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1. Introduction

Let ( 2 ω) be a symplectic manifold. Brylinski [2] defined the star operator
∗ : ( ) → 2 − ( ) for the symplectic structureω as an analogy of the star op-
erator for an oriented Riemannian manifold, where ( ) denotes the space of all
-forms on , and also defined an operator∗ = (−1) ∗ ∗ : ( ) → −1( ).

Now a formα on is called a symplectic harmonic form if it satisfiesα = ∗α = 0.
We denote byH ( ) the space of all harmonic -forms on . We define symplectic
harmonic -cohomology group ( ) byH ( )/( ( ) ∩ H ( )). Brylinski con-
jectured that any de Rham cohomology class contains a harmonic representation. How-
ever, Mathieu [6] proved the following result:

Mathieu’s Theorem. Let ( 2 ω) be a symplectic manifold of dimension2 .
Then following two assertions are equivalent:
(a) For any , the cup-product[ω] : − ( )→ + ( ) is surjective.
(b) For any , ( ) = ( ).

In particular, we see that if is a compact Kähler manifold, then any de Rham
cohomology class contains a symplectic harmonic cocycle. Yan [11] gave a simpler,
more direct proof of Mathieu’s Theorem. Mathieu [6] also proved that, for = 0 1 2

( ) = ( ).
In this paper we study compact symplectic nilmanifolds. Letg be a Lie alge-

bra and putg(0) = g and let g( +1) = [g g( )] for ≥ 0. We say that a Lie algebra
g is ( + 1)-step nilpotent ifg( ) 6= (0) and g( +1) = (0). A Lie group is called
( + 1)-step nilpotent if its Lie algebrag is ( + 1)-step nilpotent. If is a simply-
connected ( + 1)-step nilpotent Lie group and is a lattice of ,that is, a dis-
crete subgroup of such that/ is compact, then we say that/ is a compact
( + 1)-step nilmanifold. We also identify

∧
g∗ with the space of all left -invariant

forms on . Nomizu [8] proved that, for each , the Lie algebra cohomology group
(g) = (g)/ (g) = (Ker ∩∧ (g∗))/(Im ∩∧ (g∗)) is isomorphic to the de Rham

cohomology group ( ) = ( )/ ( ) = (Ker ∩ ( ))/(Im ∩ ( )) where
= / .
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Benson and Gordon [1] have proved that the Hard Lefschetz Theorem fails for
any symplectic structure on a non-toral compact nilmanifold to show that a non-toral
compact nilmanifold does not admit any Kähler structure. The proof of Benson and
Gordon also implies that the dimension of2 −1( ) is not equal to the dimension

1 ( ) for a non-toral compact nilmanifold.
For a left -invariant symplectic formω on a compact nilmanifold / , we de-

note byH (g) the space of all left -invariant harmonic forms on/ . Moreover we
define a subspace of Lie algebra cohomology group (g) by (g) = H (g)/( (g)∩
H (g)).

Let be a compact manifold andω, ω′ symplectic forms on . We denote
ω-harmonic (ω′-harmonic) -cohomology group by ω- ( ) ( ω′- ( )). If for
some , the dimension of ω- ( ) and ω′- ( ) are not equal, then there exists
no diffeomorphismsϕ : −→ such thatϕ∗ω = ω′. Thus harmonic cohomology
groups play an important role in the classification of symplectic forms.

We are also interested in the following question raised by B.Khesin and D. Mc-
Duff (see Yan [11]).

Question : On which compact manifold , does there exist a family ω of sym-
plectic forms such that the dimension of ( ) varies?

This question was considered by Yan [11] for compact symplectic 4-manifolds
and he constructed compact 4-manifold which have a familyω of symplectic forms
such that the dimension of 3

ω - ( ) varies. Yan also observed that for compact
4-dimensional nilmanifolds the dimension 3

ω - ( ) is independent of symplectic
forms. Now we consider the following question.

Question : On which compact nilmanifold , does there exist a family ω of sym-
plectic forms such that the dimension of ( ) varies?

In Section 4, we prove

Proposition 1. Let 2 be a compact manifold andω ω′ symplectic forms on
such thatω − ω′ = γ for someγ ∈ 1( ) (it is not necessary that is a

nilmanifold). Then we have, for each ,

ω- ( ) = ω′- ( )

Proposition 2. Let ( = / ω) be a compact symplectic nilmanifold. Then we
have

ω- ( ) = ω0- ( ) = ω0- (g)

where ω0 is a left -invariant closed2-form such thatω − ω0 = γ for someγ ∈
1( ).

