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WICK CALCULUS AND THE CAUTHY PROBLEM
FOR SOME DISPERSIVE EQUATIONS
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1. Introduction

In this paper we first introduce the Wick calculus used by Lerner in [5] and inves-
tigate the algebra for the Wick calculus more precisely thanthere. Next, we consider
the Cauchy problem for some dispersive equations as an application of the Wick cal-
culus.

Let ∈ S(R ) and set η( ) = ( ) = η ( − ) where = ( η) ∈ R × Rη
and =

√
−1. We define a windowed Fourier transform of∈ 2(R ) by

( )( ) =
∫

R
( ) ( )

By Plancherel’s theorem we have

( )( ) = − ηF−1
[
̂(· − η)̂(·)

]
( )

where

̂(ξ) =
∫

R

− ξ ( ) (F−1 )( ) = (2π)−
∫

R

ξ (ξ) ξ

Using this formula and Plancherel’s theorem, we get

( ) 2(R2 ) = (2π)−
∫

R
η

∫

R
|̂(ξ − η)|2̂(ξ)̂(ξ) ξ

= (2π) ‖ ‖2
2(R )( ) 2(R )

for ∈ 2(R ). If we take ‖ ‖2
2(R ) = (2π)− , then is an isometric operator

from 2(R ) into 2(R2 ) and we have ∗ = on 2(R ). Here ∗ is the adjoint
operator of , which is defined by

( ∗ )( ) =
∫

R2

( ) ( ) for ∈ 2(R2 )
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Now, for ( ξ) = ( ) ∈ ∞(R2 ), = ( ξ) ∈ R × Rξ, we define the bounded
linear operator Wick = Wick( ) on 2(R ) by

Wick( ) ( ) = ( ∗ µ )( ) for ∈ 2(R )(1.1)

where µ is the multiplication operator by ( ). By the definition we seethat:

Proposition 1.1. Let ( ) ∈ ∞(R2 ). Then we have

‖ Wick‖L( 2(R )) ≤ ‖ ‖ ∞(R2 )

Moreover, if ( ) is a nonnegative function, thenWick is a nonnegative operator on
2(R ).

Proof. For any ∈ 2(R ) we have the following estimate

|( Wick ) 2(R )| =
∣∣( µ ) 2(R2 )

∣∣ ≤ ‖ ‖ ∞(R2 )‖ ‖ 2(R2 )‖ ‖ 2(R2 )

which gives the first part because is an isometric operator from 2(R ) into
2(R2 ). The second part follows from the equality (Wick ) 2(R ) = ( µ ) 2(R2 )

for any ∈ 2(R ).

In Section 2 we shall study the product formulas of Wick operators by taking ( )
equal to the Gaussian function and introducing some symbol class of ( ) with a
parameter ≥ 1. In Section 3, the product formulas will be used to prove thewell-
posedness of the Cauchy problem for some dispersive equations, motivated by the sim-
ilar problem for the Schr̈odinger type equation. The detail will be explained there.

2. Algebra for Wick calculus

We introduce a class of symbols with a large parameter.

DEFINITION 2.1. Let ≥ 1 be a large parameter and∈ R, ρ, δ > 0. Then we
say that the function ( ξ; ) on R × Rξ with a large parameter belongs to the
classTρ δ of symbols if (· ·; ) is in ∞(R × R ) and satisfies

γ ( ) := sup
ξ∈R ≥1
|α+β|=

∣∣∂β∂αξ ( ξ; )
∣∣ − +ρ|α|+δ|β| <∞(2.1)

for all ∈ Z+ := N ∪ {0}. We denoteT1/2 1/2 simply by T .

EXAMPLE 2.2. Let ∈ R, ρ, δ > 0 and ∈ 1 0(R × R ). We set

˜( ξ; ) = ( −δ δξ) × ϕ( −ρξ)
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whereϕ is in ∞(R ) with the support⊂ {ξ ∈ R ; 1/2 ≤ |ξ| ≤ 2}. Then we have
˜ ∈ T (ρ+δ)

ρ δ .

From now on, we take ( ) = (4π3)− /4 exp(−| |2/2), which satisfies‖ ‖2
2(R ) =

(2π)− .

Theorem 2.3 (cf. [5; Proposition 2.1]). Let ∈ R, ρ, δ > 0 and ∈ Tρ δ. Then

Wick = + with ∈ T −2σ
ρ δ(2.2)

whereσ = min(ρ δ) and we denote the pseudo-differential operator of the Weyl symbol
( ξ) by = ( ), that is

( ) ( ) = (2π)−
∫ ∫

R2

( − )ξ
( +

2
ξ
)

( ) ξ (see[3].)

Furthermore, if is real valued then so is .

Corollary 2.4. Let ρ, δ > 0 and ∈ Tρ δ. Setσ = min(ρ δ). For ≥ 3 we have

=


 +

[( −1)/2]∑

=1

1
!

(−
4

) 


Wick

+ with ∈ T −σ
ρ δ(2.3)

where =
∑

=1{(∂/∂ )2 + (∂/∂ξ )2}.

Theorem 2.3 and Corollary 2.4 show that the Wick operator approximates the
pseudodifferential operator of the Weyl symbol.

Theorem 2.5. Let be a positive even integer and let∈ T 0, ∈ T . If
= /2 then we have the expansion formulas as follows:

Wick Wick =





(
− 1

2
′ · ′ +

1
2
{ }

)Wick

+ 2 if = 2

(
− 1

2
′ · ′ +

1
2
{ }

)Wick

+
/2∑

=2

(−1)
2 !







2∑

=1

(
∂ ∂ + ∂

)
 ( ) ( )

∣∣∣∣∣∣∣
=




Wick

+ if ≥ 4

(2.4)
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Wick Wick =





(
− 1

2
′ · ′ +

1
2
{ }

)Wick

+ 2̃ if = 2

(
− 1

2
′ · ′ +

1
2
{ }

)Wick

+
/2∑

=2

(−1)
2 !







