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1. Introduction

In this paper we investigate the ‘homotopical’ dynamics of branched coverings on
2. Some branched coverings are expressed by the forms of rational functions on Rie-

mann sphere, the dynamics of which have been deeply studied as the holomorphic
dynamics. We will discuss not only rational maps but topological branched coverings
from a homotopical viewpoint.

A real rational function is considered as a piecewise-monotone mapping onR. As
to the dynamical system of a piecewise-monotone mapping onR, we have a powerful
invariant, the kneading sequence. The real line is divided into intervals by the turn-
ing points (i.e. points at which the sign of the derivative changes); the mapping is
monotone on each interval. A point inR visits the intervals by iteration of the map-
ping. Roughly speaking, whole dynamics are determined by the behavior of the turning
points. The kneading sequence is defined as the sequences of intervals which the or-
bits of the turning points visit (in this paper the exact definition is not necessary. For
example, the reader may refer to [9]).

The classification by the kneading sequences is weaker than the conjugacy clas-
sification. In fact, one can consider the kneading sequence as a ‘homotopical invari-
ant’, and there exist two maps which are not conjugate to each other but which have
the common kneading sequence. For simplicity, let us consider the case that all turn-
ing points are eventually periodic. We define an equivalence relation as follows: Let

1 and 2 be continuous piecewise-monotone maps onR, and we denote the sets of
the turning points by 1 and 2. Since the turning points are eventually periodic,
the forward orbit ={ ( ) | ∈ > 0} is a finite set. We say 1 and 2 are
equivalent if there exist order-preserving homeomorphismsφ1 φ2 : R− 1 → R− 2

such that 2 ◦ φ1 = φ2 ◦ 1. Then it is easily seen that1 and 2 are equivalent if and
only if their kneading sequences agree.

In the case of branched coverings on2, we can generalize the equivalence re-
lation, though we do not have a good invariant. In [12], Thurston introduced the
equivalence relation, and showed a topological condition that a given branched cov-
ering is equivalent to a rational map ([4]). The equivalence relation, which we call the
Thurston equivalence, is the main object in the study of this paper.
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Throughout this paper, all branched coverings and homeomorphisms on2 are
supposed to be orientation-preserving.

DEFINITION. Let : 2 → 2 be a branched covering on the 2-dimensional
sphere. By , we denote thecritical set of , or the set of critical points of . A
successor of a critical point is said to be apostcritical point. The set of postcritical
points is called apostcritical set:

= { ( ) | ∈ > 0}

We say ispostcritically finite if # <∞.

From now on, we consider the case where is postcritically finite.

DEFINITION. Let and be postcritically finite branched coverings. We say
and areequivalentif there exist homeomorphismsφ1 φ2 on 2 such thatφ ( ) =

( = 1 2), φ1 andφ2 are isotopic relative to , and

( 2 ) −−−−→ ( 2 )yφ1

yφ2

( 2 ) −−−−→ ( 2 )

commutes. This equivalence relation is called theThurston equivalence. (We will give
an extended definition later.)

A simple question: Can we decide whether given two postcritically finite branched
coverings are equivalent or not?

As mentioned above, in the 1-dimensional case, the kneading sequence is a good
invariant. Unfortunately, however, we cannot use the kneading sequence in our case.
Obviously, we have trivial invariants: the degree of a branched covering and the num-
ber of the postcritical points. Moreover, ‘the local dynamics’ of ∪ is one of
simple invariants. For example, let us consider the 1-parameter family ( ) =2 +
( ∈ C). The critical set is ={0 ∞}. The infinity is superattracting fixed point. If

= −2, then 0 is strictly preperiodic and2
−2(0) = 2 is a fixed point: 07→ −2 7→ 2 7→

2. If = −1, then 0 is 2-periodic: 07→ −1 7→ 0. Thus their local dynamics are differ-
ent, and −2 is not equivalent to −1. Besides, we have parameters at which the maps
have the identical local dynamics. Indeed, there exist three parameters̄ such that
0 is 3-periodic: 07→ 7→ ( ) 7→ 0; one parameter is real and the other two are
complex conjugate. Are these polynomial and̄ equivalent to one another?
The negative answer is obtained from Thurston’s theory ([12], [4]) via the Teichmüller
space. Furthermore, we can answer that by seeing the shape of their Julia sets ([8]).
But these approaches are not so direct, and are not useful for branched coverings not
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equivalent to rational maps. The aim of this paper is to give a direct proof from a
purely topological standpoint. Moreover, our purpose includes finding an algorithm to
check the Thurston equivalence. To this end, we need a presentation of a branched
covering, by which we carry out a calculation.

We give an easier example.

EXAMPLE. Consider two polynomials

1( ) = 3
√
−3

(
− exp

(
π
√
−1/6

)
√

3

)3

2( ) = −3
√
−3

(
− exp

(
−π
√
−1/6

)
√

3

)3

The postcritical sets are 1 = 2 = {0 1 ∞}. Their local dynamics are identical:

∞ 7→ ∞ 7→ 0 7→ 1 7→ 1

where = exp
(
±π
√
−1/6

)
/
√

3.
Problem: Are 1 and 2 equivalent to each other?
The answer is negative. In fact, we show a stronger statement:1 and 2 are

not weakly equivalent, that is, there does not exist homeomorphismsφ1 φ2 such that
φ ( 1) = 2 and 2 ◦ φ1 = φ2 ◦ 1. Supposeφ1 φ2 are homeomorphisms such
that φ ( ) = for ∈ {0 1 ∞}. Let γ be a simple path between 0 and 1 in

= Ĉ − {0 1 ∞}. The pathγ is unique up to homotopy in . Thenφ2(γ) is also
a simple path between 0 and 1, which is unique up to homotopy. Each of the inverse
images 1 = −1

1 (γ) and 2 = −1
2 (φ2(γ)) is a topological tree with three endpoints

0 1 and one 3-branch point , where = exp
(
±π
√
−1/3

)
. If 2 ◦ φ1 = φ2 ◦ 1,

then φ1( 1) = 2. But since 1 and 2 have the reverse orientations, it is impossible
for an orientation-preserving homeomorphism.

This way is not valid for the example given earlier. Indeed, the three polynomials
are weakly equivalent to one another, that is, there exist homeomorphismsψ1 ψ2 of

2 to itself which fix such that ◦ ψ1 and ◦ ψ2 are equivalent to and ¯

respectively. Then a new problem comes upon us: Find a polynomial equivalent to◦
ψ1◦ψ1, a polynomial equivalent to ◦ψ1◦ψ2, a polynomial equivalent to ◦ψ2◦ψ1,
a polynomial equivalent to ◦ ψ2 ◦ ψ2, a polynomial equivalent to ◦ ψ1 ◦ ψ1 ◦ ψ1

and so on. When we work on this problem, it is efficient to consider the set

ˆ = {ψ1 ◦ ◦ ψ2 |ψ1 ψ2 : ( 2 )→ ( 2 ) homeomorphisms}

Additionally, the difference between the two examples also comes from the struc-
tures of the mapping class groups. For a finite set⊂ 2, we denote, by ( ), the
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mapping class group, i.e. the group of isotopy classes of homeomorphisms of2 −
to itself. A subgroup 0( ) ⊂ ( ) is defined as the subgroup of isotopy classes of
homeomorphisms by which each point of is fixed. Then0( ) is trivial if # = 3,
and 0( ) is not trivial if # = 4. Therefore, in the case # = 4, a path with end-
points in is not unique up to homotopy. In order to study the Thurston equiva-
lence in this case, we have to use some more structure of the mapping class group.
We introduce the mapping class semigroup, which is an extension of the mapping
class group. The mapping class semigroup is divided into subsets which are written
as ={φ1 φ2 |φ1 φ2 ∈ 0( )}. We will investigate the structure of . In partic-
ular, we obtain a complete classification in the case is of degree two with # = 4,
and in the case has (2 2 2 2)-orbifolds.

In Section 2 we will define three equivalence relations: the Thurston equivalence,
the weak equivalence and the local equivalence, which are the main objects of this
paper.

Section 3 gives the definition of the branch group and the induced homomor-
phism. The branch group is a generalization of the fundamental group. For a universal
covering ρ : → , the branch group ( ) of degree is defined as the group
of covering transformations of

⊔
=1 → , where

⊔
=1 is the disjoint union of

copies of . A branched covering :2 → 2 of degree induces a homomor-
phism † : π1( 2 − )→ ( 2 − ). We will explain why the homomorphism is
considered as a presentation of the branched covering .

In Section 4 we study the Thurston equivalence by using the mapping class group.
This is applied to special cases in Section 5.

REMARK. After writing this paper, the author discovered the result of Brezin et
al. ([3]). They enumerated hyperbolic nonpolynomial rational maps of degree two or
three with four or fewer postcritical points.

As well as the enumerating problem, Pilgrim recently developed a general combi-
natorial theory of branched coverings ([10]).

2. Basic definitions

In this paper, we assume mappings on2 to be orientation-preserving.

DEFINITION. Let be a postcritically finite branched covering. Suppose is a
finite subset of 2 including such that ( )⊂ . Then we say is ageneralized
postcritical setof , and a pair ( ) is afurnished branched covering.

Proposition 2.1. Let ( 1) and ( 2) be furnished branched coverings. Sup-
pose that there exist homeomorphismsφ1 φ2 on 2 such thatφ ( 1) = ( 2) ( = 1 2)
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and ◦ φ1 = φ2 ◦ , namely, the following diagram commutes:

( 2
1) −−−−→ ( 2

1)yφ1

yφ2

( 2
2) −−−−→ ( 2

2)

If φ′2 is a homeomorphism isotopic toφ2 relative to 1, then there exists a homeomor-
phismφ′1 isotopic toφ1 relative to 1 such that ◦ φ′

1 = φ′2 ◦ .

Proof. Let : 2 × [0 1] → 2 denote an isotopy betweenφ2 and φ′2. Take
a point in 2 − 1. Then γ = ({ ( )} × [0 1]) is a curve joiningφ2( ( )) and
φ′2( ( )). There is a component of−1(γ) which has an endpointφ1( ). We denote
the other endpoint byφ′

1( ), and the correspondence7→ φ′1( ) is the required home-
omorphism.

DEFINITION. Let ( 1) and ( 2) be furnished postcritically finite branched
coverings. We say ( 1) and ( 2) are equivalent if there exist homeomorphisms
φ1 φ2 on 2 such thatφ ( 1) = 2 ( = 1 2), φ1 and φ2 are isotopic relative to 1,
and ◦ φ1 = φ2 ◦ . This equivalence relation is called theThurston equivalence.

REMARK. In the preceding definition we can replace ‘isotopic’ by ‘homotopic’
because of the fact that two orientation-preserving homeomorphisms on an orientable
surface are homotopic if and only if they are isotopic ([5]).

By Proposition 2.1, if is equivalent to , then the iteration is equivalent to
.

DEFINITION. Let ( 1) and ( 2) be furnished postcritically finite branched
coverings. We say ( 1) and ( 2) are weakly equivalentif there exist homeomor-
phismsφ1 φ2 on 2 such thatφ ( 1) = 2 ( = 1 2) and ◦ φ1 = φ2 ◦ .

DEFINITION. Let ( ) be a furnished branched covering. For a point in2, the
degreeat , which we denote by ( ), is the integer such that is -to-1 map on
− { }, where is a small neighborhood of .

We define a matrix ( ) : × ( ∪ )→ {0} ∪ N as

( )( ) = 0 if ( ) 6=
( )( ) = if ( ) = ( ) =

which is called thetransition matrixof ( ). The relative homology group 2( 2 2−
; Z) is considered as the free module generated by . Therefore we consider

2( 2 2− ( ∪ ); Z) is included in 2( 2− −1( ); Z). The transition matrix is a
matrix representation of the induced homomorphism∗ : 2( 2 2− ( ∪ ); Z) ⊂
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2( 2 2− −1( ); Z)→ 2( 2 2− ; Z).
The transition matrix is expressed by a directed graphT ( ), namely,T ( ) =

( ∪ {( ( )( ))|( ) ∈ ∪ }) is the pair of the vertex set and the edge
set: we consider ( ( )( )) as an arrow from to with weight ( )( ).
We say the directed graph is thelocal typeof ( ).

Two furnished branched coverings ( ) and ( ) are calledlocally equivalent
if they has the same local type, that is, there exists a one-to-one mapping :∪ →
∪ such that ( )( ) = ( )( ( ) ( )) for all ∈ ∪ .

EXAMPLE.
(1) ( ) = . The critical set is equal to the postcritical set = ={0 ∞}. The
transition matrix of ( ) is

(
0

0

)
.

(2) ( ) = − . = = {0 ∞}. The transition matrix of ( ) is
(

0
0

)
.

(3) ( ) = 2 +
√
−1. The postcritical set is ={

√
−1 −1 +

√
−1 −

√
−1 ∞}. The

transition matrix of ( ) is




0 0 0 0 2
1 0 1 0 0
0 1 0 0 0
0 0 0 2 0


.

