GROWTH PROPERTIES OF HYPERPLANE INTEGRALS OF SOBOLEV FUNCTIONS IN A HALF SPACE

Dedicated to Professor Masayuki Ito on the occasion of his sixtieth birthday

Tetsu SHIMOMURA

(Received January 21, 2000)

1. Introduction

Let $\mathbf{D} \subset \mathbf{R}^{n}(n \geq 2)$ denote the half space

$$
\mathbf{D}=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n-1} \times \mathbf{R}^{1}: x_{n}>0\right\}
$$

and set

$$
\mathbf{S}=\partial \mathbf{D}
$$

we sometimes identify $x^{\prime} \in \mathbf{R}^{n-1}$ with $\left(x^{\prime}, 0\right) \in \mathbf{S}$. We define the hyperplane integral $S_{q}(u)$ over \mathbf{S} by

$$
S_{q}(u)=\left(\int_{\mathbf{S}}\left|u\left(x^{\prime}\right)\right|^{q} d x^{\prime}\right)^{1 / q}
$$

for a measurable function u on \mathbf{S} and $q>0$.
Set

$$
U_{r}\left(x^{\prime}\right)=u\left(x^{\prime}, r\right)-\sum_{k=0}^{m-1} \frac{r^{k}}{k!}\left[\left(\frac{\partial}{\partial x_{n}}\right)^{k} u\right]\left(x^{\prime}, 0\right)
$$

for quasicontinuous Sobolev functions u on \mathbf{D}, where the vertical limits

$$
\left(\frac{\partial}{\partial x_{n}}\right)^{k} u\left(x^{\prime}, 0\right)=\lim _{x_{n} \rightarrow 0}\left(\frac{\partial}{\partial x_{n}}\right)^{k} u\left(x^{\prime}, x_{n}\right)
$$

exist for almost every $x^{\prime}=\left(x^{\prime}, 0\right) \in \partial \mathbf{D}$ and $0 \leq k \leq m-1$ (see [8, Theorem 2.4, Chapter 8]).

Our main aim in this note is to study the existence of limits of $S_{q}\left(U_{r}\right)$ at $r=0$. More precisely, we show (in Theorem 3.1 below) that

$$
\lim _{r \rightarrow 0} r^{-\omega} S_{q}\left(U_{r}\right)=0
$$

for some $\omega>0$.
Consider the Dirichlet problem for polyharmonic equation

$$
\Delta^{m} u(x)=0
$$

with the boundary conditions

$$
\left(\frac{\partial}{\partial x_{n}}\right)^{k} u\left(x^{\prime}, 0\right)=f_{k}\left(x^{\prime}\right) \quad(k=0,1, \ldots, m-1)
$$

We show (in Corollary 3.1 below) that if $1<p \leq q<\infty, n / p-(n-1) / q<1$ and $u \in W^{m, p}(\mathbf{D})$ is a solution of the Dirichlet problem with $f_{k}\left(x^{\prime}\right)=\left(\partial / \partial x_{n}\right)^{k} u\left(x^{\prime}, 0\right)$ for $0 \leq k \leq m-1$, then

$$
\lim _{r \rightarrow 0} r^{n / p-(n-1) / q-m} S_{q}\left(U_{r}\right)=0
$$

where $U_{r}\left(x^{\prime}\right)=u\left(x^{\prime}, r\right)-\sum_{k=0}^{m-1}\left(r^{k} / k!\right) f_{k}\left(x^{\prime}\right)$.
To prove our results, we apply the integral representation in [6, 8]. For this purpose, we are concerned with K-potentials $U_{K} f$ defined by

$$
U_{K} f(x)=\int K(x-y) f(y) d y
$$

for functions f on \mathbf{R}^{n} satisfying weighted L^{p} condition:

$$
\int_{\mathbf{R}^{n}}|f(y)|^{p}\left|y_{n}\right|^{\beta} d y<\infty
$$

In connection with our integral representation, $K(x)$ is of the form $x^{\lambda}|x|^{-n}$ for a multi-index λ with length m. Our basic fact is stated as follows (see Theorem 2.1 below):

$$
\lim _{r \rightarrow 0} r^{n / p-(n-1) / q-m} S_{q}\left(u_{r}\right)=0
$$

where $u_{r}\left(x^{\prime}\right)=U_{K} f\left(x^{\prime}, r\right)-\sum_{k=0}^{m-1}\left(r^{k} / k!\right)\left[\left(\partial / \partial x_{n}\right)^{k} U_{K} f\right]\left(x^{\prime}\right)$.
In the final section, we give growth estimates of higher differences of Sobolev functions.

For related results, see Gardiner [2], Stoll [14, 15, 16] and Mizuta [5, 6, 9]. We also refer the reader to Mizuta-Shimomura [10, 11] concerning monotone functions as a generalization of harmonic functions.

2. Hyperplane integrals of potentials

For a multi-index λ and $l>0$, set

$$
K(x)=\frac{x^{\lambda}}{|x|^{\mid}} .
$$

We define the K-potential $U_{K} f$ by

$$
U_{K} f(x)=\int_{\mathbf{R}^{n}} K(x-y) f(y) d y
$$

for a measurable function f on \mathbf{R}^{n} satisfying

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}(1+|y|)^{|\lambda|-l}|f(y)| d y<\infty \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}|f(y)|^{p}\left|y_{n}\right|^{\beta} d y<\infty, \quad y=\left(y_{1}, \ldots, y_{n}\right) . \tag{2.2}
\end{equation*}
$$

In particular, K is the Riesz α-kernel when $\lambda=0$ and $l=n-\alpha$. In this case, $U_{K} f$ is written as $U_{\alpha} f$ with $\alpha=|\lambda|-l+n>0$. Note here that (2.1) is equivalent to the condition that

$$
\begin{equation*}
U_{\alpha}|f| \not \equiv \equiv \infty \tag{2.3}
\end{equation*}
$$

Throughout this paper, let M denote various constants independent of the variables in question.

