View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Osaka City University Repository

Chen, M.
Osaka J. Math.
38 (2001), 451-468

ON PLURICANONICAL MAPS FOR THREEFOLDS
OF GENERAL TYPE, Il

Mene CHEN
(Received May 31, 1999)

1. Introduction

This paper is a continuation of [4, 9, 13]. To classify algebraic varieties is one
of the goals in algebraic geometry. One way to study a given variety is to understand
the behavior of its pluricanonical maps. The objects concerned here are complex pro-
jective 3-folds of general type ovef. Let X be such an object and denote by
the m-th pluricanonical map ok , which is the rational map associated withnthe -
canonical systemimKx|. The very natural question is whemK x| gives a birational
map, a generically finite map,--, etc. According to [2, 4, 9, 12, 13], one has the
following

Theorem 0. Let X be a complex projectiv@-fold of general type with the
canonical indexr . Then
(i) whenr =1, ¢, is a birational morphism onto its image for > 6;
(i) whenr > 2, ¢,, is a birational map onto its image fon > 4r +5.

In this paper, we give our results on the generic finitenesg,of By a delicate
use of the Kawamata-Viehweg vanishing theorem, we reduce the problem to a paral-
lel one for adjoint systems on some smooth surface. Reider’s results as well as other
theorems on surfaces make it possible for us to go on a detailed argument.

Theorem 1. Let X be a projective3-fold of general type with the canonical in-
dexr > 2. Then¢,, is generically finite form > m(r), wherem(r) is a function as
follows

m(2) =11,

m(r)=2r +8 for 3<r <5;

m(r) = 2r +6, for r > 6.

Theorem 2. Let X be a projective minimal Gorenstefold of general type.
Then

The author was partially supported by the National Natural Science Foundation of China.


https://core.ac.uk/display/35270732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

452 M. CHEN

(1) ¢s is birational except for soma&-folds with K3 = 2 and p,(X) < 2; ¢s is gener-
ically finite of degree< 8.

(2) ¢4 is birational if K3 > 2 and dim¢1(X) = 3; ¢4 is generically finite except for
some3-folds with K3 =2, p,(X) <1 and y(Ox) = —1.

(3) ¢3 is generically finite ifp,(X) > 39.

For a nonsingular projective minimal 3-fold  of general type, Benveniste ([2])
proved that dim,,(X) > 2 for m > 4, i.e. |4Kx| can not be composed of a pencil.
Recently, it has been proved ([5]) thiE8Kx| also can not be composed of a pencil.
(Actually, the method is also effective for Gorenstein 3-folds of general type.) Thus it
is interesting whethef2Kx| can be composed of a pencil and like what a bicanonical
pencil behaves. So in Section 4, we study the bicanonical pencil of a Gorenstein 3-fold
of general type. According to the 3-dimensional MMP, we can supposeXhat is a
minimal locally factorial Gorenstein 3-fold of general type. Take a birational modifica-
tion 7 : X’ — X such thatX’ is smooth,|7*(2K x)| gives a morphism ana* (2K x)
has supports with only normal crossings. This is possible because of Hironaka’s big
theorem. LetW :=p,(X) and take the Stein factorization

drom: X Lo Sw.

Then f is a fibration onto the nonsingular curge , we céll deaxived fibrationof

¢,. Denote byF a general fibre gf . Than is a nonsingular surface of general type
by virtue of the Bertini theorem. Also sét «=C( ), the geometric genug of . From
[7], we know that 0< b < 1. We shall prove the following

Theorem 3. Let X be a projective minimal Gorensteifold of general type
and suppose thaf2K x| is composed of a pencil. Lef  be the derived fibration of
¢2 and F be a general fibre of . Then we hayg(F) = 1 and K)%O < 3, where F
is the minimal model of* .

As an application of our method, we shall present a corollary on surfaces of gen-
eral type which somewhat simplifies Xiao’s theorem for the bicanonical finiteness.

2. Proof of Theorem 1

Throughout our argument, the Kawamata-Viehweg vanishing theorem is always
employed as a much more effective tool. We use it in the following form.

K-V Vanishing Theorem ([10] or [17]). Let X be a nonsingular complete vari-
ety, D € Div(X) ® Q. Assume the following two conditians
(1) D is nef and big
(2) the fractional part of D has the support with only normal crossings.
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Then Hi(X, Ox("D™+ Kx)) = 0 for i > 0, where™ D7 is the round-up ofD , i.e. the
minimum integral divisor witH D7 — D > 0.

Lemma 2.1 (Corollary 2 of [16]). Let S be a nonsingular algebraic surfacé,
be a nef divisor onS L2 > 10 and let¢ be a map defined bjL. + Kg|. If ¢ is not
birational, thenS contains a base point free penéll with L - E' =1 or L-E' =2

Lemma 2.2. Let X be a nonsingular variety of dimensien D, € Div(X) ® Q
be aQ-divisor on X . Then we have the following
(i) if S is a smooth irreducible divisor oiX , thenD7|s > "D|s™;
(i) if 7: X — X is a birational morphism, them*("D™) > "7*(D)™.

