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Introduction

The present paper studies an algebra of parameter-dependent pseudodifferential op-
erators on a manifold with conical singularities, where the parameters are involved as
covariables in a specific degenerate way. Such operator families serve as an adequate
symbol class for pseudodifferential operators on manifolds with edges. Also the study
of resolvents of differential operators of Fuchs type leads to families of a similar form.

Our results fit into the frame of pseudodifferential calculi on manifolds with sin-
gularities, particularly with piecewise smooth geometry. They belong to the idea to
reflect the stratification of such a space by a hierarchy of operator algebras with sym-
bolic structure, and to organize an iterative procedure which starts from the calculus
on a given space, say a cone, and constructs a next ‘higher’ calculus on a space with
higher order singularities, say a wedge. It is well-known that, for instance, boundary
value problems for pseudodifferential operators can be represented as operators along
the boundary with operator-valued symbols, acting along R, the inner normal. In this
sense, not only Boutet de Monvel’s algebra [1] (cf. also Schrohe and Schulze [7]) of
boundary value problems with the transmission property is included in the context but
also Vishik, Eskin’s theory [3], [12], turned into a corresponding operator algebra, cf.
Schulze [10]. The iteration of calculi leads to very complex analytic phenomena, and
it is still a serious problem to formulate manageable operator algebras for higher sin-
gularities such as of corner type or for boundary value problems with such singular
boundaries.

The main objective of our paper is to develop an efficient new approach to the
algebra of cone operator-valued edge symbols as originally introduced in [9]. One
of the difficulties is that the edge covariables are involved in a degenerate form, i.e.,
multiplied by the axial variable of the cone (cf. [2], [10]). In the new representation we
can, in particular, avoid a number of extremely voluminous calculations in the precise
analysis of operator-valued edge symbols by a new quantization of edge-degenerate
interior symbols in which a part of the inconvenient combinations of edge covariable
and axial variable is dismissed. This relies on a form of the Mellin quantization for
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edge-degenerate pseudodifferential symbols from Gil, Schulze and Seiler [4]. The edge-
degenerate behaviour is a consequence of the wedge geometry and can be observed, for
instance, in the symbols of corresponding Laplace-Beltrami operators. More precisely,
if gx (t) is a family of Riemannian metrics on a closed manifold X depending smoothly
on t € [0,00), then

g=dt? +t? gx(t) + dy?

is a Riemannian metric on X" x € for any open set {2 € R?, and describes geometri-
cally a wedge. The Laplace-Beltrami operator associated to the metric g equals

2

Ay = r?(Z ak(t)(—tdy)* + i t26§j)

k=0 j=1

with coefficients a; € C(R,,Diff>*(X)). In this case the corresponding complete
edge symbol is of the form

2
t_2(Zak(t)(—t0t)k + 3 ¢ (tn)ﬂ) with cg € R, B € N§.
k=0 181=2

A parametrix to this differential operator is a pseudodifferential operator degenerate in
the same way, i.e., with a local operator-valued symbol

p(t,7,m) = B(t, tr,tn) with pe C°Ry, L 3(X;RM9)).

The structure of this paper is as follows: We begin with a short discussion of oscil-
latory integrals in the spirit of Kumano-go [6], here generalized to amplitude functions
with values in Fréchet spaces. It is an important tool to obtain the composition result
of the parameter-dependent cone pseudodifferential operators.

Section 2 provides the basic material about the Mellin calculus. We introduce there
the class of holomorphic pseudodifferential operators (based on the Mellin transform)
as well as the cone Sobolev spaces.

In Section 3 we discuss a class of parameter-dependent cone operators as used in
the edge symbolic calculus, formulated in the old and new fashion. The main result of
this section is Theorem 3.18, where we prove the equivalence of both representations.
We also give a global Mellin quantization which plays an essential role in the proof
above. _

Some properties of our operator-valued edge symbols and some basic elements of
the pseudodifferential calculus (e.g. composition) are treated in the last section.

Finally, a part of the results are postponed to the appendix in order to keep the
exposition of this paper transparent.
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Basic notation

Let Ry = {r € R| r > 0}, R} = R} U {0}, Ny = NU {0}. For a real number 3
let us set 'y = {z € C| Re z = 3}.

A cut-off function is a non-negative function o € C§°(R.) with ¢ = 1 near t = 0.
For functions ¢, we write ¢ < 9 if 1) = ¢ and suppp Nsupp(l —¢) = 0. A
function x € C°°(R?) is called an excision function at n=mng if 0 < x <1, x(n) =0
on some neighborhood of 7y and x(n) =1 for large |n — 7).

For u € C§°(R™) and v € C§°(R ) the Fourier and the Mellin transform, respec-
tively, are given by

o0
Fu(f) = / e %u(z)dr, Mu(z) = / t*~o(t) dt.
R™ 0
These transforms can be extended to more general (distribution) spaces.
Let U C R™ be open, and set (¢) = (1 + |£]?)'/2 for £ € R™. Then S#(U x R")
consists of all p € C°(U x R™) with

M sup_{|DgDEp(a, )] (€)™} < oo
z€K, (R

for all « € N}, 8 € Nf°, and all compact sets K C U. This is a Fréchet space.
Moreover, set S#(Ry x U x R?) = SH(R x U x R"™)|g, xuxgn- This is a Fréchet
space if we take as semi-norms the analogous expressions as in (1), where now K is a
compact set in Ry x U.

For A = R' or A = T'g x R! & R we associate with a symbol p € SH(U x
UxR"x A), U C R, its parameter-dependent pseudodifferential operator op,(p)(A) :
Ce(U) - C=(U) by

@ fop, () (Vul(z) = / / @ p(e 21 € Nyu(a) do'de,

where d¢ = (2m) ™" d¢.

By pasting together (via partition of unity) on a smooth compact manifold X op-
erators of the form (2) we obtain the space L*(X; A) of parameter-dependent pseudod-
ifferential operators on X.

We denote by X" the half-cylinder R, x X. With the symbols P(t,t',7,\) €
C®(R4 x Ry, LA(X;R; x A)), where n = dim X, we associate the corresponding
operator op,(P)()\) viewing the parameter 7 as a covariable. The space of all these
operators is denoted by L*(X"; A). For F(t,t',z,A) € C®°(Ry xRy, #(X;T1_, %
A)) we also consider

v = [ [ (5) Rz
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where dz = (2mi)~1dz, and for t’ fixed, u(t') is viewed as a function in C$°(X).
We further define

LH(X"; N)o:={P(\)e L*(X";A)| o P(\)& = P()) for some cut-off functions o, 5}.

The intersection () ,cg L* is denoted by L™ in all the cases.
Finally, for some Fréchet space E let Cy% (R xR, E) be the space of smooth E-
valued functions bounded with all their totally characteristic derivatives (t8;)* (¢'0y)".

1. Oscillatory integrals in Fréchet spaces

The purpose of this section is to generalize oscillatory integral techniques to the
case of amplitude functions with values in Fréchet spaces. Our approach is based on
that of Kumano-go [5], [6] for the scalar case. As a minor modification we use the
Mellin instead of the Fourier transform.

In the following let E be a Fréchet space.

DEFINITION 1.1. Let 7(Ry xR, E) be the space of all functions u € C° (R x
R, E) such that

(Su)(tl,tg) = ’U,(e_tl,fq) S S(]Rtl X th,E).
A Fréchet topology on 7 (R4 X R, E) is defined by requiring the map S : 7 (R4 x
R, E) — S(R?,E) to be a topological isomorphism. If E = C we suppress E from

the notation.

DEFINITION 1.2.
(i) The space of amplitude functions, A(Ry X I'g, E), consists of all h € C°(Ry x
Ty, E) such that for each continuous semi-norm p of E there exist reals m = my,
i = pp such that

@ sup {p ((95(0.)'h)(s,6)) (log )™ (€)™ | (s,€) € Ry x R} < o0
for all k,l € Np.
(ii) By A(Ry x C, E) denote the space of holomorphic amplitude functions, i.e. all

h € C®(R4,O(C, E)) such that for each continuous semi-norm p of E there exist
reals m = mp, 4 = up such that

sup {p ((95(50,)'h)(5,6 +i6)) ™8 () 7¥ | (5,€) € Ry x R [6] < j} <o

for all j,k,l € Np.
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REMARK 1.3. To verify that a function h is an amplitude it suffices to check the
corresponding estimates for an arbitrary system {p,, | n € N} of continuous semi-norms
of E that determines the topology of E.

The following facts are immediate:

Lemma 1.4.
() If h € ARy x Ig, E) then 8%(s05)'h € ARy x g, E);

(ii) let T : Ey — E be continuous and h € ARy x T, Ey) then T'(h) € ARy X
To, El);

(iii) let E; be Fréchet spaces and the topology in E be the projective topology with
respect to the linear maps T; : E — E;. Then h € ARy x I'o, E) if and only if
Tj(h) € A(Ry x To, E;) for each j;

(iv) let Eo, E; be two Fréchet spaces and (-,-) : Eg X Ey — E be a continuous and
bilinear map. If h;j € ARy x T'g, Ej), j = 0,1, then (ho,h1) € ARy x T, E);

(v) let V be a closed subspace of E. For e € E let [e] = e+ V. Then h € A(R4+ x
Lo, E) implies that [h] € ARy x Lo, E/V).

Analogous statements are true for holomorphic amplitude functions.

DEFINITION 1.5. A function xc(s, z) :]0,1] x Ry x 'y — C is called regulariz-
ing, if

(i) xc € T(Ry x I'g) for each ¢;

(ii) sup{|(9%(s9s)'xe)(5,€)] | 0 < £ <1, (5,8) € Ry x R} < o0 for each k, 1 € No;

(iii) 0% (s05) xe(s, &) — { (1)’ :I; ; g pointwise on R, x R as ¢ tends to 0.

EXAMPLE 1.6. Let x € T(R; x R) with x(1,0) = 1, and set x.(s,i) =
x(s¢,e€). Then x. is regularizing in the sense of Definition 1.5.

