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1. Introduction

It is known that manifolds of smooth families of probability distributions admit

dualistic structures. S. Amari proposed Information Geometry, whose keywords are du-

alistic connections [1]. Among them the case of dual connections being flat is inter-

esting. Many important families of probability distributions, e.g. exponential families

admit flat dual connections.

The notion of flat dual connections is the same with Hessian structures which

have being developed from a different view point [9]-[12].

In this paper, for a linear mapping p of a domain Ω into the space of positive

definite symmetric matrices we construct an exponential family of probability distribu-

tions [ p ( x ; θ , ώ)} on R" parametrized by θ e Rn, ω e Ω, and study a Hessian structure

on Rn x Ω given by the exponential family. Such families contain n -dimensional nor-

mal distributions (Example 1) and a family of constant negative curvature (Example

2).
In case of a Lie group acting on Ω, p is assumed to be equivariant. O.S. Rothaus

and I. Satake studied such a linear mapping p for homogeneous convex cones [7] [8].

Using p we introduce a Hessian structure on a vector bundle over a compact hyper-

bolic affine manifold and prove a certain vanishing theorem (Theorem 2).

2. Hessian structures

We first review some fundamental facts on Hessian structures needed in this paper

Let U be an n -dimensional real vector space with canonical flat connection D.

Let Ω be a domain in U with a convex function ψ, i.e. the Hessian Ddψ is posi-

tive definte on Ω. Then the metric g = Ddψ is called a Hessian metric and the pair

(D, g) a Hessian structure on Ω. Let {ui, , un} and {u*1, , u*w} be dual basis

of U and U* (the dual vector space of U) respectively. We denote by { c 1 , - - - ,;cn}

(resp. {**,••• , **}) the linear coordinate system with respect to {uι, ,un} (resp.

{u*1, , u*n}). Let i : Ω — > U* be a mapping given by

O L = -- r

3xl
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which will be called the gradient mapping. We define a fait affine connection D' on

Ω by

ι*(D'xY) = D*xι*(Y),

where the right hand side is the covariant differentiation along i induced by the flat
affine connection D* on i/*. Then we have

D1 = 2V - D,

Xg(Y, Z) = g(DxY, Z) + *(y, D'XZ\

where V is the Levi-Civita connection of g. Putting x = —(dψ/3xl) we have an affine

coordinate system {x'ι, — , x ' n } with respect to D'. A function ψL on Ω defined by

is called the Legendre transform of ψ. Then we have

g = D'dψL.

The Hessian structure (Dr , g = D'dψi) is said to be the dual Hessian structure of
(D, g = Ddψ). The divergence D for the Hessian structure (D, g = Ddψ) is defined
by

D(p, q) = ψ(p) + ψL(q) - *''(?)*;($) (p, q 6 Ω).

3. Probability distributions and Hessian structures induced by p

Let Ω be a domain in a real vector space Vm of dimension m. Let p be an injec-
tive linear mapping of Vm into the space &n ofnxn symmetric matrices such that

(A.I) p(ώ) e PD&n for ω e Ω,

where PD<Qn is the set of positive definite matrices in Θn. For column vectors x, μ e
R" and ω G Ω we define a density function of x e Rn by

(1) /7(jc;μ,ω)

The family {p(;c;μ, ω) | μ G Rw, ω e Ω} parametrized by μ, ω is called the probability
distributions induced by p.

Proposition 1. The probability distributions induced by p is an exponential fam-
ily parametrized by (θ, ώ) G Rn x Ω where θ = p(ω)μ. The Fisher information metric
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coincides with the Hessian metric g = Ddψ where D is the canonical flat connection
on R" x Vm and

ψ(θ, ω) = -{tθp(ω)~lθ - logdetp(ω)}.

Proof. For x = [jc1'], μ = [μ1'] e R" and ω = Σa ωav
a G Ω where {v1, , vm} is

a basis of Vm, we set

θ =

Then we have

c; μ, ω) = p(x\θ, ώ) = exp { Y^f l/ j t 7' + ̂  ωaF
a(x) — ψ(θ, ω) Iog2τrr i L-s J ^ 2

j a

This implies that the family {p(x\θ,ω)} of probability distributions parametrized by
(θ,ω) € Rn x Ω is an exponential family, and the Fisher information metric coincides

with the Hessian metric g = Ddψ. D

A straightforward calculation shows

(4) |̂  = -Ij
σωa L

Γ Λ2ι/r

(5)

(7)

where e' is the vector in R" whose j'-th component is <5'^(Kronecker's delta). The Leg-

endre transform ψL of ψ is

(8) ί̂. = -



512 H. SHIMA AND J.-H. HAO

Proposition 2. The divergence D of the probability distributions (p(x\μ,ώ)

μ e Rn, ω e Ω} is given by

»(P, 9) = \( W) ~ μ(q»p(ω(p))(μ(p) - μ(q)) + Ύτ(p(ω(p))p(ω(q)Γl)

- \ogdεt(p(ω(p))p(ω(q)Γl) - n}.

