
Chen, M.
Osaka J. Math.
38 (2001), 451–468

ON PLURICANONICAL MAPS FOR THREEFOLDS
OF GENERAL TYPE, II

MENG CHEN

(Received May 31, 1999)

1. Introduction

This paper is a continuation of [4, 9, 13]. To classify algebraic varieties is one
of the goals in algebraic geometry. One way to study a given variety is to understand
the behavior of its pluricanonical maps. The objects concerned here are complex pro-
jective 3-folds of general type overC. Let be such an object and denote byφ
the m-th pluricanonical map of , which is the rational map associated with the -
canonical system| |. The very natural question is when| | gives a birational
map, a generically finite map,· · · , etc. According to [2, 4, 9, 12, 13], one has the
following

Theorem 0. Let be a complex projective3-fold of general type with the
canonical index . Then
(i) when = 1, φ is a birational morphism onto its image for ≥ 6;
(ii) when ≥ 2, φ is a birational map onto its image for ≥ 4 + 5.

In this paper, we give our results on the generic finiteness ofφ . By a delicate
use of the Kawamata-Viehweg vanishing theorem, we reduce the problem to a paral-
lel one for adjoint systems on some smooth surface. Reider’s results as well as other
theorems on surfaces make it possible for us to go on a detailed argument.

Theorem 1. Let be a projective3-fold of general type with the canonical in-
dex ≥ 2. Thenφ is generically finite for ≥ ( ), where ( ) is a function as
follows:

(2) = 11;
( ) = 2 + 8, for 3≤ ≤ 5;
( ) = 2 + 6, for ≥ 6.

Theorem 2. Let be a projective minimal Gorenstein3-fold of general type.
Then
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(1) φ5 is birational except for some3-folds with 3 = 2 and ( ) ≤ 2; φ5 is gener-
ically finite of degree≤ 8.
(2) φ4 is birational if 3 > 2 and dimφ1( ) = 3; φ4 is generically finite except for
some3-folds with 3 = 2, ( ) ≤ 1 and χ(O ) = −1.
(3) φ3 is generically finite if ( ) ≥ 39.

For a nonsingular projective minimal 3-fold of general type, Benveniste ([2])
proved that dimφ ( ) ≥ 2 for ≥ 4, i.e. |4 | can not be composed of a pencil.
Recently, it has been proved ([5]) that|3 | also can not be composed of a pencil.
(Actually, the method is also effective for Gorenstein 3-folds of general type.) Thus it
is interesting whether|2 | can be composed of a pencil and like what a bicanonical
pencil behaves. So in Section 4, we study the bicanonical pencil of a Gorenstein 3-fold
of general type. According to the 3-dimensional MMP, we can suppose that is a
minimal locally factorial Gorenstein 3-fold of general type. Take a birational modifica-
tion π : ′ −→ such that ′ is smooth,|π∗(2 )| gives a morphism andπ∗(2 )
has supports with only normal crossings. This is possible because of Hironaka’s big
theorem. Let :=φ2( ) and take the Stein factorization

φ2 ◦ π : ′ −→ −→

Then is a fibration onto the nonsingular curve , we call aderived fibrationof
φ2. Denote by a general fibre of . Then is a nonsingular surface of general type
by virtue of the Bertini theorem. Also set := ( ), the geometric genus of . From
[7], we know that 0≤ ≤ 1. We shall prove the following

Theorem 3. Let be a projective minimal Gorenstein3-fold of general type
and suppose that|2 | is composed of a pencil. Let be the derived fibration of
φ2 and be a general fibre of . Then we have( ) = 1 and 2

0
≤ 3, where 0

is the minimal model of .

As an application of our method, we shall present a corollary on surfaces of gen-
eral type which somewhat simplifies Xiao’s theorem for the bicanonical finiteness.

2. Proof of Theorem 1

Throughout our argument, the Kawamata-Viehweg vanishing theorem is always
employed as a much more effective tool. We use it in the following form.

K-V Vanishing Theorem ([10] or [17]). Let be a nonsingular complete vari-
ety, ∈ Div( ) ⊗Q. Assume the following two conditions:
(1) is nef and big;
(2) the fractional part of has the support with only normal crossings.
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Then ( O (p q + )) = 0 for > 0, wherep q is the round-up of , i.e. the
minimum integral divisor withp q− ≥ 0.

Lemma 2.1 (Corollary 2 of [16]). Let be a nonsingular algebraic surface,
be a nef divisor on , 2 ≥ 10 and let φ be a map defined by| + |. If φ is not
birational, then contains a base point free pencil′ with · ′ = 1 or · ′ = 2.

Lemma 2.2. Let be a nonsingular variety of dimension , ∈ Div( ) ⊗ Q

be a Q-divisor on . Then we have the following:
(i) if is a smooth irreducible divisor on , thenp q| ≥ p | q;
(ii) if π : ′ −→ is a birational morphism, thenπ∗(p q) ≥ pπ∗( )q.