DEFINITION 1.7. A function x(s, z) :]0,1] x Ry x C — C will be called holo-
morphically regularizing, if

@) (e,5,1) = Xe(s,0 + i€) is regularizing in the sense of Definition 1.5 for each
deR;
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(i) z — xe(s, 2) is entire, and & — xc(s,d + i) € S(R) uniformly for § in compact
intervals;

(iii) for each ¢ there is a compact set K. C R, such that x.(s,z) = 0 whenever
sé€ K..

EXAMPLE 1.8. Let ¢ € C°(R4) with p(1) = Mp(0) = 1. Here, M is the
Mellin transform. The function x.(s,2) = ¢(s°)Myp(ez) is regularizing in the sense
of Definition 1.7.

Theorem 1.9. Let h € A(R; x Ty, E) and let x. be regularizing. Then the limit

o o d
Os{h] = / /0 h(s,ie) g = lim / /0 (s, (s, i€) e

exists in E and is independent of the choice of x.. The same holds for h € A(R; x
C, E) with x. being holomorphically regularizing. In particular, both definitions of the
oscillatory integral coincide on ARy x T'o, E)NA(R4 x C, E).

This result essentially follows from integration by parts.

REMARK 1.10. Let {p,| n € N} be a fixed system of continuous semi-norms
that determines the topology of E, and i = (u,), m = (m,) be fixed sequences of
reals. If we denote by AP»™(R, x Iy, E) the space of all amplitude functions h that
satisfy the estimates (3) for p, with m = m, and p = u,, then A»™(R, x [y, E)
carries a natural Fréchet topology. The map h — Os[h] : A#»™(Ry x I'g, E) — E' is
linear and continuous. Moreover,

A(R_l_ X FQ,E) - Up,m Aﬂ’m(R+ X FO,E).

Here, the union is taken over all sequences fi, m. Analogous statements hold for holo-
morphic amplitude functions.

2. Mellin pseudodifferential operators

Pseudodifferential operators based on the Mellin transform constitute a special in-
gredient of the cone algebra (cf. [2] and [10]). They are adequate for the treatment
of differential operators of Fuchs type which are the natural ones on manifolds with
conical singularities. Such differential operators are roughly speaking polynomials in
the totally characteristic derivative —td;. For this reason microlocalization by means of
the Mellin transform M;_,, is natural since —t0; corresponds in the Mellin image to
multiplication by the complex variable z. For an introductory exposition of the cone
calculus we refer the reader to the chapters 7 and 8 of [2].
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2.1. Weighted cone Sobolev spaces

For a compact smooth manifold X we construct the Sobolev spaces on X =
R4 x X in a way that they satisfy a number of natural conditions, in particular, for
smoothness s € R they are subspaces of Hj, (X") and contain HZ,,, (X") as a
subspace. The cone Sobolev spaces can be understood as a suitable modification of
the usual spaces H°, defined with help of the Mellin transform in the axial direction

teR,.
First of all, for s,y € R define H*7? (R4 x R") as the closure of C§°(R, x R™) with
respect to the norm

e = [ [ @ I Mo Foe) 2, € delde,
Tagr_ JR

DEFINITION 2.1. For s,7, o€ R we introduce the cone Sobolev spaces H*7(X")
and K7 (X")@ as the closure of C§°(X") with respect to the norms

N
[ullFeemxny = D 1(@5u) o (1 X 6;)7 307k, xgny and
Jj=1
N
||U||)2cw(XA)g = ||0u||§1sw(XA) + Z 1[(1 = o)pjul o KJ'_l”%{S-Q(]W*'")’

Jj=1

respectively. Here, {¢;};=1,..,n is a partition of unity subordinate to the covering
X = Ujvzl U;, 0; :U; — V; C R™ are charts, and

Kj(t,x) = thy(z) : Ry x U; — RM™
for diffeomorphisms x; : U; — \7] C S™, with S™ being the unit sphere in R!*".
Moreover, H*¢(R, ™) = (y)”° H*(R, ™) are the usual weighted Sobolev spaces on

R!*" and 0 € C§°(R,) is a cut-off function. In case ¢ = 0 we suppress it from the
notation. Note that other localization data yield equivalent norms.

REMARK 2.2. The following elementary properties are valid:

(i) H®7(X") and K*7(X")¢ are Hilbert spaces. In particular, H*0(X") = K%0(X") =
t~% L2(X"), where X" is equipped with the product metric;

(i) t7FHSY(XN) = H7TH(X M) and tTHESY(XN)8 = Ko (X M) etk



228 J.B.GIL, B.W.SCHULZE AND J.SEILER
(i) HS,,,(X") = H>Y(X") — Hf, (X"), and the same is true for K7(X")e;

(iv) the scalar product in ¢t~% L?(X”) extends to non-degenerate sesquilinear pairings
HEY(XN) x H™77(X") — C and K37(X")2 x K=%~7(X")~¢ — C, respectively;

(v) the embedding H*"7 (X") — ’Hs"’Y(X A) is continuous if s > s';

(vi) the embedding K*7(X")e — K7 (X")e is continuous if s > s/, v > +/,
0 > ¢, and compact if s > s', v >+, 0> 0.

Proposition 2.3. Let s,y € R. Then there exist 9, 0’ € R such that
HOY(XN) = K57(XN)e,  K*7(XM)e o HoT(XN).
Proof. Follows from Lemmas 3.1.20 and 4.2.2 in [7]. O

DEFINITION 2.4. Using the pairing from Remark 2.2(iv), we associate to every
operator A€ L(K*7(X)e, K'Y (X)) the formal adjoint A*e€ LK~ (X")~¢
=5 77(X M) 7e) that satisfies

(Au,v) = (u, A*v) forall u,v € CL(XM).

Analogously, for every operator A € L(H®7(X"),H* " (X)) we also define the
formal adjoint A* € L(H ™"~ (X)), H=>~7(X")).

Next we introduce a family of isomorphisms on the cone Sobolev spaces defined above.

DEFINITION 2.5. For each A > 0 define the linear map k) : CP(X") —
Cg°(X") by
(kau)(t, z) == A"F u(Mt, z),

where n=dimX. These mappings extend by continuity to linear operators on K7 (X")@
and H*7(X") for all s,v,0 € R, and the set {kx}rcr, is a (strongly continuous)
group of isomorphisms, that means,

(i) kKako = Ko for all A, o > 0;

(i) for each u € K*7(X")e the function A\ — kju : Ry — K*7(X")2 is continuous,
and analogously for u € H®7(X").



CONE PSEUDODIFFERENTIAL OPERATORS 229

2.2. Mellin operators

Before we pass to the parameter-dependent version of the cone algebra we recall
some definitions and properties of the Mellin pseudodifferential operators with operator-
valued symbols.

DEFINITION 2.6. For v € R let 7,,(R;,C° (X)) denote the space of all func-
tions u € C*°(Ry, C*°(X)) such that

(Syu)(t) := e~ Dly(e™?) € S(Ry, C®(X)).

The topology is that inherited from S(R,C*°(X)) via the isomorphism S,. We view
T,(R4+,C(X)) as a subspace of C®°(X").

To each symbol h € Cy%(Ry x Ry, L¥(X;T1_,)) we associate a continuous Mellin
pseudodifferential operator

op}s(h) : T, (R4, C=(X)) — T,(R4, C®(X)),

which is defined by

Y @\ TETT ot
lop3, (Rul®) = [ | 5 Bt 5 =y +iT)u(t) Srdr.

Here, the integrand is viewed as an amplitude function in AR, X [y, C*°(X)) for
each fixed t > 0.

REMARK 2.7. Let h € Cp%(Ry x Ry, L#(X;T'1_,)). One can check (as we
shall do it later on in a similar situation, cf. Lemma 4.1) that

a(s, i) := ((t, 2) = h(t, st, 2 +i€) )

belongs to ARy x I'o, Cy%p(Ry, L¥(X;Ty ), ie. the function a is an amplitude

function with values in Cp% (R, L#(X; L1, ). Hence the oscillatory integral

hr(t,z) = //000 s%h(t, st, z + i) g;d{

converges in Cp% (R, L#(X;T's _,)). Actually, by is the left-symbol satisfying op}(h)
= op),(hz). Analogously, we get the existence of the corresponding right-symbol hg.
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Proposition 2.8. Each h € C5% (R4 x Ry, L¥(X;T'1_,)) induces a continuous
operator

op)s(h) : HEYTE(XN) — HET#ITE (XN
for each s € R. Moreover, we have continuity of the mapping
hi opie(h) : Cp(Ry x Ry, L#(X;Ty ) — L(HOTHE (XN, HET#IHE (X)),
Proof. By order reduction and conjugation with ¢7, the proof can be reduced to
the case opQ,(h) : L2(X") — L*(X”) and p = 0. Since L*(X") = L?(R4, L3(X)),
the result follows from an easy extension of the usual Calderén-Vaillancourt Theorem

(in the formulation for Mellin pseudodifferential operators) to the operator-valued case.

O

DEFINITION 2.9. For p € RU{—o00} we denote by M{;(X;RY) the subspace of
all holomorphic functions h(-,n) : C — L*(X;RY) such that

h(B +it,n) € L*(X; R, x RY)

uniformly for 3 in compact intervals. This is a Fréchet space with the following system
of semi-norms:

sup pn(h(B+iT, 1)), N eN,
1BI<N

where {pn } Nen is a system of semi-norms in L#(X; R xR?). In particular, in the case
dim X = 0 we replace L*(X;R?) by S¥#(R?) and write M/;(R?). The class without
the parameter 7 € R? will be denoted by M (X).
It is easy to obtain the following properties:

Lemma 2.10. For h € Cp%(Ry x Ry, M (X)) is valid:
() k' op) () ka = opis(hy) with hy(t, ¥, 2) = h(A7, A71¢, 2);
(ii) if we set (T°h)(t,t',2) = h(t, ',z + o) then op},;(h)t=% =t~ op}°(T°h);
(iii) for arbitrary vy, € R we have op},(h) = op},(h) on C(X™).