REMARK. Clearly,

equivalent⇒ weakly equivalent⇒ locally equivalent

In general, the reverse arrows fail. Some examples will be given later.

The following fact is well-known.

Proposition 2.2. Let be a branched covering of degree . Then

∑

∈ −1( )

( ) =(A)

From the Riemann-Hurwitz formula, we have

∑

∈
( ( )− 1) = 2 − 2(B)

Therefore, if ≥ 2, then # ≥ 2 and # ≥ 2.

The case # = 2 is almost trivial.

Proposition 2.3. Let ( ) be a furnished branched covering of degree≥ 2.
If # = 2, then ( ) is equivalent to either( {0 ∞}) or ( − {0 ∞}).
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Proof. By Proposition 2.2, = . We write ={ }. If # > 2, then∑
∈ ( ) = 2 − 2 + # ≥ 2 + 1. Since ( )⊂ , this contradicts (A). Thus

# = 2; we write ={ }. By (A) and (B), ( ) = ( ) = . From (A), we have
( ) 6= ( ). We can assume that ( ) = and ( ) = . Then−1( ) = { } and
−1( ) = { }. Either ( ) = or ( ) = . If ( ) = , then = ; if ( ) = , then
= . Therefore = , and we have two possibilities: (1)7→ 7→ and (2)
7→ 7→ .

Let be a simple path joining and . Then−1( ) is the union of simple paths

1 2 . . . joining and , where we take ’s such that and+1 are neighboring.
By , we denote the simply connected domain bounded by∪ +1. We take a homeo-
morphismφ1 : 2→ Ĉ such thatφ1( ) = 0 φ1( ) =∞ andφ1( ) = {0≤ ≤ ∞} ⊂ Ĉ.
Since : → 2− is homeomorphic, we can define a homeomorphism

φ2 : →
{

exp
(√
−1θ

) ∣∣∣ 0≤ ≤ ∞ 2π( − 1)
< θ <

2π
}

as ◦ φ2( ) = φ1 ◦ ( ), where ( ) = in the case (1) and ( ) =− in the case
(2). Then we obtain the homeomorphismφ2 : 2→ Ĉ by φ2| = φ2 , which satisfies
◦ φ2 = φ1 ◦ . Since is isotopic to with the endpoints fixed,φ2 is isotopic toφ1

relative to .

3. Branch groups

For a homeomorphismφ : 2 − → 2 − , the induced homomorphism
φ∗ : π1( 2 − ) → π1( 2 − ) is a ‘representation’ ofφ, provided is a
fixed point of φ. Indeed, we can reconstruct the homeomorphismφ from the homo-
morphismφ∗ up to isotopy. However, if a furnished branched covering ( ) is of
degree more than one, it is hard to imagine the original mapping from the induced
homomorphism ∗ : π1( 2 − −1( ) ) → π1( 2 − ). Therefore we introduce the
branch groups, which are closely related to the branched covering. Roughly speaking,
the induced homomorphism† on the branch group is something like the ‘inverse’ of

∗ : π1( 2− −1( ) )→ π1( 2− ).
Let ( ) be a furnished branched covering of degree . Byρ : → 2− , we

denote the universal covering. Then there exist mappings1 2 . . . : → such
that

− ρ−1 −1( ) ←−−−−yρ
yρ

2− −1( ) −−−−→ 2−

commutes and −1(ρ( )) = {ρ( 1( )) ρ( 2( )) . . . ρ( ( ))} for any ∈ . Indeed,
let us take ∈ and 1 2 . . . ∈ such that (ρ( )) = ρ( ). Since : 2 −

−1( )→ 2 − is a covering, so is ◦ ρ : − ρ−1( −1( ))→ 2 − . Therefore
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there exists the covering : → − ρ−1( −1( )) that satisfies ( ) = . Namely,
is defined as follows. Letγ be a path between and . There exists a path ˜γ such

that ◦ ρ(γ̃) = ρ(γ) and γ̃ has an endpoint . We define ( ) as the other endpoint
of γ̃. We call ( 1 2 . . . ) a system of liftsof −1. The idea of the branch group
is founded on the existence of these mappings.

NOTATION. We denote the set ofwords of symbols by

= {1 2 . . . } = { 1 2 . . . | ∈ {1 2 . . . }} for = 1 2 . . . and 0 = {∅}

Let denote the set of the bijections of to itself. Then is the symmetric
group on elements with the product ′ = ◦ ′. Remark that 0 is a trivial group.

The space × is the disjoint union of copies of . Since 0 consists
of one point, × 0 = . A projection ξ : × → is naturally defined as
ξ( ) = . We consider the mappingρ = ρ◦ξ : × → 2− . Although × is
not connected, we may considerρ : × → 2− as a covering. By (2− )
(we write for simplicity), we denote the group of covering transformations ofρ .
In other words, consists of homeomorphisms :× → × satisfying
ρ ◦ = ρ .

For a covering transformation ∈ , a covering transformation1 ( ) ∈ 0 is
defined by

7→ ξ( ( ))

for each ∈ , and a permutation 2 ∈ is defined by

2 ( ) = ′ ⇐⇒ ( ) = ( 1 ( )( ) ′)

We consider 1 as a mapping of to 0. Conversely, ifτ ∈ 0 and ∈ are
given, a covering transformation ∈ is determined by ( ) = (τ ( )( ) ( )).
Note that 1 = and 2 = id if ∈ 0. Therefore, as a set, is the direct
product 0 × . In fact, the group is a semi-direct product of0 and .
For ∈ , suppose (′ ′) = ( ). Then 2 ( ′) = and 2( −1)( ) = ′,
so ( 2 )−1 = 2( −1). Since 1( −1)( )( ) = ′ and 1 ( ′)( ′) = , we have

1( −1)( ) = 1 ( 2
−1( )). For ′ ∈ , we have

′( ) = ( 1
′( )( ) 2

′( )))

= ( 1 ( 2
′( )) 1

′( )( ) 2 2
′( ))

Therefore

1( ′)( ) = 1 ( 2
′( )) 1

′( ) 2( ′) = 2 2
′(C)
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Proposition 3.1. For ∈ 0 and ∈ {1 2 . . . }, there uniquely exist ′ =
( ) ∈ 0 and = ( ) ∈ {1 2 . . . } such that ◦ = ′ ◦ .

Proof. Take a point ∈ . There uniquely exists such thatρ ◦ ◦ ( ) =
ρ◦ ( ). Let ′ denote the covering transformation such that′( ( )) = ( ( )). Since
′ ◦ and ◦ are covering, we have′ ◦ = ◦ .

It is easily seen that (· ) : {1 2 . . . } → {1 2 . . . } is a permutation. For
′ ∈ 0, suppose = ( ) and ′ = ( ′). Then ◦ = ( ) ◦ and ′ ◦ ′ =

( ′) ◦ . Therefore ′ ◦ ′ ◦ = ( ′) ◦ ◦ = ( ′) ◦ ( ) ◦ . Consequently,

( ′ ) = ( ( ) ′) ( ′ ) = ( )(
′) ◦ ( )(D)

The induced homomorphism† : → +1 is defined for = 0 1 2. . . . In this
paper, however, we deal with only the case = 0.

For ∈ 0, we define ′ ∈ 1 by 1
′( ) = ( ) and 2

′( ) = ( ). Then
′( ( ) ) = ( ◦ ( ) ), where = ( ). By Proposition 3.1,′ is unique. By (C)

and (D), it is easily seen that the mapping† : 7→ ′ is a homomorphism.
We say is the -th -branch group. The homomorphism † is the induced ho-

momorphism.

REMARK. The definition of † : → +1 for general is as follows. A left
action of on

= { ∈ | (ρ ( )) = (ρ ( ′)) ρ ( ) 6= ρ ( ′) for any 6= ′ ∈ }

is defined by ( · )( ) = 1 ( 2
−1( ))( ( 2

−1( ))). A mapping : −1 →
is defined by ( )( ) = ( ( )). Then †( ) is characterized as the element that
satisfies †( ) · ( ) = ( · ).

Now the induced homomorphism depends on a system of lifts. Therefore we may
write † = † for a system of lifts = (1 2 . . . ). For two systems of lifts =
( 1 2 . . . ) and ′ = ( ′

1
′
2 . . . ′ ), we define = ( ′) ∈ 1 as follows:

2 ( ) = if ρ = ρ ′ ; 1 ( ) = ′

Note that ( ′ ) = ( ′)−1.

Proposition 3.2. We have

†( ) = ( ′)−1
′ †( ) ( ′)

for ∈ 0.
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Proof. We write (· ·) = (· ·) and (·) = (·) for a system of lifts .
Suppose ∈ 0. We set = 2 ( ) ′ = ( ) and ′′ = ′ ( ). Then ρ =

ρ ′ ρ ′ = ρ andρ ′
′′ = ρ ′ . Thusρ ′ = ρ ′

′′ , and so ′′ = 2 ( ′). Therefore

2( †( )) = 2( −1
′†( ) ).

We set ′ = ( ) and ′′ = ′ ( ). Then ′ = ′ and ′′ ′ = ′
′′ . Since

1 ( ) = ′ and 1 ( ′)−1 ′
′′ = ′ , we have 1 ( ′)−1 ′′

1 ( ) = ′ Thus

1 ( ′)−1 ′′
1 ( ) = ′ [ = ( ) = 1( †( ))( ) ]

and so

1( †( ))( ) = 1 ( 2
−1 ◦ ′ (· ) ◦ 2 ( ))−1

′
2 ( )( ) 1 ( )

= 1( −1)( ′ (· ) ◦ 2 ( )) ′
2 ( )( ) 1 ( )

= 1( −1
′ †( ) )( )

The proof is completed.

Conversely, suppose ∈ 1. Then it is easily seen that there exists a system of
lifts ′ such that †( ) = −1

′ †( ) .
For a homeomorphismφ : ( 2 ) → ( 2 ) we can similarly defineφ† : →
( = 0 1). In fact, we chooseψ : → a lift of φ−1. For ∈ 0, a cover-

ing transformationφψ †( ) is defined such thatφψ †( )ψ = ψ . Thenφψ † : 1 → 1

is defined by 1(φψ †( ))( ) = φψ †( 1 ( )) and 2(φψ †( )) = 2 . For homeomor-
phismsφ φ′, we have (φ φ′) ′ † = φ′ψ′ † †φψ † provided = ( 1 2 . . . ) and
′ = (ψ′

1ψ ψ′
2ψ . . . ψ′ ψ) whereψ ψ′ are lifts of φ φ′. Indeed, for ∈ 0,

1(φ′ψ′ † †φψ †( ))( ) = φ′ψ′ † φψ †( )

2(φ′ψ′ † †φψ †( ))( ) =

where satisfies ◦ φψ †( ) = φψ †( ) ◦ . When we write

′ = φ′ψ′ † φψ †( )

we have ′ψ′ ψ = ψ′ ψ . Therefore

1((φ φ′) ′ †( ))( ) = ′ and 2((φ φ′) ′ †( ))( ) =

Proposition 3.3. If φ φ′ are homotopic to the identity relative to, then there
exists ′′ a system of lifts such thatφ′ψ′ † †φψ † = ′′ †.

Proof. Let (· ·) be a homotopy between the identity andφ. We take a con-
tinuous mapψ(· ·) : × [0 1] → such thatψ(· 1) = ψ and ψ(· ) is a lift
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of (· )−1. Since = ψ(· 0) is a lift of the identity, is a member of 0. For
each ∈ , the path γ = ψ( ·) is the lift of the path (ρ( ) ·) with end-
points ( ) andψ( ). For each ∈ 0, the pathγ −1( ) has endpoints −1( ) and
ψ( −1( )). Sinceφψ †( ) = ψ ψ−1, we haveφψ †( )(ψ( −1( ))) = ψ( ), and hence
φψ †( )( −1( )) = ( ). Thereforeφψ †( ) = −1 for ∈ 0. Similarly there exists
′ ∈ 0 such thatφ′ψ′ †( ) = ′ ′−1 for ∈ 0. Define ′

1 by ′
1( ) = ( ′ ).

Thenφ′ψ′ †( ) = ′
1

′
1
−1 for ∈ 1.

Thus

φ′ψ′ † †φψ †( ) = φ′ψ′ † †(
−1)

= φ′ψ′ †( †( ) †( ) †(
−1))

= ′
1 †( ) †( ) †( )−1 ′

1
−1

The proposition follows from the remark just after the proof of Proposition 3.2.

