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1. Introduction

In this paper we investigate the ‘homotopical’ dynamics of branched coverings on
$2. Some branched coverings are expressed by the forms of rational functions on Rie-
mann sphere, the dynamics of which have been deeply studied as the holomorphic
dynamics. We will discuss not only rational maps but topological branched coverings
from a homotopical viewpoint.

A real rational function is considered as a piecewise-monotone mappiri) &s
to the dynamical system of a piecewise-monotone mappin@,owe have a powerful
invariant, the kneading sequence. The real line is divided into intervals by the turn-
ing points (i.e. points at which the sign of the derivative changes); the mapping is
monotone on each interval. A point iR visits the intervals by iteration of the map-
ping. Roughly speaking, whole dynamics are determined by the behavior of the turning
points. The kneading sequence is defined as the sequences of intervals which the or-
bits of the turning points visit (in this paper the exact definition is not necessary. For
example, the reader may refer to [9]).

The classification by the kneading sequences is weaker than the conjugacy clas-
sification. In fact, one can consider the kneading sequence as a ‘homotopical invari-
ant’, and there exist two maps which are not conjugate to each other but which have
the common kneading sequence. For simplicity, let us consider the case that all turn-
ing points are eventually periodic. We define an equivalence relation as follows: Let
f1 and f, be continuous piecewise-monotone mapsinand we denote the sets of
the turning points byCy and Cy,. Since the turning points are eventually periodic,
the forward orbitP; ={f/'(c)|c € C;,n > 0} is a finite set. We say; and f, are
equivalent if there exist order-preserving homeomorphigmsp, : R — Py, — R — Py,
such thatf, o 1 = ¢2 0 f1. Then it is easily seen thaf; and f> are equivalent if and
only if their kneading sequences agree.

In the case of branched coverings 64, we can generalize the equivalence re-
lation, though we do not have a good invariant. In [12], Thurston introduced the
equivalence relation, and showed a topological condition that a given branched cov-
ering is equivalent to a rational map ([4]). The equivalence relation, which we call the
Thurston equivalence, is the main object in the study of this paper.
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Throughout this paper, all branched coverings and homeomorphisms? care
supposed to be orientation-preserving.

DeriniTioN.  Let f @ 2 — §? be a branched covering on the 2-dimensional
sphere. ByC, , we denote theritical set of f, or the set of critical points off . A
successor of a critical point is said to bepastcritical point The set of postcritical
points is called goostcritical set

Pr={f"(c)|ceCs,n>0}
We say f ispostcritically finiteif #P; < oo.
From now on, we consider the case whete is postcritically finite.

DeriniTioN.  Let f and g be postcritically finite branched coverings. We gay
and g areequivalentif there exist homeomorphisms;, ¢, on S? such thate;(Py) =
P, (i =1, 2), 1 and ¢, are isotopic relative ta?, , and

(52, P;) —L— (52, P))
¢1l l¢z
(Sz’ Pg) T} (52’ Pg)

commutes. This equivalence relation is called THurston equivalencgWe will give
an extended definition later.)

A simple question: Can we decide whether given two postcritically finite branched
coverings are equivalent or not?

As mentioned above, in the 1-dimensional case, the kneading sequence is a good
invariant. Unfortunately, however, we cannot use the kneading sequence in our case.
Obviously, we have trivial invariants: the degree of a branched covering and the num-
ber of the postcritical points. Moreover, ‘the local dynamics’ ©f U P, is one of
simple invariants. For example, let us consider the 1-parameter fafnity ¢)+=
(c € C). The critical set isC;, 0, co}. The infinity is superattracting fixed point. If
¢=-2, then 0 is strictly preperiodic and?,(0) =2 is a fixed point: 0— -2+ 2
2. If ¢ = —1, then 0 is 2-periodic: 8 —1+— 0. Thus their local dynamics are differ-
ent, andf_, is not equivalent tof_;. Besides, we have parameters at which the maps
have the identical local dynamics. Indeed, there exist three parameﬂarE such that
0 is 3-periodic: 0— ¢ — f.(c) — 0O; one parametes: is real and the other two are
complex conjugate. Are these polynomigl, f; anfigl equivalent to one another?

The negative answer is obtained from Thurston’s theory ([12], [4]) via the Tdittbm
space. Furthermore, we can answer that by seeing the shape of their Julia sets ([8]).
But these approaches are not so direct, and are not useful for branched coverings not
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equivalent to rational maps. The aim of this paper is to give a direct proof from a
purely topological standpoint. Moreover, our purpose includes finding an algorithm to
check the Thurston equivalence. To this end, we need a presentation of a branched
covering, by which we carry out a calculation.

We give an easier example.

ExampLE. Consider two polynomials

3
g1(z) = 3V/-3 (Z - w>

3
g2(2) = —3V-3 <z — w> )

The postcritical sets ar®,, = P,, = {0, 1, oo}. Their local dynamics are identical:
00, ¢;— 011,

wherec; = exgLmy/—1/6)/V3.

Problem: Areg; and g, equivalent to each other?

The answer is negative. In fact, we show a stronger statemggnénd g, are
not weakly equivalent, that is, there does not exist homeomorphisms, such that
¢i(Pg,) = Py, and gz o ¢1 = ¢ o g1. Suppose¢s, ¢, are homeomorphisms such
that ¢;(x) = x for x € {0,1, o0c}. Let v be a simple path between 0 and 1 in
»=C- {0, 1, o0}. The pathvy is unique up to homotopy irE . Thef,(y) is also
a simple path between 0 and 1, which is unique up to homotopy. Each of the inverse
imagesL; = g{l(y) and L, = g;1(¢2(y)) is a topological tree with three endpoints
0,1 b; and one 3-branch poirt , whebe = éxpr\/—1/3). If g0 ¢1 = ¢o0 g1,
then ¢1(L1) = L,. But sinceL; and L, have the reverse orientations, it is impossible
for an orientation-preserving homeomorphism.

This way is not valid for the example given earlier. Indeed, the three polynomials
are weakly equivalent to one another, that is, there exist homeomorphisms of
S2 to itself which fix P;, such thatf, o ¢y and f, o 1, are equivalent tof, and;
respectively. Then a new problem comes upon us: Find a polynomial equivalgnt to
11011, a polynomial equivalent tqgf, o1 01,, a polynomial equivalent tg;, oy, o0y,
a polynomial equivalent tgf, o vy, o ¢, a polynomial equivalent tgf, o ¢y o 11 o Y1
and so on. When we work on this problem, it is efficient to consider the set

Q= {10 fuoa|vr, v (8% Pr) — (5% Ps,) homeomorphisms

Additionally, the difference between the two examples also comes from the struc-
tures of the mapping class groups. For a finite 4et S2, we denote, byM 4 ), the
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mapping class group, i.e. the group of isotopy classes of homeomorphissts—ofA

to itself. A subgroupM®(A) c M(A) is defined as the subgroup of isotopy classes of
homeomorphisms by which each point af is fixed. TheA(A) is trivial if #A = 3,

and M°(A) is not trivial if #4 = 4. Therefore, in the cased# = 4, a path with end-
points in A is not unique up to homotopy. In order to study the Thurston equiva-
lence in this case, we have to use some more structure of the mapping class group.
We introduce the mapping class semigroup, which is an extension of the mapping
class group. The mapping class semigroup is divided into subsets which are written
as Q; ={d1f¢2| b1, 2 € MP(A)}. We will investigate the structure g, . In partic-
ular, we obtain a complete classification in the cagse is of degree two with # =4,
and in the casef has,(2 2 2 2)-orbifolds.

In Section 2 we will define three equivalence relations: the Thurston equivalence,
the weak equivalence and the local equivalence, which are the main objects of this
paper.

Section 3 gives the definition of the branch group and the induced homomor-
phism. The branch group is a generalization of the fundamental group. For a universal
coveringp : U — X, the branch grougs X ) of degre¢ is defined as the group
of covering transformations qf_|j’:1 Ui — X, where |_|j.1:l U; is the disjoint union of
d copies ofU . A branched covering S? — S of degreed induces a homomor-
phism f; : m1(S? — Py, x) — G(S2 — P;). We will explain why the homomorphism is
considered as a presentation of the branched covefing

In Section 4 we study the Thurston equivalence by using the mapping class group.
This is applied to special cases in Section 5.

Remark. After writing this paper, the author discovered the result of Brezin et
al. ([3]). They enumerated hyperbolic nonpolynomial rational maps of degree two or
three with four or fewer postcritical points.

As well as the enumerating problem, Pilgrim recently developed a general combi-
natorial theory of branched coverings ([10]).

2. Basic definitions
In this paper, we assume mappings $to be orientation-preserving.
DeriniTIoN.  Let f be a postcritically finite branched covering. Suppese  is a

finite subset ofS? including P, such thatf 4 )= A. Then we sayA is @eneralized
postcritical setof f, and a pair §, A ) is durnished branched covering

Proposition 2.1. Let (f, A7) and (g, A,) be furnished branched coverings. Sup-
pose that there exist homeomorphisms ¢, on $? such thate; (A1) = (A2) (i =1, 2)
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and g o ¢1 = ¢ o f, namely the following diagram commutes

(52, A7) —L— (5% Ay)
¢1i l%
(5% 42) —— (8% A2)

If ¢ is a homeomorphism isotopic & relative to Ay, then there exists a homeomor-
phism ¢} isotopic to ¢ relative to A; such thatg o ¢} = ¢} o f.

Proof. LetH :S2x [0,1] — S? denote an isotopy betweepp and ¢,. Take
a pointx inS? — A;. Theny = H{f(x)} x [0, 1]) is a curve joining¢x(f(x)) and
#5(f(x)). There is a component of ~(y) which has an endpoinp;(x). We denote
the other endpoint by](x), and the correspondenae— ¢}(x) is the required home-
omorphism. Ul

Derinimion.  Let (f, A7) and (g, Ap) be furnished postcritically finite branched
coverings. We say f( A1) and (g, A,) are equivalentif there exist homeomorphisms
é1, o2 on S? such thatg; (A1) = A, (i = 1, 2), ¢1 and ¢, are isotopic relative tods,
and g o ¢1 = ¢ o f. This equivalence relation is called tAdurston equivalence

Remark. In the preceding definition we can replace ‘isotopic’ by ‘homotopic’
because of the fact that two orientation-preserving homeomorphisms on an orientable
surface are homotopic if and only if they are isotopic ([5]).

By Proposition 2.1, iff is equivalent tg , then the iteratigh is equivalent to

n

8 -
Derinimion.  Let (f, A1) and (g, A2) be furnished postcritically finite branched

coverings. We say f A1) and (g, A,) areweakly equivalentf there exist homeomor-
phisms ¢y, ¢, on S? such thatg; (A1) = A, (i =1, 2) andg o ¢1 = ¢ 0 f.

DerinimioN.  Let (f, A) be a furnished branched covering. For a paint S#nthe
degreeat x, which we denote byl x( ), is the integer such thfat nis -to-1 map on
N — {x}, where N is a small neighborhood of

We define a matrixl{s: A x (AUCy) — {0} UN as

Tiray(x,y) =0 if f(y) #x
Tiray(x, y)=n if  f(y)=x,d(y)=n,

which is called theransition matrixof (f,A). The relative homology groupl,(S2S%—

A;Z) is considered as the free module generated Ay . Therefore we consider
Hy(S?, S — (AU Cy); Z) is included in Hy(S? — f~1(A); Z). The transition matrix is a
matrix representation of the induced homomorphigm: H(S?, S2 — (AU Cy);Z) C
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Ho(S?, 8% — f~YA); Z) — Hx(S?, S%2— A;7Z).