For a nonnegative integer m, consider

$$
K_{m}(x, y)=K(x-y)-\sum_{k=0}^{m} \frac{x_{n}{ }^{k}}{k!}\left[\left(\frac{\partial}{\partial x_{n}}\right)^{k} K\right]\left(x^{\prime}-y\right),
$$

where $x=\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n-1} \times \mathbf{R}$; we sometimes identify x^{\prime} with $\left(x^{\prime}, 0\right)$.
Lemma 2.1. Let m be a nonnegative integer such that $|\lambda|-l<m+1$.
(1) If $\left|x^{\prime}-y\right| \geq x_{n} / 2>0$ and $|x-y| \geq x_{n} / 2>0$, then

$$
\left|K_{m}(x, y)\right| \leq M x_{n}^{m+1}\left|x^{\prime}-y\right|^{|\lambda|-l-m-1} .
$$

(2) If $|x-y|<x_{n} / 2$, then $\left|K_{m}(x, y)\right| \leq M\left(x_{n}^{|\lambda|-l}+|x-y|^{|\lambda|-l}\right)$.
(3) If $\left|x^{\prime}-y\right|<x_{n} / 2$, then $\left|K_{m}(x, y)\right| \leq M\left(x_{n}^{|\lambda|-l}+x_{n}^{m}\left|x^{\prime}-y\right|^{|\lambda|-l-m}\right)$.

Proof. If $\left|x^{\prime}-y\right|>2 x_{n}$, then by Taylor's theorem, we obtain

$$
\begin{aligned}
\left|K_{m}(x, y)\right| & \leq M \frac{x_{n}^{m+1}}{(m+1)!}\left|\left(x^{\prime}, \theta x_{n}\right)-y\right|^{|\lambda|-l-m-1} \quad(0<\theta<1) \\
& \leq M x_{n}^{m+1}\left|x^{\prime}-y\right|^{|\lambda|-l-m-1} .
\end{aligned}
$$

If $x_{n} / 2<\left|x^{\prime}-y\right|<2 x_{n}$ and $|x-y| \geq x_{n} / 2>0$, then

$$
\begin{aligned}
\left|K_{m}(x, y)\right| & \leq|K(x-y)|+\sum_{k=0}^{m}\left|\frac{x_{n}{ }^{k}}{k!}\left[\left(\frac{\partial}{\partial x_{n}}\right)^{k} K\right]\left(x^{\prime}-y\right)\right| \\
& \leq M x_{n}^{|\lambda|-l}+M \sum_{k=0}^{m} \frac{x_{n}{ }^{k}}{k!}\left|x^{\prime}-y\right|^{|\lambda|-l-k} \\
& \leq M x_{n}^{|\lambda|-l} \\
& \leq M x_{n}^{m+1}\left|x^{\prime}-y\right|^{|\lambda|-l-m-1},
\end{aligned}
$$

so that (1) is proved.
If $\left|x^{\prime}-y\right|<x_{n} / 2$, then $x_{n} / 2<|x-y|<3 x_{n} / 2$, so that

$$
\begin{aligned}
\left|K_{m}(x, y)\right| & \leq|K(x-y)|+\sum_{k=0}^{m}\left|\frac{x_{n}{ }^{k}}{k!}\left[\left(\frac{\partial}{\partial x_{n}}\right)^{k} K\right]\left(x^{\prime}-y\right)\right| \\
& \leq M x_{n}^{|\lambda|-l}+M \sum_{k=0}^{m} \frac{x_{n}^{k}}{k!}\left|x^{\prime}-y\right|^{|\lambda|-l-k} \\
& \leq M\left(x_{n}^{|\lambda|-l}+x_{n}^{m}\left|x^{\prime}-y\right|^{|\lambda|-l-m}\right),
\end{aligned}
$$

which proves (3).
Finally, if $|x-y|<x_{n} / 2$, then $x_{n} / 2<\left|x^{\prime}-y\right| \leq x_{n}+|x-y|<3 x_{n} / 2$, so that

$$
\begin{aligned}
\left|K_{m}(x, y)\right| & \leq|K(x-y)|+\sum_{k=0}^{m}\left|\frac{x_{n}{ }^{k}}{k!}\left[\left(\frac{\partial}{\partial x_{n}}\right)^{k} K\right]\left(x^{\prime}-y\right)\right| \\
& \leq|x-y|^{|\lambda|-l}+M\left|x^{\prime}-y\right|^{|\lambda|-l} \\
& \leq M\left(x_{n}^{|\lambda|-l}+|x-y|^{|\lambda|-l}\right)
\end{aligned}
$$

which proves (2). Thus the present lemma is established.
For a point $x \in \mathbf{R}^{n}$ and $r>0$, we denote by $B(x, r)$ the open ball with center at x and radius r.