Lemma 2.11. Let X be a smooth compact manifold. Then

M5 (X;RY) = C®(X x X)®-M5>(RY).
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Proof. In view of L™>°(X;R?) = S(R?,C*(X x X)) and by a direct compari-
son of semi-norms we obtain M, (X;R?) = C*(X x X, M;°°(R?)). Then the as-
sertion follows from the nuclearity of C°°(X x X) and the completeness of M, (R?),
see Treves [11]. O

3. A class of parameter-dependent cone operators

3.1. Edge degenerate symbols

Edge-degenerate symbols in the sense of the following definition are motivated by
the analysis of pseudodifferential operators on a manifold with edges, cf. [9]. They
are operator-valued functions depending on an additional covariable 1 multiplied by ¢,
the distance variable to the conical singularity. The same kind of degeneracy appears
when 7 is interpreted as a spectral parameter to a Fuchs type operator on a manifold
with conical singularities. As a crucial result for the structure of our calculus we also
formulate in this section the Mellin quantization for such edge-degenerate symbols.

DEFINITION 3.1. Let us introduce the classes

Cooe (R, L*(X;RY9):={p| p(t, 7,m) =B(t, t, tn) with e C° (R, L*(X; R 7))},

Cee(® o, ME(X5RY):={ k| h(t, 2,m) = h(t, 2, tn) with h € C (R, MB(X;R) |

of edge degenerate symbols of Fourier and holomorphic Mellin type. The operators of
freezing of coefficients at 0 are defined as

p = palt,7,m) = p(0,t7,1n), h— ha(t,z,m) = h(0, 2, tn).

Note that C32, (R, F) C C®(Ry, F) for F = L*(X;R'9) or F = Mg(X;RY). In
particular, we may consider the operator-families

op(p) (1), 0P (h)(n) : C§°(X") = C=(X"),

which are elements of L*(X”;R?). Here op, indicates the pseudodifferential operator
based on the Fourier transform with respect to the variable t.

Theorem 3.2. (Mellin quantization) Let P € Cg‘e’g(ﬁ+,L“(X ;R179)) and let
¢ € C3°(Ry) be a function such that ¢ = 1 near to 1. Then there exists an operator-
valued symbol H € Cd"gg(ﬁJr, M5 (X;R?)) such that

op, (P)(n) — opi, (H)(n) = op,(Q)(n) € L™°(X";RY)

with Q(t, ', 7,m) = (1 — ¢(t'/t))P(t, 7,7n) for all t,t' € Ry, 7 € R,n € R
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A proof of this theorem is given in the appendix A.l.

3.2. Operator-valued symbols

Our parameter-dependent operator functions on X” are operator-valued symbols in
which the typical rescaling properties of the cone operators together with the degener-
acy in 7 are reflected by a corresponding type of symbol estimates. In this section we
summarize some properties of a class, suitable to describe this effect.

In the sequel assume E; = K% (X")% or E; = H%"(X") for some reals
8j,7j, 05> and {kx|A > 0} as in Definition 2.5. Moreover, let us fix a smooth function
n— [n] : R? — Ry with [n] = |n| for |n| > ¢o for some constant ¢y > 0.

DEFINITION 3.3. Let 1 € R. By S¥(R%; Ey, E;) denote the space of all symbols
a € C®(R?, L(Ey, E1)) that satisfy

15y (D5 a(m)) gl (8o, 20) < ca (]

for all o € N, and c, some constant independent of 7 € RY. Further, we set

S™°(RY; Ey, Ex) = (] S*(RY; Eo, E1) = S(R?, L(Ey, Er)).
HER

If we replace both spaces Ey, F; by C and suppose k) = 1, we obtain the standard
scalar-valued Hérmander class S7’'((R?) of symbols with constant coefficients.

Of course, such operator-valued symbols can be formulated on 2 x R? for some
open set 2 C R? or Q C R? x RY. It is also possible to admit arbitrary Banach spaces
E; with strongly continuous group actions, cf. [2], [10].

REMARK 3.4. The following properties hold:
i) SH1 (Rq;El,Eg) . S“O(Rq; Eo,El) C SHotm (Rq;Eo,EQ);
ii) D2 SH(RY; Eo, E1) C S#~1*I(R%; Ey, Ey);

111) S”(Rq;El,Eg) C S”(Rq;Eo,Eg) if Eo — E1 and E2 — Eg.

EXAMPLE 3.5. A function f € C*°(R?\ {0}, L(Ep, E1)) is called (twisted) ho-
mogeneous of order p, if

fOn) = MNryf(n)ky® forall A>0 and n+#0.

Then, if x(n) is a excision function at 0 we have x f € S¥(R?; Ey, E;).
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This concept of homogeneity allows us to introduce classical symbols:

DEFINITION 3.6. A symbol a € S¥(RY; Ey, E;) is called classical, if there is
a sequence of functions a(,_j; € C°(R?\ {0}, L(Eo, E1)) that are homogeneous of
degree 1 — j, such that for any excision function x(n) at p =0

N-1
a— Z Xa(u_yj) € S*N(RY; By, Ey)
j=0

for every N € N. In this case we write a € S, (R?; Ey, E;). For j € Ny we set

]

on (@) (y;m) = agu—5) (Y, m)-
In particular, oy (a) plays the role of the homogeneous principal symbol of a.

EXAMPLE 3.7. Let us consider an element f(z,7) € L*(X;Ty x RY) and set

f(t,z,m) = f(2,tn). Then, if w(t) and &(t) are arbitrary cut—off functions, and v, ¥ €
Ra

a(n) = w(tln]) ] t7opl, (F) () : K5 (X1)e — Kom 47 (x1)e

is a smooth family in 7 of continuous operators for every fixed s, 0,0 € R, and we
have

a(An) = X Prra(n)ky’

for all A > 1, |n| > ¢ for a constant ¢ > 0. Then

a € S (RY K E (XN, o (X)),

Furthermore,
%= (@)(n) = w(tln]) Inl“t?op g, () (m(tln]).

3.3. Green symbols

Algebra operations between operator families of the above kind lead to additional
remainder terms, the so-called Green symbols. The notation is motivated by Green’s
function in elliptic boundary value problems. For the Laplacian (for instance) this func-
tion has, up to a fundamental solution, a boundary symbolic structure of the form of a
Green symbol, cf. [10].
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DEFINITION 3.8. Let 7,7 € R. The space R (RY;(,7)) of Green symbols
with weight data (v,~’) consists of all operator-valued functions that satisfy

@) ge [\ SHLERGEM(XME,KSY (XM,
s,s’,0,0' ER

®) ge [ SLRLKSTY (XM, KX,
s,s’,0,0' €ER

where * denotes the pointwise formal adjoint in the sense of Definition 2.4. The sub-
space RZ(R?; (7,7))oo consists of all Green symbols, where in (4) we can replace 7/
by v’ + € and in (§) —y by —v + ¢, and the intersections are taken also over € > 0.

The properties of operator-valued symbols, cf. Remark 3.4, carry over in an obvious
way to the Green symbols.

REMARK 3.9. Due to the mapping property we can conclude that every Green
symbol is parameter-dependent smoothing on X*, that is, g € L=>°(X"; RY).

EXAMPLE 3.10. Let ¢, € C§°(R.) be arbitrary functions with supp ¢ Nsupp ¢
= (). Then, for f(t,z,n) as in Example 3.7, and u, i € R,

a(n) := (¢[n)) [n]#tPop 2, (f) () (¢

is a Green symbol of order p — [i.

EXAMPLE 3.11. For P(n) € L~°°(X";R%), and functions ¢, 9 € C§°(R;) we
have '

@ P()¥ € Rg™ (R (7,7))o
for every 7,7 € R.

REMARK 3.12. Let 0,5 € C$°(R4) be cut-off functions, and g € RE(RY; (v,7)).
Then

(i) 09, go € R;(R% (v,7)),
(i) (1 -0)g, 9(1 —0) € RG™(RY; (v,7)),
(iii) 0 g7 — g € RG™(R% (v,7)),

(iv) tF gt' € REFYRY; (v — 1,7 + k) for I,k € R.
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} EXAMPLE 3.13. Letb € S(R%’t’t,),C""’(XaB X X)) be supported in RZ x X2,
and set

(g(mu)(t,2) = [+ /0 ” /X b(tln], . t'[n), @ Yu(t', ') (¢))" di'do’

with 1 € R. Then g(An) = M kag(n)ky ! for all sufficiently large || and A > 1, ie. g
is twisted homogeneous of degree u for large |7|, and we have g € R (R, (7,7))s
for all v,7" € R.

34. Complete edge symbols

We now turn to a class of operator-valued symbols that are parameter-dependent
families of pseudodifferential operators on the infinite cone X”.

DEFINITION 3.14. For v, u,v € R, with u — v € Ny, let R¥(R?; (v, — u)) be
the space of all

a(n) = o1(t)(ao(n) + a1(n))oo(t) + (1 — 1)) P(n)(1 — 02)(t) + g(n)
with

ao(n) = wi(t[m))t " oy * (R)(m)wo(tln]),
a1 (n) = (1 — w1) ([0}t op,(p) (M)(1 — w2) (),

where p € C3%,(Ry, L (X;R}}9)) and h € O3, (R4, M§(X;R9)) is the Mellin
quantization of p. Moreover, g € R%(R?; (y,y — p)) and P(n) € L¥(X";RY),. Apart
from that, o;, w;, j = 0,1,2, are cut-off functions satisfying w2 < w; < wp and
02 < 01 < 0g. We associate to a an additional specific symbolic level, namely the

(twisted) homogeneous principal edge symbol
ox(a)(n) := oX(ao)(n) + oX(a1)(n) + oX(9)(n), ne€RI\{0},
with

% (a0)(n) = wi(tlnl)t " opas 2 (ha)wo(tln),
o (a1)(n) = (1 — w1) (tml)topy(pa)(1 — wa)(tn]),

where h, and p, are as in Definition 3.1.