In Section 5, we prove the following:
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Theorem 3. Let 2 = / be a compact( +1)-step nilmanifold. Then for any
symplectic structureω on , we have

dim 1 ( )− dim 2 −1( ) ≥ dimg( )

In particular, if is a 2-step nilmanifold, then

dim 1 ( )− dim 2 −1( ) = dim[g g]

Let be a simply-connected nilpotent Lie group andg be its Lie algebra. Note
that has a lattice if and only ifg admits a basis with respect to which the constants
of structure are rational (see Raghunathan [9] Theorem 2 12 of Chapter II).

In Section 7, we prove the following:

Theorem 4. Let g be the 2-step nilpotent Lie algebra for dimension6 of the
form

g = span{ 1 2 3 4 5 6}

where

[ 1 6] = 5 [ 1 4] = 3 [ 4 6] = 2

and ω1 ω2 ω3 ω4 ω5 ω6 denote its dual basis. Moreover, let

ω = ω1 ∧ ω3 + ω2 ∧ ω4 + ω5 ∧ ω6

and

ω′ = −2ω1 ∧ ω2− ω3 ∧ ω6− ω4 ∧ ω5

Then {ω = (1− )ω + ω′; R ∋ 6= 0} is a family of symplectic forms on compact
nilmanifold / , where 0 ( 0 ; −3 8473) is a unique real solution for1− 3 + 3 2 +
3 = 0 such that

for ω0 = ω dim 2 ( / )− dim 4 ( / ) = 1

for ω ( 6= 0 0) dim 2 ( / )− dim 4 ( / ) = 0

Since 2 ( / ) = 2
ω- ( / ) for any symplectic forms, we have 6-dimensional

nilmanifold which has a familyω of symplectic forms such that the dimension of
4
ω - ( ) varies.

The author would like to express his deep appreciation to Professor Yusuke
Sakane for his thoughtful guidance and encouragement givenduring the completion of
this paper.
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2. Operators on Ω
∗(M) and the relations

In this section, we define some operators on a symplectic manifold and study their
relations.

Let ( 2 ω) be a symplectic manifold. We define a star operator∗ω =
∗ : ( )→ 2 − ( ). Let G be the skew symmetric bivector field dual toω.

By the Darboux’s theorem, we can write in canonical coordinates

ω = 1 ∧ 1 + · · · + ∧

and

G =
∂

∂ 1
∧ ∂

∂ 1
+ · · · + ∂

∂
∧ ∂

∂

We define a star operator

∗ : ( )→ 2 − ( ) for = 0 . . . 2

by

α∧ ∗ β = (∧ (G))(α β) for α β ∈ ( )

where =ω / !.
We also define an operator∗ by ∗ = (−1) ∗ ∗ : ( )→ −1( ).

DEFINITION 2.1. For a symplectic manifold ( ω), a -formα ∈ ( ) is called
ω-harmonic or simply, harmonic, if it satisfies

∗α = α = 0

We denote byHω( ) = H ( ) the space of all harmonic -forms. We define
symplectic harmonic -cohomology groupω- ( ) = ( ) = H ( )/( ( ) ∩
H ( )). We also define ω = : ( )→ +2( ) by (α) = α ∧ ω.

Lemma 2.2.

∗ = [ (G)]

Proof. See [2].

REMARK. Since ∗2 = 0, we can define homology groups as follows.

( ) := H ( )/( ( ) ∩H ( ))
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where ( ) = Im ∗ ∩ ( ). For any ,

∗ : − ( )→ + ( )

is an isomorphism. In fact, forα ∈ H − ( ), we have

∗(∗α) = (−1) + ∗ ∗ ∗α = (−1) + ∗ α = 0

(∗α) = ∗ ∗ ∗ α = (−1) − ∗ ∗α = 0

Thus ∗α ∈ H + ( ) . Similarly, ∗ : − ( ) → + ( ). Thus ∗-operator induces a
homomorphism

∗ : − ( )→ + ( )

We can also define∗ : + → − ( ). Since∗∗ = , we see that
∗ : − ( )→ + ( ) is an isomorphism (cf. [2]).

Now, we define operator ∗ by

∗ = ∗ ∗ : ( )→ −2( )

We can easily see that ∗ is the adjoint operator for , where we define an inner
product ( ) on ∗( ) by (α β) =

∫
∗(α ∧ ∗β) for α β ∈ ( ).

Proposition 2.3 (Yan [11]).

(G) = − ∗

Moreover, we define

=
∑

( − )π

whereπ : ∗( )→ ( ) is the natural projection.
These operators satisfy the following relations:

Proposition 2.4 (Yan [11]). [ ∗ ] = [ ] = −2 [ ∗] = 2 ∗

3. Duality on harmonic forms

First we introduce the following definition. Let be the standard basis of
sl(2 C) = sl(2) i.e.