Proof. We can writeD a% Zle a; E;, whereG is a divisor, theZ; are effec-
tive divisors for each and & a; < 1, Vi. So we only have to prove the lemma for
effective Q-divisors. That is easy to check. ]

Lemma 2.3 (Lemma 2.3 of [9]). Let X be a minimal threefold of general type
with canonical index- . Then we have the plurigenus formula

/’ZO(X, wgénrﬂ“] )

= %z(mr +s)mr +s —1)2mr +2 — 1)(K}3() +am + ¢

for0<s <r, mr+s > 2, wherea is a constant and, is a constant only relating to
S.

Derinimion 2.4.  LetX be a nonsingular projective variety of dimensiR. Sup-
pose |M| is a base-point-free system oni a, general irreducible elemenf  diV|
means the following:

(i) if dim @, (X) > 2, thenS is just a general member [ |;
(i) if dim @, (X) =1, taking the Stein factorization @by, then we obtain a fibra-
tion f : X — C onto a curveC . We meafi  a general fibre jof

Proposition 2.5 (Lemma 3.2 of [9]). Let X be a minimal threefold of general
type with canonical index > 2. Thendim ¢,,,+,(X) > 2 in one of the following cases
) r=2andm > 3;

(i) r=3 andm > 2;
(i) r=4,5,0<s<2andm >2;r=45s>3andm > 1,
(ivyr>6,0<s<landm>2;r>6,s>2andm > 1.

Now we modify Proposition 2.5 by virtue of Hanamura’s method in order to prove
our Theorem 1. The proof is due to Hamamura ([9]).
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Proposition 2.6. Let X be a minimal threefold of general type with canonical
indexr > 2. Thenh%w!"**1) > 3 in one of the following cases
i) r=2andm > 2;
(i) r>3,s=0,1landm >2;r>3,s>2andm > 1.

Proof. From Lemma 2.3, we can put
(2.1) P(mr +s) = %Z(mr +s)mr +s —1)(2nr +2 — 1)(K3°}) +am + ¢y
wherea andc, are constants for<Os < r. We consider the right handside of (2.1)
as a polynomial inm and denote it b§; m( ). L&, m( ) be the first termPpfm ().
We have

Py(m) = Q(m) +am +c;.

We see that, form > 1 orm =0 ands > 2,
(2.2) Py(m) > 0.

By Kollar's result ([11]) that theugg"’”] are Cohen-Macaulay, using the Grothendieck
duality, one can see that, far < —1,

(2.3) Py(m) <0.
Now we want to estimate botlh ang . Forany and , by (2.2) and (2.3), we have

(2.4) 0s(1)+a+c¢; >0
(2.5) —0s(-1)+a —c¢; >0.

Which induces

2.6) 0> %{Qs(—l)— Qs(l)}

1
12

{2r2 + (65?2 — 65 + 1)}(r1{§).
Whenr > 3 ands > 2, we have

(2.7) 0,(0) +¢, > 0.

By (2.5) and (2.7), we get

(2.8) a>—-0,0)+0,(-1)
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Explicitly, we have

1( 1, 1), av. .
. > - Zp24 C
(2.9) a> 12{ > + 2}(rKX) if ris odd
(2.10) a> %2{—% 2_ 1}(rK,3() if ris even.

Now we can calculate th mf s+ ) case by case.
Casel. r>3 ands > 2.
Whenr is odd, from (2.7) and (2.9), we have

P(mr +s) > Q,(m) — %Zm(%rz — %)(rl(;) — 0,(0)
= %{(mr +5)mr +s — 1)(2mr +2 — 1) +m<—%r3 + %r)

— s(s —1)(2s — 1)}(1(,3})

We getP (ur +s)>7 form > 1.
Whenr is even, from (2.7) and (2.10), we have

P(mr +5)

v

0. - g ( 32 +1) KD - 2.0

jfl-z{Zrzm3+ (6s — 3)rm2 + <6s2 — 65 — irz) m}(rK?()

We getP (ur +s)>5 form > 1.

CAse 2. s =1.
From (2.4) and (2.5), we have

P(mr +1) > 132r(m2 —1)(2rm +3)¢K3).
We getP (ur +1)> 6 form > 2.
Case 3. s =0.
By (2.4) and (2.5), we have
P(mr) > :Lizr(m2 —1)(2rm —3)rK3).