Fix a basepoint ∈ 2 − and its lift ˜ ∈ ρ−1( ). The induced homomorphism
gives us the information of the behavior of loops in2 − . The 0-th branch group

0 is isomorphic to the fundamental groupπ1( 2− ). Let γ : [0 1]→ 2− be a
closed curve such thatγ(0) = γ(1) = . By γ̃, we denote the lift ofγ by ρ : → 2−

such that ˜γ(0) = ˜ , which uniquely determines the covering transformationγ ∈ 0

by γ(γ̃(1)) = γ̃(0). For ∈ 0, a path betweeñ and (̃ ) is uniquely determined up
to homotopy. Thus we obtain a homomorphismπ1( 2− ) ∋ γ → γ ∈ 0.

DEFINITION. Consider the graph in the plane

=

{
θ
√
−1 ∈ C

∣∣∣ 0≤ ≤ 1 θ =
2π

2 · 2π
. . . ( − 1) · 2π · 2π

}

A radial of is a continuous map : → 2− such that

−1( (0)) =
{ ( ·2π

√
−1/

)
| = 1 2 . . .

}

We say (0) is thebasepointof and a point of
( ·2π

√
−1/

)
is a radial points of

. The arc : [0 1]∋ 7→
( ·2π

√
−1/

)
∈ 2− is called the -thspokeof . Two

radials ′ are said to be homotopic if there exists a homotopy :× → 2−
such that (· 0) = (· 1) = ′ and (· ) is a radial of for 0≤ ≤ 1.

There exists a one-to-one correspondence between the radials of with basepoint
up to homotopy and the systems of lifts of−1. Indeed, for a radial we take the

lift ˜ by ρ such that˜(0) = ˜ . Then is determined by (˜ ) = ˜
( ·2π

√
−1/

)
= ˜ .

Let γ : [0 1] → 2 − be a curve withγ(0) = γ(1) = . Supposeγ1 γ2 . . . γ

are the lift ofγ by : 2− −1( )→ 2− with γ (0) = ρ( ˜ ). Then 2( †( γ))( ) =
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⇐⇒ γ (1) = γ (0). Thereforeα = γ −1 is a closed curve, where is the spoke of
. We have 1( †( γ))( ) = α. For a permutation ∈ , we say ( 1 2 . . . = 0)

is an orbit of if ( −1) = for = 1 2 . . . . Consequently,

Proposition 3.4. Let γ be a closed curve in 2 − with γ(0) = γ(1) =
. If there exists = ( 1 2 . . . ) an orbits of 2(( †)( γ)) ∈ , then

there exists closed curveγ′ such that : γ′ → γ is of degree and γ′ =

1( †( γ))( ) . . . 1( †( γ))( 2) 1( †( †))( 1).
In particular, if γ is a simple closed curve, then the number of the orbits of

2(( †)( γ)) is equal to the number of the component of−1(γ).

As for a homeomorphismφ, a radial is a path between andφ−1( ). The path
determines the isomorphism∗ : π1( 2 − )→ π1( 2 − φ−1( )) by γ 7→ γ −1.

Write φ † instead ofφψ †, whereψ is the lift of φ−1 by ρ such thatψ( ˜ ) = ˜(1), and
˜ is the lift of by ρ with ˜(0) = ˜ . Thenφ † is identified with

π1( 2− )
φ−1
∗−−−−→π1( 2− φ−1( ))

−1
∗−−−−→π1( 2− )

From now on we identify 0 and π1( 2− ) for simplicity. An element of
is written in the form

=
∑

∈
γ · ( ( ))

where γ is the element ofπ1( 2 − ) such that γ = 1 ( ( )), ( ) is the
element of such that 2 ( ( )) = (i.e. = 2

−1). Remark that the summation
is formal. For two elements =

∑
∈ γ · ( ( )) and ′ =

∑
∈ γ′ · ( ′( )),

the composition is

′ =
∑

∈
γ γ′ ( ) · ( ′( ( )))

DEFINITION. Let ( ) be a furnished branched covering. Fix a radial with
basepoint . We set ={ 1 2 . . . }, that is, we choose a mapping :
{1 2 . . . } → . Let us take simple closed curves1 2 . . . : [0 1]→ 2−
that satisfy the following: (0) = (1) = , ’s are disjoint except at , each
bounds a simply connected domain anticlockwise such that∩ = { } and
the product 1 2 . . . is null-homotopic in 2 − . Considering 1 . . . as ele-
ments ofπ1( 2− ), we obtain a generator set — the set{ 1 . . . −1} generates
π1( 2 − ) freely. We say ( 1 . . . ) is a generator chainof 2 − . Each ele-
ment ∈ π1( 2 − ) can be expressed in the form =ǫ(1)

(1)
ǫ(2)
(2) . . .

ǫ( )
( ) with

minimal, where ( )∈ {1 2 . . . − 1} and ǫ( ) = ±1. This expression is said to be
the minimal expressionof . We say| | = is the length of . For another genera-



THE THURSTON EQUIVALENCE 577

tor chain ( ′
1

′
2 . . . ′ ), there exists a homeomorphismφ : ( 2 ) → ( 2 ) that

pointwise fixes such thatφ∗( ) = ′.
The homomorphism † : 0→ 1 is determined by the following diagram:





1 7→ 1 1 · (1 1(1)) + 1 2 · (2 1(2)) + · · · + 1 · ( 1( ))

2 7→ 2 1 · (1 2(1)) + 2 2 · (2 2(2)) + · · · + 2 · ( 2( ))
...

−1 7→ −1 1 · (1 −1(1)) + −1 2 · (2 −1(2)) + · · · + −1 · ( −1( ))

where = 1( †( ))( ( )) and = 2( †( ))−1. This diagram is said to be the
fundamental systemof † with respect to the generator chain (1 . . . ).

EXAMPLE.
(1) Consider ( ) = with = . Let us set = 1 as the basepoint. We take a
radial such that the -th spoke is ( ) = exp

(
2π
√
−1( − 1) /

)
( = 1 2 . . . ),

and take a generator chain (1 2) such that 1 is homotopic to{| | = 1}. Then the
fundamental system of † is

1 7→ 1 · (1 ) + (2 1) +· · · + ( − 1 − 2) + ( − 1)

See Fig. 1 and 2.
Even if we take another radial with spokes ( ) = exp

(
2π
√
−1 /

)
, the fun-

damental system is unchanged; because and′ are homotopic. If we take a radial
′′ with spokes ′′ = ( = 1 2 . . . − 1) and ′′( ) = exp

(
−2π
√
−1 /

)
, then the

fundamental system of ′′ † is

1 7→ (1 ) + (2 1) +· · · + ( − 1 − 2) + 1 · ( − 1)

(2) Consider ( ) = 2 +
√
−1 with = = {

√
−1 −1 +

√
−1 −

√
−1 ∞}. We take

a radial and a generator chain (1 2 3 4) as in Fig. 3. Then the fundamental
system of † is





1 7→ −1
2

−1
1 · (1 2) + 1 2 · (2 1)

2 7→ 3 · (1 1) + 1 2 1
−1
2

−1
1 · (2 2)

3 7→ (1 1) + 1 2
−1
1 · (2 2)

See Fig. 4. If we take a radial′ as in Fig. 5, then the fundamental system of′ † is





1 7→ (1 2) + (2 1)

2 7→ 3 · (1 1) + 1 · (2 2)

3 7→ (1 1) + 2 · (2 2)
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Fig. 1. The branched covering ( ) =4. The thick arrow is 1. The three thin
curves between 1 and exp(2π /4) ( = 1 2 3) and the constant curve7→ 1 form
the radial .

Fig. 2. The thick arrows are −1( 1).

since ′ †(γ) = ((1 1) + −1
2

−1
1 · (2 1)) †(γ)((1 1) + 1 2 · (2 2)).

We take another generator chain (′1
′
2

′
3

′
4) such that ′

1 is homotopic to

1 2 1
−1
2

−1
1 , ′

2 is homotopic to 1 2
−1
1 and ′

3 = 3
′
4 = 4. Remark that

1 is homotopic to ′
2
−1 ′

1
′
2 and 2 is homotopic to ′

2
−1 ′

1
−1 ′

2
′
1

′
2. Then the

fundamental system of ′ † is





′
1 7→ ′

2
−1 ′

1
′
2

′
3
−1 · (1 2) + ′

3
−1
2

′
1
−1 ′

2 · (2 1)
′
2 7→ ′

2
−1 ′

1
′
2 · (1 1) + ′

3 · (2 2)
′
3 7→ (1 1) + ′

2
−1 ′

1
−1 ′

2
′
1

′
2 · (2 2)

since ′ †( ′
1) = 1

−1
3 ·(1 2)+ 3

−1
1 ·(2 1), ′ †( ′

2) = 1 ·(1 1)+ 3 and ′ †( ′
3) =

(1 1) + 2 · (2 2).

Lemma 3.5. Suppose a homeomorphismφ : ( 2 ) → ( 2 ) satisfiesφ † = id
for some . Thenφ : 2− → 2− is isotopic to the identity in 2− .

Proof. Let : ( 2− )× → 2− be a homotopy such that (· 0) = id and
( ·) = , where is the basepoint. Then = (· 1) is homotopic to the identity,

and the induced homomorphismsφ−1
∗ ∗ : π1( 2− φ( ))→ π1( 2− ) coincides.

Thereforeφ is homotopic to the identity (for example see [7], Chapter VI, Exercise F),
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Fig. 3. The branched covering ( ) =2 + . The closed curves 1 2 3 together
with a closed curve homotopic to−1

3
−1
2

−1
1 form a generator chain. The curves1

and 2 form the radial .

Fig. 4. The closed curves are−1( ) ( = 1 2 3)

Fig. 5. Another radial ′.

and hence isotopic to the identity (see [5]).

Theorem 3.6. Suppose two furnished branched coverings( 1 ) and ( 2 )
satisfies( 1)† = ( 2)†. Then there exist homeomorphismsφ φ′ of 2 − isotopic to
the identity such that 1 = φ 2φ

′.

Proof. Let and ′ be the radials of 1 and 2 with radial points 1 2 . . .

and ′
1

′
2 . . . ′ . Let us take a generator chain (1 2 . . . ) with basepoint .

By , we denote the disc bounded by as in the definition. Byγ , we denote the
component of −1

1 ( ) that has the endpoint and , where =2( 1)†( )( ).
We similarly defineγ′ for 2. Since ( 1)† = ( 2)†, we have 2( 1)†( )( ) =

2( 2)†( )( ), and hence there exists a homeomorphismφ : −1
1

(⋃
=1

)
→

−1
2

(⋃
=1

)
satisfying 1 = 2 ◦ φ. Let 1 2 . . . and ′

1
′

2 . . . ′ be
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the components of −1
1 ( ) and −1

2 ( ) respectively, which are simply connected,
for contains at most one critical value. Remark that ={ | γ ⊂ ∂ } and

′ = { | γ′ ⊂ ∂ } are orbits of 2( 1)†( ) = 2( 2)†( ), and is the number
of the orbits. We may assume that corresponds to′ for each = 1 2. . . ,

namely, = ′ . Thereforeφ can be extended to a homeomorphismφ :
⋃ →⋃ ′ satisfyingφ( ) = ′ and 1 = 2 ◦ φ. Each of = −1

1

(
2 − ⋃

)
and

′ = −1
2

(
2 − ⋃

)
consists of simply connected domains, on which1 and 2

are one-to-one respectively. Thusφ can be extended to a homeomorphismφ : 2→ 2

satisfying 1 = 2 ◦ φ.
We showφ is isotopic to the identity. Beforehand we take the generator chain

such that ∈ ′. Even if we change the radial of2, we can take a radial of 1

such that (1)† = ( 2)†. Since 1 = 2 ◦ φ, we can take a radial ofφ such that
( 1)† = φ†( 2)†. Remark that ′ is connected and that the radial points belong to the
boundary of ′. Therefore we can take a radial′ of 2 such that the image′( )
is included in ′ and ′ is homotopic to an injective radial. Since each′ contains
at most one points of and ′ does not intersect , we can define an injection∋
7→ ( ( ) ( )) by ∈ ′

( ) ( ). Since the boundary of ′
( ) ( ) is homotopic to ,

there exist 1≤ ≤ , ∈ Z and ∈ π1( 2 − ) such that 1(( 2)†( ( )))( ) =
−1 . From ( 1)† = φ†( 2)† we haveφ†(

−1 ) = −1 . By the choice
of the radial ′, there exist simple closed curves′1

′
2 . . .

′ disjoint except at the
basepoint such that ′ is homotopic to −1 . Thus{ −1 | = 1 2 . . . −
1} generatesπ1( 2− ). Thereforeφ† = id, and by Lemma 3.5φ is isotopic to the
identity.

Corollary 3.7. Let ( 1 ) and ( 2 ) be furnished branched coverings. If there
exist a homeomorphismφ : ( 2 ) → ( 2 ) and ∈ 1 such that ( 1)† =
−1(φ−1

† ( 2)†φ†) , then ( 1 ) and ( 2 ) are equivalent.