=

(
1 0
0 −1

)
=

(
0 1
0 0

)
=

(
0 0
1 0

)



368 T. YAMADA

DEFINITION 3.1. Let be the (infinite-dimensional) vector space of a Lie algebra
representation. We say that is ansl(2)-module of finite -spectrum if the following
two conditions are satisfied:
(a) can be decomposed as the direct sum of eigenspace of .
(b) has only finitely many distinct eigenvalues.

By a basic result on ansl(2)-representation we have the following:

Proposition 3.2. Let be ansl(2)-module of finite -spectrum. Then we have:
For any , the maps

: → −

and

: − →

are isomorphisms(where is an eigenspace of with eigenvalue).

Now we can give a representation ofsl(2 R) on ∗( ) by the following corre-
spondence:

←→ ∗ ∗ ←→ ←→

We can easily see that∗( ) is an sl(2)-module of finite -spectrum. Thus we have

Proposition 3.3 (Duality on forms) (Yan [11]).

: − ( )→ + ( )

is an isomorphism.

Moreover, sinceH∗( ) is an sl(2 R)-submodule of ∗( ), we have

Proposition 3.4 (Duality on harmonic forms) (Yan [11]).

: H − ( )→H + ( )

is an isomorphism.

For a left -invariant symplectic formω on a compact nilmanifold / , we de-
note byH (g) the space of all left -invariant harmonic forms on/ .

Now we have the following:
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Proposition 3.5. Let ( 2 ω) be a compact symplectic nilmanifold such that
ω ∈ ∧2(g∗), then

: H − (g)→ H + (g)

is an isomorphism.

Proof. Let { 1 . . . 2 } be a basis ofg and {ω1 . . . ω2 } be its dual basis.
Thenω can be written as

ω =
∑

ω ∧ ω = − ∈ R

Further, it is easy to see that

G = −
∑

∧

where ( ) is the inverse matrix for transpose matrix of ( ). It follows thatH∗(g) is
an sl(2 R)-submodule.

4. Harmonic cohomology groups onM

We need some lemmas to prove Theorem 1.

Lemma 4.1 (Yan [11]). Let ( ω) be a symplectic manifold. Then we have

−
ω ( ) ⊂ −

ω- ( )

where

−
ω ( ) = { ∈ − ( ) | +1

ω = 0}

Lemma 4.2. Let 2 be a compact manifold andω ω′ symplectic forms on
such thatω − ω′ = γ for someγ ∈ 1( ). Then we have

−
ω ( ) = −

ω′ ( )

Proof. Let = [ ]∈ −
ω ( ), where ∈ − ( ). Sinceω = ω′ + γ, we have

+1
ω = ω +1 ∧

= (ω′ + γ) +1 ∧

= +1
ω′ +

∑

6= +1

(
+ 1
)
ω′ ∧ ( γ) − +1 ∧

Therefore,

+1
ω = [ +1

ω ] = [ +1
ω′ ] = +1

ω′ = 0
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which implies ∈ −
ω′ ( ) so that −

ω ( ) = −
ω′ ( ).

Lemma 4.3. Let ( ω) be a compact symplectic manifold. Then, for ≥ 0, we
have

− ( ) = − ( ) + ( − −2( ))

Proof. Let ∈ − ( ). Since +2 : H − −2( ) → H + +2( ) is an isomor-
phism, there exists = [β], whereβ ∈ H − −2 such that

+1 = +2

Thus

+1( − ∧ ω) = 0

which implies

− ∧ ω ∈ − ( )

Moreover, since ∧ ω ∈ ( − −2( )), we get

= ( − ∧ ω) + ∧ ω ∈ − ( ) + ( − −2( ))

Proposition 4.4. Let 2 be a compact manifold andω ω′ symplectic forms on
such thatω − ω′ = γ for someγ ∈ 1( ). Then we have, for each ,

ω- ( ) = ω′- ( )

Proof. We prove our proposition by induction of the dimension of de Rham co-
homology group. By the proof of Mathieu’s theorem, we see ( ) = () for

= 0 1 2 (cf. Corollary 8 of [6] and Corollary 3 1 of [11]). Therefore,

ω- ( ) = ( ) = ω′- ( ) for = 0 1 2

Assume that if < − , then ω- ( ) = ω′- ( ). Let [ ] ∈ − −2
ω- ( ), where

∈ H − −2
ω ( ). By the assumption of induction, there exists [′] ∈ − −2

ω′- ( ),
where ′ ∈ H − −2

ω′ ( ) such that [ ] = [ ′] ∈ − −2( ). Thus

ω( − −2
ω- ( )) ∋ [ω ∧ ] = [ω] ∧ [ ]

= [ω] ∧ [ ′]

= [ω ∧ ′] = [(ω′ + γ) ∧ ′]

