Han, C.-K. and Kim, S.-Y.
Osaka J. Math.
38 (2001), 851-867

SYMMETRY OF THE TANGENTIAL CAUCHY-RIEMANN
EQUATIONS AND SCALAR CR INVARIANTS

CHong-Kyu HAN and Sinc-Yeon KIM
(Received January 6, 2000)

Introduction

Let @ ={r > 0} be a bounded strictly pseudoconvex domairCifi* with smooth
(C*°) boundary and leK, be the Bergman kernel definedon . In [3], C. Fefferman
proved

Po
—r”+2 + ¢Q In r,

Ko(Z,Z7)=

where ¢ and g are functions that ar€ > up to 0.

0% inherits a geometric structure, called CR structure, fréfii* which is rele-
vant for the biholomorphic equivalence & . Fefferman’s program, initiated in [5], is
to compute all the scalar CR invariants @f2 and to express the asymptotic expan-
sion of g modulo O ¢"*?) and 1 modulo O ¢*°) in terms of scalar CR invariants
of 0Q.

Fefferman’s invariant theory was developed further by T.N. Bailey, M.G. East-
wood, C.R. Graham, G. Komatsu and K. Hirachi, see [1], [7] and [8]. The main
method is to obtain a defining function which is invariant under biholomorphic maps
up to a power of determinants of biholomorphic maps and to constructlalek
Lorentz metric on a line bundle a2  which is invariant under local biholomorphic
maps and unique modul® r(1).

In present paper our approach is viewing the CR invariants of a real hypersurface
M of C** as a scalar function defined on the jet space of CR embed®ing/ —

C"*1 which is invariant under deformation of embedding. We express necessary and
sufficient condition for scalar CR invariants using symmetry of the tangential Cauchy-
Riemann equations.

C> basis of the CR structure bundé%(M) = CT(M)NT+°(C"*'). A mappingF =
(fL.... "™ : M — C"' is a CR embedding if

(0.1) Liff=0j=1....,nk=1...,n+1
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and

df*n---NdfTr #0.

(0.1) is called the tangential Cauchy-Riemann equations.

A symmetry of CR embedding equations transforms a CR embedding into another.
Hence if a function is invariant under CR maps, then it is invariant under a symmetry
of CR embeddings. We show that in the case@¥f real hypersurfaces i€"*! of
nondegenerate Levi form, all scalar CR invariants are invariant under the symmetry of
CR embeddings up to a power of determinants of CR maps and vice versa.

The merit of using the symmetry of CR embedding equations is that one need not
construct special defining functions such as Fefferman’s defining functions to define
scalar CR invariants with weights.

We organize this paper as follows.

In §1 we introduce the definition of scalar CR invariants.§l we review some
basic notions of jet theory and symmetry of partial differential equations;3lrwe
study the infinitesimal symmetry of CR embeddings. §h we state and prove our
main result and ir§5 we restate our result on @ bundle of M .

We thank Professor Gen Komatsu and Professor Kengo Hirachi for teaching us
Fefferman’s theory of CR invariants.

1. Definition of the scalar CR invariants

Let M C C*! be a real analyticf*) real hypersurface containing @ M as a

reference point. LeZ =z(zn+1) = (z1, . - -, Zn, Zn+1) € C**1 and z,41 = u +iv. Define
n
(z,2) =) 8727
ij=1

where Q,?)l-,j:l » 1S @ann x n hermitian matrix with deyﬁ) # 0.

,,,,,

Derinimion 1.1. M is said to be in Moser's normal form M  is given by
v =(z,2) — F(z,Z, u),
where

F(z,7Z,u) = Z Alaﬂzo‘f’@u’

lal.| 8] >2
1>0

with A = Al and

tral, =tr* Al =t AL =0 for all/ >0,
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.....

We have

Theorem 1.2. ([2], [9]) If M is a C¥ real hypersurface of nondegenerate Levi
form, then there exists a local biholomorphic map  such tkhgt) is in Moser’s
normal form.

If M is in Moser's normal form, we writeM =N A ), wher& :A&ﬁ) is a
collection of the coefficients of the defining function & . In general, Moser’s normal
form of M is not unique. In factM has a unique Moser’s normal form if and only
if M is locally equivalent to a hyperquadric, a real hypersurfaég defined byv =
(z,2).