Thus the fundamental system is the description of the furnished branched cover-
ing. We can consider that giving a fundamental system is equal to giving a furnished
branched covering. Now, we restate our question: Let (1 ) and ( 2 ) be furnished
branched coverings. When fundamental systems of (1)† and ( 2)† are given, can we
know the existence of a homeomorphismφ : ( 2 ) → ( 2 ) and ∈ 1 such that
( 1)† = −1(φ−1

† ( 2)†φ†) ?
In several cases, the Thurston equivalence can be directly checked by the descrip-

tion.

EXAMPLE. Let ( 1 ), ( 2 ) and ( 3 ) be furnished branched coverings as
follows: the induced homomorphisms (1)†, ( 2)† and ( 3)† have the fundamental sys-
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Fig. 6. The branched coverings1 2 3 of degree 4. # = 3. The closed curves

1 2 together with a closed curve homotopic to−1
2

−1
1 form a generator chain.

Fig. 7. The closed curves are−1
1 ( ) ( = 1 2)

Fig. 8. The closed curves are−1
2 ( ) ( = 1 2)

Fig. 9. The closed curves are−1
3 ( ) ( = 1 2)

tems (see Fig. 6–9)

{
1 → 1 · (1 1) + (2 4) + (3 2) + (4 3)

2 → 1 · (1 2) + (2 3) + −1
2 · (3 4) + 2

−1
1 · (4 1)

{
1 → 1 · (1 1) + 2 · (2 4) + (3 2) + −1

2 · (4 3)

2 → −1
1 · (1 2) + (2 3) + (3 4) + 1 · (4 1)
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and
{

1 → 1 · (1 1) + (2 3) + (3 4) + (4 2)

2 → (1 2) + −1
2 · (2 4) + 2 · (3 1) + (4 3)

They have the transition matrix




1 0 0 3 0
0 0 0 0 4
0 1 2 0 0


. We try to find an element ∈ 1

such that (1)† = −1( )† ( = 2 3).
(1) = 2. Suppose there exists =1 · (1 1) + 2 · (2 2) + 3 · (3 3) + 4 · (4 4) such
that ( 1)† = −1( 2)† . Then

1 = −1
1 1 1 1 = −1

2 2 4 1 = −1
3 2 1 = −1

4
−1
2 3

1 = −1
1

−1
1 2 1 = −1

2 3
−1
2 = −1

3 4 2
−1
1 = −1

4 1 1

Therefore

1 = 1 4 = −1
2 2 3 = 2

2 = 1 1 1 4 = 1 1 1
−1
2

where ∈ Z. Consequently,

1 = 1 2 = 3 = +2
1 4 = −1

2
+2

1 = +2
1

−1
2

Thus =−2 and 1 = −2
1 2 = 3 = 1 4 = −1

2 . Conversely, = −2
1 · (1 1) +

(2 2)+(3 3)+ 2 ·(4 4) satisfies (1)† = −1( 2)† . Hence there exist homeomorphisms
φ φ′ isotopic to the identity such that1 = φ 2φ

′.
(2) = 3. We set = (1 1) + (2 2) + (3 4) + (4 3). Then the fundamental system of
−1( 3)† is

{
1 → 1 · (1 1) + (2 4) + (3 2) + (4 3)

2 → (1 2) + −1
2 · (2 3) + (3 4) + 2 · (4 1)

Suppose there exists = 1 · (1 1) + 2 · (2 2) + 3 · (3 3) + 4 · (4 4) such that
( 1)† = −1 −1( 3)† . Then we have 1 = −1

4 3 and −1
2 = −1

3 4. This is a
contradiction. Similarly, a contradiction follows from any other . Thus there exist no
homeomorphismsφ φ′ isotopic to the identity such that1 = φ 3φ

′. Moreover we will
see that 1 and 3 are not weakly equivalent (see§5.1).

EXAMPLE. Let ( 1 ) and ( 2 ) be furnished branched coverings as follows: the
induced homomorphism (1)† and ( 2)† have the fundamental systems (see Fig. 10–12)





1 → 1 · (1 1) + 3 · (2 2)

2 → 2 · (1 2) + −1
2 · (2 1)

3 → 2 · (1 1) + (2 2)
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Fig. 10. The branched coverings1 2 of degree 2. # = 4. The closed curves

1 2 3 together with a closed curve homotopic to−1
3

−1
2

−1
1 form a generator

chain.

Fig. 11. The closed curves are−1
1 ( ) ( = 1 2 3)

Fig. 12. The closed curves are−1
2 ( ) ( = 1 2 3)

and




1 → 3 · (1 1) + 1 · (2 2)

2 → 1 · (1 2) + −1
1 · (2 1)

3 → (1 1) + 2 · (2 2)

They have the transition matrix




1 0 1 0 0
0 0 0 0 2
0 1 0 0 0
0 0 0 2 0


.

It is easily seen that there is no∈ 1 such that (1)† = −1( 2)† . From this,
however, we cannot conclude that1 and 2 are not equivalent.



584 A. KAMEYAMA

Suppose there exist a homeomorphismφ and ∈ 1 such that

( 1)† = −1(φ−1
† ( 2)†φ†)(E)

We show that there exists ∈ π1( 2− ) such that

( 2)†(
−1

1 ) = −1 −1
1 · ( ) + · · · · ( )(F)

( 2)†(( 1 2 3)
2) = −1

1 2 3 · ( ) + · · · · ( )(G)

where
{

( ) = (1 1)
( ) = (2 2)

or

{
( ) = (2 2)
( ) = (1 1)

We haveφ| = id , because, otherwise, the transition matrix ofφ−1
2φ differs from

the original one. For this reason, we can setφ†( 1) = −1
1 1 1, φ†( 1 2 3) =

−1
4 1 2 3 4. Set = 1 · ( ′ 1) + 2 · ( ′ 2). By (E),

( 2)†φ†( 1) = φ†( ( 1)†( 1) −1)

( 2)†φ†(( 1 2 3)
2) = φ†( ( 1)†(( 1 2 3)

2) −1)

Consequently,

( 2)†(
−1
1 1 1) = φ†( ( 1 · (1 1) + 3 · (2 2)) −1)

= φ†( 1 1
−1
1 · ( ′ ′) + 2 3

−1
2 · ( ′ ′))

= φ†( 1) −1
1 1 1φ†( 1)−1 · ( ′ ′) + · · · · ( ′ ′)

( 2)†(
−1
4 ( 1 2 3)

2
4) = φ†( ( 1 2 3 · (1 1) + 3 1 2 · (2 2)) −1)

= φ†( 1) −1
4 1 2 3 4φ†( 1)−1 · ( ′ ′) + · · · · ( ′ ′)

When we write ( 2)†( 4) = 4 1 · ( ′) + 4 2 · ( ′), we have

( 2)†( 4
−1
1 1 1

−1
4 )

= 4 1φ†( 1) −1
1 1 1φ†( 1)−1 −1

4 1 · ( ) + · · · · ( )
( 2)†(( 1 2 3)2)

= 4 1φ†( 1) −1
4 1 2 3 4φ†( 1)−1 −1

4 1 · ( ′ ′) + · · · · ( ′ ′)

Thus (F) and (G) are satisfied for =1
−1
4 and = 4φ†( 1)−1 −1

4 1. From

( 2)†(( 1 2 3)
2) = 3 1 2 · (1 1) + 3 1 2 · (2 2)

and (G), we have = (1 2 3)
−1
3 ( ∈ Z). If (F) and (G) are satisfied for = ′

and = ( 1 2 3)
−1
3 , then it is easily seen that (F) and (G) are satisfied for =

′( 1 2 3)2 and = −1
3 . Therefore we can assume =−1

3 .
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By the form of the fundamental system of (2)†, we obtain| | ≥ | 1( 2)†( )( )|
for any ∈ 0. In particular, | −1

1 | ≥ | −1 −1
1 |. Therefore has the

minimal presentation =. . . 3, and

| −1
1 | − | −1 −1

1 | = 2

Hence there is no cancellation in1( 2)†( −1
1 )( ). Namely, if −1

1 has the
minimal presentation (1) (2) · · · ( ), then 1( 2)†( ( ))( ) 1( 2)†( ( +1))( +1) 6= 1
for any , where = 2( 2)†( (1) · · · ( −1))( ).

Suppose = 2. Then

( 2)†(
−1

1 ) = ( 2)†(
−1
3 · · · 1 · · · 3)

= −1
2 · · · 1 · · · 2 · (2 2) + · · · · (1 1)

Consequently, has the minimal presentation. . . 2 3. Similarly, we see that has
the minimal presentation. . . 3 1 2 3. It is easily seen that = 3 1 2 3 implies a
contradiction. If has the minimal presentation

= . . . ǫ
3 1 2 3 (ǫ = 1 or −1)

then

( 2)†(
−1

1 ) = ( 2)†(
−1
3

−1
2

−1
1

−1
3

−ǫ · · · 1 · · · ǫ
3 1 2 3)

This is impossible because there is no such that (2)†( ǫ) = ǫ · (˜ 1) + · · · · ( ˜ 2)
We can similarly show the impossibility in the case = 1. Thus1 and 2 are not
equivalent.

4. Mapping class groups

Let be a finite subset of 2. Consider the set

˜ = { | is an orientation-preserving branched covering,⊂ ( ) ⊂ }

If ( ′) is a furnished branched covering with # = #′, then there exists ′ ∈ ˜
such that ( ′) and ( ′ ) are equivalent. Remark that̃ contains all orientation-
preserving homeomorphisms that map to itself.

It is clear that˜ is closed under the operation of the composition ( )7→ ◦
. Therefore we can consider̃ as a semigroup. By identifying ‘isotopic’ branched

coverings, we obtain themapping class semigroup

=
˜

{φ |φ is isotopic to the identity relative to }
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In other words, we identify and if there exist homeomorphismsφ1 φ2 isotopic to
the identity relative to such that ◦ φ1 = φ2 ◦ . If and ′ are identified and
if and ′ are identified, then so are ◦ and ′ ◦ ′ by virtue of Proposition 2.1.
Therefore the semigroup structure of is well-defined. When we think of a mapping
class ∈ , we denote, by the same symbol , the representative of . This will
not cause confusion. As for the composition of and , we use the notation as
the member of , and ◦ as the member of̃ .

We consider a homeomorphism as a branched covering of degree one. Hence the
mapping class semigroup includes themapping class group:

( ) =
{φ | a homeomorphism,φ( ) = }

{φ | a homeomorphism isotopic to the identity relative to} ⊂

By 1 ∈ ( ), we denote the unit element of ( ), or the mapping class of the iden-
tity. The subgroup

0( ) =
{φ | a homeomorphism,φ| = }

{φ | a homeomorphism isotopic to the identity relative to} ⊂ ( )

is called thepure mapping class group.

REMARK. The transition matrix of ∈ is denoted by . If # = and
#( ∪ ) = , then is an × matrix. By Mat( ) , we denote the set of
× matrices with ≤ ≤ + 2 − 2. In other words, if is a member of

Mat( ) , then there exists a finite set with # = − , and is a mapping
of × ( ⊔ ) to {0} ∪ N. For ∈ Mat( ) and ′ ∈ Mat( ) ′ , we define the
product ′ : × ( ⊔⊔ ′ ⊔ ′ )→ {0} ∪ N by

′( ) =
∑

∈ ( ) ′( ) if ∈ ∪ ′

′( ) = ( ) if ∈

where
⊔

′ is the disjoint union of ′ copies of . Then ′ ∈ Mat( ) ′ . Thus⊔
≥1 Mat( ) is a semigroup with respect to the product. We consider the mapping
7→ from to

⊔
Mat( ) . It is easily seen that = , and hence the

mapping is a ‘linear representation’.

Proposition 4.1. For ∈ and φ ∈ 0( ), if = φ, thenφ = 1.

Proof. We consider that andφ denote also representatives of andφ, that
is, we think of as a branched covering, andφ as a homeomorphism. Then =φ
meansφ1◦ = ◦φ◦φ2, whereφ1 φ2 are some homeomorphisms isotopic to the iden-
tity relative to . By Proposition 2.1, we can assume thatφ1 is the identity. There-
fore it is sufficient to show thatφ is isotopic to the identity relative to whenever

= ◦ φ.
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Suppose thatφ satisfies = ◦ φ. Since the case where is a homeomorphism
is trivial, we assume that is of degree ≥ 2. From Proposition 2.2, consists
of more than one point. Letγ : [0 1] → 2 be a simple path in 2 − with the
endpointsγ(0) 6= γ(1) in . Then −1(γ) consists of simple pathsγ1 γ2 . . . γ ,
which are disjoint except the endpoints. From =◦ φ, we see thatφ induces a
permutation of{γ1 γ2 . . . γ }. Suppose that the permutation has a fixed point, say
φ(γ1) = γ1. Then for any pathγ homotopic toγ1 with the endpoints fixed, we have
φ(γ) = γ, and henceφ = id. Next we suppose thatφ(γ ) = γ +1 for = 1 2 . . . − 1
and φ(γ ) = γ1. Then γ1 γ2 . . . γ have the common endpoints, say and . We
can define the cyclic order ofγ ’s around . If γ1 is next toγ +1, then γ is next to
γ + for = 1 2 . . . , where indices are considered modulo . By , we denote
the simply connected domain bounded byγ ∪ γ + that includes noγ (1 ≤ ≤ ).
Then φ| : → +1 is bijective. Since > 1, 2 − ⋃ =1 γ =

⋃
=1 contains

no points of , that is, ={ }. By Proposition 2.3, we can assume that ( ) is
either

(
{0 ∞}

)
or
( − {0 ∞}

)
. Hence we haveφ( ) = exp

(
2π
√
−1 /

)
( =

0 1 . . . − 1), andφ is isotopic to the identity.