= [ω′ ∧ ′] ∈ ω′( − −2
ω′- ( ))
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Therefore, by Lemma 4.3

−
ω- ( ) = −

ω ( ) + ω( − −2
ω- ( ))

= −
ω′ ( ) + ω′ ( − −2

ω′- ( ))

= −
ω′- ( )

Let = [ ] ∈ +
ω- ( ), where ∈ H +

ω ( ). Since :H − ( ) → H + ( ) is an
isomorphism, there exists ∈ H −

ω ( ) such that = [ ] = [ ω ] = ω[ ]
Thus by above argument, there exists [ ]∈ −

ω′- ( ), where ∈ H −
ω′ ( ) such

that [ ] = [ ]. Sinceω = ω′ + γ, we have

ω[ ] = ω[ ] = [ω ∧ ]

= [(ω′ + γ) ∧ ]

=




ω′ +
∑

6=

( )
ω′ ∧ ( γ) − ∧


 = [ ω′ ] = ω′ [ ]

which implies

ω- ( ) = ω′- ( ) ( = 0 . . . 2 )

For a left -invariant symplectic formω on / , let (g) = H (g)/( (g) ∩
H (g)) be a subspace of Lie algebra cohomology group (g).

Proposition 4.5. Let ( ω) be a symplectic nilmanifold such thatω is a left
-invariant closed2-form. Then we have

( ) = (g) ( = 0 . . . 2 )

Proof. We prove our proposition by induction. Note that, since ∗ = [ (G)],
(g) = H (g) for = 0 1 2. Applying Nomizu’s theorem, for = 0 1 2,

( ) = ( ) = (g) = (g)

Moreover,

− ( ) = { ∈ − ( ) | +1 = 0}
= { ∈ − (g) | +1 = 0}
= − (g)

By Lemma 4.3 and the assumption of induction, we have

− ( ) = − ( ) + ( − −2( ))
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= − (g) + ( − −2(g))

= − (g)

As in Proposition 4.4, by the above argument and :H − (g)→ H + (g) is an iso-
morphism, we have

( ) = (g) ( = 0 . . . 2 )

where ( 2 ω) is a symplectic nilmanifold such thatω is a left -invariant closed
2-form.

Let ( ω) be a compact symplectic nilmanifold, then by Nomizu’s theorem there
existsω0 which is a left -invariant closed 2-form such thatω − ω0 = γ. Moreover,
ω0 is also non-degenerate (Sinceω − ω0 = τ for someτ ∈ 2 −1( )). Therefore,
by Proposition 4.4 and 4.5,

ω- ( ) = ω0- ( ) = ω0- (g)

Then we assume that symplectic structures on =/ are left -invariant to study
harmonic cohomology groups on a compact nilmanifold .

From now on we always assume that (ω) is a compact symplectic ( + 1)-step
nilmanifold. Let g be an ( + 1)-step nilpotent Lie algebra. Consider the descending
central series{g( )} of g, whereg( +1) = [g g( )] and g(0) = g. Let a( ) denote a vector
space complement ofg( +1) in g( ):

g( ) = g( +1) + a( )

for = 0 1 . . . − 1 and define = dima( ). For simplicity let
∧

0a(0)∗ ∧ · · · ∧∧
a( )∗ =

∧
0 ... . Then

∧
g∗ =

∑

0+···+ =

∧ 0 ...

Lemma 4.6 (Benson-Gordon [1]).

1(g) = 1(g) =
∧1 0 ... 0

Lemma 4.7 (Benson-Gordon [1]). Any closed2-form σ ∈ ∧2
g∗ belongs to∧1 0 ... 0 1 +

∑∧
0 ... −1 0.

Let λ1 . . . λ be a basis of
∧0 ... 0 1. By Lemma 4.9, the invariant symplectic

form ω can be written as

ω = β1 ∧ λ1 + · · · + β ∧ λ modulo
∑∧ 0 ... −1 0
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whereβ1 . . . β are elements of
∧1 0 ... 0. By non-degeneracy ofω, β1 . . . β are

linearly independent and thus can be extended to a basis

β1 . . . β . . . β 0

for
∧1 0 ... 0.

Lemma 4.8 (Benson-Gordon [1]). (1)
∧2 −1(g∗) = 2 −1(g).

(2) σ ∈ 2 −1(g) is divisible byβ1 ∧ · · · ∧ β 0.

Hence by this lemma, 2 −1(g) ⊂ ∑
0+ 1+···+ =2 −1

∧
0 1 ... . However, since

dim 2 −1(g) = dim 2 −1(g) − dim 2 −1(g) = dim 2 −1(g) − dim 1(g) = 1 +
· · · + = dim

∑∧
0 1 ... , we have 2 −1(g) =

∑
0+ 1+···+ =2 −1

∧
0 1 ... .