Proof. Using (3), (4) we have

n Λ m Λ

Σ
υφ

(β/(ί) - β, (|»))̂  (9)

2
- tθ(p)p(ω(p)Γlθ(p) + logdetp(ω(p))}

-logdet(p(ω(/?))p(ω(4)) l)-n}.

D

EXAMPLE 1. Let Ω be the set of positive definite matrices in Θπ, and let p :

&n —> &n be the identity mapping. Then {/?(;c;μ, ω)} is the family of n-dimensional

normal distributions. Then we have

ψ = -Cθω~lθ -logdetω),

for θ = [θi] € R", ω = [coy] € Ω. Setting

where [ω1-7*] = [ω/y]"1, we obtain
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The image of the gradient mapping is the set of (η, ξ) e Rn x &n satisfying

This domain is an affine analogy of Siegel domains. Such domains have been treated
in [2] [14] in the course of the realization of homogeneous convex domains. The Leg-
endre transform ψL of ψ is

(-H-
EXAMPLE 2. Let R+ be the set of positive numbers and let p be a linear mapping

of R into &n given by p(ώ) = ωEn where En is the unit matrix. Then

= - ( -1ΘQ -nlogω J ,
2 \ω J

i - _ - _ fc - _ - +
77 3ft " ω ' 9ω ~ 2 V ω2 + '

The image of the gradient mapping is a domain lying above a paraboloid;

, η) € R x Rn

2

The Legendre transform ψL of ψ is

= --logU - 2tη

By [12] the Hessian sectional curvature of the Hessian structure (D', g = D'dψi) is
2/n. This implies that the space of probability distributions on Rn defined by

ω \ n / 2 ί ω ]
-μ)J

where μ 6 Rn, α> G R+ is the space of constant curvature — l/(2n) with respect to the
Fisher information metric.

In case of a Lie subgroup G of GL(Vm) acting on Ω we assume further that G
admits a matrix representation / such that

(A.2) p(sω) = f ( s ) p ( ω ) t f ( s ) for s e G, ω € Vm.



514 H. SHIMA AND J.-H. HAO

Then G acts on R" x Ω by s(θ, ώ) = (f(s)θ, sω). Since ψ(f(s)θ, sω) - ψ(θ, ω) is

a constant, the Hesian metric g = Ddψ is G -invariant.
O.S. Rothaus studied the case of Ω being a homogeneous convex cone and p

satisfying (A.I), (A.2). He showed that the set (£, 0, ω) e R x R" x Ω fulfilling
ξ — tθp(ω)~λθ > 0 is a homogeneous convex cone, and that all homogeneous convex

cones are obtained from lower dimensional ones in this manner [7].

EXAMPLE 3. Let M(n, R) be the set of all n x n matrices, and let p be a linear

mapping of &n into the space End(M(«, R)) of endomorphisms of M (n, R) given by

p(ώ)x = ωx + xω

for ω e &n, x £ M(n, R). Then p(ω) is symmetric with respect to the inner product
( c, v) = Tr rjcy, and positive definite for positive definite matrix ω. Let / be a repre-

sentation of O(n) on M(n, R) defined by

f(s)x = sx*s.

Then '/CO* = *sxs and

Setting an = {x e M(n, R) | *χ = -jc}, we have Af (n, R) = 6n + &„, and

p(ω)©π C6n, /o(ω)aπ C 2lπ.

Hence p induces an equi variant linear mapping p+ and p~ of &n into End(6π) and
End(2ln) respectively. The Hessian structure on 2lπ x PD&n induced by p~ is related
to the theory of stable state feedback systems [4] [5].