DEFINITION. We say and in arep-weakly equivalentif there exist
φ1 φ2 ∈ 0( ) such that φ1 = φ2 . In caseφ1 = φ2, two mapping classes and

are said to bep-equivalent. We write ∼ if and are p-equivalent.

By Proposition 4.1, forφ ∈ 0( ), if there existsφ′ ∈ 0( ) such thatφ =
φ′, thenφ′ is unique. For ∈ , we set

( ) = {φ ∈ 0( ) | there existsφ′ ∈ 0( ) such thatφ = φ′}

Then ( ) is a subgroup of 0( ). From the uniqueness ofφ′, we obtain a homo-
morphism

λ : ( )→ 0( )

by

φ = λ (φ)

We define an equivalence relation∼ on 0( ): we sayφ1 ∼ φ2 if there exists
φ ∈ ( ) such that

φ2 = λ (φ−1)φ1φ

Proposition 4.2.

φ1 ∼ φ2 ⇐⇒ φ1 ∼ φ2
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Proof. The equivalence φ1 ∼ φ2 means that there existsφ ∈ 0( ) such that

φ1φ = φ φ2

Thereforeφ = φ1φφ
−1
2 , and henceφ is contained in ( ) andλ (φ) = φ1φφ

−1
2 .

From this proposition, classifying 0( ) by ∼ is equal to classifying{ φ |φ ∈
0( )} by the p-equivalence. Moreover, if ∈ is p-weakly equivalent to , then

there existsφ ∈ 0( ) such that ∼ φ. Indeed, can be expressed asφ1 φ2;
therefore =φ1 φ2 ∼ φ2φ

−1
1 . We write

ˆ = {φ φ′ |φ φ′ ∈ 0( )}

the p-weak equivalence class including , and

=
ˆ

∼

the set of p-equivalence classes inˆ . Consequently,

Proposition 4.3. We have a one-to-one correspondence

←→
0( )
∼

We consider

φ1→ λ (φ)−1φ1φ

as a right action of ( ) on 0( ). Then the equivalence classes of∼ are the
orbits of the action. Letµ : 0( )→ GL( ) be a representation of 0( ) in a linear
space . By

µ(φ1)→ µ(λ (φ))−1µ(φ1)µ(φ)

we define a linear right actionρ of ( ) on µ( 0( )). Clearly,

Corollary 4.4. If φ1 ∼ φ2, thenµ(φ1) and µ(φ2) lie in the same orbit ofρ.

5. Some applications

5.1. #A ≤ 3 The pure mapping class group 0( ) is trivial if # = 2 3.
This is easily proved from the fact that ( ) is isomorphic to the symmetric group
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Fig. 13. The generator chain (1 2 3 4) and the closed curves1 2.

on under this assumption. Therefore, for∈ , each p-weak equivalence class
{φ φ′ |φ φ′ ∈ 0( )} consists of one member . Consequently,

Proposition 5.1. Let ( 1 1) and ( 2 2) be furnished branched coverings with
# 1 = # 2 ≤ 3. Then ( 1 1) and ( 2 2) are equivalent if and only if( 1 1) and
( 2 2) are weakly equivalent.

The local type is not a complete invariant, but so is the fundamental system up to
conjugation.

Theorem 5.2. Suppose# ≤ 3. Mapping classes 1 and 2 in are p-
equivalent if and only if there exist radials and′ such that( 1) † = ( 2) ′ †.

5.2. #A = 4 In the case # ≥ 4, the group 0( ) is an infinite group. In par-
ticular, it is a free group generated by two elements if # = 4. This section is devoted
to the case # = 4.

We start with the structure of the mapping class group ( ). Refer to [1] for the
details of the mapping class groups. We set ={ 1 2 3 4} and take a generator
chain { 1 2 3 4}. We take simple closed curves1 and 2 such that 1 is homo-
topic to 1 2 and 2 is homotopic to 2 3 (see Fig. 13). Then1 separates{ 1 2}
and { 3 4} (i.e. 1 divide 2 into two simply connected domains 1 1 which con-
tains 1 2, and 1 2 which contains 3 4), 2 separates{ 2 3} and { 4 1}. Let
σ1, σ2 andσ3 denote ‘half Dehn twists’ along1, 2 and− 1 respectively. Namely, for
example,σ1 is the homeomorphism that is identity on1 2 and interchanges1 and

2 as shown in Fig. 14. A Dehn twist along a simple closed curve is defined as a
homeomorphism which is the identity outside an annular neighborhood of and which
‘twists’ as Fig. 15 inside the neighborhood (see [11]). Remark that the Dehn twist is
unique up to isotopy. Thenσ2

1 and σ2
3 are isotopic to a Dehn twist along1 and σ2

2 is
isotopic to a Dehn twist along2. The mapping class group ( ) has a finite presen-



590 A. KAMEYAMA

Fig. 14. The ‘harf Dehn twist’σ1.

Fig. 15. A Dehn twist.

tation 〈σ1 σ2 σ3 | 1 2 3 4 5〉, where

1 = σ1σ2σ1σ
−1
2 σ−1

1 σ−1
2

2 = σ2σ3σ2σ
−1
3 σ−1

2 σ−1
3

3 = σ1σ3σ
−1
1 σ−1

3

4 = σ1σ2σ
2
3σ2σ1

5 = (σ1σ2σ3)4

(Note thatσ σ2σ = σ−2 if | − | = 1.) By group theoretical calculation, we con-
clude that the pure mapping class group0( ) is the subgroup〈σ2

1 σ2
2〉 ⊂ ( ). A
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homomorphismµ : ( )→ (2 Z) is defined by

µ(σ1) = µ(σ3) =

(
1 0
1 1

)
µ(σ2) =

(
1 −1
0 1

)

Then we have

µ( 0( )) =

〈(
1 0
2 1

) (
1 −2
0 1

)〉
= (2)

which is the principal congruence subgroup and is known to be a free group. There-
fore 0( ) is a free group generated by two Dehn twists1 = σ2

1 2 = σ2
2.

If # ≤ 4 and is of degree 2, the structure of is completely understood
as we will state in the next subsections. The following proposition holds true for any

= # .

Lemma 5.3. Let ( 1 1) and ( 2 2) be furnished branched coverings of de-
gree 2. If they are locally equivalent, then they are weakly equivalent.

Proof. We write 1 = { 1 2 . . . } and 2 = { 1 2 . . . } such that
corresponds to ( = 1 2. . . ). Suppose 1 are the critical values of 1 and

1 are the critical values of 2. Let be a simple path joining 1 and that
touches 2 3 . . . −1 in order, and similarly take a simple path′ joining 1 and .
Then −1

1 ( ) and −1
2 ( ′) are simple closed curves. Cyclic orders on1 and 2 can be

defined by the closed curves. If the cyclic orders agree, then there exists a homeomor-
phismφ1 φ2 : 2→ 2 such thatφ1( −1

1 ( )) = −1
2 ( ′), φ2( ) = ′, φ ( ) = ( = 1 2)

and φ2 ◦ 1 = 2 ◦ φ1. Therefore 1 and 2 are weakly equivalent. Although the cyclic
orders do not agree, we can retake′ so that they agree. Indeed, let us take a closed
curve γ as follows: ∩ 2 = { 1 }, where is one of the domain bounded byγ,
#(γ ∩ ′) = 1 if = 2 and #(γ ∩ ′) = 3 if = 3 4 . . . −1. By σ, we denote the Dehn
twist alongγ. Let us compare the cyclic order on2 defined by −1

2 ( ′) with that de-
fined by −1

2 (σ( ′)). We can see that the two inverse image of are exchanged (see
Fig. 16 and 17. ′

1 and ′
5 are the critical points such that2( ′

1) = 1 2( ′
5) = 5.)

From this we conclude that′ can be deformed by finite Dehn twists such that the
cyclic order agrees with that defined by−1

1 ( ).

There are thirty local types of furnished branched coverings of degree 2 if # = 4:
(I) ( ∪ ) 6= . 5 types:




2 0 0 0
0 1 1 0
0 0 0 2
0 0 0 0







2 0 0 0
0 0 1 1
0 2 0 0
0 0 0 0


 etc.
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Fig. 16. The closed curveγ and its inverse image −1
2 (γ).

Fig. 17. The pathσ( ′) and its inverse image −1
2 (σ( ′)).

(II) ( ∪ ) = ⊂ . 10 types:




2 0 0 0
0 0 1 0
0 0 0 2
0 1 0 0







2 0 0 0
0 0 1 0
0 2 0 0
0 0 0 1


 etc.

(III) ( ∪ ) = #( \ ) = 1. 12 types:




2 0 0 0 0
0 0 1 0 0
0 0 0 0 2
0 1 0 1 0







2 0 0 0 0
0 1 0 0 0
0 0 0 0 2
0 0 1 1 0


 etc.
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(IV) ( ∪ ) = #( \ ) = 2. 3 types:




0 0 0 0 2 0
1 1 0 0 0 0
0 0 0 0 0 2
0 0 1 1 0 0







0 0 0 0 2 0
0 1 0 1 0 0
0 0 0 0 0 2
1 0 1 0 0 0







0 0 0 0 2 0
1 0 0 1 0 0
0 0 0 0 0 2
0 1 1 0 0 0




REMARK. The type of the orbifold of a furnished branched covering ( ) is the
smallest functionν : → N ∪ {∞} such thatν( ) is a multiple of ν( ) deg ( ) for
any ∈ −1( ), where deg ( ) is the local degree of at , consideringν( ) = 1
for /∈ . In the cases (IV), the types of the orbifolds are (2 2 2 2).

We take{ 1 2 3 4} such that 1 and 3 are the critical values. Then

Proposition 5.4. In the cases (II), (III) and (IV), ( ) is generated by
{ 2

1
2
2 1 2}. In other words, ( ) is the kernel of the homomorphism: 0( )→

Z/(2) defined by ( 1) = ( 2) = 1.

DEFINITION. A simple closed curveγ in 2 − is called peripheral if a disc
bounded byγ contains at most one point of .

Proof. Let be a non-peripheral simple closed curve, and letφ be the Dehn twist
along . Suppose −1( ) has two componentsγ1 γ2. Then :γ → is of degree one.
By φ′, we denote the composition of the Dehn twists alongγ1 and γ2. Then φ =
φ′, and soφ ∈ ( ). From 1 2 = σ2

1σ
2
2 = σ2

1σ
2
2σ1σ

−1
1 = σ1σ

−2
2 σ−1

1 = σ1
−1
2 σ−1

1 , we
see that (1 2)−1 is the Dehn twist along0, which is homotopic to 1 3. Since the
inverse image of0 has two components,1 2 ∈ ( ).

In caseγ = −1( ) has only one component, :γ → is of degree two. Byφ′,
we denote the Dehn twist alongγ. Thenφ2 = φ′. The inverse image of ( = 1 2)
has one component, and hence21

2
2 ∈ ( ). Thus Ker( )⊂ ( ).

To complete the proof, we show that1 /∈ ( ). Let 1 and 2 denote the discs
bounded byγ = −1( 1), and let 1 and 2 denote the discs bounded by1. Since we
are working with the cases (II), (III) and (IV), each of−1( 2) ∩ and −1( 4) ∩
consists of at least one points. Set−1( 2) = { 1 2} and −1( 4) = { 3 4}. Let α
be a simple path between2 and 4, and letα1 α2 be the components of −1(α). If
α1 joins 1 and 3, thenα2 joins 2 and 4. The two componentsβ1 β2 of ( 1 )−1(α)
join 1 and 4, and 2 and 3 respectively. Thus by no homeomorphism in0( ) the
pathsβ1 β2 can be moved toα1 α2.

The types of (I) are reduced to the case # = 3. Indeed,φ = for eachφ ∈
( ), because each inverse image of bounds a domain that contains at most one

point of .
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5.2.1. Cases (II) and (III) We choose a couple of model examples and inves-
tigate them.

Let 1 denote the mapping class in with the induced homomorphism (1)† :





1 → (1 2) + 1 · (2 1)

2 → 3 · (1 1) + (2 2)

3 → −1
3

−1
2

−1
1 · (1 2) + (2 1)

The transition matrix is




2 0 0 0
0 0 1 0
0 0 0 2
0 1 0 0


.