The transition matrix is expressed by a directed grdif, A), namely, 7 (f, A) =
(CrUA, {(x, y, Ty (x, ¥))|(x, y) € C;UA}) is the pair of the vertex set and the edge
set: we considerx(, y, (. a)(x, y)) as an arrow fromy tor with weighfis 4)(x, y).
We say the directed graph is thecal typeof (f, A).

Two furnished branched coveringg,(A ) angl 8 ) are callmzhlly equivalent
if they has the same local type, that is, there exists a one-to-one mappi@gus —

C, U B such thatT(; ay(x, y) = T(e.5)(h(x), h(y)) for all x,y € C; U A.

ExAMPLE.
(1) f(z) =z%. The critical set is equal to the postcritical €8t P {Goo}. The
transition matrix of ¢, Py ) is($9).
(2) f(r)=z"". Cy=P; ={0,00}. The transition matrix of {, P, ) ig2¢).
(3) f(z) =z2++/—1. The postcritical set i#; /-1, —1+/~1, —/~1,cc0}. The

00002

- . . 110100
transition matrix of §, P, ) is 01000
00020

Remark. Clearly,
equivalent=- weakly equivalents locally equivalent
In general, the reverse arrows fail. Some examples will be given later.
The following fact is well-known.

Proposition 2.2. Let f be a branched covering of degrde . Then

(A) > dy)=d.

yESHx)

From the Riemann-Hurwitz formulave have

(B) > (de)-1)=2d-2

ceCy

Therefore if d > 2, then#C, > 2 and #P; > 2.
The case # =2 is almost trivial.

Proposition 2.3. Let (f, A) be a furnished branched covering of degie> 2.
If #A4 = 2,then (f, A) is equivalent to eithe(z?, {0, oo}) or (z=¢, {0, co}).
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Proof. By Proposition 2.2A =P, . We writ®®;  %a,b}. If #C; > 2, then
Zcecf d(c)=2d —2+#C; > 2d + 1. Sincef C; )C Py, this contradicts (A). Thus
#Cr = 2; we writeCy ={y,z}. By (A) and (B),d (v) =d ¢ ) =d . From (A), we have
f() # f(z). We can assume that y ()& anflz ()= . Thgni(a) = {y} and
f~Yb) ={z}. Either f@)=a orf@)=b.Iff@)=a, thena =y ;iff ¢)=b, then
b =y. ThereforeC; =P; , and we have two possibilities: @)- a b +— b and (2)
a—bra.

Let ! be a simple path joining anbl . Thefr(!) is the union of simple paths
l1,1y,...,1; joining a andb , where we také ’s such thiat ahgd are neighboring.
By E;, we denote the simply connected domain bounded; b¥.;. We take a homeo-
morphisme; : 2 — C such thatgi(a) = 0, ¢1(b) = co and ¢1(!) = {0 < x < 0} C C.
Since f :E; — S2 — [ is homeomorphic, we can define a homeomorphism

0
d < d

¢2,,-:E,-—>{rexp(\/—19) ‘ OSrSoo,M< @}

as g o ¢o(x) = ¢1 0 f(x), whereg ¢) =z¢ in the case (1) angz ( )= in the case
(2). Then we obtain the homeomorphispa : S> — C by ¢,|E; = ¢2,;, which satisfies
go¢a=¢10 f. Sincel; is isotopic td with the endpoints fixeg; is isotopic to¢;
relative to A . O

3. Branch groups

For a homeomorphismp : $2 — A — 82 — A, the induced homomorphism
oy m(S? — A, x) — mi(S? — A,x) is a ‘representation’ ofp, providedx is a
fixed point of ¢. Indeed, we can reconstruct the homeomorphigrfrom the homo-
morphism ¢, up to isotopy. However, if a furnished branched coverinfgA ) is of
degree more than one, it is hard to imagine the original mapging  from the induced
homomorphismf, : m1(S? — f~1(A), x) — m1(S? — A, x). Therefore we introduce the
branch groups, which are closely related to the branched covering. Roughly speaking,
the induced homomorphisrfi; on the branch group is something like the ‘inverse’ of
fe i m(S% = fHA), x) — m(S? — A, x).

Let (f, A) be a furnished branched covering of degiee .MByU — S? — A, we
denote the universal covering. Then there exist mappingsg,, ..., qqs : U — U such
that

U-ptfia) —— U
al |°
% — f71(4) — S2—A
commutes andf ~1(p(x)) = {p(g1(x)), p(g2(x)), . . ., p(ga(x))} for any x € U. Indeed,

let us takex € U and x1, xo, ..., x4 € U such thatf fp(x;)) = p(x). Since f :5% —
fYA) — S? — A is a covering, so isfop: U — p~X(f1(A)) — S% — A. Therefore
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there exists the covering U — U — p~(f~1(A)) that satisfiesy; A ) =; . Namely,

g; is defined as follows. Let be a path between and . There exists a patuch
that f o p(3) = p(v) and~v has an endpoint; . We defing y ( ) as the other endpoint
of 7. We call @1,qo. ..., q4) asystem of liftsof f~1. The idea of the branch group
is founded on the existence of these mappings.

NotatioN. We denote the set ofords of 4 symbols by
W, ={1,2...d}f ={maz...ax|a; € {1,2,...,d}} for k=12 ..., and Wo = {(}.

Let A, denote the set of the bijections 8f,  to itself. Thap is the symmetric
group ond* elements with the produkk’ = hoh’. Remark thatAg is a trivial group.

The spaceU x W, is the disjoint union ofd* copies ot/ . SincW#, consists
of one point,U x Wy = U. A projection¢ : U x W, — U is naturally defined as
&(x, w) = x. We consider the mapping, = pof : Ux W, — S§?—A. AlthoughU x W, is
not connected, we may considgr: U x W, — S?2— A as a covering. BYG,; $2— A)
(we write G, for simplicity), we denote the group of covering transformationg;of
In other words,G; consists of homeomorphisgis U :x W, — U x W, satisfying
Pk ©8 = Pk-

For a covering transformatiop € G, a covering transformatiop;g(w) € Gg is
defined by

x = &(g(x, w))

for eachw € Wy, and a permutatiom,g € A, is defined by

peg(w) =w' = g(x, w) = (prg(w)(x), w').

We considerp;g as a mapping oW, taGo. Conversely, ifr € G(V)Vk andh € A, are
given, a covering transformatiog € G, is determined byg X, w ) =#(w)(x), ~A(w)).
Note thatp;g = ¢ and pyg = id if ¢ € Go. Therefore, as a set;;, is the direct
product G(V)Vk x Ay. In fact, the groupG, is a semi-direct product Gfg"k and Ay .
For g € Gy, supposeg X', w’) = (x, w). Then pag(w’) = w and po(g~H(w) = v,
SO (p2g) ™t = pa(g™"). Since pi(g H(w)(x) = x’ and pig(w')(x’) = x, we have
pile™H(w) = p1g(p2g~*(w)). For g, g’ € Gy, we have

g8 (x, w) = g(p1g’ (w)(x), p2g’(w)))
= (p1g(p28' (w)) p1g'(w)(x), pagpag’ (w)).

Therefore

© p1(gg ) (w) = p1g(p2g’ (w))p1g’(w), pa(gg’) = p2gpag’
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Proposition 3.1. For g € Go andi € {1,2 ...,d}, there uniquely exisg’
T;(g) € Goand j =e(i,g) € {1,2 ...,d} such thatg; o g =g’ o g;.

Proof. Take a pointt € U. There uniquely exists such thato g; o g(x)
pogi(x). Let g’ denote the covering transformation such thdy; (x)) = ¢,(g(x)). Since
g’ og; andg; o g are covering, we havg’ o g, =g; o g. ]

It is easily seen that -(g) : {1, 2...,d} — {1,2...,d} is a permutation. For
8.8 € Go, supposej = i(g ) ang’ =e(j,g’). Thengjog=T;(g)og; andgj og’ =
Ti(g') o gqj. Thereforeq; o g’ o g =T;(g")oqjog =T;i(g") o T;(g) o gi. Consequently,

(D) e(i, g'g) = ee(i, 8). &), Ti(g'g) = Tuig)(g") o Ti(g).

The induced homomorphisryi; : Gy — Gy+1 is defined fork =0 1 2.... In this
paper, however, we deal with only the case =0.

For ¢ € Go, we defineg’ € G1 by p1g’(i) = T;(g) and p2g’(i) = e(i, g). Then
8'(gi(x), i) = (gj o g(x), j), wherej =e (, g ). By Proposition 3.1g’ is unique. By (C)
and (D), it is easily seen that the mappirig: g — g’ is a homomorphism.

We sayG, is thek -thd branch group The homomorphisny; is theinduced ho-
momorphism

Remark. The definition of f; : Gy — G+1 for generalk is as follows. A left
action of G, on

Vi = {x e UM | fX(px(w)) = f*(px(w"), px(w) # px(w’) for any w # w’ € Wi}
is defined by £ - x)(w) = p1g(p2g ™ (w))(x(p2g~*(w))). A mapping F :Vi_1 — Vi
is defined byF £ w ) =¢; £ © )). Thenfi(g) is characterized as the element that
satisfies f;(g) - F(x) = F(g - x).

Now the induced homomorphism depends on a system of lifts. Therefore we may
write f; = f,.+ for a system of liftsr =41, g2, ..., g4). For two systems of lifts =
(91,92, ---,qq) @andr’ = (g1, g5, - - ., q,), we definea =u £ r') € G1 as follows:

p2a(i) = j it pgi = pq};  pra@i)q: = q;.
Note thata ¢/, r) = a(r, r')~2.
Proposition 3.2. We have

Fi(8) = alr, ')t fr 4(g)alr, ')

for g € Go.
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Proof. We writee (,-) =e¢,(-,-) and 7; () = T,;(-) for a system of liftsr .

Supposeg € Go. We setj =poal(i), j’ = e (i, g) and j” = e,/(j, g). Then pg; =
pqj, pqj'8 = pqi andpqj.g = pq;. Thuspqj g = pqj.g, and soj” = pa(j'). Therefore
pa(fr1(8)) = pala™ frr1(8)a).

We setg’ = T,,(g) and g"” = T,- ;(g). Theng'q; = q;¢ and g"q} = gj.g. Since
paa(i)g; = q; and p1a(j")~*q}.g = q;.¢, we havepia(j')~*¢" pra(i)g; = q;7¢. Thus

p1a(j") 1" prai) = ¢' [= T,.:(8) = pa(fr+(2)()],

and so
p1(fr1(8)(0) = pra(paat o ey (-, 8) 0 p2a(i)) 11 poatiy(8) Pra(i)
= pl(ail)(er/(" g) © PZa(i))Tr’.pza(i)(g)Pla(i)
= pala* frr 1(8)a)(i).
The proof is completed. ]

Conversely, supposk € G;. Then it is easily seen that there exists a system of
lifts ' such thatf, ;(g) = b1 1 +(g)b.

For a homeomorphisng : (52, A) — (52, A) we can similarly definep; : G, —
G (k = 0,1). In fact, we choose) : U — U a lift of ¢~1. For g € Go, a cover-
ing transformationg,, +(g) is defined such thab,, +(g)y = ¢¥g. Thengy 4+ : G1 — G1

is defined bypi(¢yi(2))() = du.1(p1g(i)) and pa(éy.1(g)) = pag. For homeomor-
phisms ¢, ¢', we have ¢f¢')y+ = ¢y fr1dy,+ Providedr = @i,qz,...,qq) and
r'= W' qup, Y'gap, ..., V' qep) where, i)’ are lifts of ¢, ¢’. Indeed, forg € Go,

PPy 4 fri e 1 (€)E) = @ i Tridy.1(8)
P&y 1 fr1 0w, 1)) = J,

where j satisfieg;; o ¢y +(g) = T.i by +(g) 0 gi. When we write
g = by i Tridy.1(8):
we haveg’y/'q;v = 1'q;1g. Therefore
pi(@f8)r () = &' and pa((¢f ¢)r.1(8))() = J.

