques-
tion: what kind of trilinear formsu occur on Calabi-Yau threefol@s The quantized
version of the trilinear forms, known as Gromov-Witten ingats or A-model Yukawa
couplings, are also of interest to both mathematicians dnydipists. One advantage of
working with complex threefolds is that we can reduce ourstjoaes to the theory of
complex surfaces by considering linear systems of diviséusrthermore, for Calabi—
Yau threefoldsX, the second Chern clags(X) and the Kéahler condCyx turn out to
encode important information about (see [16, 18] for details). One purpose of this
paper is to take the first step towards an investigation on th@rCalabi—Yau structure
affects the trilinear formu and the Chern classes of the underlying manifold.

It is worth mentioning some relevant work from elsewheret (¢, H) be a po-
larized Calabi-Yau threefold. A bound for the valogX) U H in terms of the triple
intersectionH?® is well-known (see for example [17]) and hence there are €inljely
many possible Hilbert polynomials

H3 5 c(X)UH
X(X, Ox(n H)) = ?n + Tn
for such (X, H). By the footnote below and standard Hilbert scheme theweyknow
that the Calabi-Yau threefolX belongs to a finite number of families. This implies
that once we fix a positive integere N, there are only finitely many diffeomorphism
classes of polarized Calabi-Yau threefold§ H) with H® = n, and in particular only
finitely many possibilities for the Chern classegX) and c3(X) of X. Explicit bounds
on the Euler characteristigz(X) in terms of H3 for certain types of Calabi-Yau three-
folds are given in [6, 1]; the idea of this article is to recdh# following simple ex-
plicit result which holds in general, and which may be usédul both mathematicians
and physicists.

Theorem 1.2. Let(X,H) be a very amply polarized Calabi—Yau threefdld. x =
H is a very ample divisor on X. Then the following inequaliblds

X
—36u(X, X, X) —80 < &2) = hbY(X) — h*Y(X) < 6u(x, X, X) + 40.
Moreover the above inequality can be sharpened by replacing the leftdhside by
—80, —180 and right hand side by8, 54 when u(x, X, X) = 1, 3 respectively.

In the last section, we study the cubic fomagx, x, x): H2(X,Z) — Z for a Kahler
threefold X, assuming thag(x, X, X) has a linear factor oveR. Some properties of

1t is shown by K. Oguiso and T. Peternell [11] that we can alvpgss from an ample divisdt
on a Calabi-Yau threefold to a very ample oneH10
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the linear form and the residual quadratic form Bif(X, R) are obtained; possible
signatures of the residual quadratic form are determinattuua certain condition (for
example X is a Calabi-Yau threefold).

2. Bound for c,(X) UH

In this section, we collect some properties of the trilinéarm and the second
Chern classes of a Calabi—Yau threefold. We will always wovkr the field of com-
plex numbersC.

Let X be a smooth Kahler threefold. Throughout this paper, weewgiX) :=
Gi(T X) the i-th Chern class of the tangent bundleX. Kahler classes constitute an
open coneKx C HYY(X, C) N H3(X, R), called the Kéahler cone. The closutéx
then consists of nef classes and hence is called the nef ddresecond Chern class
c2(X) € H4(X, Z) defines a linear function ol ?(X,R). Under the assumption that
is minimal (for instance a Calabi-Yau threefold), resultsyoMiyaoka [8] imply that
for any nef classx € Ky, we havecy(X) U x > 0.

Let X be a smooth complex threefold. We define a symmetric tritinfeam
w: H2(X,Z2)®3 — H8(X,Z) = Z by settingu(X,y,2) := xUyUz for x,y,ze€ H3(X,Z).
By small abuse of notation we also ugefor its scalar extension.

DEFINITION 2.1. A Calabi-Yau threefol&K is a complex projective smooth three-
fold with trivial canonical bundleKx such thatH1(X, Ox) = 0.

For a Calabi—Yau threefolK, the exponential exact sequence gives an identifica-
tion Pic(X) = H(X, 0%) = H?(X, Z). The divisor class ] is then identified with
the first Chern class;(Ox(D)) of the associated line bundt@x (D). In the following
we freely use this identification.

The Hirzebruch—Riemann—Roch theorem for a Calabi-Yawefblé X states that

X(X, Ox(D) = Zalx, %, X) + 25000 U

for any x = D € H?(X, Z). Therefore
2u(X, X, X) + (X)) Ux =0 (mod 12).