Let H be the isotropy group of the hyperquadhf, consisting of the holomor-
phic mappings leavingWy, and the origin fixed and letV" be the set of all Moser's
normal form coefficientsA :/(fm). Then there is a group action

HxN —N
(h,A) — h-A

such that two hypersurfaced  and are biholomorphically equivalent if and only if
their Moser’'s normal form coefficients are in the safie -orbit.

Derinimion 1.3, A polynomialP A ) inA € AV is said to be a scalar CR invariant
of weight w if

P(A) = | deth’(0)[2*/*2 p(h - A)
forall h € H.

SupposeP is a scalar CR invariant of weight . Then for e@ehhypersurface
of nondegenerate Levi form , we can define a real-valgedfunction a,, as fol-
lows:

Let p € M. Choose a local biholomorphic map,  defined on a neighborhood of
p such that®, p ) =0 anav A ):®, M ) is in Moser's normal form. Define

au(p) = | detd,'(p)[2»/ 2 p(A).

Thenay (p) is well-defined independently of the choicedf . Let

®,(2)= Y calp)(Z - p)*
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be the power series expansion @f, at , where= (ag,...,q,+1) are @ + 1)-
tuples of nonnegative integers. Then for eathcz(p) is determined by a finite jet
of a defining function ofM atp . In particular, i#7 is defined by

v—g(z,zZ,u) =0,

thencsz(p) is a polynomial of the derivatives ¢f at . HenceM  @¥, thencsz(p)
is alsoC¥. Thereforea,, isC®. Furthermorega, satisfies a transformation law

ay = | det\I/'|2w/(”+2)alp(M) oW

for any biholomorphic mapl

Sinceay, ) depends only on a finite jet of a defining functionpat , we can de-
fine a smooth functior;; as above for agy° hypersurfaces of nondegenerate Levi
form.

2. Infinitesimal symmetry of differential equations

In this section we introduce basic notions of infinitesimal symmetry of differential
equations. We refer [10] as a reference.

Let X be an open set dR” and U be an open set ®?. Lety : X — U be a
smooth map. By X, y") we denote all the partial derivatives of  F(..., y?) up
to orderm atx and byj,y we denote finite jet of at of unspecified order. The
setJ” (X, U) :={(x,y™): (x,y) € X x U}, whose coordinates represent the indepen-
dent variables, dependent variables and the derivatives of the dependent variables up
to orderm is called then -th order jet space of the underlying spaceU. A real
valued smooth functiom x( y™) defined onJ” K, U ) is called a differential function
of orderm and denoted by y[ ].

Now consider a system ofi -th order differential equations

(2.1) AY(x,y™)=0, v=1,...,1

for unknown functionsy =y, ..., y?) of p variablesx =, ..., x,). For ap -tuple
of integersJ =i, ..., jp), define|J|=j +---+j, and

a jl 8 jp
D, = - e —— .

We consider an evolutionary vector field

> 0.0
VQ = O, [y] aa’
a=1 ay

where O = Qa[y], ..., Q4[y]) is a g-tuple of differential functions of unspecified or-
der. Them -th prolongation o¥, is an evolutionary vector field bf X, ) defined
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by
VeV EY S g
J ayg ’
a 1<|J|<m
where
¢G5 =Dy¢"
and
y5 = Dyy“.

Let Z be the set of all differential functions of the form

1
D HIDID,AY),

|J]>0 v=1
where H/[y] is a differential function of unspecified order. Then

DerNmion 2.1, Vo = 39, 0,[y1(8/0y) is called a generalized infinitesimal
symmetry of a system (2.1) if

(pr®™Vvy)AY = 0 modZ
forall v=1,...,1.

If y= f(x) is a C* solution of (2.1) andvVy > 7_, 0.[y](8/0u”) is a general-
ized infinitesimal symmetry of (2.1), theWi,  evaluated on the jetf of

: 0
V (.le): Qa[]xf]—a
0 2; 3

is a C* vector field onf & ), which is an infinitesimal deformation of the solutipn
We have

Theorem 2.2. Suppose thaVy = >7_, 0.[y](9/dy?) is a generalized infinitesi-
mal symmetry of a systef2.1) and that f(x) is a solution of(2.1). Suppose a map-
ping

y(~,t):(y1,...,yq)3XX(fe,e)HU
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satisfies

ot
y(x,0) = fx)

Then for eactr € (—¢, €), y(-,t) is a solution of(2.1).

{ aya(x’t) - Qa[jxy]’ a= 1’""q

Proof. See [10]. ]

3. Infinitesimal symmetry for CR embeddings

Let M be aC™ real hypersurface irC"*! of nondegenerate Levi form and let
{L;}i=1...., be a basis ofH*°(M). Let F = (f*,..., f") : M — C"! be aC*>
embedding intaC"*?.