Lemma 2.2 (cf. [9, Lemma 3.2]). Let $\beta>-1, q>0$ and $|\lambda|-l+n / q>0$. Let m be a nonnegative integer such that

$$
m<|\lambda|-l+\frac{n+\beta}{q}<m+1
$$

Then

$$
\left(\int\left|K_{m}(x, y)\right|^{q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q} \leq M x_{n}^{|\lambda|-l+(n+\beta) / q}
$$

for all $x=\left(x^{\prime}, x_{n}\right) \in \mathbf{D}$.
Proof. For fixed $x \in \mathbf{D}$, consider the sets

$$
E_{1}=B\left(x, \frac{x_{n}}{2}\right), \quad E_{2}=B\left(x^{\prime}, \frac{x_{n}}{2}\right), \quad E_{3}=\mathbf{R}^{n}-\left(E_{1} \cup E_{2}\right) .
$$

Since $|\lambda|-l+(n+\beta) / q-m-1<0$, applying the polar coordinates about x^{\prime}, we have by Lemma 2.1(1)

$$
\begin{aligned}
\left(\int_{E_{3}}\left|K_{m}(x, y)\right|^{q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q} & \leq M x_{n}^{m+1}\left(\int_{E_{3}}\left|x^{\prime}-y\right|^{(|\lambda|-l-m-1) q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q} \\
& \leq M x_{n}^{m+1}\left(\int_{x_{n} / 2}^{\infty} r^{(|\lambda|-l-m-1) q+\beta} r^{n-1} d r\right)^{1 / q} \\
& =M x_{n}^{|\lambda|-l+(n+\beta) / q} .
\end{aligned}
$$

Similarly, since $|\lambda|-l+n / q>0$, we have by Lemma 2.1(2)

$$
\begin{aligned}
\left(\int_{E_{1}}\left|K_{m}(x, y)\right|^{q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q} & \leq M x_{n}^{\beta / q}\left(\int_{E_{1}}\left(x_{n}^{|\lambda|-l}+|x-y|^{|\lambda|-l}\right)^{q} d y\right)^{1 / q} \\
& =M x_{n}^{|\lambda|-l+(n+\beta) / q} .
\end{aligned}
$$

Finally, since $|\lambda|-l+(n+\beta) / q-m>0$, we obtain by Lemma 2.1(3)

$$
\begin{aligned}
\left(\int_{E_{2}}\left|K_{m}(x, y)\right|^{q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q} & \leq M\left(\int_{E_{2}}\left(x_{n}^{|\lambda|-l}+x_{n}^{m}\left|x^{\prime}-y\right|^{|\lambda|-l-m}\right)^{q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q} \\
& \leq M x_{n}^{|\lambda|-l+(n+\beta) / q}+M x_{n}^{m}\left(\int_{0}^{x_{n} / 2} r^{(|\lambda|-l-m) q+\beta} r^{n-1} d r\right)^{1 / q} \\
& =M x_{n}^{|\lambda|-l+(n+\beta) / q} .
\end{aligned}
$$

The required inequality now follows.

Lemma 2.3 (cf. [9, Lemma 3.4]). Let $q>0$ and m be a nonnegative integer such that

$$
m<|\lambda|-l+\frac{n-1}{q}<m+1 .
$$

If $x=\left(x^{\prime}, x_{n}\right) \in \mathbf{D}$ and $y=\left(y^{\prime}, y_{n}\right) \in \mathbf{R}^{n}$, then

$$
\left(\int_{\mathbf{R}^{n-1}}\left|K_{m}(x, y)\right|^{q} d x^{\prime}\right)^{1 / q} \leq M x_{n}^{m+1}\left(x_{n}+\left|y_{n}\right|\right)^{|\lambda|-l-m-1+(n-1) / q}
$$

Proof. Let $x=\left(x^{\prime}, x_{n}\right) \in \mathbf{D}$ and $y=\left(y^{\prime}, y_{n}\right) \in \mathbf{R}^{n}$. If $\left|y_{n}\right| \geq 2 x_{n}$, then, since $|\lambda|-l-m-1+(n-1) / q<0$, we have by Lemma 2.1(1)

$$
\begin{aligned}
\left(\int_{\mathbf{R}^{n-1}}\left|K_{m}(x, y)\right|^{q} d x^{\prime}\right)^{1 / q} & \leq M x_{n}^{m+1}\left(\int_{\mathbf{R}^{n-1}}\left|x^{\prime}-y\right|^{(|\lambda|-l-m-1) q} d x^{\prime}\right)^{1 / q} \\
& =M x_{n}^{m+1}\left(\int_{0}^{\infty}\left(r^{2}+y_{n}^{2}\right)^{(|\lambda|-l-m-1) q / 2} r^{n-2} d r\right)^{1 / q} \\
& =M x_{n}^{m+1}\left|y_{n}\right|^{|\lambda|-l-m-1+(n-1) / q} .
\end{aligned}
$$

If $\left|y_{n}\right|<2 x_{n}$, then we have as in the proof of Lemma 2.2

$$
\begin{aligned}
\left(\int_{\mathbf{R}^{n-1}}\left|K_{m}(x, y)\right|^{q} d x^{\prime}\right)^{1 / q} \leq & M\left(\int_{\left\{x^{\prime}: y \in E_{1}\right\}}\left(x_{n}^{|\lambda|-l}+|x-y|^{|\lambda|-l}\right)^{q} d x^{\prime}\right)^{1 / q} \\
& +M\left(\int_{\left\{x^{\prime}: y \in E_{2}\right\}}\left(x_{n}^{|\lambda|-l}+x_{n}^{m}\left|x^{\prime}-y\right|^{|\lambda|-l-m}\right)^{q} d x^{\prime}\right)^{1 / q} \\
& +M x_{n}^{m+1}\left(\int_{\left\{x^{\prime}: y \in E_{3}\right\}}\left|x^{\prime}-y\right|^{(|\lambda|-l-m-1) q} d x^{\prime}\right)^{1 / q} \\
\leq & M x_{n}^{|\lambda|-l+(n-1) / q}+M\left(\int_{B\left(y^{\prime}, x_{n} / 2\right)}\left|x^{\prime}-y^{\prime}\right|^{||\lambda|-l) q} d x^{\prime}\right)^{1 / q} \\
& +M x_{n}^{m}\left(\int_{B\left(y^{\prime}, x_{n} / 2\right)}\left|x^{\prime}-y^{\prime}\right|^{(|\lambda|-l-m) q} d x^{\prime}\right)^{1 / q} \\
& +M x_{n}^{m+1}\left(\int_{\mathbf{R}^{n-1}}\left(x_{n}+\left|x^{\prime}-y^{\prime}\right|\right)^{||\lambda|-l-m-1) q} d x^{\prime}\right)^{1 / q} \\
= & M x_{n}^{|\lambda|-l+(n-1) / q} .
\end{aligned}
$$

Therefore the required inequality now follows.