We getP (ur )> 3 for m > 2. Thus we complete the proof. Ol

In what follows we can get an improved version of Hanamura’s theorem.
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Theorem 2.7. Let X be a projective threefold of general type with the canonical
indexr > 2. Theng,, is birational onto its image fom > 4r + 3,

Proof. We can suppose that is a minimal 3-fold. For amy > r + 2, take
some blowing-upsr : X’ — X according to Hironaka such th&’ is nonsingular
and that the movable part ¢, K /| defines a morphism. Denote By/| the moving
part of |m1Kx.| and byS a general irreducible element|df|. ThenS is a nonsingu-
lar projective surface of general type by the Bertini theorem.XOnwe consider the
system|Ky, +3n*(rKx) + S|. BecauseKx- +3r*(rKy) is effective by Proposition 2.6,
so the system can distinguish general irreducible elementa/gf On the other hand,
the vanishing theorem gives

|Kx/ +37T*(er)+SHS = |K5+3L|,

where L =r*(rKx)|s is a nef and big divisor orf andi? > 2. Reider’s result tells
that the right system gives a birational map, so dgég + 37*(rKx) + S|. Thus ¢,
is birational form > 4r + 3. ]

Proof Theorem 1. We can suppose that is a minimal model. If =2, ¢hen
is birational form > 11 according to Theorem 2.7. From now on, we assume 3
and define

o = r+3, for3<r<5
2 r+2, forr>6.

Take some blowing-upg : X’ — X such thatX’ is nonsingular,|m,K| defines a
morphism and the fractional part af*(Kx) has supports with only normal crossings.

Denote by|M>| the moving part ofim,Kx/| and by S, a general irreducible element
of |M>|. For anyt € Z~, we consider the system

|Kxr +7(t +ma)m"(Kx) " + Sz,
which is a sub-system dfr+2m,+1)Kx/|. BecauseKy/ +"(t + m)n*(Kx)" is effective
by Proposition 2.6, so the system can distinguish general irreducible elemejis |of

On the other hand, the K-V vanishing theorem tells that

|Kx: +7(t +m)m*(Kx) 7+ Sa|s,

=|G+L|
where G :={Kx/ +"(t + ma)m*(Kx)'}|s, is effective andL :=5,|s,. We can see that

G+L > K52 +|—[7T*(Kx)—l|52 + L.
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From Proposition 2.5, we havi®(Sz, L) > 2. Modulo blowing-ups, actually we can
suppose thatL| is free from base points. Lef be a general irreducible element of
|L]. It is obvious that|G + L| can distinguish gereral irreducible elements|bf. On

the other hand, the K-V vanishing theorem gives

|Ks, + "t (Kx)|s, " + Cl|c = |Kc + D],

where D :=Tt7*(Kx)l|s, |c is a divisor of positive degree. Becauée is a curve of
genus> 2, so h%(C, K¢ + D) > 2 and|K¢ + D| gives a finite map. Thus we have
dim® 6.1 (C) = 1. Thereforep,, is generically finite form > 2m,+2, which completes
the proof. Ul

3. On Gorenstein 3-folds of general type

For a minimal threefoldX of general type with canonical index 1, we can find
certain birational modificationg X’ — X according to [15] such that(X') - A =
0, where A is the ramification divisor of . Then we can get the same plurigenus
formula as that for a nonsingular minimal threefold, i.e.

n(n —1)
12

p(n) = h%(X, Ox(nKx)) = (2n — 1) K% - x(0x)],
for n > 2. On the other hand, the Miyaoka-Yau inequality ([14]) shows ih@?x) <
0. From [4] or [12], we know that,, is birational form > 6.

Theorem 3.1. Let X be a projective minimal GorensteBifold of general type.
Then
(1) ¢s is birational if either K3 > 2 (Ein-Lazarsfeld-Lepor p,(X) > 2.
(2) When p,(X) = 2, then ¢s is birational except for some-folds with ¢(X) =
h?(Ox) = 0, and |Kx| composed with a rational pencil of surfaces of general type
with (K2, p,) = (L, 2). In this situation,¢s is generically finite of degree.
(3) ¢s is birational if dimg,(X) = 1.

Proof. This is the main theorem in [7]. Though the objects considered there are
nonsingular minimal 3-folds, the method is also effective for all Gorenstein 3-folds of
general type. ]

DeriniTion 3.2, Let X be a projective minimal Gorenstein 3-fold of general type.
Suppose dim;(X) > 2 and setiKx ~in M; + Z;, where M; is the moving part and
Z; the fixed one for any integar . We defidg(X) := K2 - M;.

Proposition 3.3. Let X be a projective minimal Gorensteigfold of general
type. Suppos&K | is not composed of a pencil ankl} > 2. Thend,(X) > 3.
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Proof. We have),(X) > 2 by Proposition 2.2 of [4]. Take a birational modifica-
tion f : X’ — X such that|2f*(Ky)| defines a morphism. Setf2(Kx) ~jn M + Z,
where M is the moving part and  the fixed one. A general mensber |M| is an
irreducible nonsingular projective surface of general type. Dediote f*&Ky)|s. If
L2= f*(Kx)*- S = 6,(X) = 2, then we have

4=2f*(Kx)*-S=f"(Kx) S?+ f*(Kx)-S-Z.