Proposition 3.3. If ¢, ¢’ are homotopic to the identity relative ta, then there
existsr” a system of lifts such that), ; fi1dy.+ = for 1.

Proof. Leth (,-) be a homotopy between the identity and We take a con-
tinuous mapy(-,-) : U x [0,1] — U such thaty(,1) = ¢ and ¥(-,t) is a lift
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of n(-, 1)L Sinceb =4(-,0) is a lift of the identity, > is a member of;,. For

eachx € U, the path~, = ¥(x,-) is the lift of the pathh f(x),-) with end-
points b (r ) andwy(x). For eachg € Gy, the pathv,-1,) has endpointsg ~*(x) and
P(gH(x)). Since ¢y 1(g) = Yy, we havesy, i(g)(v(g~*(x))) = ¥(x), and hence
byp.+(g)(bg ~1(x)) = b(x). Thereforeg,, :(g) = bgh~* for g € Go. Similarly there exists
b' € Go such that¢',, ;(g) = b’gb’_l for g € Go. Define b by bj(x,i) = (b'x,i).

Then ¢!, (g) = bigh; ™" for g € G1.

Thus

Gy 1 Fri0p.1(8) = ¢y 1 fry (bgh ™)
= ¢y +(Fr1 (0) fr1(8) fr1 (07 Y)

= by f+(0) fr1(8) fr ()20,

The proposition follows from the remark just after the proof of Proposition 3.2.[]

Fix a basepointt € §2 — A and its lift ¥ € p~!(x). The induced homomorphism
gives us the information of the behavior of loops $& — A. The 0-th branch group
Go is isomorphic to the fundamental group(S?— A, x). Let v : [0,1] — S>— A be a
closed curve such that(0) = (1) =x. By 4, we denote the lift ofy by p: U — §°—
A such thaty{0) = X, which uniquely determines the covering transformatione Go
by g,(7(1)) =4(0). Forg € Go, a path betweed and g ) is uniquely determined up
to homotopy. Thus we obtain a homomorphisa(S? — A, x) 3 v — g, € Go.

DeriniTion.  Consider the graph in the plane

2w 2w 2w 2
—2 - —, ..., d-1) —,d-— ;.
d’ d’ ’( ) d’ }

Qd:{teOHEC‘OSISLGZ i

A radial of f is a continuous map @, — S? — A such that
FHrO) = {r (@2 k=12 ).

We sayr (0) is thebasepointof » and a point ofr (e"'zﬂ/*_l/d) is a radial points of
r. The arcly :[0 15t v r(1ef?7V=1/4) € §2— A is called thek -thspokeof r. Two
radialsr, ' are said to be homotopic if there exists a homotapyQ,:x I — 52 — A
such thath ({0)=r,h(,1)=r" andh (,t) is a radial of f for 0< ¢ < 1.

There exists a one-to-one correspondence between the radigls of  with basepoint
x up to homotopy and the systems of lifts ¢f . Indeed, for a radial we take the
lit 7 by p such that*(0) =%. Theng, is determined by, & =7 (ef27V=1/4) = 5.

Let v : [0,1] — S% — A be a curve withy(0) = v(1) = x. Supposeys, V2. . .-, Va
are the lift ofy by f : $%2— f~1(A) — $2— A with ~;(0) = p(%;). Then pa(f:(g,))(i) =
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J = 7(1) =~,(0). Thereforex = l,-’y,-lj_l is a closed curve, where is the spoke of
r. We havepi(fi(g,))(i) = g. For a permutatiorh € Ay, we say {1, ao, ..., a, = ag)
is anorbit of & if h(a;_1)=a; fori =1 2 ..., n. Consequently,

Proposition 3.4. Let v be a closed curve inS? — A with 4(0) = (1) =
x. If there existsN = (a1, a2...,a;) an orbits of pa((fi)(gy)) € A;, then
there exists closed curve’ such thatf : ' — ~ is of degree/ andg, =
Pa(fi(8:))@) . pr(fi(2:))(@2) pa(f1(g1))(aa)-

In particular, if v is a simple closed curyethen the number of the orbits of
p2((f+)(g4)) is equal to the number of the component fof'(y).

As for a homeomorphismp, a radial is a pati between ard(x). The path
I determines the isomorphisig : 71(S? — A, x) — (52 — A, ¢~ 1(x)) by v — 17171,
Write ¢+ instead of¢,, +, where is the lift of 3~ by p such thaty(¥) = 1(1), and
1 is the lift of / by p with 7(0) =%. Then ¢+ is identified with

—1 -1
m1(S?% — A, x)(i);ﬂrl(S2 — A, ¢_1(x))[*—>771(S2 — A, x).

From now on we identifyGo and m1(S% — A, x) for simplicity. An element ofG;
is written in the form

8= Z Yw - (U), h(w))’

weW;

where ~,, is the element ofr(S? — A, x) such thatg,, = pig(h(w)), h(w) is the
element of W, such thap,g(h(w)) = w (i.e. h = pog~1). Remark that the summation
is formal. For two elementg 3,y 7w - (w, A(w)) andg’ =3 . 7, - (w, h'(w)),
the composition is

28" = ) Wiy - (W, B (h(w))).

we Wy

Derinimion.  Let (f, A) be a furnished branched covering. Fix a radial  with
basepointx . We setd ={aj,az...,a,}, that is, we choose a mapping
{1,2,...,n} — A. Let us take simple closed curvey, Cs,...,C, :[0,1] — S? - A
that satisfy the following:C; (0) =C; (1) = (; 's are disjoint exceptat , eagh
bounds a simply connected domain anticlockwise such tat A = {a;} and

the productC.C»...C, is null-homotopic inS? — A. ConsideringCy, ..., C, as ele-
ments ofr(S2— A, x), we obtain a generator set — the q€t, ..., C,_1} generates
m1(S? — A, x) freely. We say (1, ..., C,) is a generator chainof S2 — A. Each ele-

menta € my(S? — A, x) can be expressed in the form GHC;E) ...l with m
minimal, wherei § )e {1, 2 ...,n — 1} ande(j) = £1. This expression is said to be
the minimal expressiorof a. We say|a| = m is the length of a. For another genera-
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tor chain C}, C5, ..., CJ), there exists a homeomorphisgn: (52, A) — (52, A) that
pointwise fixesA such thap.(C;) = C!.
The homomorphisny; : Go — G1 is determined by the following diagram:

Cr = Z11- (L ha(D)+Z1o- (2, ha(2)) +-- -+ Z14 - (d, h1(d))
Co = Zp1- (1, ho(1))+Z22- (2, ho(2)) +- -+ Zo 4 - (d, ha(d))

Cn—l = Zn—l,l : (1’ hn—l(l)) + Zn—l,2 : (2’ hn—l(z)) +---t Zn—l,u’ : (d, hn—l(d))

where Zi; =p1(fi(C))(hi(i)) and by =pa(f:(Cy))~1. This diagram is said to be the
fundamental systerof f; with respect to the generator chai@y(. .., C,).

ExAmPLE.
(1) Considerf £ ) =z¢ withA =P, . Let us set =1 as the basepoint. We take a
radial » such that theé -th spoke is () = d@av/—1(k — 1)/d) (k = 1,2 ...,d),
and take a generator chaif’y( C,) such thatC; is homotopic to{|z| = 1}. Then the
fundamental system of, ; is

Ci— Cr-Ld)+@ D+ +d—1.d—2)+d,d—1).

See Fig. 1 and 2.

Even if we take another radial  with spokés: () = éXpv/—1kt/d), the fun-
damental system is unchanged; because rnd@re homotopic. If we take a radial
r" with spokesl}! =l (k =1,2...,d — 1) andl(t) = exp(—27\/—1r/d), then the
fundamental system of,. ; is

Cr o (Ld)+(@2 1)+ +(d—-1,d—2)+Cy-(d,d — 1).
(2) Considerf £ )=2++v/—1 with A =P, ={/-1, -1+v/=1, —/—1, cc}. We take

a radialr and a generator chaif@’y( Co, C3, C4 as in Fig. 3. Then the fundamental
system off, ; is

C1— C'Crt-(1,2) + C1Cy-(2.1)
Cy — C3- (L, 1) + C1CoC1C51C - (2,2) .
C3 — (1) + C1C2C1 1 (2, 2)

See Fig. 4. If we take a radial as in Fig. 5, then the fundamental systemfpf; is

CZ'_}C3'(131)+C1'(232)7

{clH L2+ (21
Cs—> (L1 +C (22
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1

Fig. 1. The branched covering z () =z* The thick arrow isC;. The three thin
curves between 1 and exp(Z/4) (k = 1 2 3) and the constant curve— 1 form
the radialr .

Fig. 2. The thick arrows arg —1(Cy).

since £,/ +(7) = (L, 1) +C, *Cr - (2, D)fr1(N((L, 1) +C1C2- (2, 2)).

We take another generator chai@i(C5, C4, C;) such thatC; is homotopic to
C1C2C1C, 1 C Y, € is homotopic toC1C,Ct and €4 = Ca, C; = C4. Remark that
C, is homotopic toC; *C}C} and C, is homotopic toC} ™ *C} *C4C;Ch. Then the
fundamental system of, ; is

Cl— Cytciocy - 2) + cieyte ey (20)
Ch — cyteiey (1, 1) + Ci-(2,2),
Ch (1, 1) + ¢, e teyeics - (2, 2)

since £, 1(C7) = C1C3 (L, 2)+C3Cy (2, 1), £ +(Ch) = C1-(1, 1)+C3 and f,r +(Ch) =
(la 1) +C2 : (25 2)

Lemma 3.5. Suppose a homeomorphispn (52, A) — (52, A) satisfiesg; + = id
for somel . Theny: §2 — A — 52 — A is isotopic to the identity ins? — A.

Proof. LetH :(%?— A)x1 — S?>— A be a homotopy such tha¥ -, Q) =id and
H(x,:) =1, wherex is the basepoint. Theén & -, 1) is homotopic to the identity,
and the induced homomorphismis?, i, : m1(S?— A, ¢(x)) — 71(S?— A, x) coincides.
Therefore¢ is homotopic to the identity (for example see [7], Chapter VI, Exercise F),
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Fig. 3. The branched covering z () 2 +i. The closed curve€, C,, C3 together
with a closed curve homotopic 165 C,*C;* form a generator chain. The curvés
and!/, form the radialr .

Fig. 5. Anocther radial’.
and hence isotopic to the identity (see [5]). U

Theorem 3.6. Suppose two furnished branched coveringg, A) and (f2, A)
satisfies(f1)1 = (f2);. Then there exist homeomorphismse’ of S2 — A isotopic to
the identity such thaif; = ¢ f>¢’.

Proof. Letr andr’ be the radials off; and f, with radial pointsx, x», ..., x4
and x1, x5, ..., x}. Let us take a generator chai@y( Co, ..., C,) with basepointx .
By D;, we denote the disc bounded 6y  as in the definition.nBy, we denote the
component offl‘l(C,-) that has the endpoint, and, , where p3(f1):(Ci)(k).
We similarly definew;, for f.. Since (f1); = (f2);, we have pa(f1):(Ci)(k) =
p2(f2)+(Ci)(k), and hence there exists a homeomorphigm: fl‘l(Uj?:lCi) —
1 (UL G) satisfying f1 = fo0 ¢. Let E;1, Eio, ..., Ery and E/ 4, E} 5, ..., E}, be
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the components offl_l(D,-) and fz_l(D,-) respectively, which are simply connected,
for D; contains at most one critical value. Remark thay  {/H~;x C 9E:,} and
Nj, = {k|vi; C OE:,} are orbits of pa(f1)1(Ci) = pa(f2);(Ci), andl is the number
of the orbits. We may assume that, correspondsE)tp for eacht =1 2...,1,
namely, N;, =N;,. Therefore¢ can be extended to a homeomorphism|J; , Ei, —
U., E., satisfying¢(E;,) = E/, and f1 = fo0 ¢. Each of E =f*(5? - |J; D;) and
E' = f{l(S2 -U; Dl-) consists ofd simply connected domains, on whighand f»
are one-to-one respectively. Thuscan be extended to a homeomorphigm $2 — 52
satisfying f1 = f2 o ¢.