Lemma 2.4 (cf. [1, Theorem 13.5], [8, Sections 6.5 and 8.2]). Let $\alpha=|\lambda|-l+n$, $p>1, \alpha p>1, \alpha p>1+\beta$ and $-1<\beta<p-1$. If f is a measurable function on \mathbf{R}^{n} satisfying (2.2) and (2.3), then $U_{K} f$ has the (ACL) property; in particular, $U_{K} f\left(x^{\prime}, x_{n}\right)$ is absolutely continuous on \mathbf{R} for almost every $x^{\prime} \in \mathbf{R}^{n-1}$. Moreover, in case m is a positive integer such that $(\alpha-m) p>1$ and $(\alpha-m) p>1+\beta$,

$$
\left(\frac{\partial}{\partial x_{n}}\right)^{m} U_{K} f\left(x^{\prime}, x_{n}\right)=\int\left(\frac{\partial}{\partial x_{n}}\right)^{m} K(x-y) f(y) d y
$$

is absolutely continuous on \mathbf{R} for almost every $x^{\prime} \in \mathbf{R}^{n-1}$.
Theorem 2.1 (cf. [5, Theorem 2.1] and [9, Theorem 2.1]). Let $\alpha=|\lambda|-l+n$ satisfy $m+1 / p<\alpha<m+n$. Let $1<p \leq q<\infty,-1<\beta<p-1$ and

$$
\frac{n-\alpha p}{p(n-\alpha)}<\frac{n-1}{q(n-\alpha+m)} \quad \text { when } n-\alpha>0 .
$$

Further suppose $m<\omega<m+1$, where $\omega=(n-1) / q-(n-\alpha p+\beta) / p$. If f is a nonnegative measurable function on \mathbf{R}^{n} satisfying (2.2) and (2.3), then

$$
\lim _{r \rightarrow 0} r^{-\omega} S_{q}\left(u_{r}\right)=0,
$$

where $u_{r}\left(x^{\prime}\right)=U_{K} f\left(x^{\prime}, r\right)-\sum_{k=0}^{m}\left(r^{k} / k!\right)\left[\left(\partial / \partial x_{n}\right)^{k} U_{K} f\right]\left(x^{\prime}, 0\right)$.
Proof. Under the assumptions on p, α, β, q and m in Theorem 2.1, we can take (δ, γ) such that

$$
\begin{equation*}
\beta<\gamma<p(n-\alpha+m+1) \delta+\beta-\frac{p(n-1)}{q} \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
p(n-\alpha+m+1) \delta+(\alpha-m-1) p-n<\gamma<p(n-\alpha+m) \delta+(\alpha-m) p-n \tag{2.5}
\end{equation*}
$$

$$
\begin{gather*}
\beta<\gamma<p-1, \quad 0<\delta<1 \tag{2.6}\\
\delta p(n-\alpha)>n-\alpha p \tag{2.7}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{n-1}{q(n-\alpha+m+1)}<\delta<\frac{n-1}{q(n-\alpha+m)} \tag{2.8}
\end{equation*}
$$

(if $\alpha \geq n$, then (2.7) clearly holds). Set $a=(1-\delta) p^{\prime}$ and $b=-\gamma p^{\prime} / p$, where $p^{\prime}=$ $p /(p-1)$. Then, by (2.6), we have

$$
\begin{equation*}
b>-1 . \tag{2.9}
\end{equation*}
$$

In case $\alpha \geq n$, we clearly find

$$
\begin{equation*}
\alpha-n+\frac{n}{a}>0, \tag{2.10}
\end{equation*}
$$

and in case $\alpha<n$, (2.10) also holds by (2.7). Further, (2.5) implies

$$
\begin{equation*}
m<\alpha-n+\frac{n+b}{a}<m+1 \tag{2.11}
\end{equation*}
$$

By the fact that $m+1 / p<\alpha$, we have

$$
\begin{equation*}
\alpha p>1 \tag{2.12}
\end{equation*}
$$

Since $\omega>m$, we have

$$
\begin{equation*}
(\alpha-m) p>1+\beta \tag{2.13}
\end{equation*}
$$

By (2.12), (2.13) and Lemma 2.4, we first note that

$$
\begin{aligned}
u_{x_{n}}\left(x^{\prime}\right) & =U_{K} f(x)-\sum_{k=0}^{m} \frac{x_{n}^{k}}{k!}\left[\left(\frac{\partial}{\partial x_{n}}\right)^{k} U_{K} f\right]\left(x^{\prime}, 0\right) \\
& =\int K_{m}(x, y) f(y) d y
\end{aligned}
$$

Using Hölder's inequality, we have

$$
\left|u_{x_{n}}\left(x^{\prime}\right)\right| \leq\left(\int\left|K_{m}(x, y)\right|^{a}\left|y_{n}\right|^{b} d y\right)^{(1-\delta) / a}\left(\int\left|K_{m}(x, y)\right|^{\delta p} f(y)^{p}\left|y_{n}\right|^{\gamma} d y\right)^{1 / p}
$$

By (2.9)-(2.11) and Lemma 2.2, we have

$$
\left|u_{x_{n}}\left(x^{\prime}\right)\right| \leq M x_{n}^{(\alpha-n)(1-\delta)+n / p^{\prime}-\gamma / p}\left(\int\left|K_{m}(x, y)\right|^{\delta p} f(y)^{p}\left|y_{n}\right|^{\gamma} d y\right)^{1 / p}
$$