Noting that$ is nef ands % 0, we havef*(Kx) - S > 1. Therefore four cases occur
as follows:

() f*(Kx)-S%=4, f*(Kx)-S-Z=0;
(i) f*(Kx)-S*=3, f*(Kx)-S-Z=1,
(i) f*(Kx)-S*=2, f*(Kx)-S-Z=2
(iv) f*(Kx)-S2=1, f*(Kx)-S-Z=3.
We also have
3.1) 2K% = 2f*(Kx)* = f*(Kx)*- S+ f*(Kx)*- Z

=243 " (Kx) Z(5+2)
=242 (Kx) S Z4 [ (Kn) - 22

CAsE (i). Noting that f*(Kyx) is nef and big, we see thatf*(Ky) is linearly
equivalent to a nonsingular projective surface of general type according to Kawamata
for sufficiently large integem . TheS|.;-(x,) is nef and big and, by the Hodge Index
Theorem, we havef*(Ky) - Z2 < 0. Thus (3.1) is false and this case does not occur.

CASE (ii). We have f*(Kx) - S(S —3Z) =0, then f*(Kx)(S —3Z)? < 0, which
derives f*(Kx) - Z> < 1/3, i.e. f*(Kx)- Z? <0. (3.1) is also false.

CASE (iii). f*(Kx)-S(S — Z) =0 inducesf*(Kyx) - Z? < 2, then (3.1) becomes
K3 < 2. Thusk3 = 2. Actually, in this casef*(Kx) - (S — Z) ~num O (as 1-cycle).

CASE (V). f*(Kx)-(3S—Z)?> <0 inducesf*(Kx)-Z%2 < 9. And (3.1) becomes
K3 < 4.If K3 = 4, we see thatf*(Kx) - (35 — Z) ~mum 0 as 1-cycle. Now we
set f*(M;) = S+ E. ThenZ = f*(Z,) + E. Obviously, we havef.(S) = M, and
f(Z) = Zo. From f*(My) - f*(Kx) - (3S — Z) =0, we get Xx - M3 = Kx - M - Z».
Then 4 = X2 - M, = Kx - M3+ Kx - My - Z = 4Kx - M3, i.e. Kx - M7 = 1. Which
derives a contradiction, becaudg, - M3 is even. Thusk} = 2. O

Proposition 3.4. Let X be a projective minimal Gorensteid-fold of general
type. Suppos& $ > 2 and dim¢1(X) > 2. Thendy(X) > 3.

Proof. As in the proof of the previous proposition, we first take a modification
f X' — X. Set f*(Kx) ~in M + Z, where M is the moving part. A general
memberS € |M| is a nonsingular projective surface of general type. Also deiote =
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f*(Kx)|s. Then L? = §;(X) > 2 according to Proposition 2.1 of [7]. I£? = 2, then
we have

2=f*(Kx)*-S=f*(Kx)- S+ f*(Kx)-S- Z.
We also have

(3.2) K} = f*(Kx)* S+ f*(Kx)*- Z
=2+ f*(Kx)-S-Z+ f*(Kx)- Z°

Similarly, f*(Kx)-S2> 1. If f*(Kx)-S?>=2 and f*(Kx)-S-Z =0, then, by the Hodge
Index Theorem,f*(Kx)-Z2 < 0. Then (3.2) become&$ < 2, which saysk3 = 2. If
f*(Kx)-S%=f*(Kx)-S-Z=1, f*(Kx)-S-(S— Z) =0 inducesf*(Kx) - Z% < 1.

By (3.2), we getk: < 4. If K3 = 4, then we can se¢*(Kx) - (S — Z) ~num O.

By the same argument as in the case (iv) of the proof of Proposition 3.3, we have
fr(My)- f*(Kx)-(S—2Z)=0, i.e. Kx - M? = Kx - My - Z;. We have 2 =K% - M; =
Kx-M?+ Ky - My - Z1 = 2Ky - M?. ThereforeKx - M? = 1, which is impossible. Thus
K3=2. O

Theorem 3.5. Let X be a projective minimal GorensteBifold of general type.
Then¢s is generically finite of degrees 8. If deggs) > 2, then K3 =2, x(Ox) = -1
and p,(X)=0, 1

Proof. According to Theorem 3.1, we only have to study the case WRER|
is not composed of a pencil. Take a modificatign X — X according to Hiron-
aka such that2f*(K)| defines a morphism. Setf2(Kx) ~ijn M + Z, where M is
the moving part andZ the fixed one. A general memBee |M| is a nonsingular
projective surface of general type by the Bertini Theorem. We have

|Kx +2f*(Kx)+ S| C |5Kx/|.

BecauseKy +2f*(Ky) is effective, the left system can distinguish general members of
|M|. DenoteL :=f*(Kx)|s, using the long exact sequence and the vanishing theorem,
we have

‘KX’ +2f*(Kx)+S||S = |Ks+2L‘

Obviously,Ks +2 =G +H , whereG =Ky +2f*(Kx))|s is effective andH :=5|s.
Note thatk®(S, Os(2L)) > h°(S, H) > P(2) — 1 > 3. We have two cases.

