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Introduction

We shall work in piecewise linear category. All knots and links will be assumed
to be oriented in a 3-sphere3.

The 4-genus ∗( ) of a knot in 3 = ∂ 4 is the minimum genus of orientable
surfaces in 4 bounded by [1]. Thenonorientable4-genusγ∗( ) is the minimum
first Betti number of nonorientable surfaces in4 bounded by [3]. For a slice knot,
it is defined to be zero instead of one. The first author [4] defined the 4-dimensional
clasp number ∗( ) to be the minimum number of the double points of transversely
immersed 2-disks in 4 bounded by . He gave an inequality∗( ) ≤ ∗( ) [4,
Lemma 9] and asked whether an equality∗( ) = ∗( ) holds or not. For this ques-
tion, H. Murakami and the second author [3] gave an negative answer, i.e., they proved
that there is a knot such that∗( ) < ∗( ). Thus ∗( ) is not enough to char-
acterize ∗( ). In this paper we give characterizations of 4-genus and nonorientable
4-genus by using certain 4-dimensional numerical invariants.

The local move as illustrated in Fig. 1(a) (resp. 1(b)) is called an-move (resp.
′-move) for some positive integer . Both an -move and an′-move realize a

crossing change when = 1. Thus these moves are certain kinds of unknotting opera-
tions of knots. Let (resp. ′ ) be a link as illustrated in Fig. 2(a) (resp. 2(b)). Then
we easily see that an -move (resp.′-move) can be realized by afusion/fission[2,
p. 95] of (resp. ′ ); see Fig. 3. Therefore, for a knot in∂ 4, there is asingular
disk in 4 with ∂ = that satisfies the following:
(1) is a locally flat except for points1 2 . . . ( ) in the interior of .
(2) For each ( = 1 2. . . ( )) there is a small neighborhood ( ) of in4

such that (∂ ( ) ∂( ( ) ∩ )) is a link (resp. ′ ) for some integer .
We call these points 1 2 . . . ( ) singularities of type (resp. type ′). Among
these disks satisfying the above,∗ ( ) (resp. ∗

′ ( )) is the minimum number of
( ). Note that ∗ ( ) ≤ ∗( ) and ∗

′ ( ) ≤ ∗( ).
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Fig. 1.

Fig. 2.

Fig. 3.

In this paper, we shall prove the following.

Theorem 1. For any knot , the following equalities hold.
(1) ∗ ( ) = ∗( ).
(2) ∗

′ ( ) =
[
(γ∗( ) + 1)/2

]
.

Here [ ] is the maximum integer that is not greater than .

Since the inequalityγ∗( ) ≤ 2 ∗( ) + 1 holds for any knot [3, Proposition
2.2], by Theorem 1, we have the following corollary.

Corollary 2. For any knot , ∗
′ ( ) ≤ ∗ ( ) + 1.
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REMARK. Let be a (2 2 + 1)-torus knot ( = 1 2. . .). It is known that
∗( ) = . On the other hand, we note that bounds a Möbius band in a 4-ball

and that is not a slice knot. This impliesγ∗( ) = 1. Therefore, by Theorem 1,
we have ∗

′ ( ) = 1 and ∗ ( ) = .

Proof of Theorem 1

In order to prove Theorem 1, we shall show the following lemma.

Lemma 3. Let (resp.− ′) be a knot in 3 × {0} (resp. 3 × {1}). Suppose
that and− ′ cobound a twice punctured surface in3× [0 1] such that has
neither maximal points nor minimal points. Then the following hold.
(1) If is orientable and oriented so that∂ = ∪ (− ′), then is obtained from

′ by ( ) -moves.
(2) If is nonorientable, then is obtained from ′ or − ′ by [β1( )/2] ′-
moves.
Here − ′ denotes the knot ′ with reversed orientation, ( ) the genus of and
β1( ) the first Betti number of .

Proof. Suppose that is orientable. Then 2 ( ) =β1( ) − 1. We regard each
saddle point as a saddle band in the sense of [2, p. 107]. We can deform so that
all saddle bands lie in 3×{1/2}; see [2]. Note that ∩ ( 3×{1/2}) is a 2-complex
that consists of and 2 ( ) bands1 2 . . . 2 ( ), and that ′ is obtained from

by hyperbolic transformations[2, Definition 1.1] along the bands1 2 . . . 2 ( ).
Moreover we may assume that∩ ( 3 × {1/2}) is homeomorphic to a 2-complex as
illustrated in Fig. 4(a). Hence , ∩ ( 3 × {1/2}) and ′ can be given as shown
in Fig. 5(a). Then we can deform ∩ ( 3 × {1/2}) into a 2-complex as illustrated
in Fig. 6(a) by combining the three kinds of local moves; (1) changing a crossing of

2 and , (2) changing a crossing of2 and , and (3) adding a±1-full twist to

2 , where = 1 2. . . ( ) and = 1 2 . . . 2 ( ). We note that this deformation
is realized by ( ) local moves as illustrated in Fig. 7. Since the result of hyperbolic
transformations along the bands in Fig. 6(a) is , is obtained from′ by ( )
local moves as illustrated in Fig. 8. It is not hard to see that the local move as in
Fig. 8 is realized by a single -move; see Fig. 9 for example. Thus is obtained
from ′ by ( ) -moves.