Proof. We can write as +
∑

=1 , where is a divisor, the are effec-
tive divisors for each and 0< < 1, ∀ . So we only have to prove the lemma for
effective Q-divisors. That is easy to check.

Lemma 2.3 (Lemma 2.3 of [9]). Let be a minimal threefold of general type
with canonical index . Then we have the plurigenus formula

0( ω[ + ] )

=
1
12

( + )( + − 1)(2 + 2 − 1)( 3 ) + +

for 0≤ < , + ≥ 2, where is a constant and is a constant only relating to
.

DEFINITION 2.4. Let be a nonsingular projective variety of dimension≥ 2. Sup-
pose | | is a base-point-free system on ,a general irreducible element of| |
means the following:
(i) if dim | |( ) ≥ 2, then is just a general member of| |;
(ii) if dim | |( ) = 1, taking the Stein factorization of | |, then we obtain a fibra-
tion : −→ onto a curve . We mean a general fibre of .

Proposition 2.5 (Lemma 3.2 of [9]). Let be a minimal threefold of general
type with canonical index ≥ 2. Thendimφ + ( ) ≥ 2 in one of the following cases:
(i) = 2 and ≥ 3;
(ii) = 3 and ≥ 2;
(iii) = 4 5, 0≤ ≤ 2 and ≥ 2; = 4 5, ≥ 3 and ≥ 1;
(iv) ≥ 6, 0≤ ≤ 1 and ≥ 2; ≥ 6, ≥ 2 and ≥ 1.

Now we modify Proposition 2.5 by virtue of Hanamura’s method in order to prove
our Theorem 1. The proof is due to Hamamura ([9]).
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Proposition 2.6. Let be a minimal threefold of general type with canonical
index ≥ 2. Then 0(ω[ + ] ) ≥ 3 in one of the following cases:
(i) = 2 and ≥ 2;
(ii) ≥ 3, = 0 1 and ≥ 2; ≥ 3, ≥ 2 and ≥ 1.

Proof. From Lemma 2.3, we can put

( + ) =
1
12

( + )( + − 1)(2 + 2 − 1)( 3 ) + +(2.1)

where and are constants for 0≤ < . We consider the right handside of (2.1)
as a polynomial in and denote it by ( ). Let ( ) be the first term of ( ).
We have

( ) = ( ) + +

We see that, for ≥ 1 or = 0 and ≥ 2,

( ) ≥ 0(2.2)

By Koll ár’s result ([11]) that theω[ + ] are Cohen-Macaulay, using the Grothendieck
duality, one can see that, for ≤ −1,

( ) ≤ 0(2.3)

Now we want to estimate both and . For any and , by (2.2) and (2.3), we have

(1) + + ≥ 0(2.4)

− (−1) + − ≥ 0(2.5)

Which induces

≥ 1
2

{
(−1)− (1)

}
(2.6)

= − 1
12

{
2 2 + (6 2 − 6 + 1)

}
( 3 )

When ≥ 3 and ≥ 2, we have

(0) + ≥ 0(2.7)

By (2.5) and (2.7), we get

≥ − (0) + (−1)(2.8)
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=
1
12

{
−2 2 + (6 − 3) − (6 2 − 6 + 1)

}
( 3 )

Explicitly, we have

≥ 1
12

{
−1

2
2 +

1
2

}
( 3 ) if is odd(2.9)

≥ 1
12

{
−1

2
2 − 1

}
( 3 ) if is even.(2.10)

Now we can calculate the ( + ) case by case.
CASE 1. ≥ 3 and ≥ 2.
When is odd, from (2.7) and (2.9), we have

( + ) ≥ ( )− 1
12

(
1
2

2 − 1
2

)
( 3 )− (0)

=
1
12

{
( + )( + − 1)(2 + 2 − 1) +

(
−1

2
3 +

1
2

)

− ( − 1)(2 − 1)

}
( 3 )

We get ( + )≥ 7 for ≥ 1.
When is even, from (2.7) and (2.10), we have

( + ) ≥ ( )− 1
12

(
1
2

2 + 1

)
( 3 )− (0)

=
1
12

{
2 2 3 + (6 − 3) 2 +

(
6 2− 6 − 1

2
2

) }
( 3 )

We get ( + )≥ 5 for ≥ 1.
CASE 2. = 1.
From (2.4) and (2.5), we have

( + 1)≥ 1
12

( 2 − 1)(2 + 3)( 3 )

We get ( + 1)≥ 6 for ≥ 2.
CASE 3. = 0.
By (2.4) and (2.5), we have

( ) ≥ 1
12

( 2− 1)(2 − 3)( 3 )

We get ( )≥ 3 for ≥ 2. Thus we complete the proof.

In what follows we can get an improved version of Hanamura’s theorem.
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Theorem 2.7. Let be a projective threefold of general type with the canonical
index ≥ 2. Thenφ is birational onto its image for ≥ 4 + 3.