2∑

=1

(
∂ ∂ − ∂

)
 ( ) ( )

∣∣∣∣∣∣∣
=




Wick

+˜ if ≥ 4

(2.5)

where

′ · ′ =
2∑

=1

∂

∂

∂

∂

{ } =
∑

=1

(
∂

∂ξ

∂

∂
− ∂

∂

∂

∂ξ

)

and denotes the Hamilton vector field of( ) (Note
∑2

=1 ∂ = −{ }).

The remainder terms ,̃ are 2 bounded operators uniformly with respect to a
large parameter satisfying

‖ ‖L( 2(R ))

∥∥∥˜
∥∥∥
L( 2(R ))

≤ ( )


γ0( )γ ( ) +

∑

|β|<|α|<
|α+β|=

‖ (β) (α)‖ ∞


(2.6)

where (α) = ∂α and ( ) is the constant depending only on and .

REMARK 2.6. In the case where = 2 and symbols and are real valued,
Lerner [5] proved that

Re
(

Wick Wick
)

=

(
− 1

2
′ · ′

)Wick

+

where satisfies the estimate of the same type as (2.6) (see Proposition 2.3 of [5]). If
= 2 then the second term of the right hand side of (2.6) disappears.

Theorem 2.7. Let be a positive even integer and let∈ T 0, ∈ T . If
= /2 then we have the expansion formulas as follows:
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[
Wick Wick

]
=





1
({ })Wick + ′

2 if = 2

1
(
{ } − 1

2

2∑

=1

{
∂

∂

∂

∂

})Wick

+
/2∑

=3

(−1)
2 −1

1




[( −1)/2]∑

=0

(−1) +1

2 + 1

∑

|α|=2
|β|= −2 −1

1
α!β!

{ α∂β ∂α+β }




Wick

+ ′ if ≥ 4

(2.7)

where ′ satisfies the estimate

‖ ′ ‖L( 2(R )) ≤ ′
( )


γ0( )γ ( ) +

∑

|β|<|α|< −1
|α+β|= −2

‖{ (β) (α)}‖ ∞


(2.8)

where ′
( ) is the constant depending only on and .

REMARK 2.8. If = 4 then the Poisson bracket terms of the right hand side of
(2.8) are equal to‖{ (α)}‖ ∞ with |α| = 2. The expansion formulas of Theorems
2.5 and 2.7 hold for symbols ∈ Tρ δ and moreover for general symbols with a
large parameter . More general formulas will be given after the proof of the theo-
rems.

For the proof of theorems, we define the operator as

( )( ) = ( )( ) ( ) for ∈ 2(R )(2.9)

Then it follows from (1.1) that for ∈ ∞(R )

Wick =
∫

R2
( )(2.10)

We prepare two lemmas.

Lemma 2.9. Let ( ) = π− −| − |2 . Then we have

= ( )(2.11)

Proof. It follows from the definition that

( ) ( ) = (2π2)−
∫ ∫

R ×Rζ

( − )ζ −|( + )/2− |2−|ζ−ξ|2 ( ) ζ
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Noting that

∫

R

( − )ζ −|ζ−ξ|2 ζ = π /2 ( − )ξ −(1/4)| − |2

we get

( ) ( ) = (4π3)− /2
∫

R

( − )ξ −|( + )/2− |2−(1/4)| − |2 ( )

= (4π3)− /2
∫

R

( − )ξ −(1/2)| − |2−(1/2)| − |2 ( )

which shows (2.11).

Lemma 2.10. Let σ( ) = σ(( ξ) ( η)) = ξ − η and set

( ) = (2π2)− σ( − − ) −(1/2)| − |2−(1/2)| − |2

= (2π2)− σ( − − ) −(1/4)| − |2−| −( + )/2|2

Then we have

( ) = ( )( ) ( )( )( ) = ( ) for ∈ 2(R )(2.12)

Moreover, we get

= (2π)− on 2(R )(2.13)

‖ ‖L( 2(R )) ≤ (2π)−2 −(1/4)| − |2(2.14)

Proof. Put = = . Then

( ) = π−2
∫ ∫

( + ′) ( + ′) 2 σ( ′ ′) ′ ′

= π−4
∫ ∫

−| + ′− |2−| + ′− |2 2 σ( ′ ′) ′ ′

= π−4
∫ ∫

−| ′|2−| ′|2 2 σ( ′− + ′− + ) ′ ′

Here, in the last equality, we used the translation of variables ( ′ ′) 7−→ ( ′ − +
′− + ). Since

∫ −| |2±2 σ( ) = π −| |2, it follows from Fubini’s theorem
that

( ) = π−4 2 σ( − − )
∫

−| ′|2+2 σ( − ′) ′
∫

−| ′|2+2 σ( ′ ′− + ) ′

= π−4 2 σ( − − )
∫

−| ′|2+2 σ( − ′) ′ · π −| ′− + |2
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= π−3 2 σ( − − )
∫

−2| ′−( − )/2|2−(1/2)| − |2+2 σ( − ′) ′

= π−3 2 σ( − − )−(1/2)| − |2
∫

−2| ′|2+2 σ( − ′+( − )/2) ′

= π−3 σ( − − )−(1/2)| − |2 ·
(π

2

)
−(1/2)| − |2

= π− (2π)− σ( − − )−(1/2)| − |2−(1/2)| − |2

which shows (2.12). Here, in the fourth equality, we used thetranslation of variables
′ 7−→ ′ + ( − )/2. (2.13) follows from (2.11) and (2.12). We shall show (2.14).