In view of Minkowski’s inequality for integral we have

$$
\begin{aligned}
S_{q}\left(u_{x_{n}}\right) \leq M & x_{n}^{(\alpha-n)(1-\delta)+n / p^{\prime}-\gamma / p} \\
& \times\left\{\int\left(\int_{R^{n-1}}\left|K_{m}(x, y)\right|^{\delta q} d x^{\prime}\right)^{p / q} f(y)^{p}\left|y_{n}\right|^{\gamma} d y\right\}^{1 / p}
\end{aligned}
$$

Here, noting (2.8), we have by Lemma 2.3

$$
\left(\int_{\mathbf{R}^{n-1}}\left|K_{m}(x, y)\right|^{\delta q} d x^{\prime}\right)^{p / q} \leq M\left[x_{n}^{m+1}\left(x_{n}+\left|y_{n}\right|\right)^{\alpha-n-m-1+(n-1) / \delta q}\right]^{\delta p}
$$

Consequently

$$
\begin{aligned}
& S_{q}\left(u_{r}\right) \leq M r^{(\alpha-n)(1-\delta)+n / p^{\prime}-\gamma / p+(m+1) \delta} \\
& \times\left\{\int\left[\left(r+\left|y_{n}\right|\right)^{\alpha-n-m-1+(n-1) / \delta q}\right]^{\delta p}\left|y_{n}\right|^{\gamma-\beta} f(y)^{p}\left|y_{n}\right|^{\beta} d y\right\}^{1 / p}
\end{aligned}
$$

Consider the function

$$
\begin{aligned}
k\left(r, y_{n}\right)= & r^{p[(n-\alpha p+\beta) / p-(n-1) / q]} r^{p\left[(\alpha-n)(1-\delta)+n / p^{\prime}-\gamma / p+(m+1) \delta\right]} \\
& \times\left[\left(r+\left|y_{n}\right|\right)^{\alpha-n-m-1+(n-1) / \delta q}\right]^{\delta p}\left|y_{n}\right|^{\gamma-\beta}
\end{aligned}
$$

Then

$$
r^{-\omega} S_{q}\left(u_{r}\right) \leq M\left\{\int k\left(r, y_{n}\right) f(y)^{p}\left|y_{n}\right|^{\beta} d y\right\}^{1 / p}
$$

where $\omega=(n-1) / q-(n-\alpha p+\beta) / p$. It follows from (2.4) that

$$
r^{-\omega} r^{(\alpha-n)(1-\delta)+n / p^{\prime}-\gamma / p+(m+1) \delta}=r^{(n-\alpha+m+1) \delta+(\beta-\gamma) / p-(n-1) / q} \rightarrow 0
$$

as $r \rightarrow 0$. If $r<\left|y_{n}\right|$, then

$$
k\left(r, y_{n}\right) \leq M\left(\frac{r}{\left|y_{n}\right|}\right)^{(n-\alpha+m+1) \delta p+(\beta-\gamma)-p(n-1) / q} \leq M
$$

if $\left|y_{n}\right| \leq r$, then

$$
k\left(r, y_{n}\right) \leq M\left(\frac{\left|y_{n}\right|}{r}\right)^{\gamma-\beta} \leq M
$$

Hence Lebesgue's dominated convergence theorem implies that

$$
\lim _{r \rightarrow 0} r^{-\omega} S_{q}\left(u_{r}\right)=0
$$

Now the proof of Theorem 2.1 is completed.

3. Sobolev functions

For an open set $G \subset \mathbf{R}^{n}$, we denote by $B L_{m}\left(L_{\text {loc }}^{p}(G)\right)$ the Beppo Levi space

$$
B L_{m}\left(L_{\mathrm{loc}}^{p}(G)\right)=\left\{u \in L_{\mathrm{loc}}^{p}(G): D^{\lambda} u \in L_{\mathrm{loc}}^{p}(G) \quad(|\lambda|=m)\right\}
$$

(see [8, Chapter 6]). Set $K_{\lambda}(x)=x^{\lambda}|x|^{-n}$ and

$$
\tilde{K}_{\lambda, m}(x, y)= \begin{cases}K_{\lambda}(x-y), & y \in B(0,1) \\ K_{\lambda}(x-y)-\sum_{|\mu| \leq m-1} \frac{x^{\mu}}{\mu!}\left[\left(\frac{\partial}{\partial x}\right)^{\mu} K_{\lambda}\right](-y), & y \in \mathbf{R}^{n}-B(0,1)\end{cases}
$$

In view of [8, Theorem 7.2, Chapter 6], each $u \in B L_{m}\left(L_{\text {loc }}^{p}(\mathbf{D})\right)$ satisfying

$$
\begin{equation*}
\int_{\mathbf{D}}\left|\nabla_{m} u(x)\right|^{p} x_{n}^{\beta} d x<\infty \tag{3.1}
\end{equation*}
$$

has an (m, p)-quasicontinuous representative \tilde{u}, where $\left|\nabla_{m} u(x)\right|=\left(\sum_{|\mu|=m}\left|D^{\mu} u(x)\right|^{2}\right)^{1 / 2}$, $1<p<\infty$ and $-1<\beta<p-1$. Moreover, \tilde{u} is given by

$$
\tilde{u}(x)=\sum_{|\lambda|=m} a_{\lambda} \int \tilde{K}_{\lambda, m}(x, y) D^{\lambda} \bar{u}(y) d y+P(x)
$$

where \bar{u} is an extension of u to $\mathbf{R}^{n}, P(x)$ is a polynomial of degree at most $m-1$. Note further from Lemma 2.4 that for each k with $0 \leq k \leq m-1$ and for almost every $x^{\prime} \in \mathbf{R}^{n-1}$,