The elements of the space R”(RY; (v, y—p)) are called complete edge symbols (without
asymptotics, with constant coefficients) as they were originally introduced in [9] (cf.
also [2],[10]). In the present form we can prove the following fact:
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Proposition 3.15. For arbitrary s, p € R we have
RY(R% (v,7 — p)) C S"(RG K27 (X7)e, Ko7 7H(X1)e).
In particular, 0¥ (a) € C®(R?\ {0}, L(K>7(X")e, K5~ 7~H(XN)?)) is homogeneous
of degree v, cf. Example 3.5.

For a proof see for example [8, Section 3].

3.5. New representation of complete edge symbols

This section shows that the concept of holomorphic representations in the above
Mellin quantization leads to a very convenient new description of the operator-valued
edge symbols, in which the n-dependent cut-off functions are removed from the non-
smoothing part. In particular, we get the principal edge symbol in an equivalent simple
form.

DEFINITION 3.16. Let v,u,v € R, with u — v € Ng. The space R¥(RY; (y,v —
w)) consists of all operator-families of the form

®)  a(n) = o1(t)t™op} * (h)(n) o0(t) + (1 = 1) (()P(n)(1 = 2) (t) + g(1),

where h € C33, (R4, Mp(X;R?)), P(n) € L*(X";R9)o and g € RE(RY; (7,7 — p))-
The functions o, j = 0, 1,2, are cut-off functions satisfying g, < 01 < 0o.
As in Definition 3.14 we have the principal edge symbol

% (a)(n) ==t o}y £ (ha)(m) + 0% (9)(m), 71 e€R?\ {0}

Recall that ha(t,z,m) = h(0,z,t5). In Lemma 4.5 we will prove that every edge
symbol is a usual parameter-dependent pseudodifferential operator on X”. In particular,
we also have the interior principal symbol a;(a) in the case of classical operators.

REMARK 3.17. The localization with oy allows us to assume, without loss of
generality, that in (R) the symbol h is compactly supported in ¢t € R,.

Theorem 3.18. The class R”(RY; (v, — u)) from Definition 3.14 coincides with
the class RY(R%; (y,y — u)). The principal edge symbol o%(a) is independent of the
representation of the corresponding edge symbol a.

Proof. Let a € R¥(RY; (7, — u)) with the notation as in (R).
Setting ans(n) = t=?op,, ? (h)(n) we have

a(n) = o1(t)am (oo(t) + (1 — o1)(t) P(n)(1 — 02)(t) + g(n).
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Let wy < wy < wg be cut-off functions. Then

(6)
anm(n) = wi(tfn)am Mwo(t[n]) + (1 — wi)(tm)an (n)(1 — w2)(t[n])
+witn))an (m)(1 = wo)(t[n]) + (1 — wi) (t[n])ans (m)w2(t(n])
= wi(tm)an (Mwo(tln)) + (1 — wi)(tm)an (n)(1 — w2)(t[n]) (mod RE)

due to Proposition A.8 and Remark 3.12. Therefore,

Q)
a(n) = a1(t)(ao(n) + a1(n))oo(t) + (1 — o1) () P(n)(1 — 02)(t)
+01(1 —w)(tm){anr(n) -t opy(p)(n)}(1 — w2)(t[n])oo  (mod RE),
where p and the symbol h of ays are related via the Mellin quantization, and ag(7n),

ai(n) are as in Definition 3.14. Now, the latter term in (7) is in RY due to Proposi-
tion A.4. Hence

®  a(n) = a1(t)(ao(n) + ar(n))oo(t) + (1 — 01) () P(n)(1 — o2)(¢) + g(n)

implying that R¥ C RY. The other inclusion follows similarly from the relation

ao(n) +a1(n) = wi(t[n))am(nwo(tn]) + (1 — w1)(t[n])ar () (1 — w2)(¢[n])
+ (1 = w1) () {t " op: () (1) — ane (M) }(1 — w2)(t[n]),

using (6) and applying again Proposition A.4. Finally, by the same calculations for the
principal edge symbol (with ¢|n| instead of ¢[n]) we obtain as in (8)

Ux,new(a) = a/u\,old(ao) + U/'(,old(al) + O/U\ (g) = Ux,old(a)

with trivial meaning of the notation. O

4. Elements of the calculus for complete edge symbols

4.1. Calculus for degenerate holomorphic Mellin symbols

Lemma 4.1. Let h € C®°(R,, M4 (X;R?)) be independent of t € R, for large
t. Then

a(s,w) = ((t,2,m) — h(st,w+z,s1)) € AR x C,C™(R;, M5(X;R7))),

i.e., a is a holomorphic amplitude function with values in C*®° (R, Mp(X;R9)).
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Proof. Step I: Consider the local situation, i.e. h € S#(Ry x R® x C x R*9),
Since the following calculations are not affected by the variables of R™ x R™, we omit
them in the notation. It is clear that a € C*°(R4, S#(R; x C x R?))®,0O(C), where
O(C) is the Fréchet space of entire functions. On S*(R; x C x RY) we consider the
semi-norms

pa(h) = sup {18} 0¥ 8 h(t, o0 + i, m)| (r,m)!* ¥ 7},

where the supremum is taken over all t < n, |oo| < n, (1,n7) € R'*9, and I’ + k' +
|a’| < n. We have to show the existence of ., m,, such that for all k,/, N € N

)]
sup { pn((s0,)' 0% a(s, o1 +i€))g(s) ™ (&) " | |o1] < N, (5,€) € Ry x R} < oo,

Here, g(s) = e{°8%)_ If we write (78;)* = (110, )* ... (140, )*@ we have

(s0)'a(s,w) = D cmal(td)™(ny)*R(s,w + -, 5.

m+|a|=l

Since the map h — (t8;)™(n0,)*h : S¥(Ry x C x RY) — S#(R4 x C x R9) is
continuous and (td;)!(nd,)* h also satisfies the assumptions on h, we can assume in
(9) that [ = 0. The estimate (9) is valid if we can show that

(10) &Y 35K 0 [R(st, oo + o1 + i1 + i€, sm)] < R g(s)™ (€)* (r, )71 17¥

uniformly in t < n, |og] < m, |o1| < N, ' + kK + |o'| < n, (1,7) € R, (s,¢) €
R, x R, with a semi-norm ||| - ||| of S*#(R4 x C x R?), depending only on k,n, and N.
Using the elementary inequality (7,sn)* < max{s~!,s}*l (r,n)*, the left-hand side
of (10) is dominated by
s H| (9 95K 92 h) (st, 00 + o1 + iT + i€, sn)|
< MBI " +11 (7 4 €, smy =TI < e 8+, sy (g et
< c Al g(s)! H1e MR el gy K (7 pyn=k e

< cllbll g(s)™ (€ (rymp* 1.

Here we have set pi, = max}_; |u — j|, mn, = n + max}_, |u — j|. Moreover,

Il = sup { (3} 04+ 05 R) (¢, 0 + im,m)] (m,m ¥ 1170
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with the supremum over all t € Ry, |o| < n+N, lI'+k'+|o/| < n, and (7,7) € R4,
Step 2: Assume that h € C*> (R4, M5°°(X;R?)). We introduce the following no-
tation: for a Hilbert space E let S#¥(Ry x I's x R% E) be the space of all f €
C*® (R, x I's x RY, E) such that

sup{ 046538 (8,5 + ir, ) .} | (r,€) R L€ L+ kot fol <N <0

for all N € N and all compact sets K C R,. Analogously, we generalize S#(R, x
C x R?) to S#(R4 x C x R?; E). These are Fréchet spaces, and

C> (R4, M5 (X;R?)) = pr.lim S77/(R} x C x R% HI(X x X)).
jEN
Precisely as in Step 1 we have a € A(Ry x C,S77(R; x C x R, H(X x X))) for
each j € N. Hence a € AR} x C,C*®(R;, M5>°(X;R?))) by Lemma 1.4(ii).
Step 3: In the general case, i.e. h € C*° (R4, My™(X;RY)), we write

t Z, 77 Zq) (9 Op:c )(t»zﬂl) \Ij]' +’~1N+1(t,2,77)

with ﬁj € S*([Ry x R* x C x R™9) and hy4; € C> (R4, M5 (X;R?)). Here,
0;, ®;, and ¥, are as in the proof of Theorem 3.2. Thus, with obvious meaning of
notation,

N
Zq)] « 0Pz (a;(s,w)) ¥; + ant1(s,w).
j=1
In view of Steps 1, 2 and Lemma 1.4(iv), a is an amplitude function as desired. 0

Proposition 4.2. Let h(t,z,m) € C°(Ry, M4 (X;R?)) be independent of t for
large t, and h(t, z,n) = h(t, z,tn). Then

hr(t',z,n) = // sT%h(st', z + i€, sn) %d‘f

(convergent in C®°(Ry, M5 (X;R?))). Setting hr(t',z,m) := hr(t',2,t'n) we obtain
that, for each real ,

opy;(hr)(n) = opy, (h)(n)-
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Proof. By Lemma 4.1, the oscillatory integral exists in C*° (R}, M5 (X;R9)).
Step 1: Let h be compactly supported in ¢t €R ... Then h(,,n) eGr (R, LHX; Iy ))-
By Remark 2.7

hr(t',z,n) = // sT®h(st', z +i€,n) d—:d§

exists in Cy% (R4, LH(X;T_,)) and opy,(hr)(n) = opy,(h)(n) for each 7. Inter-
preting both oscillatory integrals as such in L#(X) yields hgr(t', z,n) = hgr(t', z,t'n)
in L#(X) for all ' > 0, z € C, and n € RY9. Due to the continuity this is then also
true for ¢ = 0.