Setting = ( η), = ( ζ) ∈ R × R , we obtain

( )( ) = (4π3)− /2
∫

R

(ζ−η) −(1/2)| − |2−(1/2)| − |2

= (4π3)− /2
∫

R

(ζ−η) −(1/4)| − |2−| −( + )/2|2

= (2π)− {( + )/2}(ζ−η) −(1/4)| − |2

Since |( )( )| ≤ ‖ ‖ 2(R )‖ ‖ 2(R ) by Schwarz’s inequality, we get from (2.12)

‖ ‖ 2(R ) = |( )( )| |( )( )| ‖ ‖ 2(R )

≤ (2π)− −(1/4)| − |2‖ ‖2
2(R )‖ ‖ 2(R )

which shows (2.14) by‖ ‖2
2(R ) = (2π)− .

Proof of Theorem 2.3 and Corollary 2.4. It follows from (2.10) and (2.11) that
Wick( ) = ( ), with

( ) = π−
∫

R2
( + ) −| |2

Using Taylor’s formula

( + ) =
∑

|α|≤ −1

(α)( )
α

α!
+ ( )

with

( ) =
∑

|α|=

∫ 1

0
(1− θ) −1 (α)( + θ ) θ

α

α!

we have

( ) =
∑

|α|≤ −1

(α)( )
π α!

∫

R2

α −| |2 + ( )
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where ( ) =π− ∫
R2 ( ) −| |2 ∈ T −σ

ρ δ . Note that
∫

R2
α −| |2 = 0

for α /∈ (2Z+)2 . Hence we get (2.2) if we take = 2. Ifα = (2β1 . . . 2β2 ) ∈
(2Z+)2 then we have withβ = (β1 . . . β2 )

1
α!

∫

R2

α −| |2 =
2∏

=1

1
(2β )!

∫ ∞

−∞

2β −| |2 =
π

4|β|β!

Choosing = we have

Wick = =
[( −1)/2]∑

|β|=0

1
4|β|β!

(
∂2β1

1
· · ·∂2β2

2
( )
)

+

=




[( −1)/2]∑

=0

1
!

(

4

) 
 +

with ∈ T −σ
ρ δ . Replacing by

∑[( −1)/2]
=0 (1/ !)(− /4) , we obtain (2.3) be-

cause



[( −1)/2]∑

=0
!






[( −1)/2]∑

=0

(− )
!


 = 1 + ( [( +1)/2])

Proof of Thoerems 2.5 and 2.7. By means of (2.10) we note that

Wick Wick =
∫ ∫

R2 ×R2
( ) ( )

We use Taylor’s formula

( ) =
∑

|α|≤ −1

(α)( )
( − )α

α!
+ ( )

where

( ) =
∑

|α|=

∫ 1

0
(1− θ) −1 (α)( + θ( − )) θ

( − )α

α!

Then we have

Wick Wick =
−1∑

=0

∑

|α|=
α + 0

where
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α =
1
α!

∫ ∫

R2 ×R2
( ) (α)( )( − )α

0 =
∫ ∫

R2 ×R2
( ) ( )

In the same way as in the proof of (2.19) of [5], it follows from(2.13), (2.14) and
Cotlar’s lemma that we have

‖ 0 ‖L( 2(R )) ≤ ( )‖ ‖ ∞

∑

|α|=
‖ (α)‖ ∞ ≤ ′

( )γ0( )γ ( )

The last inequality follows because ∈ T 0
1/2 1/2 ∈ T /2

1/2 1/2. By means of (2.12),
together with the change of variables (− − ) 7−→ (− − ), we see that if
σ( α) denotes the Weyl symbol of α,

σ( α) = (2π2)−
∑

α′+α′′=α

1
α′!α′′!

∫

R2
( + ) (α)( + )(− )α

′′ −(1/2)| |2

(∫

R2

α′ σ( ) −(1/2)| |2
)(2.15)

Note that α′ σ( ) = (− )|α
′| α′ σ( ) and

∫
R2

σ( ) −(1/2)| |2 = (2π) −(1/2)| |2.
We have the formulas





−(1/2)| |2 −(1/2)| |2 =
1
2

−| |2

−(1/2)| |2 −(1/2)| |2 =

(
1
4

− δ

2

)
−| |2

−(1/2)| |2 −(1/2)| |2

=

(
1
8

− 1
4

(δ + δ + δ )

)
−| |2

(2.16)

Furthermore, for anyα we can show by induction on|α| that

−(1/2)| |2
( )α

−(1/2)| |2 = 2−|α|




∞∑

=0

( α)
!

∣∣∣∣
= /


 −| |2(2.17)

In fact, if we write

−(1/2)| |2
( )α

−(1/2)| |2

=

(
−(1/2)| |2

( )
(1/2)| |2

)(
−(1/2)| |2

( )α′

−(1/2)| |2
)
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for some andα′ with |α′| = |α| − 1, then it equals, by induction hypothesis,

2−|α′|
( ( | |2

2

)
+

( ))



∞∑

=0

(
α′
)

!

∣∣∣∣∣∣
= /


 −| |2

= 2−|α|








∞∑

=0

(
α′
)

!

∣∣∣∣∣∣
= /



( ( | |2)) −| |2

+




∞∑

=0

2∂
(

α′
)

!

∣∣∣∣∣∣
= /


 −| |2 + 2




∞∑

=0

(
α′
)

!

∣∣∣∣∣∣
= /


 −| |2





because [ (| |2/2 ) ( / )β] = (∂ β)
∣∣

= /
for any β. The first term of the

right hand side is cancelled by half of the third term because( (| |2)) −| |2 =
− −| |2. Finally we have

−(1/2)| |2
( )α

−(1/2)| |2

= 2−|α|








∞∑

=0

2∂
(

α′
)

+
(

α′
)

!

∣∣∣∣∣∣
= /








−| |2

which gives (2.17) by means of α′

= 2 ∂ −1 α′

+ α′

.
It follows from (2.17) that

σ( α) = π−
∫

R2
( + ) (α)( + )

∞∑

=0
!

(
∑

α′+α′′=α

1
α′!α′′!

(− )α
′′

(

2

)α′)∣∣∣∣∣
= /

−| |2

=
π−

α!

∫

R2
( + ) (α)( + )

∞∑

=0
!