5. Proof of Theorem 1

In this section, we prove Theorem 1 and some propositions. Weuse same nota-
tions introduced in Section 4.

Let ( / ω) be a compact symplectic ( + 1)-step nilmanifold. By Nomizu’s the-
orem, there exists a left -invariant closed 2-form such thatω − ω0 = γ for some
γ ∈ 1( / ). (Moreover,ω0 is non-degenerate). Therefore, by Proposition 4.4, we
only consider the case that a symplectic form is a left -invariant closed form.

Proof of Theorem 1. Note that −1 : H1(g) → H2 −1(g) is an isomorphism
and 1(g) = H1(g). For = 1 . . . , considerβ ∈ 1(g) = 1(g). Sinceω −1 ∈∑

0+···+ =2 −2

∧
0 ... is a (2 − 2)-form, we see 0 = 0 0− 1 0 − 2. Thenω −1

can be written asω −1 = δ1 + δ
′

2 + δ
′′

2 where δ1 δ
′

2 δ
′′

2 are (2 − 2)-forms such that
δ1 ∈

∧
0−2 1 ... , δ

′

2 ∈
∑∧

0−1 1 ... and δ
′′

2 ∈
∑∧

0 1 ... . Hence

−1β = β ∧ δ1 + β ∧ δ′

2 + β ∧ δ′′

2

We claim that −1β is an exact form. Since each term ofδ1 is divisible byλ1∧· · ·∧
λ and hence also byβ1∧ · · ·∧β . Thus we getβ ∧ δ1 = 0 (Note that = 1. . . ).
Moreover, by Lemma 4.8, we get

β ∧ δ′

2 ∈
∑∧ 0 1 ...

= 2 −1(g)

Hence we now have

−1β = β ∧ ω −1 ∈ 2 −1(g)

It follows that

dim 1 ( )− dim 2 −1( ) ≥ dimg( )
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Furthermore,

dim 1 (g)− dim 2 −1(g)

= dimH1(g)− dim( 1(g) ∩H1(g))

− dimH2 −1(g) + dim( 2 −1(g) ∩H2 −1(g))

= dim( 2 −1(g) ∩H2 −1(g))− dim( 1(g) ∩H1(g))

= dim( 2 −1(g) ∩H2 −1(g))

≤ dim( 2 −1(g)) = 1 + · · · +

Thus, in particular is a 2-step nilmanifold, we have

dim 1 ( )− dim 2 −1( ) = 1

Proposition 5.1. Let ( 2 = / ω) be a compact symplectic( + 1)-step nil-
manifold. Assume thatdimg− dim[g g] − 2< dimg( ). Then we have

dim 1 ( )− dim 2 −1( ) = 0 = dimg− dim[g g]

Proof. Let

{β1 . . . β . . . β 0}

be a basis of
∧1 0 ... 0. As in proof of Theorem 1, we writeω −1 asω −1 = δ1+δ

′

2+δ
′′

2 ,
δ1 ∈

∧
0−2 1 ... δ

′

2 ∈
∑∧

0−1 1 ... and δ
′′

2 ∈
∑∧

0 1 ... . By our assumption, we
see thatδ1 = 0. Then, for any = 1. . . 0, β ∧ ω −1 ∈ 2 −1(g).

Proposition 5.2. Let ( 2 = / ω) be a compact symplectic3-step nilmani-
fold such that 1 = 1. Then

dim 1 ( )− dim 2 −1( ) = 1 + 2

Proof. We may assume that the symplectic formω can be written as

ω = β1 ∧ λ1 + · · · + β 2 ∧ λ 2 + β 2+ 1 ∧ τ modulo
∧2 0 0

whereτ ∈ a(1)∗ Then we seeδ1 ∈
∧

0−2 1 2 is divisible by β 2+ 1

REMARK. It is not true that, if ( 2 = / ω) be an ( + 1)-step compact sym-
plectic nilmanifold such that 1 = 2 = · · · = 1, then dim 1 ( ) − dim 2 −1( ) =

1 + 2 + · · · + For example, consider the Lie algebrag = n2 −1
1 × a wherea is a

Lie algebra for dimension 1 and

n2 −1
1 = span{ 1 . . . 2 −1}
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where [ 1 ] = −1 ( = 3 . . . 2 − 1). Let {ω1 . . . ω2 −1} (resp.ω2 ) be the
dual basis ofn2 −1

1 (resp.a) and

ω = ω1 ∧ ω2 +
−2∑

=0

(−1) ω2+ ∧ ω2 −1−

then

dim 1 (g)− dim 2 −1(g) = 1

Moreover, we can easily see that for any symplectic form on , dim 1 ( ) −
dim 2 −1( ) = 1