Suppose is nonorientable and thatβ1( ) − 1 is even. Setβ1( ) − 1 = 2γ. In
the above arguments, by replacing ( ),′, Fig. 4(a), 5(a), 6(a) and -move withγ,
± ′, Fig. 4(b), 5(b), 6(b) and ′-move respectively, we have the required result.

In the case thatβ1( ) − 1 is odd, we have the conclusion by the following. By
attaching a small half-twisted band to∩ ( 3 × {1/2}), we find a new surface ′ in

3 × [0 1] such that and− ′ cobound ′, β1( ′) = β1( ) + 1 and ′ has neither
maximal points nor minimal points.
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Fig. 4.

Fig. 5.

Fig. 6.



CHARACTERIZATION OF FOUR-GENUS OFKNOTS 615

Fig. 7.

Fig. 8.

Fig. 9.
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Fig. 10.

Proof of Theorem 1. An -move (′-move) is realized by twice hyperbolic
transformations as illustrated in Fig. 10. Hence we have∗ ( ) ≥ ∗( ) and
2 ∗

′( ) ≥ γ∗( ). Note that 2∗
′ ( ) ≥ γ∗( ) implies ∗

′ ( ) ≥ [(γ∗( ) + 1)/2].
Suppose that a knot in∂ 4 bounds a surface in 4. We assume that 4 =

( 3× [0 ∞)) ∪ {1pt}. We can deform so that the following conditions are satisfied
[2]:
(1) ∩ ( 3× [0 1]) is an annulus that does not have maximal points.
(2) ∩ ( 3× [1 2]) is a surface that has neither maximal points nor minimal points.
(3) ∩ ( 3× [2 ∞)) is a disk that does not have minimal points, i.e.,∩ ( 3×{2})
is a ribbon knot.
Set ∂( ∩ ( 3× [0 1])) \ = − ′ and ∂( ∩ ( 3 × [2 ∞))) = ′′. If is orientable
(resp. nonorientable), then by Lemma 3, we have that the ribbon knot′′ is obtained
from ′ by ( ) -moves (resp. from ′ or − ′ by [(β1( )+1)/2] ′-moves). This
implies that ′ and− ′′ (resp.± ′′) cobound a singular annulus in3× [1 2] with

( ) singularities of type (resp. [(β1( )+1)/2] singularities of type ′). Hence we
have ∗ ( ) ≤ ∗( ) and ∗

′ ( ) ≤ [(γ∗( ) + 1)/2]. This completes the proof.

Since both -move and ′-move are unknotting operations, we can define 4-
dimentional unknotting numbers,∗ ( ) ∗ ( ) ∗

′( ) and ∗
′ ( ), of a knot

by the similar ways to those of ∗( ) and ∗( ) in [4]. Namely ∗ ( ) (resp.
∗ ( )) is the minimum number of -moves that is needed to transform into a

slice knot (resp. a ribbon knot), and∗ ( ′) (resp. ∗
′ ( )) is the minimum number

of ′-moves that is needed to transform into a slice knot (resp. a ribbon knot). The
ribbon 4-genus ∗( ) of a knot in 3 = ∂ 4 is the minimum genus of orientable
surfaces in 4 bounded by that has no minimal points [4]. Thenonorientable rib-
bon 4-genusγ∗( ) is the minimum first Betti number of nonorientable surfaces in4

bounded by that has no minimal points. For a ribbon knot, it is defined to be 0
instead of 1. We define∗ (resp. ∗

′ ) to be the minimum number of type (resp.
type ′) singular points of singular disks in 4 bounded by that has no minimal
points and whose singularities are of type (resp. type′). From the proof of The-
orem 1, we have the following theorem.
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Theorem 4. For any knot , the following equalities hold.
(1) ∗ ( ) = ∗( ) = ∗ ( ).
(2) ∗

′ ( ) =
[
(γ∗( ) + 1)/2

]
= ∗

′ ( ).

Since the trivial knot in∂ 4 bounds a M̈obius band in 4 without minimal
points, we haveγ∗( ) ≤ 2 ∗( ) + 1 for any knot . By Theorem 4, we have the
following corollary.

Corollary 5. For any knot , ∗
′ ( ) ≤ ∗ ( ) + 1.

REMARK. Let be a (2 2 + 1)-torus knot ( = 1 2. . .). Since ∗( ) ≤
∗( ) ≤ ( ) [4, Lemma 2], we have ∗( ) = , where ( ) is thegenusof .

On the other hand, since is not a ribbon knot and bounds a Möbius band in a
4-ball that has no minimal points, we haveγ∗( ) = 1. Therefore, by Theorem 4, we
have ∗

′ ( ) = 1 and ∗ ( ) = .

By the definitions of ∗ ( ) ∗
′ ( ) ∗ ( ) and ∗

′ ( ), we have ∗ ( ) ≤
∗ ( ) and ∗

′ ( ) ≤ ∗
′ ( ).

Conjecture. For any knot , ∗ ( ) = ∗ ( ) and ∗
′ ( ) = ∗

′ ( ).

REMARK. If ∗( ) = ∗( ), then by Theorems 1 and 4,∗ ( ) = ∗( ) =
∗( ) = ∗ ( ) ≥ ∗ ( ). If γ∗( ) = γ∗( ), then by Theorems 1 and 4,∗ ′ ( ) =

[(γ∗( ) + 1)/2] = [(γ∗( ) + 1)/2] = ∗
′ ( ) ≥ ∗

′ ( ). Thus if ∗( ) = ∗( ) and
γ∗( ) = γ∗( ) for any knot , then the conjecture above is true.
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