Proof. We can suppose that is a minimal 3-fold. For any1 ≥ + 2, take
some blowing-upsπ : ′ −→ according to Hironaka such that ′ is nonsingular
and that the movable part of| 1 ′ | defines a morphism. Denote by| | the moving
part of | 1 ′ | and by a general irreducible element of| |. Then is a nonsingu-
lar projective surface of general type by the Bertini theorem. On′, we consider the
system| ′ + 3π∗( ) + |. Because ′ + 3π∗( ) is effective by Proposition 2.6,
so the system can distinguish general irreducible elements of| |. On the other hand,
the vanishing theorem gives

| ′ + 3π∗( ) + || = | + 3 |

where :=π∗( )| is a nef and big divisor on and2 ≥ 2. Reider’s result tells
that the right system gives a birational map, so does| ′ + 3π∗( ) + |. Thus φ
is birational for ≥ 4 + 3.

Proof Theorem 1. We can suppose that is a minimal model. If = 2, thenφ

is birational for ≥ 11 according to Theorem 2.7. From now on, we assume≥ 3
and define

2 =

{
+ 3 for 3≤ ≤ 5
+ 2 for ≥ 6.

Take some blowing-upsπ : ′ −→ such that ′ is nonsingular,| 2 ′ | defines a
morphism and the fractional part ofπ∗( ) has supports with only normal crossings.
Denote by| 2| the moving part of| 2 ′ | and by 2 a general irreducible element
of | 2|. For any ∈ Z>0, we consider the system

| ′ + p( + 2)π∗( )q + 2|

which is a sub-system of|( +2 2+1) ′ |. Because ′ +p( + 2)π∗( )q is effective
by Proposition 2.6, so the system can distinguish general irreducible elements of| 2|.
On the other hand, the K-V vanishing theorem tells that

| ′ + p( + 2)π∗( )q + 2|| 2

= | + |

where :={ ′ + p( + 2)π∗( )q}| 2 is effective and := 2| 2. We can see that

+ ≥ 2 + p π∗( )q| 2 +
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From Proposition 2.5, we have0( 2 ) ≥ 2. Modulo blowing-ups, actually we can
suppose that| | is free from base points. Let be a general irreducible element of
| |. It is obvious that| + | can distinguish gereral irreducible elements of| |. On
the other hand, the K-V vanishing theorem gives

| 2 + p π∗( )| 2q + || = | + |

where :=p π∗( )| 2q| is a divisor of positive degree. Because is a curve of
genus≥ 2, so 0( + ) ≥ 2 and | + | gives a finite map. Thus we have
dim | + |( ) = 1. Thereforeφ is generically finite for ≥ 2 2+2, which completes
the proof.

3. On Gorenstein 3-folds of general type

For a minimal threefold of general type with canonical index 1, we can find
certain birational modifications : ′ −→ according to [15] such that2( ′) · =
0, where is the ramification divisor of . Then we can get the same plurigenus
formula as that for a nonsingular minimal threefold, i.e.

( ) := 0( O ( )) = (2 − 1)

[
( − 1)

12
3 − χ(O )

]

for ≥ 2. On the other hand, the Miyaoka-Yau inequality ([14]) shows thatχ(O ) <
0. From [4] or [12], we know thatφ is birational for ≥ 6.

Theorem 3.1. Let be a projective minimal Gorenstein3-fold of general type.
Then
(1) φ5 is birational if either 3 > 2 (Ein-Lazarsfeld-Lee) or ( ) > 2.
(2) When ( ) = 2, then φ5 is birational except for some3-folds with ( ) =

2(O ) = 0, and | | composed with a rational pencil of surfaces of general type
with ( 2 ) = (1 2). In this situation,φ5 is generically finite of degree2.
(3) φ5 is birational if dimφ2( ) = 1.

Proof. This is the main theorem in [7]. Though the objects considered there are
nonsingular minimal 3-folds, the method is also effective for all Gorenstein 3-folds of
general type.

DEFINITION 3.2. Let be a projective minimal Gorenstein 3-fold of general type.
Suppose dimφ ( ) ≥ 2 and set ∼lin + , where is the moving part and

the fixed one for any integer . We defineδ ( ) := 2 · .

Proposition 3.3. Let be a projective minimal Gorenstein3-fold of general
type. Suppose|2 | is not composed of a pencil and3 > 2. Thenδ2( ) ≥ 3.
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Proof. We haveδ2( ) ≥ 2 by Proposition 2.2 of [4]. Take a birational modifica-
tion : ′ −→ such that|2 ∗( )| defines a morphism. Set 2∗( ) ∼lin + ,
where is the moving part and the fixed one. A general member∈ | | is an
irreducible nonsingular projective surface of general type. Denote :=∗( )| . If

2 = ∗( )2 · = δ2( ) = 2, then we have

4 = 2 ∗( )2 · = ∗( ) · 2 + ∗( ) · ·

Noting that is nef and 6≈ 0, we have ∗( ) · 2 ≥ 1. Therefore four cases occur
as follows:
(i) ∗( ) · 2 = 4, ∗( ) · · = 0;
(ii) ∗( ) · 2 = 3, ∗( ) · · = 1;
(iii) ∗( ) · 2 = 2, ∗( ) · · = 2;
(iv) ∗( ) · 2 = 1, ∗( ) · · = 3.