4. Vector bundles over compact hyperbolic affine manifolds

A flat affine manifold M is said to be hyperbolic if the universal covering of M is

affinely isomorphic to an open convex cone not containing full straight line [3]. Hence
a compact hyperbolic affine manifold is expressed by Γ\Ω where Ω is an open convex

cone with vertex 0 in Vm not containing full straight line, and Γ is a discrete subgroup

of GL(Vm) acting properly discontinuously and freely on Ω. Suppose that a compact

hyperbolic affine manifold Γ\Ω admits a linear mapping p of Vm into ΘM satisfying
the conditions (A.I) and (A.2). We denote by πE : £(Γ\Ω, p) — > Γ\Ω the vector

bundle over Γ\Ω associated with the universal covering π : Ω — > Γ\Ω and p. Since

the Hessian structure (D, g = Ddψ) on Rn x Ω is Γ-invariant, it induces a Hessian

structure on the vector bundle E(Γ\Ω, p). The Hessian metric defines a fiber metric

on each fiber π~\π(ω)) = {ωθ \ θ e Rn] by

θ')= tθp(ωΓlθf.
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Using this fiber metric we prove

Theorem 3. The p-th cohomology group of the complex of E(Γ\Ω, p)-valued
forms on Γ\Ω vanishes for p > 1.

Theorem 3 is generalized as the following Theorem 4.
Let πE : E — > M be a locally constant vector bundle over a compact hyperbolic

affine manifold M. Then there exists an open covering {Uλ} of M admitting
(i) affine coordinate system {uχ\, , uλm] on £/λ,
(ii) local frames {^, , s"} on Uλ whose transition functions are constants.

The universal covering of M being a convex cone, M admits a Hessian structure
(D, h) and a vector field H such that
1) DXH = X for all vector field X on M,
2) LHh = 0 where L# is the Lie differentiation by H.

Let AP(M , £) denote the space of E-valued p-forms on M. £ being locally con-
stant we can define the exterior differentiation d : AP(M , E) — > AP+1(M, E). Let

HP(M, £) be the p-ύ\ cohomology group of the complex {AP(M , E), d}. The follow-
ing theorem is a generalization of KoszuΓs theorem [3].

Theorem 4. L ί̂ πE : £ — >• M be a locally constant vector bundle over a com-
pact hyperbolic affine manifold M. Suppose that the vector bundle admits a fiber met-
ric satisfying the following property,
(C) there exists a constant c ηf 0 such that

Then we have

Using the vector field H the proof is done under the same line as in [2], so it
will be omitted.

Let Ts

r(M) be the tensor bundle of type (r, s) over a compact hyperbolic affine
manifold Λί. Then the fiber metric induced by the Hessian metric h satisfies the con-
dition (C) in Theorem 4 where c = 2(s — r). Hence we have

Corollary 5 ([3]). If r ^ s, then we have

IF(M, Γ;(M)) = {0} (p > 1).

Proof of Theorem 3. For each (θ, ώ) e R" x Ω we denote by ωθ the image of
(θ,ώ) by the projection Rn x Ω — > E(Γ\Ω, p). Then each ω e Ω defines a linear
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isomorphism Rπ 3 θ — > ωθ e πE

l(π(ω)). Let {Uχ} be an open covering of Γ\Ω
satisfying the local triviality on each ί/λ, that is, there exists a diffeomoφhism

Φλ : π~l(Uλ) , φλ(ω)) € Uλ x Γ

where φχ is a mapping of π~l(Uχ) into Γ such that

φχ(y~lω) = φχ(ώ)γ

for ω € π~l(Uχ), γ e Γ. Define

, f(φχ(ω))θ) e Uχ x Rn.

Then {Ψλ} gives a local triviality for E(Γ\Ω, p). By (5) the Hessian metric g = Ddψ
defines a fiber metric on each fiber π^l(π(ώ)) = {ωθ \ θ e Rn] by

(ωθ,ωθ')= tθp(ωΓlθf.

Let sl

λ : Uχ — > π^l(Uχ) be a section given by sl

λ(u) = Ψ^l(u,el) where e' is a
vector in Rn whose y'-th component is δij. Then {^, , s"} is a local frame field of
E(Γ\Ω, p) over t/λ, and

where σλ is a section on ί/λ given by σλ(w) = Φ^λ(u, identity). Let {wλι, ,«λm}
be an affine local coordinate system on Uχ such that uλa o π = ωa. The vector field
H = Σa

ω<χd/dω<χ is π-projectable and H = π*(H) = Σauχad/(duλa) on Uχ. Since
Σaωadp(ω)~l/dωa = — p(ω)"1 we have

oσλ

Thus the vector bundle £"(Γ\Ω, p) admits a fiber metric satisfying the condition (C)
of Theorem 4, so the proof of Theorem 3 is completed. D
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