Case 1. |H| is composed of a pencil. Taking a birational modificationSto  if
necessary, we can suppogé| is free from base points. Denoté ~j, > -, C; + E,
where E is the fixed part. In general positioh,;-; C; can be a disjoint union of
nonsingular curves in a family. We have > 2. Thus L ~nm (¢/2)C + Ep, where
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Eo > (1/2)E is an effectiveQ-divisor. If p,(S) = 0, theng §) = 0 and then
we can see by the long exact sequence tlikat+ H| can distinguishC; 's and that
|Ks + > =, Cille, = |K¢,|, which means| K + 2L| gives at worst a generically finite
map of degree 2 and so doés. If p,(S) > 0, it is obvious that K + 2L| can dis-
tinguish C; 's. For a general curv€  which is algebraically equivalen€to , we con-
sider theQ-divisor G := Kg + 2L — (1/2)Y 7., C; — Eo. We have™G" < K + 2L.

On the other handG — C — K is nef and big, thus by the K-V vanishing we have
I"G7|c = |Kc +"Eo’|c|. Becaus€ Eqp|c is effective, @7 iS at worst a generi-
cally finite map of degree 2 and so dg of X.

CASE 2. |H| is not composed of a pencil, so neither|&|. Similarly, we can
suppose|2L| is base point free. I, { ) =0, we can use a parallel discussion to that
of Case 1 to see thafs is at worst a generically finite map of degree 2.plif S )0,
then @, .o, is obviously generically finite. We know thdt?> > 2 from Proposition
2.2 of [4]. If ®|k.4p1) is not birational andL? > 3, then according to Lemma 2.1,
there is a free pencil 0§ with a general memlger  such @fat 0 andL - C = 1.
Since dim® 3, ((C) = 1, thenk®(2L|¢) > 2 and then, by the Clifford theorem, we see
that C is a curve of genus 2 and.R ~jin K¢. Finally we can see tha2L||c = |K¢|.
Therefore® |4 ., | is a generically finite map of degree 2. Thereforgis generically
finite with deggs) < 2. If L2 = 2, thenK3 = 2 by the proof of Proposition 3.3. On
the surfaceS , setR2~j, C1 + E;, whereC; is the moving part. We easily get

8=(2LY > C} > d(h°2L) — 2) > d(P(2) - 3).

Therefore we have

8 8
d< = .
T P(2)—3 —3x(0x)-2

If d > 2, theny(Ox) = —1. ]

For the 4-canonical map of , it is obvious that is not birational if X admits
a pencil of surfaces of general type witik?, Pe) = (L, 2). Therefore it is pessimistic
for us to obtain an effective sufficient condition for the birationality¢af We have a
partial result as follows.

Theorem 3.6. Let X be a projective minimal GorensteBifold of general type.
SupposeX s > 2 and dim¢1(X) = 3. Theng, is a birational map onto its image.

Proof. Take a birational modificatiofi X’ — X such that the movable part of
|f*(Kx)| is base point free. Sef*(Kx) ~in S+Z, whereS is the moving part and
the fixed one. A general membé&r is a nonsingular projective surface of general type.
We have|Ky +2f*(Kx) + S| C |4Kx/|. Using the vanishing theorem, we have

|KX’ +2f*(Kx)+SH5 = ‘Ks+2L|,
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where L :=f*(Kx)|s is a nef and big divisor or§ . By Proposition 3.4, we see that
L? > 3 under the conditionkj > 2. If ® . is not birational, then, by Lemma
2.1, there is a free pencil with a general member  such @fat 0 andL - C = 1.
Because din®|,((S) = 2, ho(C, Oc(L|c)) > 2. Therefore, by the Clifford theorem, we
see that ded(|c) > 2h%(L|c) — 2 > 2. This is a contradiction. Therefor@ k.o is
birational and so isp,.

ExavpLe 3.7. We give an example which shows that is not birational when
K3 = 2 and dimpy(X) = 3. OnP3(C), take a smooth hypersurface  of degree 10,
S ~in 10H . Let X be a double cover @ with branch locus alongg . TheN is a
nonsingular canonical modeKy =2 andp, (( ) =4 andp, is a finite morphism onto
P2 of degree 2. One can easily check thatis also a finite morphism of degree 2.

Theorem 3.8. Let X be a projective minimal GorensteBifold of general type.
Then ¢, is generically finite wherp,(X) > 2 or when K3 > 2 or whenx(Ox) # —1.

Proof. RART |1 pe(X) > 2.

First we make a modificatiory @ X’ — X such that the movable part of
|f*(Kx)| is free from base points and thgt*(Kx) has support with only normal
crossings. Selff*(Kx) ~in M + Z, whereM is the moving part and the fixed one.

If dim ¢1(X) = 2, then a general membet € |M| is a nonsingular projective
surface of general type. We have

|Kx/ +2f*(Kx)+S‘ C |4KX1|.