We also have

2 3 = 2 ∗( )3 = ∗( )2 · + ∗( )2 ·(3.1)

= 2 +
1
2

∗( ) · ( + )

= 2 +
1
2

∗( ) · · +
1
2

∗( ) · 2

CASE (i). Noting that ∗( ) is nef and big, we see that ∗( ) is linearly
equivalent to a nonsingular projective surface of general type according to Kawamata
for sufficiently large integer . Then| ∗( ) is nef and big and, by the Hodge Index
Theorem, we have ∗( ) · 2 ≤ 0. Thus (3.1) is false and this case does not occur.

CASE (ii). We have ∗( ) · ( − 3 ) = 0, then ∗( )( − 3 )2 ≤ 0, which
derives ∗( ) · 2 ≤ 1/3, i.e. ∗( ) · 2 ≤ 0. (3.1) is also false.

CASE (iii). ∗( ) · ( − ) = 0 induces ∗( ) · 2 ≤ 2, then (3.1) becomes
3 ≤ 2. Thus 3 = 2. Actually, in this case, ∗( ) · ( − ) ∼num 0 (as 1-cycle).

CASE (iv). ∗( ) · (3 − )2 ≤ 0 induces ∗( ) · 2 ≤ 9. And (3.1) becomes
3 ≤ 4. If 3 = 4, we see that ∗( ) · (3 − ) ∼num 0 as 1-cycle. Now we

set ∗( 2) = + . Then = ∗( 2) + . Obviously, we have ∗( ) = 2 and

∗( ) = 2. From ∗( 2) · ∗( ) · (3 − ) = 0, we get 3 · 2
2 = · 2 · 2.

Then 4 = 2 2 · 2 = · 2
2 + · 2 · 2 = 4 · 2

2 , i.e. · 2
2 = 1. Which

derives a contradiction, because · 2
2 is even. Thus 3 = 2.

Proposition 3.4. Let be a projective minimal Gorenstein3-fold of general
type. Suppose 3 > 2 and dimφ1( ) ≥ 2. Thenδ1( ) ≥ 3.

Proof. As in the proof of the previous proposition, we first take a modification
: ′ −→ . Set ∗( ) ∼lin + , where is the moving part. A general

member ∈ | | is a nonsingular projective surface of general type. Also denote :=
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∗( )| . Then 2 = δ1( ) ≥ 2 according to Proposition 2.1 of [7]. If 2 = 2, then
we have

2 = ∗( )2 · = ∗( ) · 2 + ∗( ) · ·

We also have

3 = ∗( )2 · + ∗( )2 ·(3.2)

= 2 + ∗( ) · · + ∗( ) · 2

Similarly, ∗( )· 2 ≥ 1. If ∗( )· 2 = 2 and ∗( )· · = 0, then, by the Hodge
Index Theorem, ∗( ) · 2 ≤ 0. Then (3.2) becomes 3 ≤ 2, which says 3 = 2. If

∗( ) · 2 = ∗( ) · · = 1, ∗( ) · · ( − ) = 0 induces ∗( ) · 2 ≤ 1.
By (3.2), we get 3 ≤ 4. If 3 = 4, then we can see ∗( ) · ( − ) ∼num 0.
By the same argument as in the case (iv) of the proof of Proposition 3.3, we have

∗( 1) · ∗( ) · ( − ) = 0, i.e. · 2
1 = · 1 · 1. We have 2 = 2 · 1 =

· 2
1 + · 1 · 1 = 2 · 2

1 . Therefore · 2
1 = 1, which is impossible. Thus

3 = 2.

Theorem 3.5. Let be a projective minimal Gorenstein3-fold of general type.
Thenφ5 is generically finite of degree≤ 8. If deg(φ5) > 2, then 3 = 2, χ(O ) = −1
and ( ) = 0 1.

Proof. According to Theorem 3.1, we only have to study the case when|2 |
is not composed of a pencil. Take a modification :′ −→ according to Hiron-
aka such that|2 ∗( )| defines a morphism. Set 2∗( ) ∼lin + , where is
the moving part and the fixed one. A general member∈ | | is a nonsingular
projective surface of general type by the Bertini Theorem. We have

| ′ + 2 ∗( ) + | ⊂ |5 ′ |

Because ′+2 ∗( ) is effective, the left system can distinguish general members of
| |. Denote := ∗( )| , using the long exact sequence and the vanishing theorem,
we have

| ′ + 2 ∗( ) + || = | + 2 |

Obviously, + 2 = + , where := ( ′ + 2 ∗( ))| is effective and := | .
Note that 0( O (2 ))≥ 0( ) ≥ (2)− 1≥ 3. We have two cases.