Step 2: Assume h(t,z,n) = (1 — w)(t)heo(2,n) With hey € M{(X;R?) and some
cut-off function w. The holomorphy allows us to write

opie(h)(m) = opy, (¢~ TVR)(n) 7.
For N > max{0,u} we have h™(t,z,n) := t N TNh(t,z,n) € Co%(Ry, LH(X;

F%—v)) for each 7 (recall that h is supported away from zero). Then, proceeding as in
the first step, we obtain that

~ ; d
WYz = O [T RN st 2 i) e
(convergent in Cpp(Ry, LH(X;Ty ) ) satisfies
opj (¢~ TVR)(n) tY = op}, (ki) ().
For fixed ¢’ > 0, z, and 7,
Nyt =1 —i€ . —N7T (ot : ds
hg (', z,t'" "n) = sT%s h(st,z+N+z§,sn)?d§

with convergence in L*(X). But this integral even converges in C® (R, M5 (X;RY))

and equals hg(t/, z,m). Hence opy,(hr)(n) = op;(R)(7).
Finally, a general h can be decomposed into the two parts treated above. ]

With similar calculations one can prove the following results:

Proposition 4.3. Let h; € C'g‘ef’g(@+, MP (X;R9)), j = 0,1, be independent of t
for large t. If we define h € C33,(Ry, ME ™ (X;RY)) by

h(t, z,m) := //S_i%o(t,z+i€,n)fz1(st,z,sﬂ) %dﬁ
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(convergent in C= (R, M5 (X;RY)) ) then for each real ~y

op 4 (ho)(n)opy, (h1)(n) = o}, (h)(n).

Proposition 4.4. Let h € Cgg, (R4, M5 (X;R?)) be independent of t for large t.
Further, define h*) € ngg(@Jr,M(’;(X;Rq)) by

h&)(t, z,m) = // sT®h(st,n+1— z + i€, sn)* %df

(convergent in C*°(Ry., M} (X;RY))), where x is the formal adjoint in L*(X). Then
for each real

0P (B)(1)* = opp " (K™ (n).
The operator on the left-hand side is the formal adjoint in the sense of Definition 2.4.

4.2. Some properties of the edge symbols

In this section (and the next one) we will see some advantages of the new repre-
sentation (R) of the complete edge symbols, cf. Section 3.5..

Lemma 4.5. Let a € RY(R% (y,y — p)). Then a is an element of LY (X";RY).
Proof. Let a be written as in (R). We see immediately
(1 =a1)(®)P(n)(1 —a2)(t) + g(n) € L"(X™;R?).

Writing now op},,_% (R)(n) as a pseudodifferential operator with respect to the Fourier
transform we get

opyy * (h)(n) = opy(g)(n) Wwith g€ C®(Ry x Ry, L¥(X;R*9))
so that op,(q)(n) € L¥(X";R9). O
Lemma 4.6. Let ¢, € C°(Ry), and Q(n) € LY (X";RY). Then
eQ( )Y € RY(RY; (v, v — )

with vanishing principal edge symbols. Moreover, we may represent p Q(n) ¢ as in
(R) with h and P being compatible, i.e. for some fixed ¢ > ¢ > 0 we have

(11 (= opr; 2 (h)(n) — P(n)) € L™(X";RY)

for all ¢, € C°(R,.) supported in [c,c').
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Proof. Of course, P(n) := ¢ Q(n)Y € L¥(X";RY)o. For cut-off functions o2 <
o1 < 09, the operators o1Q(n)(1 — 09) and (1 — 01)Q(n)o2 are smoothing so that

01P(n)(1 — 0p) and (1 —01)P(n)o are both in R;*°(RY; (7,7 — i) for all u € R
(cf. Example 3.11). Hence

P(n) =o01P(n)oo+ (1 —o01)P(n)(1 —o2) (mod R;™).
We now use the Mellin quantization to write o1 P(n)og as a sum alt“’op};% (h)(m)oo
+g(n) with suitable h and g. Due to the presence of the functions ¢ and v there is
a symbol ¢ € C®(R4, L¥(X;R!*9)), compactly supported in R, such that P(n) =
op;(g)(n) and
tq(t,t7'7, 1) € C(Ry, LY (X R:LY))
so that p(¢,7,n) :=tYq(t,7,n) € ngg(ﬁ+, L*(X;R1%7)). This symbol p is also com-

pactly supported in R. From Theorem 3.2 there exists an h € Cge, R4, M4(X;R?))
such that

() := opy(p)(1) — op} * (R)(n) € L™ (X RY).

Note that h is compactly supported in R, as p, and the difference d(n) is supported
away from ¢t = 0. Together with Example 3.11 we obtain

a1P(n)og = 01 t_VOP}/I—% (h)(m)oo + o1 t™"d(n)oo
=01t ops; 2 (R)(M)oo  (mod RG™)

what yields the desired representation
P(n) = o1t™"0p), * (h)(n)oo + (1 — 01) P(n)(1 — 02) + g(n)

with g € R;™(R?; (7,7 — it))oo- The compatibility relation is clearly satisfied for any
constants ¢’ > ¢ > 0. O

Lemma 4.7. Every complete edge symbol a can be written as in (R) with com-
patibility of h and P as in Lemma 4.6.

Proof. Every a € R is of the form

a(n) = a1t opyy 2 (h)(n)oo + (1 — 1) P(n)(1 — o3) + g(n)-



CONE PSEUDODIFFERENTIAL OPERATORS 243

By means of the (inverse) Mellin quantization we find an element P, (n) € L¥(X";R?)o
being compatible with h. Set

a1(n) = o1t opy; 2 (B)()oo + (1 = o1)Py(n)(1 — 02) + g(1)-
On the other hand, a — a; = (1 — 01)(P(n) — P1(n))(1 — 02) can be written with

the desired compatibility condition due to Lemma 4.6. Thus we are done since a =
a1+ (a—a1). O

Corollary 4.8. Let h and P be compatible in [c,c'], and let o5 < 01 < 09 and
G2 < G1 < 8¢ be two sets of cut-off functions supported in [0, '] such that 2 = Go = 1
on some open neighbourhood of [0,c|. As in (R) let us form a with {o;} as well as
a with {G;}. Then a — a belongs to R;™°(R%; (7, — pt))oo; in other words, the class
RY (R (v, — p)) is independent of the choice of the cut-off functions whenever they
respect the compatibility between h and P. The same is true if we simultaneously

interchange in (R) o1 < 0g and (1 — 01) < (1 — o2).

Proof. Choose cut-off functions ws < w4 < w3 with wg < g9, w3z < 79 and such
that ws = 1 on [0, c]. If we write

a=wsaws+ (1 —ws)a(l —ws) +wga(l —ws) + (1 —wys)aws
then Proposition A.13 yields
(12) a = wgapyws + (1 —wg)a(l —ws) (mod R;™)
where ap(n) = 01 t“’op},f_% (h)(n)oo. In the same manner
(13) a=wiawy+ (1 —wi)P(l-wy) (mod R;™)

for functions wy < w; < wo with 09 < we and 69 < wy. Inserting (13) into (12) we
get

a=(1-wswiawy(l —ws)+wsapws + (1 —w)P(l —we) (mod R;*™).
Doing the same for @ we obtain

a—a=(1-wsgwi(a—a)wo(l —ws) (mod R;7).
e —— N, s’

=ip1 =ipo0
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As in the proof of Lemma 4.6 we have

Q01(1 - 0'1)P(1 — U2)(p0 = (pl(P - 0’1P0’0)Q00 (mod Raoo),
p1(1 = 61)P(1 = G2)po = p1(P — G1PGo)po  (mod R5*),

and therefore

p1(a —a)po = p101(am — P)oowo — p161(an — P)Gopo =0 (mod R;™)
due to the compatibility relation (11) and Example 3.11. ]
As an immediate consequence of the new representation we get that the class of com-
plete edge symbols is closed with respect to differentiation and pointwise formal ad-
joint:

Proposition 4.9. Let a € RY(R?; (v, — p)). Then

Dpac 'R”_l""(]Rq; (v,y—n) and a* € RY(RY; (—y + p, —7)),

where a* is“the formal adjoint in the sense of Definition 2.4. Moreover, the principal
edge symbols satisfy

on*(Dja)(n) = DioX()(n) and o} (a")(n) = 0% (a)"(n).

4.3. The composition theorem

Theorem 4.10. Let a; € R" (R (vj,7; — 1)), § = 0,1, with y1 = v — po.
Then

arag € R (R (70,70 — ko — f11))-
Moreover, the symbols satisfy

%+ (a1a0)(n) = o (a1) (M)} (a0)(m) for all 1 € RT\ {0},

and in the case of classical operators aZf’Jr"‘ (a1a0) = 0 (a1)oy (ao).

Proof. Let us write

ap =aoym +aop +9go and a1 = a1y +a1p + g1
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with ajar(n) = o1t i0pys 2 (h;)(n)oo and a;p(n) = (1 — 01)P;j(n)(1 — 03). First
of all we consider the term

ai1go = aimgo + ai1pgo + gi9o-
Clearly, g1go € R (RY; (70,70 — o — p1)) with o2°%"* (g190) = o (91)a%° (g0)-
Moreover, a1pgo € R;*(R?; (y0,7 — po — p1)) due to the presence of (1 — o) and
Remark 3.12. If ws < wy < wy are cut-off functions, Proposition A.8 yields that

a1nm(n)go(n) = wi(t[n])aim (Mwo(tn])go(n)

(14) ot
+ (1 = wi)(¢m)arm (n)(1 — w2)(¢M])go(n) (mod RZ™).