(
− +

2

)α∣∣∣∣
= /

−| |2

where we take a convention that all in (− + /2)β for β with |β| = |α| − 2 are
ordered to the right hand side. Since ={ } + , we have

+ = +

The repeated use of this formula shows that ifβ = 1 · · · |β|
and |β| denotes
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the permutation group on{ 1 . . . |β|} then for any (0< < |β|) we have

∑

β′+β′′=β
|β′|= |β′′|=|β|−

β′ β′′

=
1

!(|β| − )!

∑

σ∈ |β|

σ( 1) · · · σ( ) σ( +1) · · · σ( |β|)

=
1

!(|β| − )!

∑

σ∈ |β|

σ( 1) · · · σ( −1) σ( ) σ( +1) σ( +2) · · · σ( |β|)

= · · · =
1

!(|β| − )!

∑

σ∈ |β|

σ( 1) · · · σ( |β|− ) σ( |β|− +1) · · · σ( |β|)

=
∑

β′+β′′=β
|β′|= |β′′|=|β|−

β′′
β′

Hence we may regard that all in (− + /2)β are ordered to the left hand side.
Namely, we have

σ( α) = π−
∫

R2
( + ) (α)( + )

∞∑

=0
!

(
∑

α′+α′′=α

1
α′!α′′!

(

2

)α′)∣∣∣∣∣
= /

(− )α
′′ −| |2

Note that




−| |2 = −1
2
∂ −| |2

−| |2 =

(
1
4
∂ ∂ +

δ

2

)
−| |2

−| |2 = −
(

1
8
∂ ∂ ∂ +

δ

4
∂ +

δ

4
∂ +

δ

4
∂

)
−| |2

(2.18)

In the same way as in the proof of (2.17), we can show that for any α

α −| |2 = 2−|α|




∞∑

=0

( α)
!

∣∣∣∣
=−∂


 −| |2(2.19)

by induction on|α|, if we note [ (−∂ )β] =
(
∂ β

)∣∣
=−∂ .

In view of



∞∑

=0
!






∞∑

=0
!


 =

∞∑

=0

( + )
!



134 H. ANDO, AND Y. MORIMOTO

it follows from (2.19) that

σ( α) =
π−

2|α|α!

∫

R2
( + ) (α)( + )

∞∑

=0

( + )
!

( + )α|( )=(∂ / )
−| |2

=
π−

2|α|α!

∫

R2
( + ) (α)( + )




∞∑

=0

(2 )
!

α

∣∣∣∣∣∣
=∂ + /


 −| |2

By integration by parts we get

σ( α) =
π−

2|α|α!

×
∫

R2








∞∑

=0

(−1)|α|−2 (2 )
!

α

∣∣∣∣∣∣
=∂ + /


 ( )∂α ( + )| =0





−| − |2

Hence we obtain

∑

|α|=
σ( α) =

(−1) π−

2 !

×
∫

R2





∞∑

=0

(2 )
!




2∑

=1

∂




∣∣∣∣∣∣∣
=∂ + /

( ) ( + )





∣∣∣∣∣∣∣
=0

−| − |2

=
∫

R2





[ /2]∑

=0

(−2) −

!( − 2 )!




2∑

=1

(
∂ +

)
∂




−2

(− ) ( ) ( + )





∣∣∣∣∣∣∣
=0

−| − |2

π

because
(∑2

=1 ∂
)

= ( − 1)
(∑2

=1 ∂
) −2

. By setting − = , we
have the following rearrangement

−1∑

=0

∑

|α|=
σ( α)

=
/2∑

=0

(−1)
2 !

∫

R2


− +

2∑

=1

(
∂ +

)
∂


 ( ) ( + )

∣∣∣∣∣∣∣
=0

−| − |2

π
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− (−1) /2

2 /2( /2)!

∫

R2
( )(− ) /2 ( + )

∣∣∣
=0

−| − |2

π

+
−1∑

= /2+1

(−1)
2 !

∫

R2





− −1∑

=0

( )


2∑

=1

(
∂ +

)
∂




−

× ( )(− ) ( + )





∣∣∣∣∣∣
=0

−| − |2

π

= σ( 1) + σ( 2) + σ( 3)

Since it follows that for anỹ

2∑

=1

∂ ˜( + ) = 0 and


− +

2∑

=1

∂ ∂


 ˜( + ) = 0(2.20)

we have





− +

2∑

=1

(
∂ +

)
∂


 ( ) ( + )





∣∣∣∣∣∣∣
=0

=




2∑

=1

(
∂ +

)
∂


 ( ) ( )

∣∣∣∣∣∣∣
=

(2.21)

By means of (2.21) we get the desired expansion formula (2.4)if we show that 2 and

3 are 2 bounded operators whose operator norms are bounded by the right hand side
of (2.6). In fact, we have‖ 2‖L( 2(R )) ≤ γ0( )γ ( ) because 2 equals ( /2 )Wick

with a constant factor.3 is the sum of the following terms

(∫

R2

(
∂β

′ β′′

( ( ) (α)( ))
)

−| − |2

π

)
:= α

β′ β′′

for α β′ β′′ with /2 < |α| < , |α| − |β′ + β′′| ∈ 2Z+ and β′ + β′′ := β ⊂ α.
Here we denoteβ ⊂ α for β = (β1 . . . β2 ) α = (α1 . . . α2 ) if β ≤ α for each

= 1 . . . 2 . Since ∈ T 0
1/2 1/2, ∈ T /2

1/2 1/2, there existβ̃′, β̃′′ satisfying β̃′ ⊂ β′,

β̃′′ ⊂ β′′ and |β̃′| + |β̃′′| < /2 such that ( ) =∂β̃
′′ β̃′

( ( ) (α)( )) belong to ∞

unformly with respect to . By integration by parts again, we have with β̃ = β̃′ + β̃′′

α
β′ β′′ = (−1)|β−β̃|

(∫

R2
( )∂β

′′−β̃′′ β′−β̃′
(

−| − |2
)
π

)
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By this expression we can see

‖ α
β′ β′′‖L( 2(R )) ≤ ( )‖ ‖ ∞

in the same way as in [5; (3.19)]. Now the proof of (2.4) is complete.