Using the vanishing theorem, we haly: +2f*(Kx) + S||s = |Ks + 2L|, whereL :=
f*(Kx)|s is nef and big effective divisor o . We havé(s, L) > 2. Noting that
P¢(S) > 0 in this case. And ifL| is not composed of a pencil, then neither|i§s +
2L|. If |L| is composed of a pencil, taking a modification if possible, we can suppose
that the movable part ofL| is free from base points. Sét ~j, > C; + Zp, we can
see|Ks+ L +> Cillc, = |Kc, + D|, where D =L|, is effective. We easily see that
@k +21) IS at worst generically finite of degree 2 and so is@s.

If dim¢1(X) = 1, thenM ~nm aF, where F is a nonsingular projective surface
of general typeM;1 ~nm aFo Where Fy = f,(F) is irreducible onX . IfKy - FO2 =
0, then, by Lemma 2.3 of [7], we hav®r(f*(Kx)|r) = Or(n*(Ko)), wherer is
the contraction map onto the minimal model akg is the canonical divisor of the
minimal model of F . Obviously|Kx +2f*(Kx)+M]| can distinguish general members
of |M|. Moreover|Kx +2f*(Kx) + M||r = |KFr + 20*(Kp)|, the right system gives a
generically finite map and so does. If Kx - Fg > 0, then

L?= f*(Kx)? - F=K2 - Fo> Ky -F¢>2.
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It is sufficient to show thatKr + 2L| gives a generically finite map. We haver  +
2L > 3L. If |3L] is not composed of a pencil, then neither|i§F + 2L|. If |3L| is
composed of a pencil, we claim thaf(F, 3L) > 3. In fact, we havgKy + f*(Kx) +
F||r = |Kp+L| andh°(F, K z+L) > 3. Considering the natural mafi°(X’, 3K x/) —~—
HO(F,3K}), becauseKy: + f*(Kyx) + F < 3Ky, we see that dig(Im(a)) > h(K s +
L) > 3. Similarly, considering another natural mafP(x’, 3f*(Ky)) -~ HO(F, 3L),
we have

hO(3L) > dimc(Im(B)) = dime(Im(e)) > 3.

Now we can write & ~jn >_i_; C; + Eo, Where Ey is the fixed party > 2 and theC;
are irreducible curves. Denote ity  a genefic Then 2. ~pym (2/3)tC +(2/3)E, and
thus ZL — C — (1/t)Ep is a nef and bigQ-divisor. SettingG :=2 — (1/t)Eo, then we
have Ks + G < Ks+2L. On the other hand, the K-V vanishing givigss +"G||¢c =
|Kc + D|, where D is a divisor of positive degree. Noting th@at is a curve of genus
> 2, so we see thatK¢ + D| gives a generically finite map. This meah§s + 2L |
gives a generically finite map.

PART II: K3 >2 or x(Ox) # —1.

We study ¢4 according to the behavior af,. Of course, first we make a modifi-
cation f :X’ — X such that the movable part ¢(2/*(Kx)| is free from base points
and that 2*(Kx) has supports with only normal crossings. S¢t @K x) ~iin Mo+ Z5,
where M- is the moving part and, the fixed one.

If dim ¢o(X) = 1, then M, ~num a2F, Where F is a nonsingular projective surface
of general type. We hav®r(f*(Kx)|r) = Or(n*(Ko)) by Lemma 4.2 below in this
paper. Becaus&y' + f*(Ky) is effective,|Ky/ + f*(Kx)+ M| can distinguish general
F. On the other hand, we hay&x: + f*(Kx)+M;||r = |Kr+7*(Ko)|. From Theorem
3.1 of [7], we know thatF is not a surface with, & = 0. Thisy + 7*(Ko)|
defines a generically finite map according to [19] and so does

If dim ¢o(X) > 2, then a general membére |M,| is a nonsingular projective sur-
face of general type. We hay& . + f*(Kx) + S||s = |Ks + L|, where L :=f*(Kx)|s-
Noting that Ks > L, then we haveKs + > 2L. Under our assumption, we have
P(2) > 5. Thush°2L) > 4. We may suppose that the movable part|2k| is free
from base points. If2L| is not composed of a pencil, then neither|igs + L|. Oth-
erwise we can setl2 ~j Zib:l C; + E1, whereb > 3 and E; is the fixed part. We
denote byC the general; . Becaute- C — (1/b)E; is nef and big, therefore

r 1 A
K¢+ L_EEl

=|Kc + D],
C

where D is a divisor of positive degree. The right system obviously defines a generi-
cally finite map. ThugKs + L| gives a generically finite map and so dags O
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Theorem 3.9. Let X be a projective minimal GorensteBifold of general type.
Then ¢z is generically finite wherp,(X) > 39.

Proof. First we make a modificatiofi X’ — X such that the movable part
of |f*(Ky)| is free from base points and thgt'(Kx) has support with only normal
crossings. Seff*(Kx) ~in M + Z, where M is the moving part and the fixed one.