CASE 1. | | is composed of a pencil. Taking a birational modification to if
necessary, we can suppose| | is free from base points. Denote ∼lin

∑
=1 + ,

where is the fixed part. In general position,
∑

=1 can be a disjoint union of
nonsingular curves in a family. We have≥ 2. Thus ∼num ( /2) + 0, where
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0 ≥ (1/2) is an effectiveQ-divisor. If ( ) = 0, then ( ) = 0 and then
we can see by the long exact sequence that| + | can distinguish ’s and that
| +

∑
=1 || = | |, which means| + 2 | gives at worst a generically finite

map of degree 2 and so doesφ5. If ( ) > 0, it is obvious that| + 2 | can dis-
tinguish ’s. For a general curve which is algebraically equivalent to , we con-
sider theQ-divisor := + 2 − (1/2)

∑
=3 − 0. We havep q ≤ + 2 .

On the other hand, − − is nef and big, thus by the K-V vanishing we have
|p q|| = | + p 0q| |. Becausep 0q| is effective, | +2 | is at worst a generi-
cally finite map of degree 2 and so isφ5 of .

CASE 2. | | is not composed of a pencil, so neither is|2 |. Similarly, we can
suppose|2 | is base point free. If ( ) = 0, we can use a parallel discussion to that
of Case 1 to see thatφ5 is at worst a generically finite map of degree 2. If ( )> 0,
then | +2 | is obviously generically finite. We know that2 ≥ 2 from Proposition
2.2 of [4]. If | +2 | is not birational and 2 ≥ 3, then according to Lemma 2.1,
there is a free pencil on with a general member such that2 = 0 and · = 1.
Since dim |2 |( ) = 1, then 0(2 | ) ≥ 2 and then, by the Clifford theorem, we see
that is a curve of genus 2 and 2| ∼lin . Finally we can see that|2 || = | |.
Therefore | +2 | is a generically finite map of degree 2. Thereforeφ5 is generically
finite with deg(φ5) ≤ 2. If 2 = 2, then 3 = 2 by the proof of Proposition 3.3. On
the surface , set 2∼lin 1 + 1, where 1 is the moving part. We easily get

8 = (2 )2 ≥ 2
1 ≥ ( 0(2 )− 2)≥ ( (2)− 3)

Therefore we have

≤ 8
(2)− 3

=
8

−3χ(O )− 2

If > 2, thenχ(O ) = −1.

For the 4-canonical map of , it is obvious thatφ4 is not birational if admits
a pencil of surfaces of general type with (2 ) = (1 2). Therefore it is pessimistic
for us to obtain an effective sufficient condition for the birationality ofφ4. We have a
partial result as follows.

Theorem 3.6. Let be a projective minimal Gorenstein3-fold of general type.
Suppose 3 > 2 and dimφ1( ) = 3. Thenφ4 is a birational map onto its image.

Proof. Take a birational modification :′ −→ such that the movable part of
| ∗( )| is base point free. Set∗( ) ∼lin + , where is the moving part and
the fixed one. A general member is a nonsingular projective surface of general type.
We have| ′ + 2 ∗( ) + | ⊂ |4 ′ |. Using the vanishing theorem, we have

| ′ + 2 ∗( ) + || = | + 2 |
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where := ∗( )| is a nef and big divisor on . By Proposition 3.4, we see that
2 ≥ 3 under the condition 3 > 2. If | +2 | is not birational, then, by Lemma

2.1, there is a free pencil with a general member such that2 = 0 and · = 1.
Because dim | |( ) = 2, 0( O ( | )) ≥ 2. Therefore, by the Clifford theorem, we
see that deg(| ) ≥ 2 0( | ) − 2 ≥ 2. This is a contradiction. Therefore| +2 | is
birational and so isφ4.

EXAMPLE 3.7. We give an example which shows thatφ4 is not birational when
3 = 2 and dimφ1( ) = 3. On P3(C), take a smooth hypersurface of degree 10,
∼lin 10 . Let be a double cover ofP3 with branch locus along . Then is a

nonsingular canonical model, 3 = 2 and ( ) = 4 andφ1 is a finite morphism onto
P3 of degree 2. One can easily check thatφ4 is also a finite morphism of degree 2.

Theorem 3.8. Let be a projective minimal Gorenstein3-fold of general type.
Thenφ4 is generically finite when ( ) ≥ 2 or when 3 > 2 or whenχ(O ) 6= −1.

Proof. PART I: ( ) ≥ 2.
First we make a modification : ′ −→ such that the movable part of

| ∗( )| is free from base points and that∗( ) has support with only normal
crossings. Set ∗( ) ∼lin + , where is the moving part and the fixed one.