We show ¢ is isotopic to the identity. Beforehand we take the generator chain
such thatx € E’. Even if we change the radial of,, we can take a radial off;
such that f1); = (f2);. Since fi = f> o ¢, we can take a radial of such that
(f1)+ = ¢+(f2);. Remark thatE’ is connected and that the radial points belong to the
boundary of E’. Therefore we can take a radiel of f, such that the image’(Q,)
is included inE” and r’ is homotopic to an injective radial. Since eaglj, contains
at most one points offi and’ does not intersecd , we can define an injectiorp
a — (i(a), t(a)) by a € E}, - Since the boundary ofj, ., is homotopic toCy ,
there exist 1< m < d, s € Z and ¥, € m1(S% — A, x) such thatp1((f2)(C},,))(m) =
Y, 1Cvi. From (f1): = ¢:(f2); we havegi(Y, 'CiY;) = Y, 'CiY:. By the choice
of the radialr’, there exist simple closed curvey, C;..., C, disjoint except at the
basepointt  such that; is homotopic toY, *C,Y;. Thus{Y, 'C;Y; |k=1,2...,n—

1} generatesry(S2 — A, x). Thereforeg; = id, and by Lemma 3.% is isotopic to the
identity. O

Corollary 3.7. Let (f1, A) and (f2, A) be furnished branched coverings. If there
exist a homeomorphism : (52, 4) — (5%, A) and g € G; such that (f1); =
g H¢7 H(f2)161)g, then (f1, A) and (f2, A) are equivalent.

Thus the fundamental system is the description of the furnished branched cover-
ing. We can consider that giving a fundamental system is equal to giving a furnished
branched covering. Now, we restate our question: Lfgt 4) and (f2, A) be furnished
branched coverings. When fundamental systemsfof (and (f2); are given, can we
know the existence of a homeomorphigim (52, A) — (52, A) and g € G, such that
(/) = & 1o (f)id1)g?

In several cases, the Thurston equivalence can be directly checked by the descrip-
tion.

ExampLE. Let (f1, A), (f2, A) and (f3, A) be furnished branched coverings as
follows: the induced homomorphismgij:, (f2)+ and (f3); have the fundamental sys-
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ﬂ \1N4

Fig. 6. The branched coveringf, f», f3 of degree 4. # = 3. The closed curves
C1, C, together with a closed curve homotopic dig‘lcl_l form a generator chain.

X,

o

Fig. 7. The closed curves arg *(Cy) (k =1, 2)

AN
/// \\ \

Fig. 8. The closed curves arg *(Cy) (k =1, 2)

Fig. 9. The closed curves arg *(Cx) (k =1, 2)

tems (see Fig. 6-9)

C1— C1-(L,1) + (2 4) + 32+ 4 3)
C2— C1-(L,2)+(23) +C;1-(3,4) +C2C; 1 (4,1),
C1— C1-(L1+C-(24)+(32) +Cy1(4,3)
{C2—>C11'(1’2)+ (23)+(34)+C1-(41)
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and
Ci1— C1-(1,1) + (2 3) + B4+ 42
Co—  (L2+CH- (24 +C2-(B 1)+ (43)
10030
They have the transition matriy 0 0 00 4 |. We try to find an element € G
01200

such that 1); = g~ X(f.)g (e =2 3).
(1) e =2. Suppose there exists X5 - (1, 1)+X,-(2, 2)+X3-(3,3)+X4- (4, 4) such
that (fl)T = g_l(fz)J(g. Then

C1=X;1C1Xy, 1=X,1CoXy, 1=X;X>, 1=X,1C,'Xs,
Ci1=X7'Cr X, 1=X,'Xs, Col=Xz1Xs4, CoC7t=X.'CiX0
Therefore
X1 =Cy, X4=Cy1Xo, X3=Xo,
X2 =C1X1Cy, X4= C1X1C1C£l,

where! € Z. Consequently,
X1 =Cl, X2 = X3=C"? X4= 1 C% = cl%c,

Thus! =—2 andX; = C;%, X2 = X3 = 1, X4 = C, *. Conversely,g =C;2- (1, 1)+

(2, 2)+(3 3)+C,-(4, 4) satisfies f1): = g~1(f2)1g. Hence there exist homeomorphisms
¢, ¢’ isotopic to the identity such thafy, = ¢ fo¢'.

(2) e=3. Weseth =(1L 1)+ 2)+(3 4)+(4 3). Then the fundamental system of
b fa)sb is

{C1—>C1~(1,1)+ 24+@B2+ (4 3)
C, — (1.2) +C;1-(2.3) + (3 4) +Cz - (4, 1).

Suppose there exists X3 - (1, 1) + X2 - (2,2) + X3 - (3, 3) + X4 - (4, 4) such that
(f1); = g *b~(fs)ibg. Then we have 1 =X, X3 and C;* = X;'X,. This is a
contradiction. Similarly, a contradiction follows from any othier . Thus there exist no
homeomorphisms), ¢’ isotopic to the identity such thafy = ¢ f3¢’. Moreover we will

see thatf; and f3 are not weakly equivalent (s€.1).

ExampLE. Let (f1, A) and (f2, A) be furnished branched coverings as follows: the
induced homomorphismf{); and (f2); have the fundamental systems (see Fig. 10-12)

Co— C2-(1,2) +C; 1 (2,1)

{C1HC1~(1,1)+ Cs-(2,2)
Cs3— C2-(1,1) + 2 2)
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Fig. 10. The branched coveringf, f» of degree 2. # = 4. The closed curves
C1, C2, C3 together with a closed curve homotopic @ *C,*C;* form a generator
chain.

Fig. 11. The closed curves arg *(Cy) (k =1, 2 3)

Fig. 12. The closed curves apg_l(ck) (k=123)

and

C;— C1-(1,2)+C;1(2,1)

Cl_) C3'(17 1)+ C]_'(Z, 2)
{ C3 — (1, 1) + Cp- (2, 2).

10100

. 00002

They have the transition matri 01000
000 20

It is easily seen that there is np€ Gy such that (1); = g~1(f2)+g. From this,
however, we cannot conclude that and f, are not equivalent.
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Suppose there exist a homeomorphignand g € G, such that

(E) (/) = & Mo (i1

We show that there exist’, Y € m(S? — A, x) such that

() (X TTC1X) =Y X TICXY - i)+ (U )
©) (f21((CLC2C*) = Y TIC1CCaY - (1 1)+ (J. ).
where

{(f,i) = (L1 { (i) = (2.2)
(J.J) =(22) (.J) =@ 1)
We have¢|, = id,, because, otherwise, the transition matrix¢of! f,¢ differs from

the original one. For this reason, we can gg(C1) = X1‘1C1X1, $1(C1C2Co) =
X, 1C1C2CaX 4 Setg =Y1-(i', 1) +Y2-(j’, 2). By (E),

(f2)10+(C1) = d1(g(f)1(Cr)g ™).
(£2)16:((C1C2C9)%) = ¢:(g(f)1((C21C2C)7)g ™).

Consequently,

(f2)1(X71C1X1) = ¢3(g(C1- (1, 1) +C3- (2, 2))g 1)
= g1 (NCoYt (i, i) + YaCaYy b (77, )
= ¢ (Y1) X TC1 X1t (Y)) - (@i + - (L ),
(f2)i (X3 H(C1C2C)*X4) = ¢1(8(C1C2C3- (L, 1) +C3C1C2- (2, 2))g ™)
= ¢; (Y1) X, TC1CoCX apy (Y1) - (i, i) + -+ (', ).

When we write (,){(X4) = Xa1-(i,i')+ Xa2- (j, j'), we have

(f2)i(XaX{1C1X1X 7Y

= X410+(YD) X1 C1 X1 (Y) 72X, 1+ (i) + -+ (4 ),
(f2):((C1C2C3)?)

= X410+(Y1)X; TC1CC3X apr (Y1) "2 X1 - (L iN) + - (7', j').

Thus (F) and (G) are satisfied fof XX, " andY =X4¢;(Y1)"*X, 1. From
(f2)1((C1C2C9)?) = C3C1C2- (L, 1) +C3C1C2- (2, 2)
and (G), we haver :(11C2C3,)1C3_1 (l € Z). If (F) and (G) are satisfied foxk X’

andY = 61C2C3)1C3_1, then it is easily seen that (F) and (G) are satisfied Xor
X'(C1C2C3)? andY =C;*. Therefore we can assume G5
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By the form of the fundamental system ofof;, we obtain|Z| > | p1(f2)+(Z)()]
for any Z € Go. In particular, [ X~1C1X| > |[Y~1x~!C;XY|. ThereforeX has the
minimal presentationX =..Cgz, and

X7t x| — |y ix e xy| =2

Hence there is no cancellation im(f2):(X ~1C1X)(i). Namely, if X~1C1X has the
minimal presentatiorCy1)C(2)- * - Cimy, then p1(f2)+(Cua) (@) p1(f2)1(Cra+n)lirs1) 7 1
for anyl, wherei; =pa(f2)+(Cy - - - Cr—1))(@)-

Suppose = 2. Then

(f2)1(X71C1X) = (f2)+(C3*- - C1--- C3)
= C{1~-~C1---C2-(2,2)+----(1, 1)

ConsequentlyX has the minimal presentationC,C3. Similarly, we see thaX has
the minimal presentation.. C3C1C2C3. It is easily seen thak €3C,C,C3implies a
contradiction. IfX has the minimal presentation

X =...C{C3C1CLC3 (e =1 or —1),
then

(f2)i(X71C1X) = ()H(C31C M C e+ -+ - CEC3C1CC )

This is impossible because there is @Gp  such thak (C;) = Cf - (1, 1) +--- - (j, 2).
We can similarly show the impossibility in the case = 1. Thfisand f, are not
equivalent.

4. Mapping class groups
Let A be a finite subset of?. Consider the set
B, ={f| f is an orientation-preserving branched coverifg,C A, f(A) C A}

If (f, A’) is a furnished branched covering with# A% then there existy”’ € B,
such that §, A") and (f/, A) are equivalent. Remark that, contains all orientation-
preserving homeomorphisms that map  to itself.
It is clear thatB, is closed under the operation of the compositighg( —)f o
g. Therefore we can conside, as a semigroup. By identifying ‘isotopic’ branched
coverings, we obtain thenapping class semigroup
B,

By = — - - - - .
4 {¢] ¢ is isotopic to the identity relative tet }
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In other words, we identifyf ang if there exist homeomorphisfase, isotopic to
the identity relative toA such thagt o ¢1 = ¢o 0 f. If f and f’ are identified and
if ¢ and g’ are identified, then so arg¢ o g and 7’ o g’ by virtue of Proposition 2.1.
Therefore the semigroup structure Bf; is well-defined. When we think of a mapping
class f € By, we denote, by the same symbgl , the representativg of . This will
not cause confusion. As for the composition pf and , we use the notgigon as
the member ofB, , and o g as the member oB,.