Foreachi =1...,nanda =1...,n+1, let

{A%lzReEJﬂ

3.1 .
G AP = Im(L; f)

Denote
o 1/ 0 0
aca ) (m - _13—2a>

o _1
ac <3y2“ . \/__)

foralla=1,...,n+1. Then an evolutionary vector field

n+l

Vo = ZQ“ME)@ 0.1-2, e

where 0, ] = qz[y] + vV-14; [y] 0.1 = 4ily] — v/=1¢Z[] for some differential
functionsgl[y] and ¢2[y], a= ..,n+1, is a generalized infinitesimal symmetry of

(3.1) if and only if
L;0.[y]=0modZ
foralli=1,...,nanda =1...,n+1, whereZ is the ideal generated by
2n+2

DY HID(D,AY).

[/]20 v=1



ScALAR CR INVARIANTS 857

If F: M — C"is aC> CR embedding, therVQ evaluated on the jet Fof
is a C> vector field Y21 ¢(0/9¢%) + Y"1 ¢4(9/dC") on F(M) such thatp” is a
C* CR function defined onF M ) for alk =,1..,n + 1. On the other hand, if
V= Z”” ¢9(0/0¢) is a holomorphic vector field o@"*l where¢®, a=1,...,n+1,
are holomorphic functions, the W is an infinitesimal symmetry of (3.1).

Now let T be aC* real vector field onM =r = 0} such thator(T) # 0. Then
{L;};=1.... together WithL,.; := J(T) +v/—1T spanT19(C"*!) along M , where J is
the complex structure oft”*1. Hence there existd x( ) éAﬁ(x))a y=1__nsq SUCh that
eachA? ) isC> on M and

Ly 0/0z1
L+ a/aziﬁl

along M .
For (» + 1)-tuple of holomorphic functiong = (¢, ..., ¢"**) on a neighborhood
of M, define
Qa Qa 7(77
Z ¢
where

n+l
=2 (Z AJLiC+ V-1 A"”Tca)

b=1 j=1

Then we have

Proposition 3.1. V; is an infinitesimal symmetry B.1). Moreovery if a differ-
ential functiona[y] = a[ y?™] which is holomorphic in its arguments satisfies

(3.2) (pr™Vv,)aly] =0 modZ

for all (n + 1)-tuples of holomorphic functiong, then a[y] = b(x) moduloZ, where
b(x) is a C*= function ofx variables only.

Proof. Since¢”, a =1,...,n+1, are holomorphic on a neighborhood &f , we
can easily show thaVy is an infinitesimal symmetry of (3.1).

Now suppose there isvd, y"™) such thata fo, y™)] # a[xo, id™] modulo Z. We
may assume thap # is @ embedding. Furthermore we may assume that there
exist C* embeddingsF, &+ +H , &t <1, such that

d
(m)
T t:Oa[xo, F'™] #0.
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Choose a holomorphic mapping and H such that

F=F+ O (|x — xo|™*")

and
H = E+ O(|x _xo‘m+l>‘
Then
d ~ Oa -
g7 Fm = Hb — F(m)
dt ‘r:oa[xo’ ! ] ; J(-xO) 5(’} [xo, ],
where
7 0 4 ~ o 1 9 us1 B
Hb - - Hb =2 o Hb .
= () 0= (5n) () B
Define

o' =) H'Gj,
b

Vo=, 0.(0/9¢%) + 0,(8/C") as above.
Then

~ o\’
Hj’(x):<a—z) Qulx, F™M].

Hence we have
(pr™Vy)alxo, F™] #0,

which contradicts the assumption (3.2). ]

4. Scalar invariants for CR embeddings and scalar CR invariants

Let M be an (2 +1)-dimensiona>™ CR manifold and letx =xXi, ..., x2,+1) be
a coordinate system oé/ . Let M — C"! be aC> map such thatly! A --- A
dy?** #0 on M. Then the image M ) is a grapi"*? = g(v*, ..., y**}) of some
C* function g. For each positive integet , we define a mafrom an open subset
of Q" c J"(M,R?**?) to them -th jet space/”™ R?'*%, R) as follows:

For m =1, consider the chain rule

8y211+2 2n+1 ag ayk

(4.1) -
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Let Q! be the subset of ™ M, R?'*?) on which [@y*/0x;)]: x=1.....2.+1 IS NON-singular.
Then onQ?, we can solve (4.1) fordg/0y*), k =1,...,2n +1, in terms ofdy*/0x;,
i=1...,2n+1anda =1...,2n+2. So definer : Q* — JY(R**L R) by n(x, y) =
(', gM), wherey’ = (y1, ..., y'*)). We definer : Q" — J™(R¥'*1, R) inductively for
each positive integet:

From now on we only consider the case thét €% real hypersurface i€+
of nondegenerate Levi form. Lé&t be a non-vanishing real-valued 1-form &f  which
annihilatesH%(M)+H%(M). SinceM is of nondegenerate Levi form, we can choose
a uniqued up to sign such thaf A (d0)" = dV)y,, wheredV,, is a volume form oM
defined bydVy =n]dV, wheren is a unit normal vector field o  amtV is a
volume form of C"*1.

Now consider a differential functio® ofi -th jet spad& R%(*! R) of g which
is analytic in its arguments on a neighborhood of the -th jegof (z%) at 0 in
J™(R?*1 R). Let {L1, ..., L,} be a basis of#-%(M) and T be a real vector field of
M such thatd(T) = 1. Assume that

d0=v=1%" g6/ A modo,

jk=1

where {0, Hj,gj}jzl,_“,n is the dual basis of T, L;, L;}. Let T be the ideal as in Sec-
tion 3. Then

DeriniTion 4.1, LetF =(fL,..., ™Y : M — C"*! be aC> embedding and let
P be a holomorphic function od™ RZ**1, R). P is a scalar invariant of CR embed-
ding if for all C*° embeddingF ,

1 2y w/(n+2)
Pon(x, F™) = {c§+1||9| : ’det(gj;)‘ : ‘ det(x, f* )’ } a(x), mod 7

for some functiona X ) of onlyx variables, wheff|| is the Euclidean norm o#,
Cps1dziANdZ1 - dzpsi Ndzger =dVopep @and X; =L; i =1...,n, Xpe1=T.

Note that if F :U — V is a local biholomorphic map on a neighborhood Mf
then cZ,, 0]l - |det(e )| ~* - | det(X, f”)? = | detF’|>. Hence we have

Theorem 4.2. P is a scalar invariant of CR embeddings of weight if and only
if P is a scalar CR invariant of weightv

SupposeM is defined by?*2 — g(y!,...,y?*) =0 and P is a scalar invariant
of CR embeddings of weighty . SincE o «(x,id™) = a(x), a(x) is a scalar CR
invariant of weightw by Theorem 4.2.
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Proof of Theorem 4.2. Suppose @ M is a C*> real hypersurface irC"*!
of nondegenerate Levi form. LeP  be a scalar invariant of CR embeddings of
weight w. If F : U — V is a (formal) local biholomorphic map on a neighbor-
hood of M such thatF ¥ ) is in Moser's normal form, theého 7(x, F™)|,=0 =
| detF’(0)|2/*2 P’(A), where P’ is a holomorphic function defined of” R¥'*1, R)
such thatP/(h - A) = | deth|~22/("*2) p/(A).

Now let

h)\(Z, Zn+l) = ()\le e )\Zn’ )\zzn+l)
for some\ > 0. Then
P'(hy - A) = A2 P/(A).

Hence P’ is a weighted homogeneous polynomial Lm’a%) with weight
wt(Alaﬁ) = la|+ || +2 -2

Conversely, if P’ is a polynomial in the coefficients of Moser's normal form
(A’aﬁ) such thatP’(h - A) = | deth|~2%/("*2 p’(A), then defineP {’, g™) as follows:

Consider ac> real hypersurfaced = {y2*2 — g(y!, ..., y>*1) = 0} in R?*2
with nondegenerate Levi form. Let € M. After a holomorphic change of coordinates
given by a quadratic map, we may assume that 0 and

n
—k
g0ty = 3 g I oy 4 [C),
jk=1

where ¢/ = y%~t+/=1¢¥ and ¢ = (¢*,...,¢"). Choose® U -V, a formal
series of local biholomorphic map on a neighborhoodMfto a neighborhoodv of
®(M) = N which is in Moser's normal form, with the properties

82q>n+1

AP =1d.  55-(0) =

0 j,k=1...,n

and

2ot
where Cn+~1 = y2tly /o y2n42,

Let N = N(A). Then Aixﬁ, [ +|al +|8] < m are holomorphic functions in
g™ at (v, ..., y&*Y). Define P (h, g™) = P'(A), whereyy = (33, ..., y"*). Then
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P(y4, ™) is a holomorphic function in its arguments on a neighborhood ofnthe  -th
jet of (z,z) at 0 in J™ R?'*1, R) such that

P o w(x, F™) = |detF’|2*/("*2)4(x) modZ
for all (local) biholomorphic mapF . Sinc® o7 depends only on a finite jet of at
a reference point, this implies th@& is a scalar invariant of CR embeddings of weight

w. O

Now we will give an equivalent condition of Definition 4.1 by using infinitesimal
symmetries of tangential Cauchy-Riemann equations.