If dim φ1( ) = 2, then a general member ∈ | | is a nonsingular projective
surface of general type. We have

| ′ + 2 ∗( ) + | ⊂ |4 ′ |

Using the vanishing theorem, we have| ′ + 2 ∗( ) + || = | + 2 |, where :=
∗( )| is nef and big effective divisor on . We have0( ) ≥ 2. Noting that
( ) > 0 in this case. And if| | is not composed of a pencil, then neither is| +

2 |. If | | is composed of a pencil, taking a modification if possible, we can suppose
that the movable part of| | is free from base points. Set ∼lin

∑
+ 0, we can

see | + +
∑ || = | + |, where := | is effective. We easily see that

| +2 | is at worst generically finite of degree≤ 2 and so isφ4.
If dim φ1( ) = 1, then ∼num , where is a nonsingular projective surface

of general type. 1 ∼num 0, where 0 = ∗( ) is irreducible on . If · 2
0 =

0, then, by Lemma 2.3 of [7], we haveO ( ∗( )| ) ∼= O (π∗( 0)), where π is
the contraction map onto the minimal model and0 is the canonical divisor of the
minimal model of . Obviously,| ′ +2 ∗( )+ | can distinguish general members
of | |. Moreover | ′ + 2 ∗( ) + || = | + 2π∗( 0)|, the right system gives a
generically finite map and so doesφ4. If · 2

0 > 0, then

2 = ∗( )2 · = 2 · 0 ≥ · 2
0 ≥ 2
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It is sufficient to show that| + 2 | gives a generically finite map. We have +
2 ≥ 3 . If |3 | is not composed of a pencil, then neither is| + 2 |. If |3 | is
composed of a pencil, we claim that0( 3 )≥ 3. In fact, we have| ′ + ∗( ) +
|| = | + | and 0( + ) ≥ 3. Considering the natural map0( ′ 3 ′)

α−→
0( 3 ), because ′ + ∗( ) + ≤ 3 ′ , we see that dimC(Im(α)) ≥ 0( +

) ≥ 3. Similarly, considering another natural map0( ′ 3 ∗( ))
β−→ 0( 3 ),

we have

0(3 )≥ dimC(Im(β)) = dimC(Im(α)) ≥ 3

Now we can write 3 ∼lin
∑

=1 + 0, where 0 is the fixed part, ≥ 2 and the
are irreducible curves. Denote by a generic. Then 2 ∼num (2/3) +(2/3) 0 and
thus 2 − − (1/ ) 0 is a nef and bigQ-divisor. Setting := 2 − (1/ ) 0, then we
have +p q ≤ +2 . On the other hand, the K-V vanishing gives| +p q|| =
| + |, where is a divisor of positive degree. Noting that is a curve of genus
≥ 2, so we see that| + | gives a generically finite map. This means| + 2 |
gives a generically finite map.

PART II: 3 > 2 or χ(O ) 6= −1.
We studyφ4 according to the behavior ofφ2. Of course, first we make a modifi-

cation : ′ −→ such that the movable part of|2 ∗( )| is free from base points
and that 2 ∗( ) has supports with only normal crossings. Set 2∗( ) ∼lin 2 + 2,
where 2 is the moving part and 2 the fixed one.

If dim φ2( ) = 1, then 2 ∼num 2 , where is a nonsingular projective surface
of general type. We haveO ( ∗( )| ) ∼= O (π∗( 0)) by Lemma 4.2 below in this
paper. Because ′ + ∗( ) is effective,| ′ + ∗( ) + 2| can distinguish general

. On the other hand, we have| ′ + ∗( )+ 2|| = | +π∗( 0)|. From Theorem
3.1 of [7], we know that is not a surface with = = 0. Thus| + π∗( 0)|
defines a generically finite map according to [19] and so doesφ4.

If dim φ2( ) ≥ 2, then a general member∈ | 2| is a nonsingular projective sur-
face of general type. We have| ′ + ∗( ) + || = | + |, where := ∗( )| .
Noting that ≥ , then we have + ≥ 2 . Under our assumption, we have

(2) ≥ 5. Thus 0(2 ) ≥ 4. We may suppose that the movable part of|2 | is free
from base points. If|2 | is not composed of a pencil, then neither is| + |. Oth-
erwise we can set 2∼lin

∑
=1 + 1, where ≥ 3 and 1 is the fixed part. We

denote by the general . Because− − (1/ ) 1 is nef and big, therefore

∣∣∣∣ +
p − 1

1
q
∣∣∣∣
∣∣∣∣ = | + |

where is a divisor of positive degree. The right system obviously defines a generi-
cally finite map. Thus| + | gives a generically finite map and so doesφ4.
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Theorem 3.9. Let be a projective minimal Gorenstein3-fold of general type.
Thenφ3 is generically finite when ( ) ≥ 39.

Proof. First we make a modification : ′ −→ such that the movable part
of | ∗( )| is free from base points and that∗( ) has support with only normal
crossings. Set ∗( ) ∼lin + , where is the moving part and the fixed one.