Theorem 5.5. The p-weak equivalence class(= the local equivalence class) in-
cluding 1 consists of three p-equivalence classes:

1 = {[ 1] [ 1 1] [ 1 2]}

where [ ] means the p-equivalence class including .

Proof. Since (1)†( 1 2) = (1 2) + 1 3 · (2 1) and ( 1)†( 2 3)† = −1
2

−1
1 ·

(1 2) + (2 1), we conclude thatλ 1(
2
1) = −1

2
−1
1 is the Dehn twist with respect

to 1 3 and λ 1(
2
2) = 1 is the Dehn twist with respect to 1 2. Since 2 1 =

σ2
2σ

2
1 = σ2

2σ
2
1σ2σ

−1
2 = σ2σ

−2
1 σ−1

2 = σ2
−1
1 σ−1

2 , 2 1 is the Dehn twist with respect to
−1
3

−1
2

−1
1 2. Since ( 1)†(

−1
3

−1
2

−1
1 2) = (1 1) + 1 2

−1
1 · (2 2), λ 1( 2 1) = 1.

Therefore

λ 1 :





2
1 → −1

2
−1
1

2
2 → 1

2 1 → 1
−1
2 1 → −1

1

2
−1
1 → 1 2

−1
2

−1
1 → 2

We prove

0( )
∼ 1

= {[1] [ 1] [ 2]}

Since 0( ) is the free group generated by1 2, the length of an element is defined.
For φ ∈ 1( ), we have|λ 1(φ)| ≤ |φ|.

Lemma 5.6. For φ ∈ 0( ), there existsφ′ ∈ 0( ) such thatφ ∼ 1 φ
′ and

|φ′| ≤ 1.
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Proof. Letφ = ǫ(1)
(1)

ǫ(2)
(2) . . .

ǫ( )
( ) be the minimal presentation ofφ. Then

φ ∼ 1 λ 1

(
ǫ( −1)
( −1)

ǫ( )
( )

)
ǫ(1)
(1)

ǫ(2)
(2) . . .

ǫ( −2)
( −2)(H)

Suppose that there exists noφ′ ∈ 0( ) such thatφ ∼ 1 φ
′ and |φ′| ≤ 1. We

can assume that there exists noφ′ ∈ 0( ) such thatφ ∼ 1 φ
′ and |φ′| < |φ|. By

(H), |λ 1

( ǫ( −2 −1)
( −2 −1)

ǫ( −2 )
( −2 )

)
|= 2 for = 0 1 . . . ( − 2)/2 (or ( − 3)/2 ). There-

fore ǫ( −2 −1)
( −2 −1)

ǫ( −2 )
( −2 ) = 2

1, −2
1 , 2

−1
1 or 1

−1
2 . Moreover,λ 1

( ǫ(1)
(1)

ǫ(2)
(2) . . .

ǫ( )
( )

)
=

( 1 2)± /2 if is even, λ 1

( ǫ(2)
(2)

ǫ(3)
(3) . . .

ǫ( )
( )

)
= ( 1 2)±( −1)/2 if is odd. We write

φ1 = ( 1 2)± /2 if is even,φ1 = ( 1 2)±( −1)/2 ǫ(1)
(1) if is odd. If is even,

φ ∼ 1 φ1 ∼ 1 λ 1

(
( 1 2)

± /2
)

= ∓ /2
2

This is a contradiction. If is odd,

φ ∼ 1 φ1 ∼ 1 λ 1

(
( 2 1)

±( −2∓1)/2
2
ǫ(1)
(1)

)
1 = λ 1

(
2
ǫ(1)
(1)

)
1

which leads to a contradiction.

Since

−1
1 ∼ 1 λ 1( 1

−1
2 )−1 −1

1 1
−1
2 = 1 and −1

2 ∼ 1 λ 1( 2 1)
−1 −1

2 2 1 = 1

we remain to show that 11 2 are not equivalent to one another. Assume 1∼ 1 1.
Then there existsφ ∈ 1( ) such that 1 =λ 1(φ

−1) 1φ. Since|λ 1(φ)| ≤ |φ|, we have
|λ 1(φ)| = |φ| − 1. Therefore the minimal presentation ofφ consists of some of±2

1 ,
( 2

−1
1 )±1 and only one of ±2

2 , ( 1 2)±1. Moreover we have|λ 1(φ
−1) 1| = |φ|. Thus

the minimal presentation ofφ is −1
1 · · · and the minimal presentation ofλ 1(φ) is

not 1 · · · . This is a contradiction. We can similarly show the other inequalities. This
completes the proof of the theorem.

Set 2 = 1σ1. The transition matrix of 2 is




2 0 0 0
0 0 1 0
0 0 0 2
0 1 0 0







0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 =




0 2 0 0
0 0 1 0
0 0 0 2
1 0 0 0




The fundamental system is





1 → (1 2) + 2 · (2 1)

2 → 3 · (1 1) + (2 2)

3 → −1
3

−1
2

−1
1 · (1 2) + (2 1)
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Theorem 5.7. The p-weak equivalence class(=the local equivalence class) in-
cluding 2 consists of infinite p-equivalence classes:

2 = {[ 2] [ 2 1]} ∪ {[ 2 2( 1 2) ] | ∈ Z}

Proof. Sinceλ 2(φ) = σ−1
1 λ 1(φ)σ1, we have

λ 2 :





2
1 → σ−1

1
−1
2

−1
1 σ1 = 2

2
2 → σ−1

1 1σ1 = 1

2 1 → σ−1
1 σ1 = 1

−1
2 1 → σ−1

1
−1
1 σ1 = −1

1

2
−1
1 → σ−1

1 1 2σ1 = −1
2

−1
2

−1
1 → σ−1

1 2σ1 = −1
1

−1
2

Let φ be an element of 0( ). If there exists noφ′ ∈ 0( ) such thatφ ∼ 2 φ
′ and

|φ′| < |φ|, then either|φ| = 1 or φ = 2( 1 2) . We can show that 11 2 and −1
1 are

not equivalent to one another in a fashion similar to the previous theorem. In order to
complete the proof, it is sufficient to show the following.

Lemma 5.8. Suppose thatφ′ ∼ 2 2( 1 2) and |φ′| ≤ |2 + 1|. Then φ′ =

2( 1 2) .

Proof. If = 0 or−1, the statement is true. Supposeφ = 2( 1 2) with > 0.
Assume that there existsα ∈ 2( ) such thatφ′ = λ 2(α)−1φα and |φ′| ≤ 2 +
1. We can assumeα 6= 1. Remark that|λ 2(α)| ≤ |α|. Let δ(1)

(1) . . . be the minimal

presentation ofα. Suppose δ(1)
(1) 6= −1

2 . Then

|φ′| ≥ |λ 2(α)−1φ| + |α| if |λ 2(α)−1| ≤ |φ|
|φ′| ≥ |α| −

(
|λ 2(α)−1| − |φ|

)
if |λ 2(α)−1| > |φ|

Therefore

|φ′| ≥ |φ| − |λ 2(α)| + |α| ≥ |φ| = 2 + 1

Thus |φ′| = 2 + 1, and hence|λ 2(α)| = |α| and the minimal presentation ofλ 2(α) is

2 1 2 1· · · . Consequently,α = ( 1 2) . Then

φ′ = λ 2(α)−1φα = ( 2 1)
−

2( 1 2) ( 1 2) = 2( 1 2)

If δ(1)
(1) = −1

2 , thenλ 2

( δ(1)
(1)

δ(2)
(2)

)−1
φ δ(1)

(1)
δ(2)
(2) has three possibilities:

λ 2(
−1
2 1)−1φ −1

2 1 = 1 2( 1 2)
−1 2

1(i)

λ 2(
−1
2

−1
1 )−1φ −1

2
−1
1 = 2( 1 2)(ii)
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λ 2(
−2
2 )−1φ −2

2 = 1 2( 1 2)
−1

1
−1
2(iii)

Since δ(2)
(2) 6= −δ(3)

(3) , we can similarly prove that|λ 2

( δ(1)
(1)

δ(2)
(2)

)−1
φ δ(1)

(1)
δ(2)
(2) | ≤ |φ′|.

Consequently, (i) and (iii) are impossible, and henceα = ( −1
2

−1
1 ) . Thereforeφ′ =

2( 1 2) . The proof of the case < −1 is similar.

REMARK. In the p-weak equivalence class{φ 2φ
′ |φ φ′ ∈ 0( )}, the homeo-

morphism 1 2 has a special meaning. This is the Dehn twist along the curve0, which
has the following property: there exists a component′ ⊂ ( 2 ◦ 2)−1( 0) isotopic to 0

and 2 : ′ → 0 is of degree one. As to the p-weak equivalence class including1,
there is no curve satisfying this property. In general, the p-equivalence classes of (II)
and (III) are divided into two categories by the property. According to the category,
the p-weak equivalence class consists of infinite p-equivalence classes or consists of
finite p-equivalence classes.

The following conjecture would be natural: Let ( ) be a furnished branched
covering. Suppose there exists a non-peripheral simple closed curve⊂ 2− satisfy-
ing that there exists only one component′ ⊂ −1( ) isotopic to such that :′ →
is of degree one. Byσ, we denote the Dehn twist along . Then 6∼ σ for any
integer 6= 0.

By proofs similar to the previous theorems, we recognize that this conjecture is
true for all types of (II) and (III). Note that generally the conjecture is not true when
we do not assume the uniqueness of′. Indeed, if −1( ) has two components1 2

isotopic to such that :1 → and : 2 → are of degree one, and if the other
components are peripheral, thenσ = σ2. Therefore ∼ σ σ− = σ for any .

5.2.2. Case (IV) In order to study the case (IV), we need some different ap-
proaches. While we cannot explicitly describe the p-equivalence classes, we construct
a complete invariant.

Let 3 be the mapping class in with the induced homomorphism (3)†:





1 → 1 · (1 2) + −1
1 · (2 1)

2 → 1 · (1 1) + 2 · (2 2)

3 → −1
3 · (1 2) + 3 · (2 1)

We have

λ 3 :





2
1 → 1
2
2 → −1

2 1 2

2 1 → 2
2

We write

=

(
1 0
−1 2

)
1 =

(
1 0
2 1

)
2 =

(
1 −2
0 1

)
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and set

L = { ′ | ′ ∈ (2)}

where

(2) =

{( )
∈ (2 Z)

∣∣∣∣
= 1 (mod 2)
= 0 (mod 2)

}

Note that we identify and− in L. It is easily seen that

L =

{( ) ∣∣∣∣
= 1 (mod 2) = 0 (mod 2)
= 1 (mod 2) = 0 (mod 2)

− = 2

}

An isomorphismµ : 0( ) → (2) is defined byµ( 1) = 1 µ( 2) = 2. Thenµ
can be extended on̂ 3 = {φ 3φ

′ |φ φ′ ∈ 0( )} by µ( 3) = . Indeed, by calcula-
tion, we have

2
1 = 1

2
2 = −1

2 1 2 2 1 = −2
2

Lemma 5.9. µ : ˆ
3 → L is bijective.

Proof. Sinceµ : 0( )→ (2) is isomorphic,µ is surjective. We set

= { ∈ (2) | there exists ′ ∈ (2) such that = ′}

By calculation,

=

{( )
∈ (2)

∣∣∣∣ − + − = 0 (mod 4)

}

= 〈 2
1

2
2 1 2〉

Supposeµ(φ 3φ
′) = µ( 3). Since 3( ) = 〈 2

1
2
2 1 2〉, we can assume that|φ| ≤ 1.

If φ = 1, then µ(φ′) = . Thereforeφ′ = 1. In case|φ| = 1 we can assumeφ = 1.
Then 1 = µ(φ′)−1. This implies 1 ∈ , and a contradiction. Thusµ is injective.

Theorem 5.10. For ′ ∈ 3, ∼ ′ if and only if there exist ∈ (2 Z)
such thatµ( ) = −1µ( ′) .

Proof. It is sufficient to show that is a member of (2) provided∈ L ∈
(2 Z) and −1 ∈ L . We can check this by calculation.
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EXAMPLE.
(1) 3 1 ( ∈ Z) are p-equivalent to one another. Indeed,

µ( 3 1 ) = 1 =

(
1 0
−1 2

)(
1 0
2 1

)
=

(
1 0

4 − 1 2

)

For =
(

1 0
−4 1

)
, we have

(
1 0
−1 2

)
= −1

(
1 0

4 − 1 2

)

(2) It is easily seen that 6∼ ′ if | trace(µ( ))| 6= | trace(µ( ′))|. For example, 3 1 2

( ∈ Z) are not p-equivalent to one another since trace(µ( 3 1 2)) = 8 + 5. But the
trace is not a complete invariant.