$$
\left(\frac{\partial}{\partial x_{n}}\right)^{k} \int \tilde{K}_{\lambda, m}(x, y) D^{\lambda} \bar{u}(y) d y=\int\left(\frac{\partial}{\partial x_{n}}\right)^{k} \tilde{K}_{\lambda, m}(x, y) D^{\lambda} \bar{u}(y) d y
$$

holds for $x_{n} \in \mathbf{R}$, where $x=\left(x^{\prime}, x_{n}\right)$.
Since $Q(x)-\sum_{k=0}^{m-1}\left(x_{n}{ }^{k} / k!\right)\left[\left(\partial / \partial x_{n}\right)^{k} Q\right]\left(x^{\prime}\right)=0$ for any polynomial Q of degree at most $m-1$, we have

$$
\begin{aligned}
U(x) & \equiv \tilde{u}(x)-\sum_{k=0}^{m-1} \frac{x_{n}^{k}}{k!}\left(\frac{\partial}{\partial x_{n}}\right)^{k} \tilde{u}\left(x^{\prime}\right) \\
& =\sum_{|\lambda|=m} a_{\lambda} \int K_{\lambda, m}(x, y) D^{\lambda} \bar{u}(y) d y=\tilde{u}(x)-P(x)
\end{aligned}
$$

for $x \in \mathbf{D}$, where $K_{\lambda, m}(x, y)=K_{\lambda}(x-y)-\sum_{k=0}^{m-1}\left(x_{n}{ }^{k} / k!\right)\left[\left(\partial / \partial x_{n}\right)^{k} K_{\lambda}\right]\left(x^{\prime}-y\right)$.
Theorem 2.1 now gives the following result.

Theorem 3.1. Let $1<p \leq q<\infty$,

$$
\frac{n-m p}{p(n-m)}<\frac{1}{q} \quad \text { when } n-m>0
$$

and

$$
\frac{n-p+\beta}{p(n-1)}<\frac{1}{q}<\frac{n+\beta}{p(n-1)}
$$

If $u \in B L_{m}\left(L_{\mathrm{loc}}^{p}(\mathbf{D})\right)$ satisfying (3.1) for $-1<\beta<p-1$ is (m, p)-quasicontinuous on D, then

$$
\lim _{r \rightarrow 0} r^{(n-m p+\beta) / p-(n-1) / q} S_{q}\left(U_{r}\right)=0
$$

where $U_{r}\left(x^{\prime}\right)=u\left(x^{\prime}, r\right)-\sum_{k=0}^{m-1}\left(r^{k} / k!\right)\left[\left(\partial / \partial x_{n}\right)^{k} u\right]\left(x^{\prime}, 0\right)$.
Consider the Dirichlet problem for polyharmonic equation:

$$
\Delta^{m} u(x)=0
$$

with the boundary conditions

$$
\left(\frac{\partial}{\partial x_{n}}\right)^{k} u\left(x^{\prime}, 0\right)=f_{k}\left(x^{\prime}\right) \quad(k=0,1, \ldots, m-1)
$$

We denote by $W^{m, p}(G)$ the Sobolev space

$$
W^{m, p}(G)=\left\{u \in L^{p}(G): D^{\lambda} u \in L^{p}(G) \quad(|\lambda| \leq m)\right\}
$$

(see Stein [13, Chapter 6]). If $u \in W^{m, p}(\mathbf{D})$ is a solution of the Dirichlet problem, then the vertical limit $\left(\partial / \partial x_{n}\right)^{k} u\left(x^{\prime}, 0\right)$ exists for almost every $x^{\prime}=\left(x^{\prime}, 0\right) \in \partial \mathbf{D}$ and $0 \leq k \leq m-1$ (see [6], [7]).

We also see that every function in $W^{m, p}(\mathbf{D})$ can be extended to a function in $W^{m, p}\left(\mathbf{R}^{n}\right)$ (see Stein [13, Theorem 5, Chapter 6]). Hence Theorem 3.1 gives the following result.

Corollary 3.1. Let $1<p \leq q<\infty$ and

$$
(0<) \frac{n}{p}-\frac{n-1}{q}<1 .
$$

If $u \in W^{m, p}(\mathbf{D})$ is a solution of the Dirichlet problem with $f_{k}\left(x^{\prime}\right)=\left(\partial / \partial x_{n}\right)^{k} u\left(x^{\prime}, 0\right)$ for $0 \leq k \leq m-1$, then

$$
\lim _{r \rightarrow 0} r^{n / p-(n-1) / q-m} S_{q}\left(U_{r}\right)=0,
$$

where $U_{r}\left(x^{\prime}\right)=u\left(x^{\prime}, r\right)-\sum_{k=0}^{m-1}\left(r^{k} / k!\right) f_{k}\left(x^{\prime}\right)$.

4. Higher differences

For $r>0$ and a function u, we define the first difference

$$
\Delta_{r} u(t)=\Delta_{r}^{1} u(t)=u(t+r)-u(t)
$$

and the m-th difference

$$
\Delta_{r}^{m} u(t)=\Delta_{r}^{m-1}\left(\Delta_{r} u(\cdot)\right)(t) .
$$

It is easy to see that

$$
\Delta_{r}^{m} u(t)=\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} u(t+k r) .
$$

As in Section 2, we consider

$$
K(x)=\frac{x^{\lambda}}{|x|^{l}}
$$

and define

$$
u_{r}\left(x^{\prime}\right)=\Delta_{r}^{m} U_{K} f\left(x^{\prime}, \cdot\right)(0)=\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} U_{K} f\left(x^{\prime}, k r\right)
$$

Theorem 4.1. Let $\alpha=|\lambda|-l+n, 1<p \leq q<\infty, \beta<p-1$ and

$$
\frac{n-\alpha p}{p(n-1)}<\frac{1}{q} \quad(\text { when } n-\alpha>0)
$$

Further suppose $0<\omega<m$, where $\omega=(n-1) / q-(n-\alpha p+\beta) / p$. If f is a nonnegative measurable function on \mathbf{R}^{n} satisfying (2.2) and (2.3), then

$$
\lim _{r \rightarrow 0} r^{-\omega} S_{q}\left(u_{r}\right)=0
$$

where $u_{r}\left(x^{\prime}\right)=\Delta_{r}^{m} U_{K} f\left(x^{\prime}, \cdot\right)(0)$.
To prove this, we have only to prepare the following two lemmas instead of Lemmas 2.2 and 2.3.