We consider a homeomorphism as a branched covering of degree one. Hence the
mapping class semigroup includes tmapping class group

{¢| a homeomorphismg(A) = A}

M(A) =
(4) {¢#| a homeomorphism isotopic to the identity relative A

By.

By 1 € M(A), we denote the unit element &f A( ), or the mapping class of the iden-
tity. The subgroup
{¢| a homeomorphismgp|A =id}

M°(A) = M(A
(4) {¢| a homeomorphism isotopic to the identity relative A¢ c M(4)

is called thepure mapping class group

Remark. The transition matrix off € B, is denoted byT, . If 4 =n and
#(Cr U A) = m, thenT; is ann x m matrix. By Mat(4);, we denote the set of
n X m matrices withn < m < n+ 2d — 2. In other words, ifS is a member of
Mat(A),, then there exists a finite séds  withD§ m —n, and S is a mapping
of A x (AU Dg) to {O} UN. For § € Mat(A); and S’ € Mat(A),,, we define the
productSS’: A x (AU|], DsU Dg) — {0} UN by

S8'(x, ¥) =>4 S(x,2)8'(z,y) if ye AUDy
SS'(x, y) = S(x, y) if ye Dg,

where| |,, Ds is the disjoint union ofd’ copies of Dg . ThenSS’ € Mat(A)y . Thus
Ll,~1 Mat(A); is a semigroup with respect to the product. We consider the mapping
f ~ T; from B, to | |Mat(A),. It is easily seen thal;, T, , and hence the
mapping is a ‘linear representation’.

Proposition 4.1. For f € B, and ¢ € MO(A), if f = f¢, theng = 1.

Proof. We consider thaf and denote also representatives ¢f  and that
is, we think of f as a branched covering, asnchs a homeomorphism. Thefi
meansgio f = fogpog,, Wheregy, ¢, are some homeomorphisms isotopic to the iden-
tity relative to A. By Proposition 2.1, we can assume thatis the identity. There-
fore it is sufficient to show that is isotopic to the identity relative t?d  whenever

f=foo.
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Suppose that satisfiesf =f o ¢. Since the case wherg is a homeomorphism
is trivial, we assume thayf is of degrek > 2. From Proposition 2.2A consists
of more than one point. Ley : [0,1] — S$2 be a simple path inS2 — A with the
endpointsy(0) # (1) in A. Then f~%(y) consists ofd simple pathsi, y2, ..., Y4,
which are disjoint except the endpoints. Frofn  f=o ¢, we see thatp induces a
permutation of{~1, v2,...,v4}. Suppose that the permutation has a fixed point, say
¢(71) = 7. Then for any pathy homotopic toy; with the endpoints fixed, we have
o(y) =+, and hencep = id. Next we suppose that(y;) =v+1 for i =21,2 ..., m -1
and ¢(v,,) = 71. Thenvg, 72, ..., v» have the common endpoints, say and . We
can define the cyclic order of;’s aroundy . Ify1 is next tov;.1, then~, is next to
vj+ for k = 1,2 ...,m, where indices are considered moduto . By , we denote
the simply connected domain bounded #yU ~;+; that includes noy; (1 <i < m).
Then ¢|g, : Ex — Egs is bijective. Sincem > 1, $? — L, v = UjL; Ex contains
no points ofA , that isA =y, z}. By Proposition 2.3, we can assume thg#it4 ) is
either (z¢, {0, o0}) or (z7%, {0, 00}). Hence we have(z) = exp(2rv/—1k/d)z (k =
0,1....,d—1), and¢ is isotopic to the identity. U

Derinimion. We say f andg inB, arep-weakly equivalentif there exist
b1, 02 € MO(A) such thatgp, = ¢ f. In casep; = ¢,, two mapping classeg and
g are said to bg-equivalent We write f ~ g if f and g are p-equivalent.

By Proposition 4.1, forp € MO9(A), if there exists¢’ € M°(A) such thatp f =
f¢', theng’ is unique. Forf € B4, we set

M (A) = {p € M°(A) | there existsp’ € MO(A) such thatpf = f¢'}.

Then M (A) is a subgroup o#7°(A). From the uniqueness ef, we obtain a homo-
morphism

Ao Mp(A) — MO(A)
by
Of = fAp(0)-

We define an equivalence relatien, on M°(A): we say¢;s ~; ¢ if there exists
¢ € M;(A) such that

¢2= A (0™ D10
Proposition 4.2.

for~ foo <= d1~f b2
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Proof. The equivalencg ¢, ~ f$, means that there exists € M°(A) such that

f010 =0 f o

Thereforeg f = fg166,*, and hencep is contained inM; A ) and\;(¢) = ¢p16p, .
]

From this proposition, classifyingZ°(4) by ~ is equal to classifying{ f¢|¢ €
M°(A)} by the p-equivalence. Moreover, if € B, is p-weakly equivalent tof , then
there existsp € MO9(A) such thatg ~ f¢. Indeed,g can be expressed @sf$s;
thereforeg =p1f¢2 ~ fo20; . We write

Qs ={ofe' | 6. ¢' € M)},

the p-weak equivalence class includiffig , and

the set of p-equivalence classesf‘m. Consequently,

Proposition 4.3. We have a one-to-one correspondence

MO(A)
QL .
~f

We consider

61— Ap(9) Lh1g

as a right action ofM, 4 ) onM°(A). Then the equivalence classes of are the
orbits of the action. Lej : M°(A) — GL(L) be a representation a#7°(A) in a linear
spacelL . By

pu(1) — A p () ua(dr) (@),

we define a linear right actiop of M,(A) on u(M°(A)). Clearly,
Corollary 4.4. If fo1 ~ fo2, then u(p1) and u(p2) lie in the same orbit of.

5. Some applications

51. #\ < 3 The pure mapping class groud®(A) is trivial if #4 = 2, 3.
This is easily proved from the fact that A( ) is isomorphic to the symmetric group
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D

1, 1,
Fig. 13. The generator chairC{, C,, C3, C4 and the closed curvel, .

on A under this assumption. Therefore, ffre B,, each p-weak equivalence class
{of¢' |0, ¢' € M°(A)} consists of one membef . Consequently,

Proposition 5.1. Let (f1, A1) and (f2, A,) be furnished branched coverings with
#A1 = #A, < 3. Then(f1, A1) and (f2, A,) are equivalent if and only if f1, A7) and
(f2, A,) are weakly equivalent.

The local type is not a complete invariant, but so is the fundamental system up to
conjugation.

Theorem 5.2. Suppose#A < 3. Mapping classesf; and f, in B, are p-
equivalent if and only if there exist radials amd such that(f1), = (f2)r .

5.2. #\ =4 In the case # > 4, the groupM°(A) is an infinite group. In par-
ticular, it is a free group generated by two elementsAf # = 4. This section is devoted
to the case # =4.

We start with the structure of the mapping class graéipA (). Refer to [1] for the
details of the mapping class groups. We det {az, ay, as, a4} and take a generator
chain {C1, C2, C3, C4}. We take simple closed curvés and [, such that/; is homo-
topic to C1C, and [, is homotopic toC,C3 (see Fig. 13). Ther; separatesa;, a»}
and {as, a4} (i.e. I, divide S? into two simply connected domain®;; which con-
tains a1, ap, and D1, which containsas, as), [, separates{ay, as} and {ay4, a1}. Let
o1, 02 and oz denote ‘half Dehn twists’ alondy, I, and —/; respectively. Namely, for
example,o; is the homeomorphism that is identity d; » and interchanges; and
a» as shown in Fig. 14. A Dehn twist along a simple closed curve is defined as a
homeomorphism which is the identity outside an annular neighborhodd of and which
‘twists’ as Fig. 15 inside the neighborhood (see [11]). Remark that the Dehn twist is
unique up to isotopy. Thenr? and o3 are isotopic to a Dehn twist along and o3 is
isotopic to a Dehn twist along. The mapping class group A( ) has a finite presen-
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|

>

Fig. 14. The ‘harf Dehn twisto;.

&
©

Fig. 15. A Dehn twist.
tation <0’1, 02,03 | R1, Ry, R3, R4 R@, where

— -1 _-1_—1
Ry = 0102010, "0y "0, 7,
1

Ry, = 0203020;10;105 s
R3 = 01030';10;1,
R4 = 0102050201,
— 4
Rs = (010203)".
(Note thata,-af.a,- = ajfz if |i — j| = 1.) By group theoretical calculation, we con-

clude that the pure mapping class groMf(A) is the subgroupo?, o3) C M(A). A
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homomorphismu : M(A) — PSL(2, Z) is defined by

oy =t = (17) o= (g 1)

C//10\ [1-2\\ _
woran={(33)(5 7)) =re

which is the principal congruence subgroup and is known to be a free group. There-
fore M9(A) is a free group generated by two Dehn twists= 02, s, = 03.

If #4 < 4 and f is of degree 2, the structure Qf; is completely understood
as we will state in the next subsections. The following proposition holds true for any
n=#A.

Then we have

Lemma 5.3. Let (f1, A1) and (f>, Ao) be furnished branched coverings of de-
gree 2. If they are locally equivalenthen they are weakly equivalent.

Proof. We write A; = {a1,az,...,a,} and Ay = {b1, by, ..., b,} such thata;
corresponds ta; i( =,1,2..,n). Supposeq, a, are the critical values off; and
b1, b, are the critical values off,. Let [ be a simple path joining; and a, that
touchesay, as, . .., a,_1 in order, and similarly take a simple pathjoining b, andb, .
Then f[l(l) and f{l(l’) are simple closed curves. Cyclic orders apand A, can be
defined by the closed curves. If the cyclic orders agree, then there exists a homeomor-
phism ¢1, ¢ : §2 — 52 such thatea(f; (1) = £, '), ¢20) =1/, dwla) =b; (k =1, 2)
and ¢, o f1 = fo 0 ¢1. Therefore f; and f> are weakly equivalent. Although the cyclic
orders do not agree, we can retakeso that they agree. Indeed, let us take a closed
curvey as follows: D N A, = {b1, b;}, where D is one of the domain bounded by
#ynly=1lifi=2and #(NI!')=3if i =3,4,...,n—1. By o, we denote the Dehn
twist along~. Let us compare the cyclic order oy, defined byf{l(l’) with that de-
fined by £, *(c(")). We can see that the two inverse imagebpf  are exchanged (see
Fig. 16 and 1757 and b} are the critical points such thab(b}) = b1, f2(b5) = bs.)
From this we conclude that can be deformed by finite Dehn twists such that the
cyclic order agrees with that defined lf{l(l). ]

There are thirty local types of furnished branched coverings of degree 2 if # =4:
() f(AuCy) #ZA. 5 types:

2000 2000
0110 0011 etc
0002|0200’ '

0000 0000



592 A. KAMEYAMA

by b, by by bg

Fig. 16. The closed curve and its inverse imagg‘z_l(y).

D~

Fig. 17. The pathr(!’) and its inverse imagg, *(o(!’)).

(I fTAUCs)=A,C; C A. 10 types:

2000 2000
0010 0010 otc
0002|”0200]" '
0100 0001
() fTAUCy) = A #(C;\ A)=1. 12 types:
20000 20000
00100 01000 otc
00002’ | 00002 )" '
01010 00110
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(IV) fLAUCy)=A,#(Cfs\ A) =2. 3 types:

000020 000020 000020
110000 010100 100100
000002’ |000002]|" 000002
001100 101000 011000

Remark. Thetype of the orbifold of a furnished branched covering,(A ) is the
smallest functionv : A — N U {oo} such thatv(x) is a multiple of v(y)deg, (f ) for
any y € f~1(x), where deg f ) is the local degree ¢f &t , considerifg) = 1
for x ¢ A. In the cases (IV), the types of the orbifolds are (2 ,2 2 2).

