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1. Introduction

Let G be a finite group and consider a fieldl of prime characteristip. Let P
be the projective cover of the trividKG-module, which we denote b, and J the
Jacobson radical(KG) of the group algebr&G. Let e € KG be a primitive idempo-
tent such thatP = ¢KG. We are concerned with the second term

el /eJ?

of the lower Loewy series oP. It is a completely reducibl&KG-module, whose com-
position factors are just the irreducibi€G-modulesV such that there exists a nonsplit
KG-module extension 8> V — E — K — 0 (see [7, VII 16.8]).

Gascliitz (see [7, VII§15]) gives a complete description ef/ /eJ? for K = T,
the field of p elements, ands; a p-soluble group: Its composition factors are pre-
cisely the abelian complementedchief factors ofG, counting the multiplicities. Later
Willems shows [12] that for any; each complementeg-chief factor of G appears as
a component okJ /eJ? with multiplicity not less than that as a (complemented)e€hi
factor of G. Okuyama and Tsushima [10] define a filtration eaf /eJ? from a chief
series of G, which provides a new proof of these results and makes dixtie rela-
tionship between the chief factors 6f and the composition factors ef/ /eJ2.

In this paper we give a description ef /eJ? for any G and any fieldK of chara-
cteristic p, which only depends on the knowledge of what occurs for ser#most
simple sections of5, by means of the development of a reduction theorem ofakev
[8]. As an application we obtain the terms of the filtration @kuyama and Tsushima
corresponding to any chief factor of angy.

2. Notations and basic facts

We denote by IrnG, K) the set of irreduciblé&KG-modules. IfV € Irr(G, K), then,
as P is the projective cover oK,
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HYG, V) = Extgg(K, V) = Homgg(eJ, V) = Homgg(eJ /eJ?, V)

[5]. Therefore, if we denote byS (V) the multiplicity of V as component 0éJ /eJ?,
then

€5 (V) = dimgng.,(v) HH(G, V).
(Endk (V) is a division ring, because of Schur's lemma [6, 10.5].) We s
C(G,K)={V;V €lr(G,K), ¢5(V) #0}

(here we identify isomorphic modules, that &G, K) consists actually of isomor-
phism classes of modules). On the other handgE&ft, V) = E(K, V) [5], whence
if £ e HY(G, V), then¢ represents an equivalence classkafi-module extensions

0O—-V—-FE—->K-DO0
We put then G(&) = Cs(E) and
C1(G,K) ={V € C(G,K); 3 € HY(G, V) such that G(£) < Cs(V)} .
Recall thatC1(G, F,) is the set of the abelian complementgethief factors ofG [11,

2.4(1)].
A KG-moduleV can be considered as a (faithfl)G /Cs(V)-module. We put

Co(G, K) = [v € C(G, K); £5/%M(v) # o] .

If F C K is a field extension and/ is anFG-module, then we seMx = M Qr K
for the scalar extension.

If Vv e Irr(G,K), then a unique (up to isomorphism!ﬁo € Irr(G,F,) is deter-
mined such thatV is a component ofVk. In this caseHY(G, V) # 0 if and only if
HYG,V) # 0, Cs(V) = Cs(V) and V € C1(G,K) if and only if V is isomorphic
to a complemented chief factor @ [9, §1]. ThereforeV e C.(G,K) if and only if
V €C(G,F,), e=4,0, 1.

Proposition 2.1. If F € K is a field extension, leV e Irr(G,K) and U €
Irr(G, F) be such thatV is a component ot/x. Then

dimEndKG(V) H'(G,V)= dimEndm(U) H'(G,U), n=12,...
Proof. Let

P:"'_>P)1+1_>Pn_)"'_)Pl_)IF_)O
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be a minimal projective resolution &. Then dingng, ) H"(G, U) is the multiplicity
of U as component of?,+;/ P, JFG).

On the other hand)(FG)x = JKG) [7, VIl 1.5]. As K is of prime characteristic,
Uk is a direct sum of pairwise non-isomorphic irreduciti€;-modules [7, VII 1.15].
Then we have that the multiplicity o/ as component ofP,.1/ P, JFG) is equal to
the multiplicity of V as component of K,+1/ P, JFG))x. And also we have thaPyk
is @ minimal projective resolution dk.