It follows from (2.10) that

Wick Wick =
∫ ∫

R2 ×R2
( ) ( )

We use the same Taylor’s formula of ( ) as above. If˜α ˜0 denote the correspond-
ing terms to α, 0 then they are defined only with replaced by . Since
the Weyl symbol of equals ( ) = ( ) because of Lemma 2.10,̃0 is
estimated in the same way as for0 . Using the change of variables (− − ) 7−→
(− ) we have instead of (2.15)

σ(˜α) = (2π2)−
∑

α′+α′′=α

1
α′!α′′!

∫

R2
( + ) (α)( + )(− )α

′′ −(1/2)| |2

×
(∫

R2
(− )α

′ σ( ) −(1/2)| |2
)(2.22)

Since the difference between (2.15) and (2.22) is only the fact that α′

is replaced
by (− )α

′

we easily obtain (2.5) by replacing / by − / . The formula (2.7) is
obvious if we note

(
+

)
−
(

−
)

=
2

[( −1)/2]∑

=0

(

2 + 1

)
−2 −1(−1) 2 +1

and
∑2

=1 ∂ ( ) ( )| = = −{ }( ).

As stated in Remark 2.8 the expansion fomulas hold for more general symbols ,
and any positive integer .

Theorem 2.11. Let ∈ ∞(R2 ) and ∈ Tρ δ with ρ, δ > 0 and ∈ R. Set
σ = min(ρ δ). Let be a positive integer with ≥ /σ and assume that




2∑

=1

(
∂ ∂ ± ∂

)
 ( ) ( )

∣∣∣∣∣∣∣
=

∈ ∞ for 0 ≤ ≤ 0(2.23)

for some nonnegative integer0 ≤ [ /2]. Then we have the expansion formulas as
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follows:

Wick Wick =





( )Wick + 0
1 if = 1

0∑

=0

(−1)
2 !







2∑

=1

(
∂ ∂ + ∂

)
 ( ) ( )

∣∣∣∣∣∣∣
=




Wick

+
−1∑

= 0+1

∑

|α|=

∑

β′+β′′⊂α
|α|−|β′+β′′|∈2Z+

α β′ β′′
α
β′ β′′ + 0 if ≥ 2

(2.24)

Wick Wick =





( )Wick + 0̃
1 if = 1

0∑

=0

(−1)
2 !







2∑

=1

(
∂ ∂ − ∂

)
 ( ) ( )

∣∣∣∣∣∣∣
=




Wick

+
−1∑

= 0+1

∑

|α|=

∑

β′+β′′⊂α
|α|−|β′+β′′|∈2Z+

α β′ β′′
α
β′ β′′ + 0̃ if ≥ 2

(2.25)

where α β′ β′′ ∈ C are constants depending only onα, β′, β′′ and . The remainder

terms 0 , 0̃ are 2 bounded operators uniformly with respect to a large parameter
satisfying

‖ 0 ‖L( 2(R ))

∥∥∥ 0̃
∥∥∥
L( 2(R ))

≤ ( )‖ ‖ ∞(R2 )γ ( )(2.26)

where ( ) is the constant depending only on and . Hereαβ′ β′′ is a pseudodif-
ferential operator whose Weyl symbol is given by

(−1)|β
′+β′′|

∫

R2
( ) (α)( ) β′

∂β
′′
(

−| − |2
)
π

(2.27)

Furthermore, if∂β̃
′′ β̃′

( ( ) (α)( )) ∈ ∞(R2 ) for some β̃′ ⊂ β′, β̃′′ ⊂ β′′ then
there exists a constant ′( ) > 0 depending only on and such that

‖ α
β′ β′′‖L( 2(R )) ≤ ′

( )‖∂β̃
′′ β̃′

( ( ) (α)( ))‖ ∞(R2 )(2.28)

Proof. Even if is odd, we have the same formula as one just before (2.20)
with /2 repalced by [ /2] and σ( 2) = 0. If is not smooth enough, the integrand
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of σ( 1) and σ( 3) must be replaced, in view of the integration by parts, by

( ) ( + )





− −

2∑

=1

(
∂ +

)
∂


 −| − |2




∣∣∣∣∣∣∣
=0

and

− −1∑

=0

( )
( )(− ) ( + )





−

2∑

=1

(
∂ +

)
∂




−

−| − |2




∣∣∣∣∣∣∣
=0

respectively, where we regard that∂ and operate ( + ) even if they are put
on the right hand side. Henceαβ′ β′′ in the proof of Theorem 2.7 must be written
as in the form (2.27). If (2.23) holds then we can use the formula (2.21) and obtain
(2.24) in the same way as in the proof of Theorem 2.7.

Theorem 2.12. Let ∈ ∞(R2 ) and ∈ Tρ δ with ρ, δ > 0 and ∈ R. Assume

that { } ∈ ∞(R2 ). Setσ = min(ρ δ). Then, for a positive integer ≥ /σ we
have

[ Wick Wick] =





1
({ })Wick + 0

2 if = 2

1
({ })Wick +

1
−1∑

=2

∑

|α|=

∑

β′+β′′⊂α 06=|β′|odd
|α|−|β′+β′′|∈2Z+

′
α β′ β′′

α
β′ β′′

+ 0 if ≥ 3

(2.29)

where ′
α β′ β′′ ∈ R are constants depending only onα, β′, β′′ and . Here 0 and

α
β′ β′′ satisfy the same property asTheorem 2.11. In particular, when = 3 we have

[ Wick Wick] =

(
1{ }

)Wick

+ 3(2.30)

where 3 is an 2 bounded operator satisfying

‖ 3‖L( 2(R )) ≤ ( )