In particular, c;(X) U x is an even integer for any € H?(X, Z). In the case when
the cohomology is torsion-free, this also follows from tlaetfp,(X) = —2¢,(X) and
Wall's Theorem 1.1. The role played hy(X) in his theorem is replaced kg (X) for
Calabi-Yau threefolds.

For a compact complex surfa& the geometric genupgy(S) is defined bypy(S) :=
dime HO(S, Qg). The basic strategy we take in the following is to reduceghestion on
Calabi—-Yau threefolds to compact complex surface theorgdmsidering linear systems
of divisors.
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Proposition 2.2. Let X be a Calabi—Yau threefold.
(1) For any ample x= H € Kx N H2(X, Z) with |H| free anddim¢|H| > 2, the
following inequalities hold.

1
ECZ(X) UX <2u(x, X, x)+C

where C= 18 when u(X, X, X) even and C= 15 otherwise.
(2) If furthermore the canonical mapk,,: H — P/¥#I (which is given by the restric-
tion of the map®4 to H) is birational onto its imagethe following inequality holds.

1
ECZ(X) U X < u(x, X, X) + 20.

(3) If furthermore the image of the canonical map(R) is generically an intersection
of quadrics the following inequality holds.

C(X) U X < u(x, X, xX) + 48.

Proof. (1) By Bertini’s theorem, a general member of the cleteplinear sys-
tem|H| is irreducible and gives us a smooth compact complex suraceX. Apply-
ing the Hirzebruch—Riemann—Roch theorem and the Kodaingskhing theorem to the
ample line bundleDx(H), we can readily show that the geometric genus

py(S) = %u(x, X, X) + 1i2C2(X) Ux—1.
Since Ks is ample, the surfaces is a minimal surface of general type. Then the
Noether’s inequality (,12)K§ > pg(S) — 2 yields the desired two equalities depending
on the parity ofK2 = u(x, X, X).

(2) The proof is almost identical to the first case. Since thidase S obtained
above is a minimal canonical surface, i.e. the canonical dgg: S— PIKsl is bira-
tional onto its image, the Castelnuovo inequality for miaincanonical surfacek 2 >
3py(S) — 7 yields the inequality.

(3) We say that an irreducible varie§ c PP~1 is generically an intersection of
quadrics if S is one component of the intersection of all quadrics throsghin this
case, M. Reid [12] improved the above inequality K& > 4py(S) + q(S) — 12. The
irregularity q(S) := dimg H(S, Os) = 0 in our case. O

If x € Kx is very ample, the conditions in Proposition 2.2 (1) and (&) automat-
ically satisfied. The first two inequalities are optimal ireteense that equalities hold
for the complete intersection Calabi—Yau threefaRis 4 N (8) and P4 N (5).

It is worth noting that polarized Calabi-Yau threefoldX, (H) with A-genus
A(X, H) < 2 are classified by K. Oguiso [10] and it is observed by the secau-
thor [17] that the inequalitycy(X) U H < 10H® holds for those withA(X, H) > 2.
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R. Schimmrigk’s experimental observation [13] howeverjeotures the existence of a
better linear upper bound ak(X) for Calabi—-Yau hypersurfaces in weighted project-
ive spaces.

Proposition 2.3. The surface S in the proof d®roposition 2.2s a minimal sur-
face of general type with non-positive second Segre clgd$.s5,(S) is negative if and
only if c(X) is not identically zero.

Proof. Leti: S X be the inclusion and we identifid*(S, Z) = Z. A simple
computation shows;(S) = —i*(x) and cx(S) = (X, X, X) 4+ c2(X) U X. Sincex € K,

$2(9) = c1(S — (9 = —c(X) Ux = 0

by the result of Y. Miyaoka [8]. The second claim follows froimetfact thatCx C
H?(X, R) is an open cone. O

If X is a Calabi-Yau threefold and the linear forep(X) is identically zero, it
is well known thatX is the quotient of an Abelian threefold by a finite group agtin
freely on it.

3. Bound for c3(X)

In this section, we apply to smooth projective threefolds Bulton—Lazarsfeld the-
ory for nef vector bundles developed by J.P. Demailly, T.eRetll and M. Schneider
[2]. This gives us several inequalities among Chern claasélscup products of certain
cohomology classes. Whex is a Calabi—Yau threefold, these inequalities simplify and
provide us with effective bounds for the Chern classes.

Recall that a vector bundl& on a complex manifoldX is called nef if the Serre
line bundle Opg)(1) on the projectivized bundI®(E) is nef.