The representationµ has a topological meaning. Let2 be the 2-torus, and let
: ( 2 ˜ ) → ( 2 ) be a 2-fold branched covering with branch points˜ . Then the

branched coveringφ 3φ
′ : 2→ 2 can be lifted to a 2-fold covering̃ : 2→ 2. It

is easily seen thatµ(φ 3φ
′) is a matrix representation of̃∗ : 1( 2) → 1( 2). This

is generalized in the next subsection.
5.2.3. branched coverings with(2 2 2 2)-orbifolds Let ( ) be a furnished

branched covering with (2 2 2 2)-orbifolds without restriction on the degree of . In
this subsection, we construct a representationµ : ˆ → { ′ | ′ ∈ (2)}, where

is some 2× 2 matrix. Using this representation, we can check the p-equivalence.
Fix a generator chain (1 2 3 4). We first show that −1( ) = ∪ . It is

clear that ∪ ⊂ −1( ) and that ∩ = ∅. Since all critical points are of degree
two, # = 2 −2. Therefore # −1( ) = 4 −(2 −2) = 2 +2 = 4+2 −2 = #( ∪ ).
Thus −1( ) = ∪ .

Consider the induced homomorphism

γ ∗ : π1( 2− −1( ) ) ∗−−−−→π1( 2− ( ))
γ∗−−−−→π1( 2− )

where γ is a path between and ( ). Set2 = { ∈ π1( 2 − ) : | | is even},
where | | is the length of with respect to the generator chain (1 2 3 4). Re-
mark that 2 is independent of the choice of the generator chain. Using the inclusion

: 2 − −1( ) → 2 − , we define ′
2 = −1

∗ ( 2). Then π1( 2 − −1( ) ) is
generated by{ ′

1
′
2

′
3 1 2 . . . }, where ∗( ′) = ( = 1 2 3 4), and

corresponds to a closed curve enclosing a point of such that′
1

′
2

′
3

′
4 1 2 . . .

is trivial in 2 − −1( ). From the fact that all critical points are of degree two and
−1( ) = ∪ , we obtain γ ∗( ′

2) ⊂ 2. By ( γ ∗) : ( ′
2) → ( 2), we

denote the abelization ofγ ∗ : ′
2→ 2. We set

1 = 2
1 2 = 2

2 3 = 2
3 4 = 1 2 5 = 2 3
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and

′
1 = ′

1
2 ′

2 = ′
2

2 ′
3 = ′

3
2 ′

4 = ′
1

′
2

′
5 = ′

2
′
3

Since 2 is the free group generated by{ 1 2 3 4 5}, ( 2) is the free mod-
ule generated by{ 1 2 3 4 5}. Similarly, ( ′

2) is the free module generated
by

{ ′
1

′
2

′
3

′
4

′
5 1 1 2 2 . . . }

where = ′
1
−1 ′

1. Then

¯2 =
( 2)

〈 1 2 3〉

is the free module generated by4 and 5, and

′̄
2 =

( ′
2)

〈 ′
1

′
2

′
3 1 1 2 2. . . 〉

is the free module generated by′4 and ′
5. Since

( γ ∗)
(
〈 ′

1
′
2

′
3 1 1 2 2. . . 〉

)
⊂ 〈 1 2 3〉

we can reduce (γ ∗) to γ̄ ∗ : ′̄
2 → ¯2, which is independent of the choice of

′ and (depends on only the generator chain (1 2 3 4) and the pathγ). By
setting the basis 4 5, we obtainµ( )γ , the matrix representation of̄γ ∗. Namely,
the matrix representation of (γ ∗) is

(
′̄
2

′

¯2 µ( )γ 0
∗ ∗

)

where = 〈 1 2 3〉 and ′ = 〈 ′
1

′
2

′
3 1 1 2 2. . . 〉. The matrix

µ( )γ is a member of Mat(2Z), the set of 2× 2 matrices with integer components.
When γ is replaced byγ′ = 1γ, we haveµ( )γ′ = −µ( )γ , since 1 4

−1
1 =

2
1 2

−1
1 = 1

−1
2

−1
4 and 1 5

−1
1 = 1 2 3

−1
1 = 4 3

−1
5 2

−1
4 . In case that

γ′ = αγ with α ∈ 2, it is clear thatµ( )γ′ = µ( )γ . Thus the matrix representation
depends on only (1 2 3 4) up to ±1, and is independent ofγ. We consider the
matrix as a member of Mat(2Z)/±1 and denote byµ( ).
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EXAMPLE. Let ( ) be a furnished branched covering with induced homomor-
phism

γ ∗





′
1 → 1 2

−1
1

′
2 → 2
′
3 → 3

1 → 1 2(
−1
3

−1
2

−1
1 )2 −1

2
−1
1

2 → 1 2
2
1

−1
2

−1
1

Then

γ ∗ :





′
1 → 1

2
2

−1
1 = 4 2

−1
4

′
2 → 2

2 = 2
′
3 → 2

3 = 3
′
4 → 1 2

−1
1 2 = 4

−1
1 4

′
5 → 2 3 = 5

1 → 1 2(
−1
3

−1
2

−1
1 )2 −1

2
−1
1 = 4

−1
5

−1
1 4

−1
2 5

−1
3

−2
4

1 → 1( −1
3

−1
2

−1
1 )2 −1

1 = 4
−1
2 5

−1
3

−1
4

−1
5

−1
1

2 → 1 2
2
1

−1
2

−1
1 = 4 1

−1
4

2 → 2
1 = 1

Thus the matrix representation of (γ ∗) is




′
4

′
5

′
1

′
2

′
3 1 1 2 2

4 2 0 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0 0

1 −1 0 0 0 0 −1 −1 1 1

2 0 0 1 1 0 −1 −1 0 0

3 0 0 0 0 1 −1 −1 0 0




and we obtain

µ( ) =

(
2 0
0 1

)

For a homeomorphismφ : ( 2 ) → ( 2 ), we similarly define the homomor-
phism φ̄ ∗ : ¯2 → ¯2 and the matrix representationµ(φ). Clearly, µ(φ−1) = µ(φ)−1.
For a homeomorphismφ′ : ( 2 −1( )) → ( 2 −1( )) such thatφ′( ) = , we de-
fine the homomorphism̄φ′′ ∗ : ′̄

2→ ′̄
2 and the matrix representationµ(φ′). Therefore

if = φ φ′, we haveµ( ) = µ(φ)µ( )µ(φ′). When we extendφ′ to φ̃′ : ( 2 ) →
( 2 ), we haveµ(φ′) = µ(φ̃′). It is clear thatµ is a representation of the subsemi-
group

(2 2 2 2) ={ ∈ | has (2 2 2 2)-orbifold} ∪ ( )
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If and in (2 2 2 2) are p-equivalent, then there existsφ ∈ 0( ) such that
= φ−1 φ. Thereforeµ( ) = µ(φ)−1µ( )µ(φ). We will show the converse, that is, if

µ( ) = µ(φ)−1µ( )µ(φ) with = , then and are p-equivalent.
Let us take simple closed curvesβ1 andβ2 homotopic to 1 2 and 2 3 respec-

tively. Let α1 α′
1 ⊂ 2− β1 be simple paths joining 1 and 2, and 3 and 4 respec-

tively; let α2 α′
2 ⊂ 2 − β2 be simple paths joining 2 and 3, and 4 and 1 respec-

tively. We can assume thatα1 α′
1 α2 andα′

2 are disjoint except at the endpoints. Cut-
ting 2 alongα1 andα′

1, we obtain an annulus with boundary ˜α1∪α̃1
′. We take +,

a copy of . Identifying the boundaries of and+ (gluing α̃1 to α̃′
1

+, and α̃′
1 to

α̃+
1), we obtain a 2-torus 2 and a branched covering :2→ 2 such that ◦ = ,

where is defined by ( ) = + ( +) = for ∈ . By ˜ = { ˜1 ˜2 ˜3 ˜4}, we
denote the branch point of , namelỹ = −1( ). Then ∗(π1( 2 − ˜ ˜ )) = 2 and

∗(π1( 2 − ( ˜ ∪ −1( )) ˜ )) = ′
2, where (̃ ) = . Therefore there exists a cov-

ering ˜ : 2 − ( ˜ ∪ −1( )) → 2 − ˜ such that ˜ = . It is easily seen that
˜ can be extended to a covering̃ : 2 → 2. Then the induced homomorphism
˜∗ : 1( 2; Z) → 1( 2; Z) is identified with γ̄ ∗ : ′̄

2 → ¯2 if a lift of γ joins ˜
and ˜ ( ˜ ).

If φ : ( 2 ) → ( 2 ) is a homeomorphism, the lift̃φ : 2 → 2 is a homeo-
morphism. The matrixµ(φ) is determined by the following. For someγ, we have

(σ1)γ ∗ :





1 → 1 2
−1
1

2 → 1

3 → 3

(σ2)γ ∗ :





1 → 1

2 → 2 3
−1
2

3 → 2

(σ3)γ ∗ :





1 → 1

2 → 2

3 → −1
2

−1
1

−1
3

Therefore

(σ1)γ ∗ :





1 → 4 2
−1
4

2 → 1

3 → 3

4 → 4

5 → 4
−1
2 5

(σ2)γ ∗ :





1 → 1

2 → 3

3 → 5 3
−1
5

4 → 4 3
−1
5

5 → 5

(σ3)γ ∗ :





1 → 1

2 → 2

3 → −1
4

−1
5

−1
1 4

−1
2 5

−1
3

4 → 4

5 → −1
1 4

−1
2 5

−1
3
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So,

(σ1)γ ∗ :

{
4 → 4

5 → 4 + 5
(σ2)γ ∗

{
4 → 4− 5

5 → 5

(σ3)γ ∗ :

{
4 → 4

5 → 4 + 5

and

µ(σ1) = µ(σ3) =

(
1 0
1 1

)
µ(σ2) =

(
1 −1
0 1

)

The matrixµ( ) can be computed from the fundamental system of .

Lemma 5.11. Let ( ) be a furnished branched covering of degree with
(2 2 2 2)-orbifold. Suppose ⊂ 2− is a non-peripheral simple closed curve(i.e.

is a simple closed curve corresponding to a member of2). Then all components
of −1( ) are non-peripheral and isotopic to one another. Moreover, there exists ′

such that : ′ → is of degree ′ for each components ′ ∈ −1( ).

Proof. Let γ be a simple path in joining two points of . Each component
of −1(γ ) is either a simple closed curve containing no points of or a simple path
with both endpoints in (recall that−1( ) = ∪ ). This implies the first assertion.
Each component of −1( ) is either an annulus or a disc. It is easily seen that has
common degree on the two boundaries of the annulus.

Let us take the minimal 1 2 > 0 satisfying

2 †
(
( 1 2) 1

)
(1) = 1 2 †

(
( 2 3) 2

)
(1) = 1

By the lemma, 1 = 1 †
(
( 1 2) 1

)
(1) and 2 = 1 †

(
( 2 3) 2

)
(1) belong to 2.

Therefore there exist ′1 ∈ −1
∗ ( 1) ′

2 ∈ −1
∗ ( 2) such that γ ∗( ′

1) = 1
4 γ ∗( ′

2) =
2

5 , whereγ is the first spoke of the radial. Suppose1 and 2 are carried to 1 4 +

2 5 and 1 4 + 2 5 by the projection 2→ ¯2. Then γ̄ ∗( 1 4 + 2 5) = 1 4 and

γ̄ ∗( 1 4+ 2 5) = 2 5. Since 1 4+ 2 5 and 1 4+ 2 5 are linearly independent,
we obtain

µ( ) =

(
1/ 1 2/ 1

1/ 2 2/ 2

)−1

For example,µ( 3) in §5.2.2 is computed as follows. Since (3)†( 1 2) = 1 2 ·
(1 2) + (2 1) and (3)†( 2 3) = 1

−1
3 · (1 2) + 2 3 · (2 1), we have

( 3)γ ∗ :

{
4 → 2 4

4 + 2 5 → 2 5
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Therefore

µ( 3) =

(
1/2 0
1/2 1

)−1

=

(
2 0
−1 1

)

Lemma 5.12. Let β : 1 → 2 − be a non-peripheral simple closed curve.
Then −1(β) consists of two non-trivial simple closed curvẽβ β̃∗ ⊂ 2, which are
homotopic to each other in 2, but which are not homotopic in 2 − ˜ . Let β′ be
another non-peripheral simple closed curve. If liftsβ̃ β̃′ ∈ 2 are homotopic in 2,
then β and β′ are isotopic in 2− .

Proof. If β is a simple closed curveβ0 satisfyingβ0 ∩ α1 = β0 ∩ α′
1 = ∅, then

the assertion is true. In general, there exists a homeomorphismφ : ( 2 ) → ( 2 )
such thatφ(β) = β0. Sinceφ is lifted to a homeomorphism̃φ : ( 2 ˜ )→ ( 2 ˜ ), the
theorem is true.