Lemma 4.3. Let yU € QL If Vp = 32" 0.[y1(0/9¢%) + 0,[y)(8/C") is an
infinitesimal symmetry of3.1), then

prvo (1611 |dett)| - |derte, )
= (@' + W(@TD) (161 |dette ] - |det, ) moaz,

where (Q'[y]) = (Xa Opl M) g p=1. psa fOr X =L;, i =1 ...,n, X,v1 =T andtr is the

.....

Proof. Suppose there exists a one-parameter farfijly of local biholomorphic

maps such that
OFf(x)
{ ot =0

Fo(x)

Qa(xaF(’n))7a:1,...,n+1

F(x)

Then
prOv,(detF’) = Q‘ (detF").
Ot lr=0

Let b, ;== F 1o F,. Thenh, :M — C"*! is a one-parameter family of local biholomor-
phic maps such thaty = id. Hence

0 0
—_ F = FH—
T r:O(det ;') =(detF’) T

/
_(detn,)

n+l a
=(detF") ( 0 ’ on; ) .

Ot 11=0 074
a=1
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Since

9
ot

one 9

01 (SR 0R
=00z, Ot li=0 ~ o¢h 9z
n+l

IR0 s )
=)
b=1

b

=0 !

9 074 0t
n+l

— a(F_l)a 0 (m)
=3 S g @F.

we have

(m)
9 (detF,’) = (detf') tr (M) ,
at 1=0 a,b=1,....n+1

074

......

(m) (m)
prVy(|detF’|?) = | detF’|? <tr <78Q2[F ]) +tr (LQ%[F ]>) :
Za Za

which completes the proof. U
Theorem 4.4. P is a scalar CR invariant of weighiy  if and only if P satisfies
prVo(P o m(x, y))
=" (t(Q'[y]) + TQ'D)) P o n(x, y) modT
n+2
for any infinitesimal symmetry, = EZ:% 0.[y1(0/8¢%) +0,[y1(8/8C") of (3.1).

Proof. SupposeP is a scalar CR invariant of weight . Then

) _1 2y w/(n+2)
Povr(x,y<m>):{c,1+1||0|-\det(g,-k)] .| dett, ) } a(x) modZ.

Hence by Lemma 4.3,

priVy(P o m(x, y™))

:nLJrz (tr(Q'[y]) + r(Q'Dy])) P o m(x, y™) modZ.

Now supposeP satisfies
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pr™Vo(P o m(x, y™))

nl_l: > (tr(Q'[y]) + r(Q'[y]) ) P o m(x, y™) modZ.

Since
_1 2\ w/(n+2)
prvo (101 |dete )| |deree, )
w ) _1 . 2 w/(n+2)
= (t(Q'DD + QDY) <||e| | detig )| | detex, 1) ) modZ,
by multiplying (|0[| - | det(g ;)| ~* - det(x, f*)?)~*/*2), we have
- o2 m)
<||9| : ’det(gﬁ)‘ -‘det(xaf )] > priVy (P om(x, y))

1 2 —w/(n+2)
—prmy, <o|| | detg)| | detx. ) ) Pom(x, y")

= 0 modZ

for any infinitesimal symmetry/, of (3.1). This implies that

2\ —w/(n+2)
) Pom(x,y™)

-1
pr(m)VQ ((Hg“ . ‘dEt(gj;)’ . ‘det(X(,fb)
=0 modZ

for any infinitesimal symmetryy, of (3.1). Hence by Proposition 3.1 we have

_1 o\ —w/(1+2)
<e|| : ’det@ﬁ)‘ ~’det(Xaf” )‘ ) P on(x, y) = a(x) modZ
for some functiora £ ) of onlyx variables. ]

5. Scalar invariants of CR embeddings on aC* bundle

In Section 4 we have to choogesuch thatd A (d6)" = dVy,. In this section we
restate our main theorem without choosifidy considering aC* bundle C* x M of
M as in [4] and [5].