‖ ‖ ∞(R2 )γ3( ) +

2∑

=1

‖{ ∂ }‖ ∞(R2 )


(2.31)

provided that{ ∂ } ∈ ∞(R2 ) for = 1 . . . 2
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3. Application

In this last section we shall apply the Wick calculus to the Cauchy problem for
some dispersive equations. Let us consider the following Cauchy problem

{
(∂ + 2 ( ) + 1 ( ) + 0 ( )) = in D′((0 )× R )
(0 ) = 0( )

(C.P.)κ

where ∈ 2κ−2+
1 0 ( = 1 2), 0 ∈ 0

1 0, 1/2< κ ≤ 1 and > 0. We assume that

2(ξ) =
1

2κ
|ξ|2κ 1( ξ) =

∑

=1

( )ξ |ξ|2κ−2

for |ξ| ≥ 1/4 and ( )∈ B∞(R ) for = 1 . . . .
For the 2 well-posedness of the Cauchy problem (C.P.)κ, in the case ofκ = 1,

the following necessary condition

sup
( ω)∈R × −1

>0

∣∣∣∣∣∣

∫

0

∑

=1

Re ( − ωθ)ω θ

∣∣∣∣∣∣
< +∞(3.1)

is shown by Mizohata (see [6]). As to the sufficiency of the2 well-posedness of the
Cauchy problem (C.P.)κ, in the case ofκ = 1, there are works such as [1], [2], [4], [7],
[8], etc. Here we quote only the sufficient conditions of the Cauchy problem (C.P.)κ
in the case ofκ = 1 from [2] and [7] for the comparison with our results which will
be mentioned later.

Theorem (Mizohata, see [7]). Let κ = 1. Suppose(3.1) and the condition(3.2);

sup
( ω)∈R × −1

>0

∣∣∣∣∣∣

∫

0

∑

=1

∂α ( − ωθ)ω θ

∣∣∣∣∣∣
<∞ for all α ∈ Z+ \ {0}(3.2)

Then the Cauchy problem(C.P.)κ is 2 well-posed.

We remark that, in [7], the following condition

sup
( ω)∈R × −1

>0

∫

0
|∂α ( − ωθ)| θ <∞ for = 1 . . .(3.3)

which is more restrictive than (3.2), is assumed. But it is not difficult to see that we
can replace (3.3) with (3.2) in the proof of the theorem for the sufficiency in [7].
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Theorem (Doi, see [2]). Let κ = 1. If there exists a positive non-increasing func-
tion λ( ) in ([0 ∞)) ∩ 1((0 ∞)) satisfying

|Re ( )| ≤ λ(| |) for all ∈ R = 1 . . .(3.4)

then the Cauchy problem(C.P.)κ is 2 well-posed.

About the sufficiency of the Cauchy problem (C.P.)κ in the case ofκ = 1, the
above Theorem (Doi) is the simplest result and powerful. Butit is not able to handle
the delicate case treated in [7]. We have an example which satisfies neither (3.2) nor
(3.4) but (3.1).

EXAMPLE 3.1.

Re ( ) =
sin
〈 〉 Im ( ) = 〈 〉(3.5)

for ∈ R , = 1 . . . , where = (1 . . . ), = ( 1 . . . ) ∈ R \ {0} with
6= ( 6= ) are the constant vectors and〈 〉 = (1 + | |2)1/2.

Whenκ = 1, we don’t yet know the answer for the question that in the case where
( ) ( = 1 . . . ) are given by (3.5) the Cauchy problem (C.P.)κ is 2 well-posed

or not. However, in the case of 1/2 < κ ≤ 5/6 we can get some results by using the
Wick calculus. Our main theorem in this paper is as follows.

Theorem 3.2. (i) Suppose1/2< κ ≤ 2/3. Then the Cauchy problem(C.P.)κ is
2 well-posed if(3.1) is fulfilled.

(ii) Suppose2/3< κ ≤ 5/6. In addtion to(3.1), assume that the following conditions
are satisfied:

sup
( ω)∈R × −1

>0

∣∣∣∣∣∣

∫

0

∑

=1

∂α Re ( − ωθ)ω θ

∣∣∣∣∣∣
<∞ for |α| = 1(3.6)

sup
∈R

〈 〉 |∂α ( )| <∞ for |α| = 1 = 1 . . .(3.7)

Then the Cauchy problem(C.P.)κ is 2 well-posed.

REMARK 3.3. ( ) ( = 1 . . . ) given by (3.5) satisfy (3.1), (3.6) and (3.7). So
Theorem 3.2 (ii) is applicable. In fact, taking the change ofvariable; =θ − · ω,

∫

0

sin( − ω θ)
〈 − ωθ〉 ω θ =

∫ − ·ω

− ·ω

sin( − ω ( + · ω))
(1 +ρ + 2)1/2

ω = 1 − 2
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whereρ = | |2 − ( · ω)2 ≥ 0,

1 =
∫ − ·ω

0

sin( − ω ( + · ω))
(1 +ρ + 2)1/2

ω 2 =
∫ − ·ω

0

sin( − ω ( + · ω))
(1 +ρ + 2)1/2

ω

By the second mean value theorem of integration, there exists 1 ∈ R such that

1 =
1

(1 +ρ)1/2

∫
1

0
sin( − ω ( + · ω))ω

+
1

(1 +ρ + ( − · ω)2)1/2

∫ − ·ω

1

sin( − ω ( + · ω))ω

=
1

(1 +ρ)1/2

∫ −ω ( 1+ ·ω)

−ω ( ·ω)
sin

+
1

(1 +ρ + ( − · ω)2)1/2

∫ −ω

−ω ( 1+ ·ω)
sin

where in the last equality we changed the variable of integration by = −ω ( + ·ω).
Since

∣∣∣∣∣

∫
sin

∣∣∣∣∣ ≤ 2 for ∈ R

we have| 1| ≤ 4. Similary, we can get| 2| ≤ 4. Thus (3.1) are satisfied. In the same
way, it is easy to see that (3.5) satisfies (3.6).