We consider again dimensions P and have the claim. O

Corollary 2.2. Let V € Irr(G, K). Then
GWy= W), g%y =g,

Denote by crfi(V) the multiplicity of V as complemented chief factor in a chief
series ofG. As another immediate consequence we have the validity effdhowing
equality, which appears in [1, 2.10(b)] for the cdSe= F,:

Corollary 2.3. Let V € Irr(G, K). Then we have
Kg(V) — cmG(V) +£§/CG(V)(V)_

3. The second Loewy term

Recall that aprimitive group is a groupG with a maximal subgrougd such that
core;(H) = 1, corg;(H) being the intersection of all conjugate &f in G. Then G
has exactly either one minimal normal subgroup or two nolbaninimal normal
subgroups. IfG has a single nonabelian minimal normal subgroup, then weGay
Po.

A particular consequence of Kaes reduction theorem [8] is that, & €
Irr(G, F,) is faithful and HY(G,U) # 0, thenG € P, and p | | S(G)| (where S(G),
the socle of G, is the product of the minimal normal subgroups @j. From the
above proposition we have that this is also true for any fiaithreducible module in
Irr(G, K).

Proposition 3.1. The following two assertions are equivalent
(a) There exists a faithful irreducibl&G-moduleV such thatH(G, V) # 0.
(b) G e P, and p||S(G)l.

Proof. It suffices to show that (b}=- (a). This follows from the fact that
Fp(G) =N{Cq(V),V € C(G,K)} [2, Theorem 1], as HG) = 1 andS(G) is contained
in each nontrivial normal subgroup @f. ]
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Corollary 3.2. Setny(G) = {C;C < G, G/C € P, p|IS(G/C)I}. Then

No(G) ={Cq(V); V € Co(G, K)} .

Proof. By the definition ofCy(G, K) and Proposition 3.1, it is clear that f €
Co(G, K), then G;(V) € no(G). Assume now thatC € ny(G). By Proposition 3.1 there
exists a faithful irreducibléKG /C-module V such thatH(G/C, V) # 0, that is such
that ¢5/°(V) # 0. As the inflation map(G/C, V) — H(G, V) is a monomorphism
[5, VI 8.1], V € C(G, K). As C = Cg(V) we conclude that € Co(G, K). ]

Let C € ng(G). ThenS(G/C) is the only minimal normal subgroup & /C and
is nonabelian. Therefore it is the product of isomorphic atmiian simple groups. Let
S/C be a simple component &(G/C), A = Ng(S/C) and B = Cg(S/C). In these
conditions we sayA/B € a(C). Observe thatd/B is an almost simplegroup, that is
a group inP, with simple socle (isomorphic t§/C).

If H <G andV is aKG-module, then we set

VH ={veV;vh=v Vh € H}

and writeV | 5 for the KH-module obtained fronV by restricting the action t&H.
If W is a KH-module, then we seW 1= W ®xy KG.

Lemma 3.3. ConsiderC € ng(G), A/B € a(C) and assume thaW is a faithful
irreducible KA/B-module. Then
(@ W 1%cim(G,K), W= (W 198 and C;(W 19) = C.
(b) £5'" (W)= €57 (W 19).
(c) €5 (W)=£5(W 19 and cm*(W) = cm®(W 19).

Proof. (a) We may assume that= 1. ThenG € P,. SetN = S(G). Let V €
Irr(G, K) be a component of the head(W 1Y) .= W 16 /(W 1°)J of W 1¢. By
Nakayama’s theorem [6, V 16.6}) is a submodule o§(V |,), and soW |y is a
submodule ofV | y.