If dim φ1( ) ≥ 2, then a general member ∈ | | is a nonsingular projective
surface of general type. We have| ′ + ∗( )+ || = | + |, where := ∗( )| .
When ( )≥ 4, 0( ) ≥ 3. Noting that ( )> 0, if | | is not composed of a
pencil, then nor is| + |. So we may suppose that| | is composed of a pencil and
the movable part of this system is free from base points. Set∼lin

∑
=1 + 0,

where we have ≥ 2. | + | can distinguish the generically. On the other hand,
− − (1/ ) 0 is nef and big, we obtain by the Kawamata-Viehweg vanishing that

∣∣∣∣ +
p − 1

0
q
∣∣∣∣
∣∣∣∣ =

∣∣∣∣ +
p − 1 q

∣∣∣∣
∣∣∣∣

The right system defines a generically finite map and so doesφ3.
If dim φ1( ) = 1, then ∼num , where is a nonsingular projective surface

of general type. Set 0 = ∗( ). If · 2
0 = 0, then, by Lemma 2.3 of [7], we have

O ( ∗( )| ) ∼= O (π∗( 0)), whereπ is the contraction onto the minimal model and

0 is the canonical divisor of the minimal model of . We see that| ′ + ∗( ) +
|| = | + π∗( 0)|. Because ( )> 0, the right system defines a generically

finite map and so doesφ3. If · 2
0 > 0, in order to prove the theorem, we have to

show the generic finiteness of| + |, where := ∗( )| is effective. By Theorem
2 of [6], we see that ( )≥ 3 when ( )≥ 39. Then | | is generically finite
according to [18]. Therefore under the assumption of the theorem, we can obtain the
generic finiteness ofφ3.

4. On bicanonical systems

We suppose that is a locally factorial Gorenstein minimal 3-fold of general type
and that|2 | be composed of a pencil. Keep the same notations as in section 1 and
let π : ′ −→ be the birational modification and : ′ −→ be the derived
fibration.

Lemma 4.1. Let be a projective minimal Gorenstein3-fold of general type
and suppose that|2 | is composed of a pencil. Then( ) ≤ 2 and ( ) ≥ 1.

Proof. This is just a generalized version of Corollary 3.1 of [7]. Though the ob-
jects considered there are nonsingular minimal 3-folds, the method is also effective for
minimal Gorenstein 3-folds.
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Lemma 4.2. Let be a projective minimal Gorenstein3-fold of general type,
|2 | be composed of a pencil, : ′ −→ be the derived fibration ofφ2 and
be a general fibre of . Then

O (π∗( )| ) ∼= O (π∗
0 ( 0))

whereπ0 : −→ 0 is the birational contraction onto the minimal model.

Proof. This is just a generalized version of Corollary 9.1 of [13]. Though the
objects considered there are nonsingular minimal 3-folds, the method is also effective
for minimal Gorenstein 3-folds.

Lemma 4.3. Under the same assumption as inLemma 4.2, we have 2
0
≤ 3

and 1≤ ( ) ≤ 3.

Proof. Letπ∗(2 )∼lin
∗( 2) + ′

2, where :=φ2 ◦ π, ′
2 is the fixed part and

2 is a general hyperplane section of the closure of the image of inP (2)−1.
Obviously we have ∗( 2) ∼num 2 , where 2 ≥ (2) − 1. From Lemma 4.2, we
have

2
0

= (π∗( )| )2 = π∗( )2 ·

Let 2 ∼lin 2 + 2, where 2 is the moving part and 2 is the fixed part. We
also have 2 = π∗( ∗( 2)). Denote := π∗( ), then 2 ∼num 2 . By the projection
formula, we get

2 · = π∗( )2 · = 2
0

Because is nef and big, we have 23 ≥ 2
2 · . Thus

2 · ≤ 2

2

3 ≤ 4 3

3 − 6χ(O )− 2
≤ 4 3

3 + 4
< 4

which means 2
0
≤ 3. By Lemma 4.1, the fact that ( )≥ 1 induces ( )> 0.

By the Noether inequality 2 (0)− 4≤ 2
0
, we see that ( )≤ 3.

Proof Theorem 3. In order to prove Theorem 3, we shall derive a contradic-
tion under the assumption that ( )≥ 2. Obviously, |2 ′ | can distinguish gen-
eral fibres of the morphismφ2 ◦ π. We consider the system| ′ + π∗( )|. Write
2π∗( ) ∼lin

′
2 + ′

2, where ′
2 is the moving part and ′

2 is the fixed one. Set
′
2 = + , where is the vertical part and is the horizontal part with re-

spect to the fibration : ′ −→ . Noting thatπ∗( ) is effective by Lemma 4.1,
should be 2-divisible, i.e. = 20, where 0 is an effective divisor. Thus we see
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that 0 is just the horizontal part ofπ∗( ). We know that 2 ≥ (2)− 1≥ 3 and

π∗( ) ∼num
2

2
+

1
2

′
2

Thereforeπ∗( ) − − (1/ 2) ′
2 is a nef and bigQ-divisor. Setting :=π∗( ) −

(1/ 2) ′
2, then we have ′ + p q ≤ ′ + π∗( ). By the Kawamata-Viehweg van-

ishing theorem, we see that, for a general fibre ,

| ′ + p q|| = | + p q| | ⊃ | + p | q| =
∣∣∣∣ +

p 2− 2

2
0

∣∣∣∣
q
∣∣∣∣

wherep(( 2− 2)/ 2) 0| q is effective on the surface . This means that dimφ2( ) ≥
1 under the assumption ( )≥ 2 and then dimφ2( ) ≥ 2, a contradiction.