SupposeM C C"*! is defined by

(5.1) p=y""2— gt ..y =0

Now considerC* x M. We regard this as a real hypersurfaceChx C"*! defined by
(5.1).
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Let (€% )= (% ¢, ..., (") € C* x C"L. Let J™(C* x R?**1, R) be them -th jet
space ofC> functionsg; : C* x R¥*1 — R. If g: R?"*1 - R, then define

gy = [0/ Rg(yt Ly,

Let U be a neighborhood oM . Consider the -th jet spa?ge c Jm(C* x
M, C* x C"?1) consisting of restrictions of local biholomorphic maps

</>ﬁ:<C*><U—>(C*><(C"+l

such that dep; = 1.
If F: U — C"!is a local biholomorphic map, then define

(5.2) Fy((z0. 2)) = (zo(detF'(2)) 1, F(2)),

where ¢, Z) € C* x U. Then Fﬁ(’") €Sy

For ¢y : C* x M — C* x C™, let y, = (9, ..., ¢}, Re@;™)). Now considerr; :
J™(C* x M, C* x €Y — Jm(C* x R?*1 R) defined bymy((zo. 2). ¢{") = (v}, &™)
Let P; be a differential function which is holomorphic on a neighborhood ofrhe

jet of g; = |2/ D" ¢ (T at (°.¢) = (L 0). Then

Theorem 5.1. If Pyomy =a(zo, Z, %0, Z) ON Sy for some functioru  then

Py= Y [¢0 2P,

w

where P, is a scalar CR invariant of weight

-th

Proof. Let Ji' C J™(C* x RZ*L R) be them -th jet space of functions of the

form
g = 102D 2.
Then Pﬁ|Jg, is a holomorphic function in
(OO DD g (v, ¥, wrtwg I < m.
Thus

Pﬁ = Z (go)7w1/(’1+2)(F)7w2/(n+2)Pw1w2a

w1, W2

where P,,,,, is holomorphic ing™.
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Since P; is real, wy = wy. Hence

P’j - Z |<0|72w/(n+2)Pw’
w

where P,, is holomorphic g™ and

)Zw /(n+2)

Py o my((z0 Z), F™) = (lzo| Y| detF| P, on(Z, F™)
w

for all Fy defined by (5.2).
On the other hand, i o m; = a(zo, Z, Zo, Z) on S7, then

a(ZO, Z, 20, 7) = Z |ZO|—2w/(II+2)aw(x)

w

on Sy, wherea,, is aC* function defined onM . Hence
P, o mt(x, F™) = |detF’[2"/*2q, (x)

for all local biholomorphic mapF , which implies tha, is a scalar CR invariant of
weight w .
]

SupposeV; = Y2 ¢7(9/9¢") is a holomorphic vector field oft* x C*** such
that ¢, @ = 0,...,n + 1, are holomorphic functions ofi* x C"*1. Then Vi is an
infinitesimal symmetry ofSé” if and only if trqb/ti = 0, where tv¢’ri is the trace of
O(¢5. -, ™)/ 0(z0, - - - 2n+2))-

If v= 2221 #?(0/0¢%) is a holomorphic vector field oft"*1, then define

n+l

=0
Vu = Z ¢g acﬁ
a=0

with

4 = —Ptr¢’(¢)a=0
B H(¢) a=1,....n+1°
where trg’ is the trace of(d(¢?, ..., ¢"*1)/0(z1, . . ., zs+1)). ThenV; is a holomorphic
vector field onC* x C*** such that tp} = 0.
ConsiderSy" as a subbundle of " @ x M, C* x C™1) over C* x M. Then the

set of vectors
(5.3)

1+1
{pr('")(vﬁ +Vy) V= qu?aa@ tr¢/; =0, ¢f: holomorphic functions}

a=0
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spans the vertical tangent spacessg‘f.

Theorem 5.2. If pr™(Vy +V;)P;yomy =0 on &7 for all infinitesimal symmetry
of S' of the form(5.3), then

= I
w

where P, is a scalar CR invariant of weight
Proof. Supposgr™(V;+V;)P;om; =0 on Sy for all infinitesimal symmetry of
Sé” of the form (5.3). Sincepr(’")(w +V}) of the form (5.3) span the vertical vector
spaces ong’ overC* x M,
Pyomy = a(zo, Z, Z0, 7)

on Sy". Thus by Theorem 5.1,

Py= I, 0
w
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