Let {g1,...,g,} be a transversal oft in G, with g; = 1. Then, by puttingS; =
S8, B; = B%, we haveN =81 x --- x S, B; = Cg(S;). Set moreover for Ki <n

Vi=VH U= Vit 4 Vi + Vi +--+ Vo M =ViNU
We have

Si <[ B; =()Ce(V)) =Cs(Ui). Bi <Cs(Vy)
J# JF

and henceN < S;B; < Cg(M;). ThereforeM; € VN. As V is an irreducibleKG-
module andN < G, either VY =V or V¥ = 0. Assume thatVy = V. As W |y is
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a submodule ofV |y, N < C4(W). Then B < BN < C4(W), contradicting the fact
that W is a faithful A/B-module.

So we have tha¥" = 0. In particularM =0, that isVy +---+V, is a direct sum.
As Wg; C V;, we have that als&¥g, +---+ Wg, is a direct sum, and hence

WAl W @ --- @ Wg, < V.

1%

As dimg V < dimg W 16, we have thatV
Cs(V) = core;(C4(W)) = cores(B) = 1.

(b) By Shapiro’s lemma [3, 6.3]H(A/C, W) = HYG/C,W 19). By [8, 3.5,
Endia/c(W) = Endeg,c(W 19). Thereforety’ (W) = ¢5/(v).

Assume thatW appears as a chief factor of betweenC and B. Then S <
Ca(W) = C4(W) = B = C4(S/C), a contradiction. In particular cti(W) = 0. There-
fore £5,'%(W) = £, (W), and hencety’? (W) = ¢5/° (V).

(c) Again by Shapiro’s lemma¢s (W) = ¢5(W 19). From (b) and [1, 2.10(b)] we
have that cri(W) = cm®(W 19). O

W 1. Clearly W = (W 19)2. And

We now deduce the validity of [8] for any fiell of prime characteristigp:

Theorem 3.4 (Kovacs Reduction.). ConsiderV € Cyo(G, K), A/B € a(C) and set
N/C =9(G/C). Let W = VEW_ ThenW e Co(A, K), Ca(W) = B, £5/°(V) = £5/%(W)
and V = W 19,

Proof. AsV € Co(G,K), V € Co(G,TF,). Moreover C := C(V) = Cs(V) €
no(G). By [8], U := VEW ¢ Cy(A, F,), C4(U) = B and €5/ (V) = €55 (V).

Let Ux = W1 & ---® W,, where eachWw; is irreducible. Thenw; € Cy(4A, K) and
C4(W;) = B. Let now Vk T Vi@ ---® V,, with eachV; irreducible andV; = V. Then
we have

Vid- ®V, TV ¥ (U9 U 19 Wit @ @ W, 19 .

By Lemma 3.3 (a) eachv; 1 is irreducible. Therefore, by the Krull-Remak-Schmidt
theorem [6, | 12.3], we have that=s and, after rearranging the indices if necessary,
Vi = W; 16,1 < i < r. Moreover, asU = V58", Ux = (Vx)8"V, and therefore
W, = VBV Finally, by Corollary 2.2,65/°(v) = ¢5/°(V) = ¢5/%(U) = ¢/ (Wy).

]

This reduction theorem allows us to reduce also the studg(6f, K) to the al-
most simple case:

Theorem 3.5. ConsiderC € nyg(G) and A/B € &C). Then the map

POAW € Co(A, K); Co(W) = B} — {V € Co(G, K); C6(V) = C}
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is bijective. Moreoverts’(W) = £5/°(w 16), eA(W) = $(W 16) and cm(W) =
cm® (W 19).

Proof. By Lemma 3.3, (a) (b) we have a well-defined injectivapmit is surjec-
tive by Theorem 3.4. L]

Now we can give the following first explicit description ef/ /eJ?.

Theorem 3.6. Let C € ng(G) and A/B € &C). Let {W;---W,,} be a complete
set of representatives of the isomorphism classes of githbdules inC(A/B, K). We
set

M(C) = 5P (WD) - Wi ¢ @ - @ 65/ P (W,.) - Wi, 1
R(C) = 65 (W1) - Wi 19 @ @ 65 (W) - W, 1€

Then we have

R

el/e?