The rest of this section is devoted to present an application of our method to bi-
canonical maps of surfaces of general type.

Theorem 4.4. Let be a minimal algebraic surface of general type with(2)≥
4. Then the bicanonical map of is generically finite.

Proof. Suppose that|2 | is composed of a pencil, we want to derive a contra-
diction. Taking a birational modificationπ : ′ −→ such that|2π∗( )| defines a
morphism and denoting :=φ2( ), we obtain the following through the Stein factor-
ization:

φ2 ◦ π : ′ −→ −→

where is a nonsingular curve. Denote by a general fibre of the derived fibration
. We can write

π∗(2 )∼lin

∑

=1

+

where ≥ (2)−1≥ 3 and is the fixed part. Considering the system| ′ +π∗( )|,
we can see that the system can distinguish general fibres ofφ2. Setting :=π∗( )−
(1/ ) , we have +p q ≤ + π∗( ) and − ∼num ( − 2/ )π∗( ) is nef
and big. Thus, by the K-V vanishing theorem, we have

| + p q|| = | + |

where :=p q| is a divisor of positive degree on the curve . Because ( )≥ 2,
then 0( + ) ≥ 2. This means that| +π∗( )| gives a generically finite map,
a contradiction.
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Corollary 4.5. Let be a minimal algebraic surface of general type with≥
2. Then the bicanonical map of is generically finite.

Proof. If = 0, thenχ(O ) ≥ 3 and (2)≥ 4. If > 0, then 2 ≥ 2 ≥ 4 by
[8] and then (2)≥ 5. The proof is completed by Theorem 4.4.

Corollary 4.6. Let be a minimal algebraic surface of general type with(2) =
3. Then |2 | is not composed of an irrational pencil.

Proof. This is obvious from the proof of Theorem 4.4. The critical point is that
we also have ≥ 3 in this case.

The remain cases are like the following:
(I) 2 = 1, = 1 and = 0;
(II) 2 = 2 and = = 0;
(III) 2 = 2 and = = 1.

Proposition 4.7. Let be a minimal algebraic surface of type(I). Then the bi-
canonical map is generically finite.

Proof. Suppose that|2 | is composed of a rational pencil. We write

2 ∼lin 1 + 2 +

where is the fixed part. Denote by a general member which is algebrally equiv-
alent to . We have 1 = 2 ≥ · . On the other hand, · + 2 ≥ 2, which
gives 2 ≥ 1. Thus · = 2 = 1, i.e. is a nonsingular curve of genus two. By
the index theorem, we see that ∼num . But from [3], Pic( ) is torsion free, then
∼lin . This is impossible because0( ) = 2.

Lemma 4.8 (Lemma 8 of [19]). Let be a surface with finiteπ1. Then

1( O (E)) = 0

for any invertible torsion sheafE on .

Lemma 4.9. Let be a minimal surface of type(II) or (III) . Suppose that|2 |
is composed of a rational pencil. Then the moving part of|2 | is a free pencil of
genus two.

Proof. We can write 2 ∼lin 1 + 2 + , where is the fixed part. Denote
by the general member which is algebraically equivalent to . If2 > 0, then
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2 ≥ · ≥ 2. On the other hand, the index theorem gives2× 2 ≤ ( · )2.
Thus 2 = · = 2 = 2 and then ∼num .

If = 1, then = 0. Let ∈ | | be the unique effective divisor, then 2 =

1 + 2, where the are two fibres ofφ2. If 1 6= 2, then the are multiple fibres
and then ∼num 2 0, where 0 is a divisor. Which implies 2 ≥ 4, a contradiction.
If 1 = 2, then = 1 and thus 0( ) = 2, also a contradiction.

If = 0, because theπ1 of is a finite group (Corary 5.8 of [1]), then
1( − ) = 0 by Lemma 4.8. Whereas we have1( − ) = 1( ) = 1

by R-R, a contradiction. Therefore we have2 = 0 and then ( ) = 2.

Proposition 4.10. Let be a minimal surface of type(II) or (III) . Then |2 |
can not be composed of a rational pencil of genus two.

Proof. We refer to the proof of Proposition 3 and Theorem 3 of [19].

Thus we finally arrive at the following theorem of Xiao (Theorem 1 of [19]).

Theorem 4.11. Let be a projective surface of general type. Thenφ2 is gener-
ically finite if and only if 0( 2 )> 2.
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