If dim ¢1(X) > 2, then a general membet € |M| is a nonsingular projective
surface of general type. We hayEyx: + f*(Kx)+S||s = |Ks+L|, whereL =f*(Kx)|s.
When p, (X )> 4, h%(S, L) > 3. Noting thatp, § )> 0, if |L| is not composed of a
pencil, then nor i§Ks+L|. So we may suppose thét| is composed of a pencil and
the movable part of this system is free from base points. [Setjin > ;-; C; + Eo,
where we haver > 2. |Ks + L| can distinguish the”; generically. On the other hand,
L — C —(1/a)E, is nef and big, we obtain by the Kawamata-Viehweg vanishing that

r A

1 "a—1_ "
K¢+ L ——Eg
a

L

= ’KC-F

a

C c

The right system defines a generically finite map and so dges

If dim¢1(X) = 1, thenM ~,ym aF, where F is a nonsingular projective surface
of general type. Sefp = f.(F). If Kx - FZ =0, then, by Lemma 2.3 of [7], we have
Or(f*(Kx)|r) = Or(7*(Ko)), wherer is the contraction onto the minimal model and
Ky is the canonical divisor of the minimal model &f . We see that, + f*(Kx) +
M||r = |Kr + 7m*(Ko)|. Becausep, ¥ )> O, the right system defines a generically
finite map and so doess. If Kx - FZ > 0, in order to prove the theorem, we have to
show the generic finiteness dfjx,..|, whereL :=f*(Ky)|r is effective. By Theorem
2 of [6], we see thay; £ > 3 whenp, X )> 39. Then®k,| is generically finite
according to [18]. Therefore under the assumption of the theorem, we can obtain the
generic finiteness ofs. Ul

4. On bicanonical systems

We suppose thak is a locally factorial Gorenstein minimal 3-fold of general type
and that|2K x| be composed of a pencil. Keep the same notations as in section 1 and
let 7 : X’ — X be the birational modification and X’ — C be the derived
fibration.

Lemma 4.1. Let X be a projective minimal GorensteiB+fold of general type
and suppose thalK x| is composed of a pencil. Thef(X) < 2 and p,(X) > 1.

Proof. This is just a generalized version of Corollary 3.1 of [7]. Though the ob-
jects considered there are nonsingular minimal 3-folds, the method is also effective for
minimal Gorenstein 3-folds. ]
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Lemma 4.2. Let X be a projective minimal GorensteBtfold of general type,
|2K x| be composed of a pencif; : X’ — C be the derived fibration of, and F
be a general fibre off . Then

Or(m*(Kx)|r) = Or(m5(KR,)),

whereng : F — Fy is the birational contraction onto the minimal model.

Proof. This is just a generalized version of Corollary 9.1 of [13]. Though the
objects considered there are nonsingular minimal 3-folds, the method is also effective
for minimal Gorenstein 3-folds. ]

Lemma 4.3. Under the same assumption as liemma 4.2 we havek? < 3
and 1 < p (F) <3.

Proof. Letn*(2Kx) ~iin g*(H2) + Z4, whereg :=¢oo0m, Z} is the fixed part and
H, is a general hyperplane section of the closlie of the imag& of PP{A—1.
Obviously we haveg*(Hz) ~num a2F, wherea, > p(2) — 1. From Lemma 4.2, we
have

KZ = (m*(Kx)|p)? = 7" (Kx)* - F.
Let 2Kx ~jin Mo + Z,, where M, is the moving part andZ; is the fixed part. We
also haveM, = . (g*(H>)). DenoteF := m.(F), then My ~nm aoF. By the projection
formula, we get

K% F=m"(Kx)* F =Kz,

BecauseKy is nef and big, we hav&2 > a,K2 - F. Thus

2 4AK3 4K3

Ky F<KY< o <X <a
az K; —6x(0Ox)—2~ K5 +4

which means:K%0 < 3. By Lemma 4.1, the fact that, X( 3 1 inducesp, £ )> 0.
By the Noether inequality 2, Fp) — 4 < K%O, we see thap, £ X 3. U

Proof Theorem 3. In order to prove Theorem 3, we shall derive a contradic-
tion under the assumption that, F( } 2. Obviously, |2Kx/| can distinguish gen-
eral fibres of the morphisn@, o 7. We consider the systerKx: + 7*(Kx)|. Write
2n*(Kx) ~in M} + Z4, where M} is the moving part andz} is the fixed one. Set
Z5 = Z, +Z,, whereZ, is the vertical part and, is the horizontal part with re-
spect to the fibrationf X’ — C. Noting that7*(Kx) is effective by Lemma 4.1,

Z;, should be 2-divisible, i.eZ, =2, whereZy is an effective divisor. Thus we see




PLURICANONICAL MAPS FOR THREEFOLDS 465

that Zg is just the horizontal part of*(Kyx). We know thata, > p(2)— 1> 3 and

* az 1 /
~ —~F+=
™ (KX) num 2F 222-
Thereforen*(Kx) — F — (1/a2)Z} is a nef and bigQ-divisor. SettingG :=r*(Kx) —
(1/az2)Z}, then we haveKyx. +7G™ < Kx/ + 7*(Kx). By the Kawamata-Viehweg van-
ishing theorem, we see that, for a general filsre

r B

a272

Ko+ 76 = |Kr #7661 5 K #7617 = |Ki + 22

az F

where™((a2 — 2)/a2)Zo|r " is effective on the surfac& . This means that gitF) >
1 under the assumptiop, F( 3 2 and then ding.(X) > 2, a contradiction. ]

The rest of this section is devoted to present an application of our method to bi-
canonical maps of surfaces of general type.