Lemma 4.1. Let $\beta>-1, q>0$ and $|\lambda|-l+n / q>0$. Let m be a positive integer such that

$$
0<|\lambda|-l+\frac{n+\beta}{q}<m
$$

Then

$$
\left(\int\left|K_{m}^{*}(x, y)\right|^{q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q} \leq M x_{n}^{|\lambda|-l+(n+\beta) / q}
$$

for all $x=\left(x^{\prime}, x_{n}\right) \in \mathbf{D}$, where $K_{m}^{*}(x, y)=\Delta_{x_{n}}^{m} K\left(x^{\prime}-y^{\prime}, \cdot-y_{n}\right)(0)$ for $x=\left(x^{\prime}, x_{n}\right) \in \mathbf{D}$ and $y=\left(y^{\prime}, y_{n}\right) \in \mathbf{R}^{n}$.

Proof. For $x=\left(x^{\prime}, x_{n}\right) \in \mathbf{D}$, write

$$
\left(\int\left|K_{m}^{*}(x, y)\right|^{q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q}=U^{\prime}\left(x_{n}\right)+U^{\prime \prime}\left(x_{n}\right)
$$

where

$$
\begin{aligned}
U^{\prime}\left(x_{n}\right) & =\left(\int_{\left\{y=\left(y^{\prime}, y_{n}\right):\left|x^{\prime}-y\right| \geq(m+2) x_{n}\right\}}\left|K_{m}^{*}(x, y)\right|^{q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q}, \\
U^{\prime \prime}\left(x_{n}\right) & =\left(\int_{\left\{y=\left(y^{\prime}, y_{n}\right):\left|x^{\prime}-y\right| \leq(m+2) x_{n}\right\}}\left|K_{m}^{*}(x, y)\right|^{q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q} .
\end{aligned}
$$

If $\left|x^{\prime}-y\right| \geq(m+2) x_{n}$, then we obtain by Taylor's theorem,

$$
\begin{equation*}
\left|K_{m}^{*}(x, y)\right| \leq M x_{n}^{m}\left|x^{\prime}-y\right|^{|\lambda|-l-m} . \tag{4.1}
\end{equation*}
$$

Since $|\lambda|-l-m+(n+\beta) / q<0$, applying the polar coordinates about x^{\prime}, we have

$$
\begin{aligned}
\left|U^{\prime}\left(x_{n}\right)\right| & \leq M x_{n}^{m}\left(\int_{\left\{y=\left(y^{\prime}, y_{n}\right):\left|x^{\prime}-y\right| \geq(m+2) x_{n}\right\}}\left|x^{\prime}-y\right|^{(|\lambda|-l-m) q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q} \\
& =M x_{n}^{m}\left(\int_{(m+2) x_{n}}^{\infty} r^{(|\lambda|-l-m) q+\beta} r^{n-1} d r\right)^{1 / q} \\
& =M x_{n}^{|\lambda|-l+(n+\beta) / q} .
\end{aligned}
$$

On the other hand, since $|\lambda|-l+n / q>0$ and $|\lambda|-l+(n+\beta) / q>0$, we have by Lemma 2.2

$$
\begin{aligned}
\left|U^{\prime \prime}\left(x_{n}\right)\right| & \leq M \sum_{k=0}^{m}\left(\int_{\left\{y=\left(y^{\prime}, y_{n}\right):\left|x^{\prime}-y\right| \leq(m+2) x_{n}\right\}}\left|x^{\prime}-y+k x_{n} e\right|^{(|\lambda|-l) q}\left|y_{n}\right|^{\beta} d y\right)^{1 / q} \\
& \leq M x_{n}^{|\lambda|-l+(n+\beta) / q},
\end{aligned}
$$

where $e=(0, \ldots, 0,1)$.
Lemma 4.2. Let $q>0$ and m be a positive integer such that

$$
0<|\lambda|-l+\frac{n-1}{q}<m .
$$

If $x=\left(x^{\prime}, x_{n}\right) \in \mathbf{D}$ and $y=\left(y^{\prime}, y_{n}\right) \in \mathbf{R}^{n}$, then

$$
\left(\int_{\mathbf{R}^{n-1}}\left|K_{m}^{*}(x, y)\right|^{q} d x^{\prime}\right)^{1 / q} \leq M x_{n}^{m}\left(x_{n}+\left|y_{n}\right|\right)^{|\lambda|-l-m+(n-1) / q}
$$

Proof. Let $x=\left(x^{\prime}, x_{n}\right) \in \mathbf{D}$ and $y=\left(y^{\prime}, y_{n}\right) \in \mathbf{R}^{n}$. If $\left|y_{n}\right| \geq(m+2) x_{n}$, then, since $|\lambda|-l-m+(n-1) / q<0$, we have by (4.1)

$$
\begin{aligned}
\left(\int_{\mathbf{R}^{n-1}}\left|K_{m}^{*}(x, y)\right|^{q} d x^{\prime}\right)^{1 / q} & \leq M x_{n}^{m}\left(\int_{\mathbf{R}^{n-1}}\left|x^{\prime}-y\right|^{(|\lambda|-l-m) q} d x^{\prime}\right)^{1 / q} \\
& =M x_{n}^{m}\left|y_{n}\right|^{|\lambda|-l-m+(n-1) / q}
\end{aligned}
$$