Due to elementary mapping properties of Mellin operators it is easy to see that the first
vo+v1

term on the right-hand side belongs to R?™* (R%; (0,70 — po — #1)). By choosing
wy appropriately, we may rewrite the second term as

o {7 (1= wn) elr) H{ xmt~opig F @V ha) () H{#¥ (1 = wa) (tinl)oogo (n) |

for some excision function x at n = 0 and each N € N. Choosing N sufficiently large,
the mapping properties of the respective three factors yield that the second term on the
right-hand side of (14) also belongs to R? ™' (RY; (70,70 — po — f1))- By freezing
the coefficients of h; at t = 0 it is straightforward to verify that oX°*"(ayprg0) =
axt(an1)ox(go). Similarly we obtain giagprr+giaop € Ré‘”’”l (R (0, Yo—po— 1))
so that we have

a1-ao =aim - Gom +a1p - aop + a1y - aop +a1p - aom  (mod RRTY)
Choosing a cut-off function 6 < o; we can write
a1nm(n)aop(n) = {Gainm (n)(1 — 01)} Po(n)(1 — 02) + (1 = &)arn (n)aor (n)-
In view of Proposition A.13 the first term on the right-hand side is in B> (RY; (o, yo—
Ho — 11))oo- The second term belongs to R¥T1(R?; (vo, Y0 — to — 1)) in view of
Lemma 4.6. The product a3 p(n)agrr(n) is treated analogously. In other words, there
is a P(n) € L**t1(X";RY)o such that

a1p - aop + a1m - aop + a1p - aom = (1 — 01)P(n)(1 — 02) (mod R;™).

As a direct consequencé we have that this term does not contribute to the principal
edge symbol of the composition. Now, with hg (¢, z,m) := o1(t)ho(t, 2,7n) and applying
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Lemma 2.10 we obtain
axn (M)aon () = a1t~ ~10p} 7 E (10 hy) (m) opyy % () (n)oro
=01t o)y % (h)(n)oo  on CF(XN),
where h € C@(ﬁ+, MPT1(X;RY)) due to Proposition 4.3. More precisely, h(t, z,7)

= h(t, z,tn) with

l~z(t, z,1m) = // s~% le(t, z+ vg + 1€, n)al(st)ﬁo(st, z, sn)%d‘{.

Thus the relation for the principal edge symbols is clearly satisfied as well as the rela-
tion for the interior symbols. O

A Further results from the cone theory

Al. Proof of the global Mellin quantization

Theorem A.l. Let V C R™ be open. Let p € S*(Ry x V x R1*"H9), 1 € R,
and set p(t,x,7,€,n) = p(t, z, tT, £, tn). Let further ¢ € C§°(Ry) be a function such
that ¢ = 1 near to 1. Then there exists an h € S*(Ry x V x C x R"*9) such that

0ps.o (B(t /t)p)(n) = opiy (op, (h))(n)

for any n € RY, where h(t,z,z,£,n) = h(t,z,z,&,tn).

A proof of this theorem was given in [4, Theorem 2.3]. In fact, we have explicitly

(15) h(t,, 2, €,m) = v, (t)op2, ($(t' /£)3) (x, &, )v—2 (2)

with §(t,t',a,ir,&,m) == M(t, )Wt 2, —M(t, t)tr,E,n) € SH(RL x V x Tg x
R"9),

Here M(t,t') := gg:_i?gL > 0 for t,t' € Ry, and v,(t) :=t* € C®°(R4+,C®(X)).

Proof of Theorem 3.2
We begin with the trivial identity op,(P) = op,(é(t'/t)P) + op,(Q). Since
op,(@)(n) = op,(Qn)(n) forall N €N

with Qn(t, ¢, 7, 1) = (1— $(/1))(¢/t =1y M(DNP) (¢, t7, tn) € C=(R%, Ll (X, R 9)),
then op,(Q)(n) € L~>°(X";RY). Next, let {Us,... ,Un} be an open covering of X
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by coordinate neighborhoods with corresponding charts 6; : U; — V; C R™. Further
let {¢1,...,on} be a subordinate partition of unity, and {¢1,... ,%n} be a system
of functions satisfying 1; € C§°(U;) and @;1; = ¢; for all j = 1,..., N. Then the
non-degenerate part corresponding to P can be written

N
15(t,7-, n) = Z<I>j f’j(t, 7,7)¥; + 1500(15,7—, n), and so
j=1
(16)
op,(6(t'/t)P)(n Z‘P opy [B(t' /t)(0; )4 0D, (p3)] (M) ¥ + 0p,(¢(t' /t) Peo) (1),

where p;(t,z,7,&,m) = p;(t, z,tr,&, tn) with local symbols p; € SH(Ry x V; x

Rigﬁ,ﬂ)’ j=1,...,N; P € C®(Ry, L™°(X; R} 7)), and ®;, ¥; are the opera-

tors of multiplication by the corresponding functions ¢;, ;. From Theorem A.1 there
are Mellin symbols h; € S¥(Ry x V x C x R"*9), j =1,..., N, such that

1 . _
op, [#(t/t)(8;)x0p, (p;)] (n) =0pZ, (H;)(n) with Hj(t, z,m)=(6;")+0p, (h;)(t, z,7)
for any 1 € R4. To handle the remainder term in (16) let us set

Goo(t,t',iT,m) 1= $(t' /t) M (t,8)t' Poo (t, =M (t,¢')tr, ) and

Hoo(t, 2,m) = v2(£)opay (Goo) (Mv_s(2).

1 -
We have op,(¢(t'/t)Pso)(n) = opi;(Hoo)(n) with Hoo(t,2,m) = Heol(t, 2,tn), cf.
(195).

Moreover, we claim that H,, belongs to C® (R, M;°°(X;R9)). To prove this we
first observe that G, € C®°(R%, L~°(X;To x R?)). Further,

L™®°(X;Ty x RY) = C®(X x X)®:S(To x R?) and
M5®(X;R?) = C®(X x X)®r Mg (RY).

For that reason it is sufficient to show that Hy, € C®(R, M;>(RY)) whenever

Goo € C®(R2,8(Tg x R?)), that is, we have to show holomorphy in 2, and the
boundedness of the semi-norms

locln, v = sup { 1005, Hoo t, 8 + i, )] ()™ },



248 J.B.GIL, B.W.SCHULZE AND J.SEILER

where the supremum is taken over all (o,7) € R, |a| < N,|8| < N,k <m,t < m.
Now for z = 3 + ip € C, using the change t' — tr, 7 — 7 + g, we have

_ t —i7'+z~ dt’
Hoo(t,z,n) =// (P) Goo(t,t,aiTan)7dT

= [ x0) Bt =M, V(7 + 0 m)drar
with x(r) = ¢(r)M(r,1) € C§°(R,.). Hence for a € Ng™ and k € Ny
6{‘8&,,1:[00(@ B+io,m) = // rif—5X1(r)(afa;an)(t, —M(r,1)(7 + 0),n)drdr,

and so, for any /[ > 0 we obtain
0405 (0,5 + 1) < Gt [ [ +0xalr) (74 00) ™ i,

where x1 2 € C§(R). In particular, for [ > N+2 we have { + g, n)_lg ()" 2o,m) V.
Then |6t'“65"nfloo(t, B+io,n)| < ck,a(B) (o, n)"N with ¢ o (5) depending continuously
on B. Thus |Huo|m v < oo for every m, N € Ny. Finally, writing H,, as above but
without the change 7 — 7 + g, and looking now at the semi-norms of Hoo(t,z,-) in
S(RY), we can analogously verify that for every t € R, the function z — H(t, 2, ")
is holomorphic.

Summing up, the function

N

H(t,z,n) =Y ®; Hi(t,2,m)¥; + Hoolt, 2,7),
j=1

belongs to Cg‘e’g(ﬁ+,Mg(X;Rq)) and the relation op,(¢(t'/t)P)(n) = op%/[(H)(n) is
valid for every n € RY. ]

A2. Green remainders induced by the Mellin quantization

For u,m € R we denote by S"*m(ﬁi x R?" x R1*™ x RY) the Fréchet space of
all functions p € C“(ﬁi x R?" x R1*" x RY) with

sup { [0 0 1 0 2. p(t,¥', 3,0, 7, €, m)| ()P ((m, € m)) 17 } < 00

for all multi-indices «, 3,; the supremum is taken over all involved variables.
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Lemma A.2. Let p(t,t',z,2',7,£,m) € S"""(R?F x R™ x R*™ x RY) be com-
pactly supported in (z,z') € R*™. Let x € C*™(R?) be an excision function at 0, and
¢ € Cg°(Ry) with ¢ = 1 near to 1. Further, set

q(t,t' z, 2’1, &,m) = (1 — ¢(t' /t)p(t, t',z, 2’ t7,&,tn) and
Q) = x(m(1 — w)(tM])opy . (q)(M)(1 — w1)(t[n)).

Then for each s,6, i, € R

Q e SO(RQ; Hs,&(Rl-i—n)’Hs—ﬁ,&—'rh(R1+n))'
If p is additionally compactly supported in t € R, we can omit  in the definition of
Q.

The spaces H>® are the usual weighted Sobolev spaces.

Proof. The variables (z,’,£) are irrelevant in the following calculations, so with-
out loss of generality we assume n = 0. First observe that integration by parts yields

op(q)(n) = op,(qn)(n), where
an(t,t,7,m) = (1= (' /t))(t'/t = 1)~ N (DNP)(t, ', tr, tn)
for every N € N. We define
ana(t,t,7,m) = x() (1 — w)(En) (A — wi) ([ an (&, T, 7, 7).
Clearly Q(n) = op,(gn,1)(n). We shall prove that gy, € C(R%; SHN-™N (R%,t’ X
R,)) with uy = 4 — N, my = m + pu — N. To verify the corresponding symbol

estimates let us set fn (t,t',n) := (1 —w)(tN]))(1 —w) (N1 — s /1)) (' /t—1)"N
and study for every k, k’,1 € R the derivatives

T a(ana) =|0F0F 0 ana (8¢, 7)

= [x(makd t g (t, ¥, m) O +P)(t ' )
Due to the Leibniz formula Iy x/; leads to a finite sum of terms like
}(at’ﬂ &) (B0} (8, ', m)) (BB a8, ¢ b, tn))‘ =: | 1,13

with pn,; = 8:“,335‘” D, Z k; =k, Zk; = k’, and where t,t' € [cp,00) and |n| > ¢
for some constants cg,c; > 0 depending on w,w; and x.
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Obviously, |I;| < Cy (£)""%'. To estimate I, we apply again the Leibniz formula and
the chain rule. If some 9;(1 — w) appears then I, has compact support in ¢. For the
remaining terms we have to consider expressions like

R @R /) e = )N < ety @F ) /)¢ - 1PN

with ¢ > 0, I’ < kj and L < kg + I'. Take €, > 0 such that ¢(¢'/t) = 1 for
|t'/t — 1] < e and ¢(t'/t) = 0 for |t'/t — 1| > &, then (8L¢)(t'/t)|t'/t — 1)L~ N~V is
uniformly bounded for each L, N, 1’. We conclude that |I,| < Cs (t) "2 for all t € R,
Further, we have

I3 = Z a’Y(n)T’n(aZ‘r,nijN,l)(tvtl7tT,tn)v
|v|=ks

where a, € S¥(RY) and v = (v1,72,73) € N(1)+1+q. Moreover, the absolute value of
every term in the sum is bounded by

b

A7) e(m) )™ (tr, )N T hsl < gyt Nt ks (e N
here we use the inequalities
rtny P <cry < )7 ()F and (tr,tn)" < (@)F (H)E ()"

for every L > 0, which are true for ¢t > ¢g and || > c;.
Thus |I5| < Cs ()™ T#=N=t=ks (7yv=N=1 Combining all these estimates we obtain

(18) T pr1(ana) < Chopra(m) ()N =F (ryp= N

for every k,k',l € R, n € R%. In the same way we estimate Ik,k:,l((?,o,‘qN,l) and get
expressions like (18) with another C;, ;(n) of the same kind. Hence the assertion
about gy ; holds.