Theorem 3.1 (J.P. Demailly, T. Peternell, M. Schneider [2])Let E be a nef vec-
tor bundle over a complex manifold X equipped with a Kéhlasslvx € Kx. Then for
any Schur polynomial ;Pof degree2r and any complex submanifold Y of dimensign d
we have

/ P.(c(E)) A 0% > 0.
Y

Here we let degi(E) = 2i for 0 <i < rankE and the Schur polynomiaP; (c(E))
of degree R is defined by

P..(c(E)) := detCs,—i+;(E))

for each partitiom := (A1, A2, ...) - r of a non-negative integar < dimY with A >
Akyq for all k e N,
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ExampLE 3.2 ([7], p.118). LetX be a complex threefold anfl a vector bundle
of rankE = 3, then

Pu)(C(E)) = ci(E), Pp)(C(E)) = c2(E), Pu1(c(E)) = ci(E)? — co(E),
P@)(c(E)) = c3(E), P,1(c(E)) = c1(E) U c2(E) — c3(E),
Pa1.1(C(E)) = c1(E)* — 2¢1(E) U c2(E) + c3(E).

Proposition 3.3. Let X be a smooth projective threefpld, y € Kx N H?(X, Z)

and assume x is very amplien the following inequalities hold.
(1) 8u(x, X, X) + 2c2(X) U x = 4u(ci(X), X, X) + c3(X),
(2) 64u(x, X, X) + 4u(cy(X), cu(X), X) 4 4cz(X) U X + c3(X)

> 32u(ca(X), x, x) + c1(X) U c2(X),
(3) 80u(x, X, X) 4+ 10u(cy(X), c1(X), X) + 2¢1(X) U cz(X)

> 40u(ca(X), x, x) + p(c1(X), c1(X), c1(X)) + 10c2(X) U X + c3(X),
(4) 12u(x, X, y) + c2(X) Uy = 4u(ci(X), X, y),
(5) 24u(x, X, y) + n(ca(X), ci(X), y) = 8u(ca(X), X, y) + c2(X) Uy,
(6) 6u(x,y,y) = u(ci(X),y,y).

Proof. The very ample divisox = H gives us an embeddingy,: X — P(V),
where V := HO(X, Ox(H)). Using the Euler sequence and the Koszul complex, we
obtain the following exact sequence of sheaves

k+1
0— Q5 — /\ V ® Op)((—k — DH) - Q) > 0

for each 1< k < dim¢ V — 1. We see thaf2p(,)(2H) is a quotient of@lf((\jl;\zc V)_ The
vector bundle2x(2H) is then generated by global sections because it is a quaifen
the globally generated vector bundi&vy|x(2H). We hence conclude th&x(2H) is
a nef vector bundle. Applying Theorem 3.1 (or rather the uraditjes derived using the
above example) to our nef vector bundi(2H), straightforward computation shows
the desired inequalities. ]

The above result (with appropriate modification) certaiodyries over to complex
manifolds of dimension other than 3.

Corollary 3.4. Let X be a Calabi-Yau threefqld, y € Kx N H3(X, Z) and as-
sume x is very amplehen the following inequalities hold.
(1) 8u(x, X, X) + 2¢c2(X) U x > c3(X),
(2) 64u(x, X, X) + 4cy(X) U x + c3(X) > 0,
(3) 80u(x, X, X) > 10cp(X) U x 4 c3(X),
(4) 24u(x, x,y) Z c(X) UYy.
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In recent literature there has been some interest in findiagtical bounds for
topological invariants of Calabi-Yau threefolds. As is ti@med in the introduction,
the standard Hilbert scheme theory assures that possil#enGitasses of a polarized
Calabi-Yau threefold X, H) are in principle bounded once we fix a triple intersection
number H® = n € N, but now that we have effective bounds for the Chern classes
(with a bit of extra data for the second Chern clastX)) as follows. Recall first that
it is shown by K. Oguiso and T. Peternell [11] that we can akvpgss from an ample
divisor H on a Calabi—Yau threefold to a very ample oneéH10Then the last inequality
in Corollary 3.4 says that once we know the trilinear fopmon the ample conéCy
there are only finitely many possibilities for the linear étion cy(X): H2(X, Z) — Z.
We shall now give a simple explicit formula to give a range o Euler characteristic
c3(X) of a Calabi-Yau threefoldX.