We take{as, ay, as, a4} such thata; andag are the critical values. Then

Proposition 5.4. In the cases(ll), (Ill) and (IV), M/(A) is generated by
{s2, 52, s152}. In other words M (A) is the kernel of the homomorphisin M°(A) —
Z/(2) defined byh(s1) = h(s2) = L.

DerinimioN. A simple closed curvey in §2 — A is called peripheral if a disc
bounded byy contains at most one point of

Proof. Let/ be a non-peripheral simple closed curve, ana lbé the Dehn twist
along! . Supposeg ~1(/) has two componentsy, v.. Then f :y; — [ is of degree one.
By ¢, we denote the composition of the Dehn twists alengand ,. Then ¢f =
f¢', and so¢p € M(A). From sisz = 0203 = 0203010, * = 010, 20y * = o155, b L, we
see that {1s,)~! is the Dehn twist alondo, which is homotopic toC;Cs. Since the
inverse image ofg has two componentsys, € M/(A).

In casey = f~1(!) has only one componenf, ~.— [ is of degree two. Byy/,
we denote the Dehn twist along Then¢?f = f¢'. The inverse image of i( =1 2)
has one component, and henges? € M,(A). Thus Kerf )C M(A).

To complete the proof, we show that ¢ M (A). Let D1 and D, denote the discs
bounded byy = f~1(/1), and letE; and E, denote the discs bounded by Since we
are working with the cases (Il), (Il) and (1V), each ¢fF1(ax) N A and f~(as) N A
consists of at least one points. SEt(az) = {c1,c2} and f~Y(as) = {c3, ca}. Let @
be a simple path betwear, and a4, and letay, a, be the components of ~(a). If
a1 joins ¢; andcs, thenas joins ¢, andcs. The two component$y, 3> of (s1f) ()
join ¢1 and ¢4, andc, and c3 respectively. Thus by no homeomorphismMP(A) the
paths3;, 82 can be moved taev;, as. U

The types of (I) are reduced to the casé # = 3. Indeefl,= f for each¢ €
M(A), because each inverse imagelof bounds a domain that contains at most one
point of A.
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5.2.1. Cases (Il) and (lll) We choose a couple of model examples and inves-
tigate them.
Let f1 denote the mapping class By with the induced homomorphigi (

Cy — (1,2) +C1-(2,1)
Cy — C3-(1,1) + (2 2)
C3 — C3PC et (1,2) + (2 1)

2000
0010
0002
0100

The transition matrix is

Theorem 5.5. The p-weak equivalence clags the local equivalence clagsn-
cluding f1 consists of three p-equivalence classes

Qg ={lAl [ fisd. [ f1s2]},

where[ f] means the p-equivalence class includifig

Proof. Since £1);(C1C2) = (1, 2) +C1C3 - (2, 1) and (f1)+(C2Ca); = C,1Cyt-
(1, 2) + (2 1), we conclude thah.(s?) = s,'s;* is the Dehn twist with respect
to C1C3 and /\fl(szz) = 51 is the Dehn twist with respect t@;C,. Since sos; =
0302 = 0308020, 1 = op07 %0, = o257 0, Y, sps1 is the Dehn twist with respect to
C31C1C . Since (f1)i(C31C,1C1C0) = (L 1) +C1C2C1 - (2, 2), Mgy (s251) = 1.
Therefore

s§ syt
S% — 85
P 52851 — 1

fie S{lsl _ Sfl
5289 ! — §5152
-1_-1 N
Sy 78, S2

We prove
M°(A)

= {[1]. [s1]. [s2]}.

~
1

Since M9(A) is the free group generated by, s,, the length of an element is defined.
For ¢ € My, (A), we have|A, ()| < |¢].

Lemma 5.6. For ¢ € M°(A), there existsp’ € M°(A) such that¢ ~7n ¢ and
l¢'| < 1.



THE THURSTON EQUIVALENCE 595
e(l) €(2) e(m) o .
Proof. Let¢ =s;qys;%) - -- Sy D€ the minimal presentation of. Then
-1 1) €2 -2
(H) ¢~pAn (Sf((,zl—l))sf((;:))) ,6((1)) f((z)) Sf((,if_zf~

Suppose that there exists o € M°(A) such thatp ~; ¢ and |¢'| < 1. We
can assume that there exists o e M°(A) such thaty ~; ¢ and |¢'| < |¢|. By
(H)|Aﬁ(j$7¥’3gﬂfé@)\:Zfork::Q]p.q(m<—2y2(oer 3)/2 ). There-
fore sf((,;f 2 f))sf((,;f zzf)) = 52, 57 %, sos7 1 or sis, L. Moreover, Ay, (s f((ll)) f(%) sf((,Z’))) =
(s152)"/2 if m is even, Ay, (s5G)siS) - sil)) = (s152)T@ V72 if m is odd. We write
b1 = (s152)T"/2 if m is even, ¢y = (slsz)i(’” 1/2g 6(1) if mis odd. If m is even,

Grp P~ An ((Slsz)im/z) ="/,
This is a contradiction. lin is odd,
G~p b1~y Ap <(S2S1)i(m72]F1)/2S25,-6((11))) s1=Ap (stf((ll))) 51,
which leads to a contradiction. ]

Since

s;E o A (5155 ) sy tsesy = s and syt~ A (s251) sy Ysas = 51,
we remain to show that,%,, s, are not equivalent to one another. Assume- 4 s;.
Then there exist® € My, (A) such that 1 3\, (¢~ Y)s1¢. Since|A s, (4)| < |4, we have
A4 (@) = |¢| — 1. Therefore the minimal presentation ¢fconsists of some 0f;2,
(s257 1) and only one ofs;™2, (s1s2)*%. Moreover we have) s, (¢~ Y)s1| = |¢|. Thus

the minimal presentation of is s; *---, and the minimal presentation of;,(¢) is
not s, ---. This is a contradiction. We can similarly show the other inequalities. This
completes the proof of the theorem. ]

Set f> = fi01. The transition matrix off; is

2000\ /0100 0200
oo10|[1000| _[0010
0002 0010 |o0002
0100/ \o0OO1 1000

The fundamental system is

Cr — (1.2) +C2-(2,1)
C2 — C-(L)+ (22,
C; — C3ic et L2+ (21



596 A. KAMEYAMA

Theorem 5.7. The p-weak equivalence clagsthe local equivalence clagsn-
cluding f> consists of infinite p-equivalence classes

Qp, = {[fal. [ fas1]} U {[ f2s2(5152)"] | n € Z}.

Proof. Since);,(¢) = o7 A1, ($)o1, we have

sf — aflsglsflal =52
s% — a{lslal =5
A, 5281 — a{lol =1
fo s; i1 — optsitor = spt
5251 S 0’;151S20'1 = s{l
sz_lsl_1 — 0'1_1520'1 = sl_lsz_1

Let ¢ be an element of°(A). If there exists nop’ € M°(A) such thatp ~, ¢’ and

|¢’| < |#|, then either|¢| = 1 or ¢ = sa(s152)". We can show that,k;, s, and sfl are

not equivalent to one another in a fashion similar to the previous theorem. In order to
complete the proof, it is sufficient to show the following.

Lemma 5.8. Suppose thaty’ ~, so(s1s2)” and |¢'| < |2n +1|. Then¢’ =
s2(s152)" .

Proof. If n =0 or —1, the statement is true. Suppoge= sa(s152)" with n > 0.

Assume that there exists € M,(A) such that¢’ = \j(a) 1pa and |¢'| < 2n +

1. We can assume # 1. Remark that,(a)| < |of. Let si{)... be the minimal

presentation ofx. Supposevf((ll)) # s2_1_ Then

0] > [Ap(@) " 6] + o it [Ap(e)~t < g,
@ = lal = (Ap(@) " = 1gl) if [Apa)~* > [@l.

Therefore
19| > |o] = [Ap(a) + || > [¢] =20 + 1

Thus |¢'| = 2n +1, and hencé\,(«)| = |a| and the minimal presentation off,(c) is
52815251+ - - . Consequently = (s152)". Then

¢ = )\fz(oz)flqﬁoz = (s251) "s2(s152)" (5152)™ = s2(s152)".
If 550 = 55 L, then Ay, (s20599) 052528 has three possibilities:

@) Ay (55 1s1) " Hpsy Hsn = sasalsaso)"sf

(ii) Apy(s5y tsy ) Lsy tsrt = sa(s152)"
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(iii) /\fz(sz_z)_l(bsz_2 = slsz(slsz)"_lslsz_l.

. 5(2) —5@3) . 5(1) 5(2) 5(1) 5(2)
Since s;5) # 53, we can similarly prove thath, (s75; ,(2)) siw S < 1]
Consequently, (i) and (iii) are impossible, and hence= (s2 1)". Therefore¢’ =
s2(s152)". The proof of the case < —1 is similar. J

Remark. In the p-weak equivalence clag® f>¢' | ¢, ¢’ € M°(A)}, the homeo-
morphismsys, has a special meaning. This is the Dehn twist along the clgrwehich
has the following property: there exists a componknt (f2 o s2)~*(lp) isotopic tolg
and f, : I’ — Ip is of degree one. As to the p-weak equivalence class incluging
there is no curve satisfying this property. In general, the p-equivalence classes of (ll)
and (Ill) are divided into two categories by the property. According to the category,
the p-weak equivalence class consists of infinite p-equivalence classes or consists of
finite p-equivalence classes.

The following conjecture would be natural: Lef,(A ) be a furnished branched
covering. Suppose there exists a non-peripheral simple closed turg? — A satisfy-
ing that there exists only one componéhtc f (/) isotopic to/ such thatf ¥ —1
is of degree one. By, we denote the Dehn twist alonlg . Theh £ fo" for any
integern # 0.

By proofs similar to the previous theorems, we recognize that this conjecture is
true for all types of (Il) and (lll). Note that generally the conjecture is not true when
we do not assume the uniquenesslofindeed, if f~1(I) has two components, [,
isotopic to/ such thatf £ — [ and f :l, — [ are of degree one, and if the other
components are peripheral, therf = fo2. Therefore f ~ o fo=* = fok for any k.

5.2.2. Case (IV) In order to study the case (IV), we need some different ap-
proaches. While we cannot explicitly describe the p-equivalence classes, we construct
a complete invariant.

Let f3 be the mapping class iB,  with the induced homomorphigh): (

Ci— C1-(1,2)+C;t(21)
Co— C1-(L1)+ C2-(22).
C3 — C31(1,2) + C3-(2,1)

We have
A\ — 51
Ay 52— 55 182
S281 — 85
We write
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and set
L={TRT'|T, T €T(2)},

where

r(Q)= { <x y) € PSL(2, Z)

Zw

x,w=1 (mod2)
v,z=0 (mod 2)f"

Note that we identifyX and-X in L. It is easily seen that

={(10)
Zw
An isomorphismyu : M°(A) — T'(2) is defined byu(s1) = S1, u(s2) = So. Then

can be extended ofﬁf3 = {of3¢' | ¢, ¢' € MO(A)} by u(fs) = R. Indeed, by calcula-
tion, we have

x=1 (mod2) y =0 (mod2) _
c=1 (mod2) w =0 (mod2)*¥ ~¥*T2)-

S?R = RS1, S2R =RS,S1S2, S2S1R = RS, 2.
Lemma 5.9. u: Qg — L is bijective.
Proof. Sinceu : M°(A) — T'(2) is isomorphic,. is surjective. We set
'k ={X €'(2)| there existsX’ € T'(2) such thatXxR =RX'}.
By calculation,

FR:{<’;5))GF(2)

= (82,83, 5155).

x—y+z—w=0 (mod4)}

Supposeu(¢ fa¢') = u(fs). Since M4, (A) = (s2, 53, s152), we can assume thap| < 1.
If ¢ =1, thenRu(¢’) = R. Therefore¢’ = 1. In case|¢| = 1 we can assume = s;.
Then S1R = Ru(¢’)~L. This impliesS; € Tk, and a contradiction. Thug is injective.