Proposition 5.3. Let ( 2 ω) be a compact symplectic( + 1)-step nilmanifold
such that 0 − 2 = . Let ω −1 = δ1 + δ

′

2 + δ
′′

2 where δ1 δ
′

2 δ
′′

2 are (2 − 2)-forms
such thatδ1 ∈

∧
0−2 1 ... , δ

′

2 ∈
∑∧

0−1 1 ... , δ
′′

2 ∈
∑∧

0 1 ... . Then we have

δ1 6= 0⇒ dim 1 ( )− dim 2 −1( ) =(1)

δ1 = 0⇒ dim 1 ( )− dim 2 −1( ) = 0(2)

Proof. We may assume that the symplectic formω can be written as

ω = β1 ∧ λ1 + · · · + β ∧ λ modulo
∑∧ 0 ... −1 0

Moreover, let{β1 . . . β β +1 β +2} be a basis of (a(0))∗. By our assumption, we
see

ω −1 = β1 ∧ · · · ∧ β ∧ λ1 ∧ · · · ∧ λ ∧ τ + δ
′

2 + δ
′′

2

where 6= 0 andτ ∈ ∧0 1 ... Hence,

β +1 ∧ ω −1 6= 0

β +2 ∧ ω −1 6= 0

Assume thatβ +1 ∧ ω −1 and β +2 ∧ ω −1 belong to same cohomology class of
2 −1(g). Therefore

β +1 ∧ ω −1− β +2 ∧ ω −1 = γ

0 6= β +1 ∧ δ1 − β +2 ∧ δ1 = −β +1 ∧ δ
′

2 + β +2 ∧ δ
′

2− β +1 ∧ δ
′′

2 + β +2 ∧ δ
′′

2 + γ

The right hand side is divisible byβ1 ∧ · · · ∧ β +2. Conversely, the left hand side is
not divisible byβ1 ∧ · · · ∧ β +2. It is a contradiction.

(2) It is obvious.
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6. Examples

Now we shall give some examples of compact symplectic nilmanifold / . Since
each Lie algebrag has a basis with respect to which the constants of structure are
rational, the simply-connected Lie group corresponding tog admits a lattice.

EXAMPLE 6.1 (A generalization of Heisenberg group) ([3]). Let us consider the
following Lie algebra.

h(1 ) = span{ 1 . . . 1 . . . }

where

[ ] =

and {µ1 . . . µ ν λ1 . . . λ } be its dual basis. Then we have

µ = ν = 0 λ = −µ ∧ ν

Thusµ ∧ λ is a closed 2-form.
Similarly, we also define

h(1 ) = span{ ′
1 . . . ′ ′ ′

1 . . .
′ }

and span{µ′
1 . . . µ′ ν′ λ′1 . . . λ′ }. Then there exists a non-degenerate closed 2-form

ω =
∑
µ ∧ λ +

∑
µ′ ∧ λ′ + ν∧ν′ on g = h(1 )× h(1 ) Let be the simply-

connected Lie group corresponding tog = h(1 ) × h(1 ) and be a compact
nilmanifold of . Sinceg is 2-step, we have

dim 1 ( )− dim 2 +2 +1( ) = +

REMARK. In particular, consider a symplectic form

ω =
∑

µ ∧ λ +
∑

µ′ ∧ λ′ + ν∧ν′

Then we get

dim 2 (g )− dim 2 +2 (g ) = + 2

Proof. By a straightforward calculation, we have

2 (g ) = span{[µ ∧ µ ] [µ ∧ λ ] [λ ∧ ν] [µ ∧ λ + µ ∧ λ ]

[µ′ ∧ µ′ ] [µ′ ∧ λ′ ] [λ′ ∧ ν′] [µ′ ∧ λ′ + µ′ ∧ λ′ ]

[µ ∧ µ′ ] [µ ∧ ν′] [ν ∧ µ′ ] [ν ∧ ν′]}
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Thus we consider the images of this basis by∧ω + −1. Now we define decomposable
(2( + )− 2)-forms as follows:

δ1 = α ∧ ν ∧ β ∧ ν′ δ2 = α ∧ ν ∧ β ∧ ν′ δ3 = α ∧ ν ∧ β ∧ ν′

δ4 = α ∧ β δ5 = α ∧ β

for 1≤ < ≤ 1≤ < ≤ , where

α = µ1 ∧ · · · ∧ µ ∧ λ1 ∧ · · · ∧ λ
α = µ1 ∧ · · · ∧ µ̂ ∧ · · · ∧ µ ∧ λ1 ∧ · · · ∧ λ̂ ∧ · · · ∧ λ
α = 6µ1 ∧ · · · ∧ µ̂ ∧ · · · ∧ µ̂ ∧ · · · ∧ µ ∧ λ1 ∧ · · · ∧ λ̂ ∧ · · · ∧ λ̂ ∧ · · · ∧ λ
β = µ′