Theorem 1.2 Let(X,H) be a very amply polarized Calabi—Yau threefald. x =
H is a very ample divisor on X. Then the following inequaliblds
X
—36u(x, X, X) —80 < % = htY(X) — h#Y(X) < 6u(x, X, X) + 40.
Moreovey the above inequality can be sharpened by replacing the lafidhside by
—80, —180 and right hand side by8, 54when u(x, X, X) = 1, 3 respectively.

Proof. This is readily proved by combining Proposition 213, ((2) and Corol-
lary 3.4 (1), (2), (4). O

The smallest and largest known Euler characteristi€X) of a Calabi—Yau three-
fold X are —960 and 960 respectively. Our formula may replace the quesif find-
ing a range ofcz(X) by that of estimating the value(x, X, xX) for an ample class
X € Kx N H3(X, Z).

4. Quadratic forms associated with special cubic forms

In this section we further study the cubic forp(x, x, X): H3(X, Z) — Z for a
Kahler threefoldX, assuming thag(x, X, X) has a linear factor oveR. We will see
that the linear factor and the residual quadratic form areimependent. Possible sig-
natures of the residual quadratic form are also determimetua certain condition. If
the second Betti numbéx(X) > 3, the residual quadratic form may endow the second
cohomologyH?(X, Z) mod torsion with a lattice structure.

We start with fixing our notation. Lef: V — R be a real quadratic form. Once
we fix a basis of theR-vector spaceV, & may be represented &x) = x'A:x for
some symmetric matrif:. The signature of a quadratic forgnis a triple &, s, S-)
wheres, is the number of zero eigenvalues Af ands; (s_) is the number of positive
(negative) eigenvalues ofi.. A: also defines a linear map:: V — V" (or a sym-
metric bilinear formA;: V®2 — R). The quadratic formt is called (non-)degenerate
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if dimg Ker(A:) > 0 (= 0). We say that is definite if it is non-degenerate and either
s, or s_ is zero, and indefinite otherwise.

Let X be a Kahler threefold and assume that its cubic for(®, x, x) factors as
w(X, X, X) = v(x)&(x), wherev is linear and¢ is quadratic mapH?(X, R) — R. We
can always choose the linear formso that it is positive on the Kéhler coréy. It
is proven (see the proof of Lemma 4.3 in [15]) that there ex&tnon-zero point on
the quadric

Q: := {x € H*(X,R) | £(x) = 0}

and hence is indefinite provided that the irregularity(X) = 0 and the second Betti
numberb,(X) > 3.

Proposition 4.1. Let X be a Kahler threefold. Assume that the trilinear form
u(x,X,x) decomposes ag(x)&(x) overR (if the quadratic form is not a product of lin-
ear forms then we may work ove®) and the linear formv is positive on the Kahler
coneKx. Then the following hold.

(1) dimg Ker(A:) < 1. If & is a degenerate quadratic fornits restriction &[y, to
the hyperplane

H, := {x € H3(X, R) | v(x) = 0}

is non-degenerate.

(2) If the irregularity q(X) = 0 (for example a Calabi-Yau threefgldthen the signa-
ture of & is either (2, 0,by(X) — 2), (1, 1,b(X) —2) or (1, 0,by(X) — 1).

(3) The above three signatures are realized by some Calabi—Yaeefolds with
by (X) = 2.

Proof. (1) Letwyx € Kx be a Kahler class. The Hard Lefschetz theorem states
that the mapH?(X,R) — H*4(X,R) defined byx - wx Ua is an isomorphism. Hence
the cubic formu(x, x, X) depends on exactlig,(X) variables. Then the quadratic form
& must depend on at leasp(X) — 1 variables and thus we have difier(A¢)) < 1.
Assume next that the quadratic fortnis degenerate. Then the linear formis not
the zero form on Ket) (otherwiseu(x, x, X) depends on less tham(X) variables).
The restriction&|y, is non-degenerate becaust?(X, R) = H, @& Ker(A:) as aR-
vector space.

(2) LetL;e KxNH2(X,R) be an ample class such thatL,, L1, L;) = 1. Since
the Kahler coneCx C H2(X, R) is an open coneX is projective by the Kodaira em-
bedding theorem. Then the Hodge index theorem states thaythmetric bilinear form

b1, i= (L, *, #%): H3(X, R)®? = (NSX) ® R)®? - R

has signature (1, G(X) — 1), where N §X) is the Neron—Severi group oX. Note
that dimg(L7 N H,) > by(X) — 2, whereL; denotes the orthogonal space ltg with
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respect to the non-degenerate bilinear fdym ,. We then have two cases; the first is
when dink(L; N H,) = by(X) — 1 (i.e. L = H,). In this case we can write down a
basisLy,...,Lp,x) for the subspaced, which diagonalizes the quadratic form . |H,,
and hence (noting thdt; ¢ H,) the Gramian matrix ob, , with respect to the basis
L1, ..., Liyx of HZ(X, R) is

Ay

Ly

= (b, (Li, L)) = diag(1,—1, ..., —1).