O

Theorem 5.10. For f, f' € Qy, f ~ f’ if and only if there exist§ € PSL(2, Z)
such thatu(f) = S~1u(f")S.

Proof. It is sufficient to show tha§ is a member Bf (2) providéd: L, X €
PSL(2,Z) and S™'ZX € L . We can check this by calculation. Ll
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ExAMPLE.
(1) fasy (n € Z) are p-equivalent to one another. Indeed,

. 10\/10 1 0
“(f”f):RS'll:(u) (2n 1>:(4n12)'

For X, =(_3%, %), we have

10\_,a./ 1 0
(12)"X" <4n12>x"'

(2) It is easily seen thaf ¢ f' if |tracefu(f))| # |tracef(f"))|. For example,fss]s,
(n € Z) are not p-equivalent to one another since tratéfs;s»>)) = 8z +5. But the
trace is not a complete invariant.

The representatiop. has a topological meaning. L&t? be the 2-torus, and let
h: (T2 A) — (52, A) be a 2-fold branched covering with branch poigts Then the
branched covering fz¢’ : $2 — $2 can be lifted to a 2-fold covering : T2 — T2. It
is easily seen that(¢ f3¢') is a matrix representation of. : Hi(T?) — Hy(T?). This
is generalized in the next subsection.

5.2.3. branched coverings with(2, 2, 2 2}orbifolds Let (f, A) be a furnished
branched covering with (2,2,2 2)-orbifolds without restriction on the degre¢ of . In
this subsection, we construct a representaﬁurfzf — {TRT'|T,T' € T(2)}, where
R is some 2x 2 matrix. Using this representation, we can check the p-equivalence.

Fix a generator chain(, C», C3, C4. We first show thatf ~1(A) = AU Cy. ltis
clear thatAUC; C f~1(A) and thatANC, = . Since all critical points are of degree
two, #C; = 21—2. Therefore # Y(A) =4d—(2d—2) =2d +2 = 4+2A -2 = #AUCy).
Thus f~Y(A) = AU Cy.

Consider the induced homomorphism

Froe i (82— FHAY X)L omi(S2 — A, f(x)—Lmy (52— AL x),

wherey is a path betweenr and x( ). Séb = {a € m1(S2 — A, x) : |a| is ever},
where |a| is the length ofa with respect to the generator chaii, Cz, C3, C4). Re-
mark thatL, is independent of the choice of the generator chain. Using the inclusion
i S%— fYA) — S? - A, we defineL), = i;1(Ly). Thenmi(S? — fY(A), x) is
generated by{C?, C5, C5, u1, uz, ..., ur}, wherei, (C/) = C; (I = 1,2 3 4), andu;
corresponds to a closed curve enclosing a poinCef  such@h@tC5Chuius. . . ux

is trivial in S2 — f~1(A). From the fact that all critical points are of degree two and
fYA) = AU Cy, we obtain £, (L) C Lo. By ab(f,..) : ab(Ly) — ab(Ly), we
denote the abelization of, , : L, — L,. We set

_ 2 _ 2 _ 2 _ _
wy = Cf, wy = C5, w3 = C3, wa = C1C2, ws = C2C3,
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and
P12 2 ) 12 Il ] ) )
wy = Cl , Wy = C2 N U)3 - C3 s, Wy = C1C2, w5 - C2C3.

SinceL; is the free group generated HByi, wo, ws, wa, ws}, ab(Ly) is the free mod-
ule generated bywi, wo, ws, w4, ws}. Similarly, ab(L%) is the free module generated

by
/ / / / /
{w]_’ w27 w37 w4a w5v U, V1, U2, V2, ..., Uk, vk}a
——1 /
wherev; =C; “u;Ci. Then

I = ab(L)
(w1, wo, wa)

is the free module generated hy, and ws, and

ab(L5)
(wf, wh, wh, U1, V1, U2, V2. .., U, Vk)

L=

is the free module generated ly}, and w. Since
ab(fy.) ((w1, wo, wa, u1, v1, U2, V2. .., U, Vi) C (W1, W2, W3),

we can reduceib f,.) to f,. : L) — Ly, which is independent of the choice of
C/ andu; (depends on only the generator chaih, C», C3, C4) and the pathy). By
setting the basisvs, ws, we obtainu(f),, the matrix representation q_fw Namely,
the matrix representation efb f{ ) is

L, K
L (u(f)v 0 )
K * x /)’

where K = (wj, wp, wz) and K’ = (wj, wh, wg, u1, v1, Uz, Va. .., Ug, Ug). The matrix
w(f)~ is a member of Mat(2Z), the set of 2x 2 matrices with integer components.
When v is replaced byy’ = Ciy, we haveu(f), = —pu(f),, since C1w4C{1 =
CszCfl = wlwglwgl and C1u)5Cfl = C1C2C3C171 = w4w3w§1w2w;1. In case that
v = oy with a € Ly, it is clear thatu(f), = pu(f),. Thus the matrix representation
depends on onlydi, C,, C3, C4) up to +1, and is independent of. We consider the
matrix as a member of Mat(Z)/+1 and denote by:(f).
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ExavmpLE. Let (f, A) be a furnished branched covering with induced homomor-
phism

C, — €107t
Cy — Cy

frx g C5 — Cs .
ur — C1Co(C31Cy Crh2c, et
uy — C1C2C3C1Ct

Then
w) — C1C§Cfl = w4w2w;l
wh — C2 = wp
wh — C2 = ws
wy — C1C2CI1C2 = w4w;1w4

f,),’* . wg — (CoC3 = Wws .

up — C1Co(C31C 1 CrM2C 10t = wawg tw twaw, fwswy twy
v — Ci(C3teyterhet = waw, twswy twy twg tw !
Uy — C1C2C32_C51CIl = w4w1w;1
Uy — C]Z- = wi

Thus the matrix representation ob f.,(.) is

/!

wy, wE wp wh, w§ U1 V1 Uz U2
wef{2 0 0O O O O O O O
ws[ O 1 0 O O O O O O
w|l-1 0 0 0 0 -1 -1 1 1],
w| O 0 1 1 0 -1 -1 0 O
ws3\0 O O O 1 -1 -1 0 0

and we obtain

u(f) = (5 2)

For a homeomorphisng : (52, A) — (52, A), we similarly define the homomor-
phism ¢, : L, — L, and the matrix representatign(¢). Clearly, u(¢~2) = pu(¢) 2.
For a homeomorphisng’ : (52, f~(A)) — (S2, f~(A)) such that¢’(A) = A, we de-
fine the homomorphism;, , : Ij’z — Z’z and the matrix representatiqr(¢’). Therefore
if g = ¢f¢’, we havepu(g) = W@ p(f)(@’). When we extends’ to ¢ : (52, A) —
(52, A), we haveu(¢') = u(¢'). It is clear thaty is a representation of the subsemi-
group

Ba(2,2, 2 2)={f € Ba| f has (2 2 2 2)-orbifolfl U M(A).
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If fand g in B4(2 2 2 2) are p-equivalent, then there exiéts M°(A) such that
g = ¢ Lfp. Thereforeu(g) = pu(®)~1u(f)u(p). We will show the converse, that is, if
w(g) = (@) " tu(f)u(p) with T, = T,, then f andg are p-equivalent.

Let us take simple closed curvgs and 3, homotopic toC;C, and Co.C3 respec-
tively. Let as, o C §? — 31 be simple paths joining;, anda,, andas and as respec-
tively; let ap, o) C $? — 3, be simple paths joining; andaz, andas and a; respec-
tively. We can assume that;, o}, oz and a4, are disjoint except at the endpoints. Cut-
ting S2 alonga; and ), we obtain an annulu&’  with boundanyUd;’. We takeN*,

a copy of N . Identifying the boundaries &  and" (gluing &1 to &%, and o] to
&7), we obtain a 2-torug? and a branched covering 72 — S2 such thatho j = h,
where j is defined byj x( ) =x*, j(x*) = x for x € N. By A = {a1, ap, as, as}, we
denote the branch point df , namely = h=(A). Thenh,(m(T? — A, ¥)) = L, and
ho(m (T2 — (AU h=Y(Cy)), X)) = L}, whereh §) = x. Therefore there exists a cov-
ering f : T? — (AUKY(Cs)) — T? — A such thathf = fh. It is easily seen that
F can be extended to a covering : 72 — T2. Then the induced homomorphism
F. o Hy(T2%,7Z) — Hy(T?7) is identified with f, , : L), — L if a lift of ~ joins %
and f(%).

If ¢:(S2, A) — (52, A) is a homeomorphism, the lift : 72 — 72 is a homeo-
morphism. The matrix:(¢) is determined by the following. For somg we have

C1 — C1C,C1t C1 — Cy

(02)7« 14 C2 — C1 (02)ys 1§ Co2 = C2CsCyt
C3 — C3 C3 — C2
C1— C

(0'3)7_* : C2 — C2 .
C3 — Cyrertegt

Therefore

w, — w4u)2w4_1 wp — wq
w2 — wWa w2 — W3

(01)y.% 1§ W3 — w3 (02 s 0 w3 — wswawg *
w4 — Wa wy — w4w3w5_1
wg — w4w2_1w5 w5 — Ws
w1 — wi
w2 — w2

(03)y,« 1 § w3 — w;lwglwflw4w£lw5w§1 .
W4 — W4
ws — w;lw4w51w5w§l
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So,
@ L) Wa — w4 @ Wq — W4 — Ws
Yokt ws — w4+w5 ) vk Ws — Ws )
(©3),, 4 4 e
3 .
T ws — watws’
and

oy =t = (17) o= (g 1)

The matrix u(f) can be computed from the fundamental systemy of

Lemma 5.11. Let (f, A) be a furnished branched covering of degréde  with
(2, 2, 2 2)orbifold. SupposeC C S2 — A is a non-peripheral simple closed curyee.
C is a simple closed curve corresponding to a membeL gf Then all components
of f~1(C) are non-peripheral and isotopic to one another. Moregwiere existsd’
such thatf : C’ — C is of degreed’ for each component§’ € f~1(C).

Proof. Let~; be a simple path inD; joining two points of . Each component
of f=1(y;) is either a simple closed curve containing no pointsdof  or a simple path
with both endpoints ind  (recall that ~*(A) = AUC/). This implies the first assertion.
Each component of ~1(D;) is either an annulus or a disc. It is easily seen that has
common degree on the two boundaries of the annulus. Ul

Let us take the minimaky, k» > O satisfying

p2fi ((C1C")(D) =1 p2fi ((C2C3)2) (1) =1

By the Iemma,gl = plf]L ((C]_Cz)kl)(l) and g2 = PlfT ((C2C3)k2)(1) belong toL,.
Therefore there exist; < i %(g1), g5 € i, %(g2) such thatf, .(g)) = wil, f,..(gh) =
w’s‘z, where~ is the first spoke of the radial. Suppoge and g, are carried tacjwg4 +
cows and dywa + dows by the projectioan — Zz. Then E,*(61w4+czw5) = kw4 and
ﬁy,*(dlw4+d2w5) = kows. Sinceciwa+cows anddiwa+dows are linearly independent,
we obtain

-1

un=( e )

di/ko da/ko

For example,u(f3) in §5.2.2 is computed as follows. Sincgs);(C1C2) = C1C> -
(1.2)+(2 1) and (3)1(C2C3) = C1C5™* - (1, 2) +CoC3 - (2, 1), we have

Wy — 2wy

wg + 2ws — 2ws ’
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Therefore

= (222 -(59).