If $\left|y_{n}\right|<(m+2) x_{n}$, then we have by (4.1) and Lemma 2.3

$$
\begin{aligned}
& \left(\int_{\mathbf{R}^{n-1}}\left|K_{m}^{*}(x, y)\right|^{q} d x^{\prime}\right)^{1 / q} \\
\leq & M x_{n}^{m}\left(\int_{\left\{x^{\prime}:\left|x^{\prime}-y\right| \geq 2(m+2) x_{n}\right\}}\left|x^{\prime}-y\right|^{(|\lambda|-l-m) q} d x^{\prime}\right)^{1 / q} \\
& +M \sum_{k=0}^{m}\left(\int_{\left\{x^{\prime}:\left|x^{\prime}-y\right| \leq 2(m+2) x_{n}\right\}}\left|x^{\prime}-y+k x_{n} e\right|^{\mid(|\lambda|-l) q} d x^{\prime}\right)^{1 / q} \\
\leq & M x_{n}^{|\lambda|-l+(n-1) / q}
\end{aligned}
$$

Therefore the required inequality now follows.

Theorem 4.2. Let $1<p \leq q<\infty$,

$$
\frac{n-m p}{p(n-1)}<\frac{1}{q} \quad \text { when } n-m>0
$$

and

$$
\frac{n-m p+\beta}{p(n-1)}<\frac{1}{q}<\frac{n+\beta}{p(n-1)}
$$

If $u \in B L_{m}\left(L_{\mathrm{loc}}^{p}(\mathbf{D})\right)$ satisfying (3.1) for $-1<\beta<p-1$ is (m, p)-quasicontinuous on D, then

$$
\lim _{r \rightarrow 0} r^{(n-m p+\beta) / p-(n-1) / q} S_{q}\left(U_{r}\right)=0
$$

where $U_{r}\left(x^{\prime}\right)=\Delta_{r}^{m} u\left(x^{\prime}, \cdot\right)(0)$ for $r>0$.
In fact, since $\Delta_{r}^{m} Q=0$ for any polynomial Q of degree at most $m-1$, we have

$$
U(x) \equiv \Delta_{x_{n}}^{m} u\left(x^{\prime}, \cdot\right)(0)=\sum_{|\lambda|=m} a_{\lambda} \int K_{\lambda, m}^{*}(x, y) D^{\lambda} \bar{u}(y) d y
$$

where $K_{\lambda, m}^{*}(x, y)=\Delta_{x_{n}}^{m} K_{\lambda}\left(x^{\prime}-y^{\prime}, \cdot-y_{n}\right)(0)$ with $K_{\lambda}(x)=x^{\lambda}|x|^{-n}$. Now we can apply Theorem 4.1 to obtain the present result.

Acknowledgement. The author would like to express his deep gratitude to Professor Y. Mizuta for his valuable advices and encouragement.

References

[1] N. Aronszajn, F. Mulla and P. Steptycki: On spaces of potentials connected with L^{p} classes, Ann. Inst Fourier, 13 (1963), 211-306.
[2] S.J. Gardiner: Growth properties of pth means of potentials in the unit ball, Proc. Amer. Math. Soc. 103 (1988), 861-869.
[3] D. Gilbarg and N.S. Trudinger: Elliptic partial differential equations of second order, Second Edition, Springer-Verlag, 1983.
[4] N.G. Meyers: A theory of capacities for potentials in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
[5] Y. Mizuta: Spherical means of Beppo Levi functions, Math. Nachr. 158 (1992), 241-262.
[6] Y. Mizuta: Continuity properties of potentials and Beppo-Levi-Deny functions, Hiroshima Math. J. 23 (1993), 79-153.
[7] Y. Mizuta: Boundary limits of polyharmonic functions in Sobolev-Orlicz spaces, Complex Variables, 27 (1995), 117-131.
[8] Y. Mizuta: Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996.
[9] Y. Mizuta: Hyperplane means of potentials, J. Math. Anal. Appl. 201 (1996), 226-246.
[10] Y. Mizuta and T. Shimomura: Boundary limits of spherical means for BLD and monotone BLD functions in the unit ball, Ann. Acad. Sci. Fenn. Math. 24 (1999), 45-60.
[11] Y. Mizuta and T. Shimomura: Growth properties of spherical means for monotone BLD functions in the unit ball, Ann. Acad. Sci. Fenn. Math. 25 (2000), 457-465.
[12] T. Shimomura and Y. Mizuta: Taylor expansion of Riesz potentials, Hiroshima Math. J. 25 (1995), 595-621.
[13] E.M. Stein: Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
[14] M. Stoll: Boundary limits of subharmonic functions in the unit disc, Proc. Amer. Math. Soc. 93 (1985), 567-568.
[15] M. Stoll: Rate of growth of pth means of invariant potentials in the unit ball of C^{n}, J. Math. Anal. Appl. 143 (1989), 480-499.
[16] M. Stoll: Rate of growth of pth means of invariant potentials in the unit ball of $C^{n}, I I$, J. Math. Anal. Appl. 165 (1992), 374-398.
[17] W.P. Ziemer: Extremal length as a capacity, Michigan Math. J. 17 (1970), 117-128.

General Studies

Akashi National College of Technology
Nishioka Uozumi 674-8501
Japan
Present address:
Fuculty of Education
Hiroshima University
Higashi-Hiroshima 739-8524
Japan