Proof of Theorem 3.2. First we shall prove (ii) of the theorem. For the proof it
suffices to show the followinga priori estimate

‖ ( )‖ ≤
(
‖ (0)‖ +

∫

0
‖ ( )‖

)
(3.8)

for ∈ [0 ], ∈ ([0 ]; 2(R )) ∩ 1([0 ]; 2(R )) with the constant =
( ) > 0 where = (∂ + 2 ( ) + 1 ( ) + 0 ( )) and ‖ · ‖ = ‖ · ‖ 2(R ).

Takeϕ0, ϕ, ψ1, ψ2 ∈ ∞
0 (R ) of real value such that





0 ≤ ϕ ≤ 1 suppϕ ⊂
{

1
2
≤ |ξ| ≤ 2

}

ϕ0(ξ)2 +
∞∑

ν=1

ϕ(2−νξ)2 = 1 for ξ ∈ R
(3.9)





ψ1(ξ) = 1 on

{
1
2
≤ |ξ| ≤ 2

}
suppψ1 ⊂

{
1
4
≤ |ξ| ≤ 9

4

}

ψ2(ξ) = 1 on

{
1
4
≤ |ξ| ≤ 9

4

}
suppψ2 ⊂

{
1
8
≤ |ξ| ≤ 9

4
+

1
8

}(3.10)
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Put ϕ0 = ϕ0 ( ), ϕν = ϕν ( ) = ϕ (2−ν ) for ν ≥ 1. In view of a Littlewood-
Paley decomposition

∑∞
ν=0ϕν ( )2 = we consider

(∂ + 2 ν + 1 ν)ϕν + ν = ϕν for ν = 0 1 2 . . .(3.11)

where

2 ν = 2 ν( ) 2 ν(ξ) = 2(ξ)ψ2(2−νξ)

1 ν = 1 ν( ) 1 ν( ξ) = 1( ξ)ψ1(2−νξ)

ν =
[
ϕν 1 ν

]
+ ϕν 0 +

2∑

=1

−1ϕν ((1− ψ (2−ν ·)) ) for ν ≥ 0

We shall show that

∞∑

ν=0

‖ ν ( )‖2 ≤ 0‖ ( )‖2(3.12)

with some constant 0 > 0. By
∑∞
ν=0(ϕν )2 = , we have

∞∑

ν=0

‖ϕν 0 ‖2 = ‖ 0 ‖2 ≤ 0 0‖ ‖2(3.13)

with some constant 0 0 > 0. Since suppϕν ∩ supp((1− ψ (2−ν ·)) ) = ∅ for = 1 2,
we get

∥∥∥∥∥∥

2∑

=1

ϕν ((1− ψ (2−ν ·)) )

∥∥∥∥∥∥
L( 2(R ))

≤ 2− ν for ∈ N

with some constant > 0 independent ofν, which implies

∞∑

ν=0

∥∥∥∥∥∥

2∑

=1

ϕν ((1− ψ (2−ν ·)) )

∥∥∥∥∥∥

2

≤ 0 1‖ ‖2(3.14)

with some constant 0 1 > 0. Noting that

[ϕν 1 ν ] =

(
1{ϕν 1 ν}

)
+ ′

ν =
1∑

=1

(
∂ 1 ν

∂

) (
∂ϕν
∂ξ

)
+ ′′

ν

where‖ ′
ν‖L( 2(R )), ‖ ′′

ν ‖L( 2(R )) ≤ 0 22−ν with some constant 0 2 > 0 independent
of ν and

∞∑

ν=0

∥∥∥∥
(
∂ 1 ν

∂

) (
∂ϕν
∂ξ

) ∥∥∥∥
2

≤ 0 3

∞∑

ν=0

(
2ν
∥∥∥∥
(
∂ϕν
∂ξ

) ∥∥∥∥
)2

≤ 0 4‖ ‖2
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for = 1 . . . with some constants 0 3, 0 4 > 0, we have

∞∑

ν=0

∥∥[ϕν 1 ν

]∥∥2 ≤ 0 5‖ ‖2(3.15)

with some constant 0 5 > 0. Thus from (3.13), (3.14) and (3.15) we obtain (3.12).
Set δ = 1/3 andρ = 1− δ. Changing ( ξ) 7−→ ( −δ δξ) with = (ν) = 2ν ,

we have

δ

(
∂ + 2 + 1

)
−δϕν + ν = ϕν

where λ is the scaling operator defined by (λ )( ) = (λ ) and

2 (ξ) = 2 ν( δξ) 1 ( ξ) = 1 ν( −δ δξ)

Sinceκ ≤ 5/6, we see 2 ∈ T 1+ρ
ρ δ and 1 ∈ T ρ

ρ δ. Set

= −δ /2
−δϕν = −δ /2

−δϕν

Since‖ ‖2 = ‖ϕν ‖2, ‖ ‖2 = ‖ϕν ‖2 and
∑∞
ν=0(ϕν )2 = , we note that

∞∑

ν=0

‖ (ν)( )‖2 = ‖ ( )‖2
∞∑

ν=0

‖ (ν)( )‖2 = ‖ ( )‖2(3.16)

(
∂ + 2 + 1

)
+ −δ /2

−δ ν =(3.17)

Apply Corollary 2.4 with = 4 to 2 , noting that its symbol depends only onξ.
Furthermore, using Theorem 2.3 for1 , we can see that (3.17) are reduced to the
equations

(
∂ + Wick

2 + 1̃
Wick
)

+ −δ /2
−δ ν + 0̃ =(3.18)

where Wick
2 = Wick

2 ( ) and 1̃
Wick = 1̃

Wick( ) with

1̃ ( ξ) = 1 ( ξ) −
4

(
ξ 2

)
(ξ) ∈ T ρ

ρ δ(3.19)

and 0̃ ∈ T 0
ρ δ. Set

= −δ /2
−δ ν + 0̃

From (3.18) we have

(∂ + Wick
2 + 1̃

Wick) + =(3.20)
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Since‖ −δ /2
−δ ν ‖2 = ‖ ν ‖2 and 0̃ ∈ T 0

ρ δ, it follows from (3.12) and (3.16)
that

∞∑

ν=0

‖ (ν) ( )‖2 ≤ 1‖ ( )‖2(3.21)

with some constant 1 > 0.