Theorem 4.4. Let S be a minimal algebraic surface of general type witf?) >
4. Then the bicanonical map & is generically finite.

Proof. Suppose thdRK| is composed of a pencil, we want to derive a contra-
diction. Taking a birational modificatiom : S — § such that|27*(Ks)| defines a
morphism and denotingy  :#,(S), we obtain the following through the Stein factor-
ization:

¢oom: S LB — W,

where B is a nonsingular curve. Denote by  a general fibre of the derived fibration
/- We can write

(2K s) ~iin Z Ci+Z,
i=1
wherea > p(2)—1> 3 andZ is the fixed part. Considering the systEty. +7*(K5s)|,
we can see that the system can distinguish general fibres. @ettingG =n*(Ks) —
(1/a)Z, we haveKs +G7 < Kg+7*(Ks) and G — C ~num (a — 2/a)m*(K5) is nef
and big. Thus, by the K-V vanishing theorem, we have

|Ks+7G|c = [Kc + D,

where D :="G7|c is a divisor of positive degree on the curée . Becays€ * 2,
then h%(C, K¢ + D) > 2. This means thatK s + 7*(Ks)| gives a generically finite map,
a contradiction. ]
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Corollary 4.5. Let S be a minimal algebraic surface of general type with >
2. Then the bicanonical map & is generically finite.

Proof. If ¢ =0, theny(Os) > 3 andp (2)> 4. If ¢ > 0, thenkKZ > 2p, > 4 by
[8] and thenp (2> 5. The proof is completed by Theorem 4.4. ]

Corollary 4.6. Let S be a minimal algebraic surface of general type witf2) =
3. Then|2Ks| is not composed of an irrational pencil.

Proof. This is obvious from the proof of Theorem 4.4. The critical point is that
we also have: > 3 in this case. O

The remain cases are like the following:
() kK?=1, p, =1 andg =0;
() K?=2 andp, =¢ =0;
() Kk2=2andp, =g =1.

Proposition 4.7. Let S be a minimal algebraic surface of tygh. Then the bi-
canonical map is generically finite.

Proof. Suppose thgdRK| is composed of a rational pencil. We write
2K ~ijin C1+C2+ Z,

where Z is the fixed part. Denote iy  a general member which is algebrally equiv-
alent toC; . We have 1 :K§ > K- C. On the other handKs - C + C2 > 2, which
gives C?> > 1. ThusKs-C = C? =1, i.e.C is a nonsingular curve of genus two. By
the index theorem, we see th&ty ~,ym C. But from [3], Pic(S) is torsion free, then

K ~jin C. This is impossible becaus€(s, C) = 2. O

Lemma 4.8 (Lemma 8 of [19]). Let S be a surface with finiter;. Then
H(S, 05(£)) =0
for any invertible torsion sheaf on S.
Lemma 4.9. LetS be a minimal surface of typ@) or (lll). Suppose tha2K|
is composed of a rational pencil. Then the moving par{2Xs| is a free pencil of

genus two.

Proof. We can write Ry ~jn, C1 + Co + Z, where Z is the fixed part. Denote
by C the general member which is algebraically equivalenCto C3f > 0, then
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K2 > Ks-C > C? On the other hand, the index theorem giveé$ x C? < (K - C)%.
Thus K2 =Ks-C =C?=2 and thenKs ~pym C.

If p,=1, thenZ = 0. LetD € |Ks| be the unique effective divisor, thenD2 =
F, + F,, where theF; are two fibres af,. If F; # F,, then theF; are multiple fibres
and thenD ~pum 2Fo, Where Fy is a divisor. Which impliesD? > 4, a contradiction.
If F1=F5, thenD =F; and thush®(S, D) = 2, also a contradiction.

If p, = 0, because ther; of § is a finite group (Corary 5.8 of [1]), then
h'(S,Ks — C) = 0 by Lemma 4.8. Whereas we haué(S, Ks — C) = h'(S,C) = 1
by R-R, a contradiction. Therefore we hagé = 0 and theng ¢ ) = 2. ]

Proposition 4.10. Let S be a minimal surface of typ@l) or (lll). Then|2Kj]
can not be composed of a rational pencil of genus two.

Proof. We refer to the proof of Proposition 3 and Theorem 3 of [19]. [
Thus we finally arrive at the following theorem of Xiao (Theorem 1 of [19]).

Theorem 4.11. Let S be a projective surface of general type. Thenis gener-
ically finite if and only ifx(S, 2Ks) > 2.
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