1 ∧ · · · ∧ µ′ ∧ λ′1 ∧ · · · ∧ λ′

β = µ′
1 ∧ · · · ∧ µ̂′ ∧ · · · ∧ µ′ ∧ λ′1 ∧ · · · ∧ λ̂′ ∧ · · · ∧ λ′

β = µ′
1 ∧ · · · ∧ µ̂′ ∧ · · · ∧ µ̂′ ∧ · · · ∧ µ′ ∧ λ′1 ∧ · · · ∧ λ̂′ ∧ · · · ∧ λ̂′ ∧ · · · ∧ λ′

Furthermore we write

ω + −1 = δ1 + δ2 + δ3 + δ4 + δ5

where

δ =
∑

<

δ ∈ R ( = 1 2 3)

δ =
∑

δ ∈ R ( = 4 5)

With the notation, first consider the image forµ ∧ µ by ∧ω + −1, then

µ ∧ µ ∧ω + −1

−−−−−→ µ ∧ µ ∧ δ1

However, it is the image by for the scalar multiple of

µ1∧ · · · ∧ µ̂ ∧ · · · ∧µ ∧λ1∧ · · · ∧ λ̂ ∧ · · · ∧λ ∧ ν̂ ∧µ′
1∧ · · · ∧µ ∧λ′1∧ · · · ∧λ′ ∧ ν′

which implies thatµ ∧µ ∧ω + −1 is exact. Similarly, we can see (µ′ ∧µ′ )∧ω + −1

and (µ ∧ µ′ ) ∧ ω + −1 are exact. Then

dim 2 (g )− dim 2 +2 (g ) ≥ + 2

Next, note that

∧ 0−3 1 −→
∧ 0−1 1−1
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∧ 0−2 1−1
−→

∧ 0 1−2

∧ 0−1 1−2
−→ 0

∧ 0 1−3
−→ 0

Therefore, since

λ ∧ ν ∧ω + −1

−−−−−→ λ ∧ ν ∧ δ4 ∈
∧

0−2 1

λ ∧ ν ∧ ω + −1 is not exact. Similarly,λ′ ∧ ν′ ∧ ω + −1 is not exact and by non-
degeneracy ofω, µ ∧ λ ∧ ω + −1 andµ′ ∧ λ′ ∧ ω + −1 are not exact.

Finally, consider the image forµ ∧ λ + µ ∧ λ by ∧ω + −1,

µ ∧ λ + µ ∧ λ ∧ω + −1

−−−−−→ µ ∧ λ ∧ δ1 + µ ∧ λ ∧ δ1

Indeed,

(µ ∧ λ + ∧µ ∧ λ ) ∧ δ1

= (−1)( −2)+( − )+( − −1)(µ1 ∧ · · · ∧ µ̂ ∧ · · · ∧ µ ∧ λ1 ∧ · · · ∧ λ̂ ∧ · · · ∧ λ ∧ ν
+µ1 ∧ · · · ∧ µ̂ ∧ · · · ∧ µ ∧ λ1 ∧ · · · ∧ λ̂ ∧ · · · ∧ λ ∧ ν) ∧ ′

where ′ = µ′
1 ∧ · · · ∧ µ′ ∧ λ′1 ∧ · · · ∧ λ′ ∧ ν′.

However, the image by forµ1∧· · · µ̂ ∧· · ·∧ µ̂ ∧· · ·∧µ ∧λ1∧· · ·∧λ ∧ ν̂∧ ′

is ±{(µ1∧ · · · ∧ µ̂ ∧ · · · ∧µ ∧ λ1∧ · · · ∧ λ̂ ∧ · · · ∧ λ ∧ ν ∧ ′) −(µ1∧ · · · µ̂ ∧ · · · ∧
µ ∧ λ1 ∧ · · · λ̂ ∧ λ ∧ ν ∧ ′)} Thus we now see that (µ ∧ λ + µ ∧ λ ) ∧ ω + is
not exact. Similarly, (µ′ ∧ λ′ + µ′ ∧ λ′ ) ∧ ω + is not also exact.

EXAMPLE 6.2 ([5]). Let g be the Lie algebra defined by

g = span{ 1 . . . 2 }

where [ 1 ] = −1 ( = 3 . . . 2 ) andω1 . . . ω2 be its dual basis. Thus we get

ω1 = ω2 = 0

ω −1 = −ω1 ∧ ω ( = 3 . . . 2 )

Thenω1 ∧ ω2
∑ −2

=0 (−1) ω3+ ∧ ω2 − are closed 2-forms andg has a non-degenerate
closed 2-form,

ω = ω1 ∧ ω2 +
−2∑

=0

(−1) ω3+ ∧ ω2 −
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Since 0− 2 = 0< , we get by Proposition 5.1

dim 1 ( )− dim 2 −1( ) = 2

for a compact symplectic nilmanifold =/ .