Let us finally define

QN,2(ta t/77'7 77) = X(U)fN(t[W]_l»t/[ﬂ]_l,U)(Divﬁ)(t[ﬂ]_l, t'[ﬂ]_la tr, t[n]—lﬁ)-

Clearly gy 2 € C(R%S#¥™N(R? ,xR,)) t00,and it holds /-c[_n]lQ(n)n[n] =op,(an2)(n).
In particular, gy 2(7) € S"‘”h(Rf’t, x R,) for all N such that uy < i and my < 7.
Moreover, due to the Calderén-Vaillancourt Theorem, the operator norm of op,(qn,2)(7n)
in L(H®Y, H*~A%~™) can be majorized by a finite number of expressions like

csup {Tw(gng) (0™ (r) TR Y,
t,t',T
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where ¢,t’ run over [cp,o0), || > ¢;. The constant ¢ > 0 as well as the supremum
above depend continuously on p. Similar to (18) we have here

Te e a(an,2) < Creer a () () =)™ 0 F N () E < G oy () (1) HH N R (ryin =

with C’k,k/,l(n) bounded in 7 € R? since 7 appears in gy, together with [n]~1. Now,
for N large enough the supremum above exists and is uniformly bounded in 1 € RY.
Therefore

H K] Q [n]”ﬁ(Hs,é,Hs—ﬁ,é—ﬁ) <C forevery s,6, i, m € R.

The calculations for 9;Q(n) are similar. Note that 95 generates a factor tlel (5 depends
on tn), and K, ]t{a‘n[ ) = tled[p]=led, O

REMARK A.3. If we interchange the variables ¢ < ¢’ and z < z’ in the symbol
of @, then Lemma A.2 still holds. This will be used for adjoint operators.

Proposition A4. Let he ngg(@_,_,Mc”,(X; RY)) and pe (R4, LY X ; R1*9))

be related via the Mellin quantization (Theorem 3.2). Then

deg

9(n) = o(£)(1 — w)(tln)){op, (p) (m) — 0P, (W) (M)}(1 — wi)(tln]) oo (t)
is an element of RS (RY; (7,7)) oo

Proof. From Theorem 3.2 we know that for some suitable ¢ € C§°(R;.)

op:(p)(n) — opZ; (h)(n) = 0p,(Q)(n) for all n € RY;

with Q(¢,t',7,m) = (1 — ¢(t'/t))p(t, 7,m). Therefore, to obtain the assertion we only
‘need to analyze locally operators of the form

Gk(n) = (1 — w)(t[n)ops o (r&) (M) (1 — wi1)(t[n]), k=01,

where ro(t,t,z, 2, 7,6,m)=(1 — ¢(t' /1)) (¢, t', z, &, tT, €, tn) and ri(¢,t,z, 2, 7,€,7)
= (1—o(t/t))q(t',t, 2, z,t'T, &, t'n) with some G € S"(]R+ x R?" x R1*7 x RY) being
compactly supported in ﬁix R2" Lemma A.2 then give us Gy € S(R%;H*0, Hs~73-™)
for every s,0,7,m € R. Since Gy is supported away from ¢ = 0, it induces a con-
tinuous operator between cone Sobolev spaces on X”. Moreover, if x € C*®(R9) is
an excision function at 0 then (1 — x)Gx € S~ (R%; H*®, H>~7%~™)_ For that rea-
son, the function g above is a Green symbol if we can prove that xGy is classical
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in the sense of Definition 3.6. To this end we assume for simplicity dim X = 0, put
t = (¢,t'), and apply the Taylor expansion

it,mm) = Y tq(rn)+ Y t*G(t,7n)

|a|<N la|=N

with G, € S¥(R, x RY) for |a| < N and g, € S”’O(@?|r x R, x R2) for |a| =
Further, set G := Gg (for G the procedure is the same). Then

N-1
nGn) = > Gy + Gavyn),
7=0

whete G5 (1) = X(1) (1=) (t1]) 50 5 OPt,2 () (1)(1—w1) (t[n]) for every 0 < j <
N, and 74 = (1 — ¢('/t))t*qa(t, t7,tn). In view of Lemma A.2 each G(;) belongs
to S~I(R%; H*%, H*~"4=™)  Moreover, for each 0 < j < N the function G(j) is
homogeneous of order —j for large |n|. Therefore xG is classical and the proof is
done. ]

A3. Green symbols generated by holomorphic Mellin symbols
Lemma A.5. Let s,y € R be given and choose a cut-off function w. Then
(i) for each Le R and all ¥ € R
(1 —w)(Em)t ™ € SHRGH(XM), L (X")?)
with an appropriate ¢ = 9(s,, L);
(ii) for every 7', 0 € R there exists an L = L(s,~,~', 0) > 0 such that

(1 —w) ()t~ € SERE KT (X2, H (XM).

Lemma A.6. Let s,v,0,7,0 € R. Then
() o(tn)tl € SLE(RI; HSY (XN, K +E(X M) for any L € R;
(i) ottt € SLE(RY; L7 (XN, HY (X)) for L > 0.

In fact, all symbols of the previous two lemmas are twisted homogeneous for large |7
of degree L and —L, respectively.
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Lemma A.7. For wy < wi and N € N let
f@t, ') = wa(tn))(logt/t') N (1 — w1) (¢ [n)).

for t,t' € Ry and n € RY. Then the following is true:
Q) fFOTYATH ) = f(t,t,n) forall A\ > 1, t,t' > 0, and all |n| > const;

(ii) For each k,k’' € Ny, o € N{,

sup {I(tat)k(tlat')klagf(t,tl,n)|[n]|a|} < oo,

t,t',m

In particular, (t,t') — [77]""'8,‘; f(t,t',n) is bounded in n € R? with respect to
the topology in Cy%(Ry x Ry).

Proof. (i) is obvious. By induction, (t0;)*(¢/ 8t/)’°'63‘ f(t,t',n) is a linear combi-
nation of terms

a(n)[(y) wa] (¢[n]) (log t/¢') =N+ [(#'D )" (1 = w))(¢'[1])

with | <|a| +k, I' <|a| + &, M <k+k, and a € S~I*/(R9). Since wy < w;, there
is an € > 0 such that wy(¢)(1 — w)(¢') = 0 whenever |1 — t/t'| < e. Then also

[(t8,) wa) () [(E 8y )Y (1 — w)](£'[n])) =0 forall |1 —t/t'|<e and n € RY.
Thus (ii) is valid since sup{|logt/¢'|~!| |1 — t/t'| > €} < oo. OJ

Proposition A.8. Let h(t, z,n) € C®(Ry, ME(X;R9)) be independent of t for
large t, and h(t,z,n) = h(t, z,tn). Moreover, let wy < w;. Then both

go(n) = wa(t[n]) opay 2 (R)(n) (1 —wi)(tln]) and
g1(n) = (1 —w)(¢[n]) op3y * () (m) wa(tln])

are elements of R%(R%; (7,7))oo-

Proof. First we will show that
(19) g0 € SGRGKT(XM)e, K (X))
for arbitrary s, s’,7', 0, ¢'. Integration by parts shows that

go(n) = opyy £ (f(t, ', m)ONA(t, 2,m))
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for each N € N. Here, f is the function from Lemma A.7. Now choose w, @ such that
wy < @ and w < wy. Moreover choose L > 0 so large that Lemma A.5(ii) is satisfied.
Due to the holomorphy of h we get

go(n) = &(tln))thop}y F (F(t, ', m)T LN h(t, 2,m))(1 — w)(¢t[n])t "

(as operators on C§°(X")). In view of Lemma A.5(ii) and Lemma A.6(i) the relation
(19) follows if we can show that

’

a(n) = opy, ? (F(t,,MT LN h(t, 2,m)) € SYREHY (XN), HET#+N (X))

for then we can choose N so large that s—u+N > s'. In order to simplify the notation
we replace TXONh by h, and therefore assume that h € C° (R, Mg—N (X;R?). A
Taylor expansion yields

J—1
h(t,z,m) =Y h(z,n) +t7hy(t, 2,m)

=0

with h; € M4V (X;R?) and hy € C®(Ry, M% N (X;R?)). Let h; and h; be the
corresponding degenerate symbols. Hence we get

J J
a(n) =Y oy, E(F(t, ¢, mhy(t, z,m) = > tla;(n)
j=0

=0

with obvious meaning of notation. By Lemma A.7(ii), in particular, t’f (¢, t’, n)h; (¢, z,7)
is an element of C*°(R?, Cp% (R4 x Ry, MS_N(X))) for each j. Therefore

tia;(n) € C(RY, LK (X"), HHHNY (X)),

Lemma A.7(i) provides that, for 0 < j < J, each t7a;(n) is homogeneous of degree
—j for large |n|. Thus it remains to verify that

t’az(n) thaj “I(RE;HY (XN, HEHHNY (X)),

For a € N} we obtain

O lf (&t mha(t,zm)] =D ( )8ﬂf (t. ¢/, )t P18 P hy)(t, 2, tn),
BLa
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where the differentiation is with respect to the topology in Cy% (R4 xRy, Mg_N (X)).
This yields

ki) O (¢7as(m) mp[)!*1* = oply 2 (va(t,t', )
with

va(t, ', n) = @) o pt b 181 T +la—B1 (ge—B7, (L , ¢
alt,t,7) ;(ﬂ>(8nf)([n],[n],n)[n] S0y Oh) ),

Now, v, is a bounded function of 7 with values in Cp% (R4 xR, Mg_N (X)) in view
of Lemma A.7(ii) and the compact t-support of v,. Thus

’

sup (lopy, 2 (va)(n) < 0,

n€ER?