( ) cmG(V)-V) ea( P M(C))
VeC(G,K) Ceny(G)

( &b cm®(V) - V) ® ( &b R(C)) .
VeC(G.K)\Co(G.K) Ceno(G)

Proof. By Corollary 2.3,

D Em-v

VeC(G.K)

( @ cmG(V) . V) D ( @ ezc/CG(V)(V) . V) .

IR

1N

el /eJ?

1N

VeC(G.K) VeC(G.K)

Now,

@ EzG/CG(V)(V) VR~ @ EZG/CG(V)(V) .V
VeC(G,K) VeCo(G,K)

(by the definition ofCo(G, K))

=P | D e mv

Ceng(C) \ veco@x)
0(C) CG(OV):C
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(asCo(G, K) = UCEHO(G){V; V € Co(G,K), Cs(V)=C} by Corollary 3.2)
= P m(©)
CEno(G)

X(by Theorem 3.5).
On the other hand, iV € C(G, K) \ Co(G, K), then¢§ (V) = cm®(V). Therefore

el je]? = &P c’(v)-vie|l @ &) v
VeC(G.K)\Co(G.K) VeCo(G.K)

and

P sy v=P | P svv]= P RrRO. O

VeCo(G.K) Ceng(G) VCEGCPV()G;F) Ceng(G)

If H <G, then we put
hg(H) = ¢ I(H)KG +eJ?,

where[(H) = {3 ,cp anh; Y pey an = 0, a, € K} is the augmentation ideal dH.
Observe that H(H) is a KG-module andeJ? C hg(H) C eJ sinceel(G) =eJ.
The filtration ofeJ /eJ? given by Okuyama and Tsushima [10] f&r=F, and p-

soluble G is a particular case of the following second description \we @f e/ /eJ?:

Theorem 3.7. Let1l1=Gog <Gy <---<G,_1 <G, =G be a chief series ot
and consider the associated filtration o /eJ?:

eJ?=hg(Go) Chg(G1) C -+ € hG(Guo1) € h6(G,) = eJ.
Then we have

h¢(Gi)/h(Gi-1)
0if G;/G;_1 is a p’-chief factor or a frattini p-chief factor
= {(G;/G;_)k If G;/G;_1 is a complementeg-chief factor
M(Cs(G;/G;_1)) otherwise.

Proof. We proceed with the induction an If n =0, the result is trivial. Assume
n > 0, take N = G, and consideiG = G/N.
As eJ/eJ? is completely reducibleg] /eJ? = eJ /hG(N) @ hg(N)/eJ?. Now

eJ /hG(N) = ha(G)/he(N) = ho(G)/he(N) =21 /2T
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Therefore
(+) eJjed? =T e’ @ ho(N)/eJ?.

As hz(G;)/h(Gi1) = he(G;)/hs(G;_1), the result is true by the inductive hypothesis
for the factorsG;/G;_1, i > 1.

Assume thatV is a p-group or ap’-group. ThenN < F,(G) < Cg(V) for each
V € C(G, K), and hence&(G, K) = C(G, K) and n(G) = no(G).

If N is a frattini p-chief factor or ap’-factor, then crfi(V) = cmE(V) for each
V e Ir(G, K). Then, by Theorem 3.6, we have in this case thates? = &7 /zJ .
From () we conclude that &(N)/eJ? = 0.

If N is a complementeg-chief factor, from Theorem 3.6J /eJ2 = &7 /e7 @ Nk,
and by &) we have that B(N)/eJ? = Nx.

Assume thatN is nonabelian ang is a divisor of |N|. Let C = Cs(N). Then
G/C € P,, as NC/C is the only minimal normal subgroup af/C. We have that,
if i > 1, thenN < G,_1 < CG(G,'/G,'_]_), and henceC 7z CG(G,'/G,'_;L), as N is
nonabelian. Thereforeo(G) = ng(G) U {C}. On the other hand (G, K) € C(G, K), as
the inflation mapH(G, V) — HY(G, V) is injective, and cfi(V) = cm®(V) for each
V e Ir(G, K). Consequentlye /eJ? = 27 /eJ° @® M(C) and so &(N)/eJ2 = M(C).

As hG(N)/eJ? = hg(G1)/hs(Go), this completes the proof. O
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