Lemma 5.12. Let 3 : S* — §? — A be a non-peripheral simple closed curve.
Then h=1(3) consists of two non-trivial simple closed cunfe3, c T2, which are
homotopic to each other iff2, but which are not homotopic if2 — A. Let 5’ be
another non-peripheral simple closed curve. If lifis 3’ € T2 are homotopic in7?,
then 3 and 3’ are isotopic inS? — A.

Proof. If 3 is a simple closed curvg, satisfying 5o N a1 = Bo N o) = 0, then
the assertion is true. In general, there exists a homeomorphisifs?, A) — (52, A)
such thatg(3) = 3o. Since is lifted to a homeomorphism : (T2, A) — (T2, A), the
theorem is true. ]

Remark. From this lemma, there exists an injection from the set of isotopy
classes of non-peripheral simple closed curvesin- A to the set of isotopy classes
of non-trivial simple closed curves if2. The class of a non-trivial simple closed
curve in T2 is determined by a pair of relatively prime intege(@. Let 5 be a non-
peripheral simple closed curve ¢ — A4, and 3 be a component of~1(3). By c(5),
we denote the clas§) of B. If 8 is a component off ~1(8), then pu(f)c(3’) = c(B).

Theorem 5.13. Let (f, A) and (f’, A) be furnished branched coverings with
(2, 2, 2 2)orbifolds. If there existsy, € A such that f(a;) = f/'(a) and if u(f) =
w(f"), then f andf’ are equal inBy .

Proof. We can assume that . Consider a universal covering: R? — T2
such that

1 1 11
hOT<07 5) :alahOT(oao):CZthoT(EaO) :ag,h07'<§, E) = dy,

1 1
hOT(Ox [O,E}) :al,hOT([O,E} ><0> = ap,
1 1 1 1
hOT(EX [O,E}) :o/l,hOT([O,ﬂ XE) = aj.

Then forxy, x € R?,

and

T(x1) = 7(x2) © x1 —x2 € 72,
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hot(xy) =hot(x2) & x1—x2 € 72 or x1 +xp € 72.

We seth =f §). Let b be the point in{(x,y)|0 < x < 1,0 < y < 1} such that
hoT(b)=b. Then

Foix e p(f)x)+b

is considered as a mapping &F to itself, and two (branched) coverings: T2 — T2,
F : §2 — §? are induced byF. On the other handf is lifted t¢ : 72 — T2, and
further to f : R2 — R? such thatf(0, 0) =b. If x; — x, € Z2, then

Fx1) — fx2) = u(f)(x1 — x2)

since u(f) is considered ay. : m(T% %) — m(T2 F(%)). In particular, for alattice
point x; (i.e. a point inZ?), we have f(x1) = F(x1). A 1/2-lattice pointis a point of
1/2 72 = {(x/2,y/2)| x,y € Z}. Let x; be a ¥2-lattice point. For anyx € R?, we
have h o 7(xy + x) = h o 7(x1 — x). Thereforeh o 7 o f(x1+x) = ho7o f(x1 — x).
Consequently,}‘(xl +x)+ }(xl —x) € Z?, and that is a constant function with respect
to x. Consideringe =0 and =x;, we have é"(xl) = }(2x1)+l3 = }(x1+x)+}(x1—x).

In other words, ify1 + y2 = ys € Z2, then f(y1) + 7 (y2) = 7(y3) + b = F(y) + F(32).

In particular, we haveF = f on the J2-lattice points. Therefor&® and are locally
equivalent.

The homeomorphismp = F~1o F satisfiesF = f o ¢ and ¢(x1) = x; for
x1 € 1/2 72 If x1 + x5 = x3 € 72, then ¢(x1) + d(x2) = x3. Therefores induces the
homeomorphisms : 72 — 72 and ¢ : S2 — 2 such thatF' = fod and F =f o ¢.

From the above remark, for a non-peripheral simple closed cdrie S — A, a
component off ~(3) is isotopic to a component af ~1(3). Therefored(a)Ud(an)U
d(ah) U o(ah) is isotopic toas U az U o U o with A kept fixed. Consequentlyp is
isotopic to the identity relative tat . This completes the proof. U

Corollary 5.14.
(1) Suppose thatf, f’ € B, are branched coverings witt2, 2, 2 2)orbifold. Then f
and f’ are p-equivalent if and only if’; = T, and there existsS € I'(2) such that
u(f) = S~ 1u(f)s. i
(2) Suppose thatf, f' € B, are branched coverings witl2, 2, 2 2}orbifold and f
has a fixed point inA . Theff, A) and (f’, A) are equivalent if and only if they are
locally equivalent and there exist$ € PSL(2, Z) such thatu(f) = S~ 1u(f")S.

Proof. The first half is an immediate consequence of the previous theorem. The
last half is proved as follows.

Suppose f, A ) andf{, A) are locally equivalent and there(f) = S~*u(f’)S for
someS € PSL(2,Z). Without loss of generality, we may assunfea, ( )fHa;) for
k=12 3 andf ¢4) = f'(as) = as. Recall thatoi(as) = 02(as) = a4. Since PSL (27)
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is generated by(19) and (31), we haveu(f) = u(s~1f’s) for somes € (o1, 02).
Applying the previous theorem, we see thiat  afidare equivalent. ]

Remark. Unlike Theorem 5.10, in general, it is untrue that a matsix €
PSL(2,7Z) with u(f) =S"u(f")S belongs toI’ (2). For example, we set

x=(39) amax=(29)(32)=(22).

Then X andX’ induce two branched coverings /' € B, such thatf § ) =f"(ax) =

ap for k=12 3 4. Since
11 1-1\_ ,
(02)*(o4)=x

we conclude f, A ) andf’, A) are equivalent. However, there exists fie I'(2) such
that X =S~1X’S, and hencef ang’ are not p-equivalent irB,.

We turn back to the examplé¢s in §5.2.2. We say two matriceX and i
are equivalentif there existsS € PSL(2, Z) such thatX =S~YS§.

For two given matricesX and i, we have an algorithm to check whether
X andY are equivalent. If tracé & , we can wriie (25;" %), wherex is an
integer,z an odd integer;, an even integer ar@k (2x +k)— yz = 2. The eigenvalues
area = (k+y/m)/2,a@= (k—/m)/2, wherem =k*-8. Let (;!) be an eigenvector with
eigenvaluew, and (¥}) an eigenvector with eigenvalie. We have¢ = ai/a; = (4x +
k+/m) /22, € = a}/ay = (4x +k — /m) /2. We say¢ is the baseof X. Remark that
if z,4x+k and y are relatively prime angt  is not a square, the minimal polynomial
of &, € is zt? — (4x +k)t — y. Then thediscriminant D(¢) = (4x +k P +4zy =m. If b is
the greatest common divisor of x4 k+y , thén¢) € m /b2

Suppose there exists (¥ 5) € SL(2,Z) such that =S—'yS. ThenX andy
have the common eigenvalues @. By (22) (Zi) we denote eigenvectors of  corre-
sponding toa,&. We write n = by/b, and 7 = b}/b5. SinceS(gi) is an eigenvector of
Y with eigenvaluea, we have

_ak+b
T cE+d

(M n

We say two algebraic numbegsand n are modularly equivalenif they have the re-
lation (I) with ad — bc = 1. Conversely, suppos€ antl have the same eigenvalues.
If £ andn are modularly equivalent, thek arld  are equivalent.

Thus our problem is concerned with the arithmetic of quadratic number fields. We
consult a textbook of number theory, for example, Section 2.7 of [2].



THE THURSTON EQUIVALENCE 607

Consider the case: < 0. Sincek is oddk =t1. This case has a special sig-
nificance: the condition tragg f) = +1 is necessary and sufficient for,(A ) to be
equivalent to a rational map [4].

Proposition 5.15. If f € Qg satisfiestraceq(f)) = £1, then f is equivalent to
either fas, * Or 51 fas2.

Proof. We first see that

p(fasy ) = <_11 5) s pil(s1f352) = (1 _02) :

The bases ar¢—1—+/=7)/2, (1+/-7)/2.

Recall the fundamental domaih  {z+v/—1y|y >0, —-1/2 < x < 1/2, x?+y? >
1 (x?+y?>1if —1/2 < x < 0)} of the modular groupPSL (Z). By calculation,
we have only one quadratic numbér= (1 ++/—7)/2 € P such thatD ) = —7. Set
p(f)=X = (> 2% ). Since—m =7 is a prime,D ) the discriminant of the basg¢
is m = —7. Remark thatD §) = D(n) if £ andrn are modularly equivalent. Therefore,
if z> 0, there existsS £¢%) € PSL(2,Z) such thatd = (a& +b)/(c€ +d). If z <0,
then ¢ is modularly equivalent to the complex conjugate éofAccording to the sign
of z, f is equivalent tosy fas, Or fas, . O

Proposition 5.16. Supposen = k%> — 8 > 0 is square-free. By:, we denote the
number of ideal classes of the quadratic number f@IW), and by#h’, the number
of ideal classes in the narrow sense. Then

W _ LS € 9| traceu(f) = £k}

< h.

~

In particular, in the caseh =1,

#{f € Qp, | traceu(f) = £k} =i

~

Proof. We haveh quadratic numbefis, 05, ..., 8, such that for any quadratic
number¢ with D(€) = m, there exist and integees b, c,d  with = (a+b)/(c£+d)
andad—bc = +1. Sincem is square-free, the discriminant of the basg(¢? is equal
to m. Therefore the base ¢f(f) is modularly equivalent to one @i, 65, ..., 01,

If h=H, thend; andd;* are modularly equivalent. Consequently,

S €9, tracen(f) = k)

~

<hn.
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If h"=2h, then( *,3) and (% -?) are not modularly equivalent, and hence

~

In the casen > 0, the modular equivalence can be checked by the continued frac-
tion expansions of and.

ExAMPLE.
(1) k=5,m =17. The bases of

- 5 2 4 9 2
1l fa5 51) = <—1 0) = X, p(sifasy tsy 5P = <—19 —4> o

are¢ = (-5—V/17)/2, n=(-13-+/17)/38. The continued fraction expansions &f
and n:

Q) ez 5+ L = 14 1
2+17 77 1+ 1 k)
[ 171
+
1+6
where
3+4/17 1
K = = = - .
(K) 0 > [3L1]=3+ 1
1+
1+1
0
By (J) and (K),
§_f99f5 -1 _ T0+4
T o9+1 0 1T 29+3 VT 2941

Therefore a matrixS € GL(2, Z) satisfying X =S~1XS is written in the formS =
(% 4)". On the other hand,

-1
_ (17 4 17 4
=(54) «(B5)
So, we finally obtain

(4 (58 (B (Y
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Since the determinant of %, 4)" (1} 4) is 1 for oddn, we havefss; 's; ~
s1f3sfls{1sf.

In general, all matriceX € L satisfying trac&K =5 are modularly equivalent, for
h' = 1. Indeed, forX and’ , there exi$t T € GL(2,Z) such thatY =T~'XT,X =
S~1XS and|S| = —1. Thus eitherT| =1 or |ST| = 1.
(2) k =13 m =161. The bases of

_ 13 2 _ 13 -2
nlw ) = (1 5) =X wloasom )= (77 ) =7

are¢ = (—13—v/161)/2, n = (13++/161)/2. The continued fraction expansions f
andn:

1
52—13+1+0, n=12+ n
1+5
where
9++v161
9:%:[5,221225111 1.

By a calculation similar to the previous example, we conclude that a maétrig
GL(2,Z) satisfyingy =S~1XS is written in the forms =( 23832 712)"(—19). Since
S| = -1, we havefgsz_lsf oA S]_fgsgsl_s.
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