Lemma 3.4. Assume (3.1) and (3.6). Then for any > 0 there exists
( ξ) ∈ ∞(R × Rξ) of real value with a large parameter such that we have

{ 2 }( ξ) − Re 1 ( ξ) = 0(3.22)

and moreover

|∂α ( ξ)| ≤ −δ|α| if |α| ≤ 1(3.23)

|∂αξ ( ξ)| ≤ ′〈 −δ 〉 −ρ if |α| = 1(3.24)

for , ξ ∈ R with some constants , ′ > 0.

Proof. Set

( ξ) =
∑

=1

ω

∫ ·ω

0
Re ( − ωθ) θ ω =

ξ

|ξ|(3.25)

Then we get

{ 2 }( ξ) = Re 1( ξ)

Setting ( ξ) = ( −δ δξ)ψ1( −ρξ) we obtain (3.22) in view of (3.10). The
estimates (3.23) and (3.24) easily follow from (3.1) and (3.6).

Let’s return to the proof of Theorem 3.2. Set (ξ) = ( ξ) with ( ξ) of
Lemma 3.4. Then we have

1
2

‖ Wick ( )‖2(3.26)

= Re

(
Wick ∂

∂
Wick

)

= Re
(

Wick Wick
)

−Re
(( [

Wick Wick
2

]
+ Wick ˜Wick

1

)
Wick

)

−Re
(

Wick Wick
)
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because (Wick
2 )∗ = Wick

2 , which follows from the fact that 2 (ξ) is a real valued
function. Here (· ·) = (· ·) 2(R ). By means of (3.23) withα = 0 and Proposition 1.1
we have the estimate

2 ≤ ‖ Wick‖L( 2(R )) ≤ 3 for ≥ 1(3.27)

with some constants 2, 3 > 0. Note that

Wick ˜Wick
1 = Wick(Re 1 )Wick + (Im ˜1 )Wick Wick + [ Wick (Im ˜1 )Wick]

Using the expansion formula (2.24) with = , = Re1 , = 2 and 0 = 0, we
obtain

Wick(Re 1 )Wick =
(

(Re 1 )
)Wick

+(3.28)

where‖ ‖L( 2(R )) ≤ 4 for ≥ 1 with some constant 4 > 0. In fact, by means of
(2.28) we have forα = (α αξ) with αξ 6= 0

‖ α
β′ β′′‖L( 2(R )) ≤ ‖ (Re 1 )(α)‖ ∞ ≤ ′

because Re1 ∈ T ρ
ρ δ, and it follows from (3.23) and (3.7) that forα = (α 0) and

β′ 6= 0

‖ α
β′ β′′‖L( 2(R )) ≤ (‖(∂ξ )〈 −δ 〉−1 ρ−δ‖ ∞ + ‖ ρ−1‖ ∞ ≤ ′

In view of (2.28) we see that forα = (α 0) andβ′ = 0 (β′′ 6= 0)

‖ α
β′ β′′‖L( 2(R )) = ‖∂β′′

( (Re 1 )(α)))‖L( 2(R )) ≤ ′

because∂β
′′

( (Re 1 )(α)) also belongs to ∞. Using the expansion formula (2.29)
with = 2 we get similarly

‖[ Wick (Im ˜1 )Wick]‖L( 2(R )) ≤ ′(3.29)

If we use (2.30) of Theorem 2.12 with = , =2 and = 3 then the remainder
term 3 is 2 bounded uniformly with respect to on account of (3.23) with|α| = 1.
In view of (3.22), it follows from (3.28) and (3.29) that

−Re
(( [

Wick Wick
2

]
+ Wick ˜Wick

1

)
Wick

)
≤ 5‖ ‖2(3.30)

where 5 > 0 is a constant independent of ≥ 1. In view of (3.27) and (3.30) it
follows from (3.26) that

1
2

‖ Wick ( )‖2(3.31)
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≤ ‖ Wick ( )‖
(
‖ Wick ( )‖ + 5

2
‖ ( )‖ + 6‖ ( )‖

)

with some constant 6 > 0. Set

( ) =

( ∞∑

ν=0

‖ Wick
(ν) (ν)( )‖2

)1/2

( ) =

( ∞∑

ν=0

‖ Wick
(ν) (ν)( )‖2

)1/2

for ∈ [0 ]. By virtue of (3.16) and (3.27) we get

7‖ ( )‖ ≤ ( ) ≤ 8‖ ( )‖ 7‖ ( )‖ ≤ ( ) ≤ 8‖ ( )‖(3.32)

for ∈ [0 ] with some constants 7, 8 > 0. Sum up (3.31) with respect toν and
make use of Schwarz’s inequality. In view of (3.15), (3.16),(3.21) and (3.32) we have
the estimate

( ) ≤ 9 ( ) + ( ) for ∈ [0 ](3.33)

with some constant 9 > 0 . Consequently we can obtain the desireda priori estimate
(3.8) from (3.33) by using the Gronwall’s inequality and noting (3.32).

We shall prove the assersion (i) of the theorem. Setδ = 1/3 andρ = 1− δ. Since
κ ≤ 2/3, we see 2 ∈ T 2ρ

ρ δ and ˜1 ∈ T δ
ρ δ. We use (2.23) and (2.24) with = 1 in

estimating the product of Wick and Wick
1 . Furtheremore, we use them to get (3.29).

About the commutator of Wick and Wick
2 we may only use (2.29) with = 2. Hence

we get the conclusion without (3.6) and (3.7).
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