H[:(Hs"r’,H8vu+N,'y')

and (19) holds. To treat g; we use Proposition 4.2 and rewrite opL_% (h) = op}/f_% (hr)
with a right-symbol hg € ngg(ﬁ+,M5(X ;R?)). Then we proceed analogously as
above, i.e., we choose L in such a way that "T“ —~+ L > ¢/, and write

g1(n) = (1 — W)t opay 21Nt t, )TN ha(t, 2, m))a(tm))t".

With Lemmas A.5(i), A.6(ii), A.7, and a Taylor expansion of hgin t' at t' = 0 one
can verify that g; also satisfies (19). To consider the formal adjoints g; it suffices to
observe that, after rewriting g; with a right-symbol, g; looks like g1—; (j = 0,1). []

DEFINITION A.9. Let E be a Fréchet space. We define S(Ry x Ry, F) as the
subspace of all functions k € C*°(R; x R4, E) that satisfy

sup { PO k(t,¢)) () (¢)Y | £,¢ 2 e} < o0

for each € > 0, [,I’, N € Ny and each semi-norm p of E. This expressions provide a
semi-norm system that induces a Fréchet topology on S(R; x Ry, E).

Lemma A.10. Let h € Cor(Ry xRy, My (X;R?)), and

ho(t,t',2z,m) = h(t,t, z,tn), hi(t,t',z,m) = h(t,t', z,t'n).

Since My (X;RY) = Mz™(R?)&,C°(X x X), we may associate to each h;j a
kernel

t —iT ‘
kj(t,t’,x,x’,n):/(t_/) h;(t,t' x, o' i, ) dr.
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Then kj € C*(R%, C®R4+ x Ry x X x X)) and k; € C®(R?\ {0}, S(R4 x
R4, C®(X x X))). The corresponding mappings h — k; are continuous.

Proof. By a standard tensor-product argument we can assume that the base X is
a point. The part concerning the smoothness of k; is clear. It remains to verify that,
for each given € > 0, N € Ny, and each compact set K C R?\ {0},

sup {|aga§ia;7kj(t, N WVt >e ne K, LU, |a| < N} < 0.

Consider the case j = 0. Since ho(t,t',2,7) is holomorphic in z and decreases as
a Schwartz function on each I's uniformly for § in compact intervals, the Cauchy
formula implies that

kO(t’tlan) = tNtl_N/ (%) hO(tvtl,iT_Na 77) dr.
Noting that

) [f(ttm)] = D corl(tB)*(n9,)" f1(¢t, tn),

1]+k=t

we see that (t0;)!(t'8y)! 0%ko(t, t',7) is a linear combination of terms
_ £\ , .
g Flaly =N / (t—) [(t0)™ (' 0p)™ (nBy)POLh)(t,t' it — N, tn)T™ dr.

with n+ 8| <I,n' <!, and m <1+!'. For each M >0 there is an appropriate semi-
norm || - [[| of Cy% (R4 x Ry, M;>°(R?)) (independent of h) such that the integrand

is bounded from above by cx ||| () "2 (£)~* uniformly in n € K (recall that & is a
Schwartz function in (7,7) and (tn>_M < ek (t)_M for n € K). Choosing M = 3N
we then obtain that

(630118 kot ' m)| < ce sl ()~ ()™
uniformly for ¢,¢' > € and n € K. This is then also true if we replace (t8;)!(t'dy )"
by 89}, since

k
6‘f =gk Z Cj(sas)j
j=1

!
for certain constants c;, and ¢!t/ s uniformly bounded for ¢,¢ > ¢. The case j = 1
can be treated in the same manner. ]
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Proposition A.11. Let h € C®(Ry, M;™(X;RY)), and set
ho(t, z,m) = h(t, z,tn), hi(t, z,m) = h(t, z t'n).
If x(n) is an excision function at n = 0 then
9;(m) = x(n)(1 = w)(tnl) op3r * (h)(m) (1 = w1)(tn]) € RERY (7,7))eo-
Moreover, if 0,00 € C°(R,.) are cut-off functions then
3(n) = o(t) (1 - w)(¢ln]) oYy ? (hy)(n) (1 — wn)¢ln]) 00() € RL(RY (7,7))ow.
Proof. At first we will show that, for arbitrary s,s’,v', 0,0’ € R,
0) g0 € SQ(RT K (XM)2, K (XM)E).

A Taylor expansion yields

Z

h(t,z,n) =Yt fi(z,n) + tY fn(t,2,m)

<.
Il
<}

with f; € M5™(X;R9) for 0 < j < N, and fy € C%(Ry, M5™(X;R9)). Let f;
be the degenerate symbols corresponding to f] Due to the holomorphy of the involved
symbols,

N

N
go(m) =D x(m)(1 = w)(t]) ¥ K;(n) (1 —w1)(t]) =D 9¢5) ()
Jj=0

=0

with integral operators K;(n) that have kernels

20D ki(t,t',m) = t'_1/<§) [t im,m)dr

with respect to the metric dt'dz (for convenience we suppress the z, z’-variables from
the notation). Because of Lemma A.10 and the presence of the excision function ¥,
each g(;) is a family of integral operators with kernel in C*°(RJ, S(R+ x R4, C*(X x
X))), whose kernel is supported away from ({t = 0} x X) x ({t’ = 0} x X) locally
uniformly in 7). This implies that

go € C®(RY; LIK*7(XM)e, K (XM)?)).
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For 0<j <N each g(;y is homogeneous of degree —j for large ||, since fJ is indepen-
dent of t. Hence (20) is true if we can show that ggv€ S™N(RY; KX N8 K7 (XN?),
i.e. we have to verify that

@ ks |~

<
)}K’{Tl] “ﬁ(}Csv‘Y(X’\)g,’C"'x'Y,(XA)Q') = 0[77

with some constant ¢ > 0 independent of 77 € R?. When calculating 9;'g(n) we can
omit all terms where x is differentiated, since the resulting terms are operator-families
that are compactly supported in 77 and thus satisfy (22). The remaining terms of interest
are of the form

XN TFBY2 0 ()b, (¢0]) Pns (¢ [)) K (n),

where 11 + ng + 13 + |8 = |a], ¥n, = O (1 — w), Pp, = I2(1 — w1), and an, €
S~"3(R?). Furthermore, K3(n) is the integral operator with kernel as in (21), where
fn(t,iT,n) is replaced by (8{7’ fn)(t,ir,tn). Conjugation with K[y Yields operator-
families [n]~(N+m+18l+n2)g, (1)K (1) with integral operators K (n) that have kernels

Rt ) = I O, (hans 0(0) [ (5) O it e

As in Lemma A.10 one can show that this is a bounded function of n € R? with
values in S(R; x Ry,C°(X x X)), obviously being supported away from ({t =
0} x X) x ({t = 0} x X) uniformly in € R%. Hence K(n) is a bounded fam-
ily of operators in L(K*7(X")e, K7 (X")€'). This, together with the fact that
[n)~(N+ritlBl4n2) g, (n)] < c[n]~N+1eD), implies (22). Analogously, g; fulfills (20).
Finally, g7 is of the form g;_; for j =0, 1. To handle g;, write

gi(n) = (1 = x)(n) g;(n) + o(t) g;(n) o0(?).

The first term on the right-hand side has a kernel in C§°(R?, C§° (R4 x R4 x X x X)).
In particular, (1 — x)(7)g;(n) € Rz (R%(7,7))oo- In view of Remark 3.12, the
second term is an element of R (RY; (7,7))oo- O

REMARK A.12. Let he C3, (R4, M4 (X;RY)), and let ¢, 9 € Cg°(Ry) be func-

tions with supp ¢ N supp® = (. Then there is an element ho, € ij’;’g(ﬁJr, My™=(X;
RY)) such that

wopiy 2 (B)() = 0oply ? (heo) ().



CONE PSEUDODIFFERENTIAL OPERATORS 259

Proposition A.13. Let he Cge, Ry, MY(X;R?)), and let 0,5,0,,02 € C*(Ry)
be cut-off functions with o3 < 01. Further set ap(n) = crop},l_% (h)(n) 6. Then

orap(n)(1—o01) and (1—o01)an(n)os
are elements of Rz (R?; (7,7))oo-

Proof. Choose cut-off functions wy < w; such that wy < 05 and w; < ;. Then
o2 (t)an (n)(1 — 01)(t) = 02(t) (91(n) + 92(n)) (1 — 1) (t) =: g(n)

with g1(n) = wa(t])ar(m)(1 — wi)(t[n]) and ga(n) = (1 — wa)(t[m])an (n)(1 —
w1)(t[n]). Proposition A.8 yields g1 € R%(R?; (7,7))oo. Using Lemma A.12 we may
assume that h € C(‘i’gg(ll_@.+,M5°°(X;Rq)) so that go € R%(RY (v,7))eo because of
Proposition A.11. Finally, g € R;*(RY;(77,7))co in view of Remark 3.12. The family
(1 —o1)anm(n)o, can be treated in the same way. (]
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