If dimR(Lf NH,) = by(X)—2, then we can write down a badis, ..., Ly,x)-1 for the
subspacel;- N H, which diagonalizes the quadratic form, [ :nk,. and then extend
it to a basisLy, ..., Lp,x) of H,. Thus in both cases, ..., Lp,x) is a basis for
H?(X, R); the corresponding matriXd,, 1, will not be diagonal in this second case,
but the first po(X) — 1)-principal minor is, with onet+1 andb,(X) — 2 entries—1 on
the diagonal.

Let us define a new bas'(s!\/li}ibi(f) of H2(X, R) by settingM; = L; for 1 <i <
by(X) — 1 and

b2(X)

My = Lo + ) Buts(Lis Loso)Li € Ho.
i=2

Let x = Y20 3 M;. Then the hyperplanéi, is defined by the equatioa; = 0 and
the Kéhler coneCy lies on the side whera; > 0 by the assumption on. Therefore
we have

i=2

by(X)—1
(X, X, X) = & (af — Y &+ Candn + Daé(X))

for some (explicit) constant€, D € R. Since the quadratic form is positive on the
the Kéhler coneCx, there must be at least one positive eigenvalue and hensgbfeos
signatures are (2, ®(X) —2), (1, 1,by(X) —2) and (1, 0py(X) — 1).

(3) Consider a Calabi-Yau threefol!' (1, 1, 1,2, 23 4, from p.575 [5] given as
a resolution of a degree 7 hypersurface in the weighted giiogespaceP 1,1,2,2) Its
cubic form is given by

a;(14a2 + 21aja, + 9a3),

whose quadratic form has signature (2,0, 0). The cubic fofa loypersurface Calabi—
Yau threefold P32 x PY) N (4, 2) is

2a3 + 12a%ay,

whose quadratic form has signature either (1, 0, 1) or (1,),1,d@pending on its
decomposition. O
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The restriction |, may be degenerate ¥ is non-degenerate. The cubic form of
the above Calabi-Yau threefol@{xP1)N(4,2) gives an example of such phenomenon.
Let v(a) = 2a; and&(a) = ay(ag + 6a2). Thené is hyperbolic and non-degenerate, but
its restriction toH, is trivial.

Let X be a Kahler threefold. Ib,(X) > 3, the cubic formu cannot consist of
three linear factors oveR and hence ifu contains a linear factor it must be rational
(see also the comment after Lemma 4.2 [15]). Hence an apatemcalar multiple of
£ endows the second cohomolodd?(X, Z) mod torsion with a lattice structure.

EXAMPLE 4.2 (Enriques Calabi-Yau threefold [3, 4]). LX¥tbe a generic K3 sur-
face with an Enriques involutiors. Let E be an elliptic curve and-1g the negation.
Then we can define a new involutierof Sx E by ¢ := (ts, —1g). The free quotient

X := (Sx E)/{1)

is a Calabi—Yau threefold withp,(X) = 11. The cubic formu(x, X, X) of X has a
linear factor (which, we assume, is positive on the Kahlemeckx) and the residual
quadratic formé has signature (1,1,9). More precisely, the lattice strectur H2(X,Z)
mod torsion associated with appropridtds given by

U @& Eg(—1) @ (0),

whereU is the hyperbolic latticeEg(—1) is the root lattice of typeEg multiplied by
—1 and(0) is a trivial lattice of rank 1.

Proposition 4.3. Let G be a finite group acting on a Kahler threefold X and
¢: G = GL(H?(X, z)) the induced representation. Assume that the trilinear folen
composesu(X, X, X) = v(x)&(x) as above. Then the image ¢f G — GL(H?(X, Z))
lies in the orthogonal grougD(¢) associated with the quadratic forin

Proof. Since the cubic form: H?(X,R) — R is invariant underG, it is enough
to show that the linear formv is invariant underG. There existsx € Kx such that
Rx is a trivial representation o& (by averaging a Kahler class ov&) and then the
representatior is a direct sum of two subrepresentatidRs & H,. Sincev is a linear
form, this shows the invariance of underG. O

This proposition may be useful to study group actions on thleomology group
H2(X, Z).
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