REMARK. From this lemma, there exists an injection from the set of isotopy
classes of non-peripheral simple closed curves in2 − to the set of isotopy classes
of non-trivial simple closed curves in 2. The class of a non-trivial simple closed
curve in 2 is determined by a pair of relatively prime integers

( )
. Let β be a non-

peripheral simple closed curve in2− , and β̃ be a component of −1(β). By (β),
we denote the class

( )
of β̃. If β′ is a component of −1(β), thenµ( ) (β′) = (β).

Theorem 5.13. Let ( ) and ( ′ ) be furnished branched coverings with
(2 2 2 2)-orbifolds. If there exists ∈ such that ( ) = ′( ) and if µ( ) =
µ( ′), then and ′ are equal in .

Proof. We can assume that =2. Consider a universal coveringτ : R2 → 2

such that

◦ τ
(

0
1
2

)
= 1 ◦ τ (0 0) = 2 ◦ τ

(
1
2

0

)
= 3 ◦ τ

(
1
2

1
2

)
= 4

and

◦ τ
(

0×
[
0

1
2

])
= α1 ◦ τ

([
0

1
2

]
× 0

)
= α2

◦ τ
(

1
2
×
[
0

1
2

])
= α′

1 ◦ τ
([

0
1
2

]
× 1

2

)
= α′

2

Then for 1 2 ∈ R2,

τ ( 1) = τ ( 2)⇔ 1− 2 ∈ Z2
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◦ τ ( 1) = ◦ τ ( 2)⇔ 1− 2 ∈ Z2 or 1 + 2 ∈ Z2

We set = ( 2). Let ˆ be the point in{( ) | 0 ≤ < 1 0 ≤ < 1} such that
◦ τ (ˆ) = . Then

ˆ : 7→ µ( )( ) + ˆ

is considered as a mapping ofR2 to itself, and two (branched) coverings̃: 2→ 2,
: 2 → 2 are induced by˜ . On the other hand, is lifted tõ : 2 → 2, and

further to ˆ : R2→ R2 such that ˆ (0 0) = ˆ. If 1− 2 ∈ Z2, then

ˆ ( 1)− ˆ ( 2) = µ( )( 1− 2)

sinceµ( ) is considered as̃ ∗ : π1( 2 ˜ ) → π1( 2 ˜ ( ˜ )). In particular, for alattice
point 1 (i.e. a point inZ2), we have ˆ ( 1) = ˆ ( 1). A 1/2-lattice point is a point of
1/2 Z2 = {( /2 /2) | ∈ Z}. Let 1 be a 1/2-lattice point. For any ∈ R2, we
have ◦ τ ( 1 + ) = ◦ τ ( 1 − ). Therefore ◦ τ ◦ ˆ ( 1 + ) = ◦ τ ◦ ˆ ( 1 − ).
Consequently,̂ ( 1 + ) + ˆ ( 1 − ) ∈ Z2, and that is a constant function with respect
to . Considering = 0 and =1, we have 2̂ ( 1) = ˆ (2 1)+ ˆ = ˆ ( 1+ )+ ˆ ( 1− ).
In other words, if 1 + 2 = 3 ∈ Z2, then ˆ ( 1) + ˆ ( 2) = ˆ ( 3) + ˆ = ˆ ( 1) + ˆ ( 2).
In particular, we havê = ˆ on the 1/2-lattice points. Therefore and are locally
equivalent.

The homeomorphismφ̂ = ˆ −1 ◦ ˆ satisfies ˆ = ˆ ◦ φ̂ and φ̂( 1) = 1 for

1 ∈ 1/2 Z2. If 1 ± 2 = 3 ∈ Z2, then φ̂( 1) ± φ̂( 2) = 3. Thereforeφ̂ induces the
homeomorphisms̃φ : 2→ 2 andφ : 2→ 2 such that ˜ = ˜ ◦ φ̃ and = ◦ φ.

From the above remark, for a non-peripheral simple closed curveβ in 2 − , a
component of −1(β) is isotopic to a component of −1(β). Thereforeφ(α1)∪φ(α2)∪
φ(α′

1) ∪ φ(α′
2) is isotopic toα1 ∪ α2 ∪ α′

1 ∪ α′
2 with kept fixed. Consequently,φ is

isotopic to the identity relative to . This completes the proof.

Corollary 5.14.
(1) Suppose that ′ ∈ ˜ are branched coverings with(2 2 2 2)-orbifold. Then
and ′ are p-equivalent if and only if = ′ and there exists ∈ (2) such that
µ( ) = −1µ( ′) .
(2) Suppose that ′ ∈ ˜ are branched coverings with(2 2 2 2)-orbifold and
has a fixed point in . Then( ) and ( ′ ) are equivalent if and only if they are
locally equivalent and there exists∈ (2 Z) such thatµ( ) = −1µ( ′) .

Proof. The first half is an immediate consequence of the previous theorem. The
last half is proved as follows.

Suppose ( ) and (′ ) are locally equivalent and thereµ( ) = −1µ( ′) for
some ∈ (2 Z). Without loss of generality, we may assume ( ) =′( ) for

= 1 2 3 and (4) = ′( 4) = 4. Recall thatσ1( 4) = σ2( 4) = 4. Since (2Z)
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is generated by
(

1 0
1 1

)
and

(
1 1
0 1

)
, we haveµ( ) = µ( −1 ′ ) for some ∈ 〈σ1 σ2〉.

Applying the previous theorem, we see that and′ are equivalent.

REMARK. Unlike Theorem 5.10, in general, it is untrue that a matrix ∈
(2 Z) with µ( ) = −1µ( ′) belongs to (2). For example, we set

=

(
1 0
0 3

)
and ′ =

(
1 0
0 3

)(
1 2
0 1

)
=

(
1 2
0 3

)

Then and ′ induce two branched coverings ′ ∈ ˜ such that ( ) = ′( ) =
for = 1 2 3 4. Since

(
1 1
0 1

) (
1 −1
0 1

)
= ′

we conclude ( ) and (′ ) are equivalent. However, there exists no∈ (2) such
that = −1 ′ , and hence and ′ are not p-equivalent in̄ .

We turn back to the example3 in §5.2.2. We say two matrices and inL
are equivalentif there exists ∈ (2 Z) such that = −1 .

For two given matrices and inL, we have an algorithm to check whether
and are equivalent. If trace = , we can write =

( 2 +
−2

)
, where is an

integer, an odd integer, an even integer and−2 (2 + )− = 2. The eigenvalues
areα =

(
+
√ )

/2 α =
(
−√

)
/2, where = 2−8. Let

(
1

2

)
be an eigenvector with

eigenvalueα, and
( ′

1
′
2

)
an eigenvector with eigenvalueα. We haveξ = 1/ 2 =

(
4 +

+
√ )

/2 ξ = ′
1/

′
2 =
(
4 + −√

)
/2 . We sayξ is the baseof . Remark that

if 4 + and are relatively prime and is not a square, the minimal polynomial
of ξ ξ is 2− (4 + ) − . Then thediscriminant (ξ) = (4 + )2 + 4 = . If is
the greatest common divisor of 4 + , then (ξ) = / 2.

Suppose there exists =
( )

∈ (2 Z) such that = −1 . Then and

have the common eigenvaluesα α. By
(

1

2

) ( ′
1
′
2

)
, we denote eigenvectors of corre-

sponding toα,α. We write η = 1/ 2 and η = ′
1/

′
2. Since

(
1

2

)
is an eigenvector of

with eigenvalueα, we have

η =
ξ +
ξ +

(I)

We say two algebraic numbersξ and η are modularly equivalentif they have the re-
lation (I) with − = 1. Conversely, suppose and have the same eigenvalues.
If ξ and η are modularly equivalent, then and are equivalent.

Thus our problem is concerned with the arithmetic of quadratic number fields. We
consult a textbook of number theory, for example, Section 2.7 of [2].
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Consider the case < 0. Since is odd, =±1. This case has a special sig-
nificance: the condition traceµ( ) = ±1 is necessary and sufficient for ( ) to be
equivalent to a rational map [4].

Proposition 5.15. If ∈ 3 satisfiestrace(µ( )) = ±1, then is equivalent to
either 3

−1
2 or 1 3 2.

Proof. We first see that

µ( 3
−1
2 ) =

(
1 2
−1 0

)
µ( 1 3 2) =

(
1 −2
1 0

)

The bases are
(
−1−

√
−7
)
/2
(
1 +
√
−7
)
/2.

Recall the fundamental domain ={ +
√
−1 | > 0 −1/2< ≤ 1/2 2+ 2 ≥

1 ( 2 + 2 > 1 if − 1/2 < < 0)} of the modular group (2Z). By calculation,
we have only one quadratic numberθ = (1 +

√
−7)/2 ∈ such that (θ) = −7. Set

µ( ) = =
( 2 +1

−2

)
. Since− = 7 is a prime, (ξ) the discriminant of the baseξ

is = −7. Remark that (ξ) = (η) if ξ and η are modularly equivalent. Therefore,
if > 0, there exists =

( )
∈ (2 Z) such thatθ = ( ξ + )/( ξ + ). If < 0,

then ξ is modularly equivalent to the complex conjugate ofθ. According to the sign
of , is equivalent to 1 3 2 or 3

−1
2 .

Proposition 5.16. Suppose = 2 − 8 > 0 is square-free. By , we denote the
number of ideal classes of the quadratic number fieldQ

(√ )
, and by ′, the number

of ideal classes in the narrow sense. Then

′
≤ #
{ ∈ 3 | traceµ( ) = ± }

∼ ≤ ′

In particular, in the case = 1,

#
{ ∈ 3 | traceµ( ) = ± }

∼ = ′

Proof. We have quadratic numbersθ1 θ2 . . . θ such that for any quadratic
numberξ with (ξ) = , there exist and integers withθ = ( ξ+ )/( ξ+ )
and − = ±1. Since is square-free, the discriminant of the base ofµ( ) is equal
to . Therefore the base ofµ( ) is modularly equivalent to one ofθ±1

1 θ±1
2 . . . θ±1.

If = ′, then θ and θ−1 are modularly equivalent. Consequently,

#
{ ∈ 3 | traceµ( ) = ± }

∼ ≤ ′
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If ′ = 2 , then
(

2
−1 0

)
and

( −2
1 0

)
are not modularly equivalent, and hence

#
{ ∈ 3 | traceµ( ) = ± }

∼ ≥ 2

In the case > 0, the modular equivalence can be checked by the continued frac-
tion expansions ofξ and η.

EXAMPLE.
(1) = 5, = 17. The bases of

µ( 3
−1
2 1) =

(
5 2
−1 0

)
= µ( 1 3

−1
1

−1
2

2
1) =

(
9 2
−19 −4

)
=

are ξ =
(
−5−

√
17
)
/2 η =

(
−13−

√
17
)
/38. The continued fraction expansions ofξ

and η:

ξ = −5 +
1

2 +
1

θ

η = −1 +
1

1 +
1

1 +
1

1 + θ

(J)

where

θ =
3 +
√

17
2

=
[

3 1 1
]

= 3 +
1

1 +
1

1 +
1

θ

(K)

By (J) and (K),

ξ =
−9θ − 5
2θ + 1

η =
−θ − 1
2θ + 3

θ =
7θ + 4
2θ + 1

Therefore a matrix ∈ (2 Z) satisfying = −1 is written in the form =(
9 4
−2 −1

)
. On the other hand,

=

(
17 4
−4 −1

)−1 (
17 4
−4 −1

)

So, we finally obtain

=

(
17 4
−4 −1

)−1(
9 4
−2 −1

)− (
9 4
−2 −1

) (
17 4
−4 −1

)
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Since the determinant of
(

9 4
−2 −1

) (
17 4
−4 −1

)
is 1 for odd , we have 3

−1
2 1 ∼

1 3
−1
1

−1
2

2
1.

In general, all matrices ∈ L satisfying trace = 5 are modularly equivalent, for
′ = 1. Indeed, for and , there exist ∈ (2 Z) such that = −1 =
−1 and | | = −1. Thus either| | = 1 or | | = 1.

(2) = 13 = 161. The bases of

µ
(

3
−1
2

3
1

)
=

(
13 2
−1 0

)
= µ

(
1 3 2

−3
1

)
=

(
13 −2
1 0

)
=

are ξ =
(
−13−

√
161
)
/2 η =

(
13 +
√

161
)
/2. The continued fraction expansions ofξ

and η:

ξ = −13 +
1

1 + θ
η = 12 +

1

1 +
1

θ

where

θ =

(
9 +
√

161
)

4
=
[

5 2 2 1 2 2 5 1 11 1
]

By a calculation similar to the previous example, we conclude that a matrix∈
(2 Z) satisfying = −1 is written in the form =

(
23839 3712
−1856−289

) (−1 0
0 1

)
. Since

| | = −1, we have 3
−1
2

3
1 6∼ 1 3 2

−3
1 .
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