7. Proof of Theorem 3

Proof of Theorem 3. Letα(ω ) = dim 2 (g)− dim 4 (g).
Since

[ 1 6] = 5 [ 1 4] = 3 [ 4 6] = 2

we get ω2 = −ω4 ∧ ω6, ω3 = −ω1 ∧ ω4, ω5 = −ω1 ∧ ω6. As in Section 6, the
simply-connected Lie group corresponding tog admits a lattice. By a straightfor-
ward calculation, we have

2(g) = span{[ω1 ∧ ω3] [ω1 ∧ ω5] [ω2 ∧ ω4] [ω2 ∧ ω6] [ω3 ∧ ω4] [ω5 ∧ ω6]

[ω1 ∧ ω2 + ω3 ∧ ω6] [ω3 ∧ ω6− ω4 ∧ ω5]}

and

4(g) = span{ω1346 ω1456 ω1246 ω1236+ ω1245− ω3456}

whereω means the elementω ∧ ω ∧ ω ∧ ω .
Moreover, let ( ) = ( ) = (ω ( )), then we can easily verify

det( ( )) = (1− 3 + 3 2 + 3)2

Therefore, let 0 ( 0 ; −3 8473) be the unique real solution of 1− 3 + 3 2 + 3 = 0
ω is non-degenerate for 6= 0

Next, we calculate the image ofω for 2(g). Note that 2(g) = H2(g) and

ω (H2(g)) = H4(g)

ω1 ∧ ω3
∧ω−→ (1− )(ω1324+ ω1356)− ω1345

ω1 ∧ ω5
∧ω−→ (1− )ω1524− ω1536

ω2 ∧ ω4
∧ω−→ (1− )(ω2413+ ω2456)− ω2436

ω2 ∧ ω6
∧ω−→ (1− )ω2613− ω2645

ω3 ∧ ω4
∧ω−→ (1− )ω3456− 2 ω3412

ω5 ∧ ω6
∧ω−→ (1− )(ω5613+ ω5624)− 2 ω5612

ω1 ∧ ω2 + ω3 ∧ ω6
∧ω−→ (1− )(ω1256+ ω3624)− (3ω1236+ ω1245 + ω3645)

ω3 ∧ ω6− ω4 ∧ ω5
∧ω−→ (1− )(ω3624− ω4513)− (2ω3612− 2ω4512)
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Since ω ( 2(g)) ⊂ ∧2 2 and ω1346 ω1456 ω1246 ∈
∧3 1 we need only consider

the dimension of span{ ω ( 2(g)) ω1236 + ω1245 −ω3456} whereω1236 + ω1245− ω3456

is a exact form.
Thus, we consider the matrix form of{ ω (ω13) ω (ω15) ω (ω24) ω (ω26)

ω (ω34) ω (ω56) ω (ω12 − ω36) ω (ω36 − ω45) ω1236 + ω1245− ω3456} with re-
spect to the basis{ω1234 ω1236 ω1245 ω1256 ω1345 ω1356 ω2346 ω2456 ω3456} of∧2 2, let ( ) denote its matrix. Then we get the following matrix:

( ) =




− 1 0 0 0 − 1− 0 0 0
0 0 1− 0 0 0 0 0
− 1 0 0 0 0 0 1− 0
0 −1 + 0 0 0 0 0 − 0
−2 0 0 0 0 0 0 0 1−

0 0 0 −2 0 1− 0 1− 0
0 −3 − 1− 0 0 − 1 0 −
0 −2 2 0 − 1 0 − 1 0 0
0 1 1 0 0 0 0 0 −1




Thus we have

det ( ) = 122(1− 3 + 3 2 + 3)2

Hence, for 6= 0 0 , det ( ) 6= 0. Then for 6= 0 0,

α(ω ) = 0

On the other hand, since det ( ) = 0 for = 0,

α(ω0) = 1

In fact,
ω1 ∧ ω3

∧ω−→ ω1324 + ω1356

ω1 ∧ ω5
∧ω−→ ω1524

ω2 ∧ ω4
∧ω−→ ω2413 + ω2456

ω2 ∧ ω6
∧ω−→ ω2613

ω3 ∧ ω4
∧ω−→ ω3456

ω5 ∧ ω6
∧ω−→ ω5613 + ω5624

ω1 ∧ ω2 + ω3 ∧ ω6
∧ω−→ ω1256 + ω3624

ω3 ∧ ω6− ω4 ∧ ω5
∧ω−→ ω3624+ ω4513

Thus, the image of ω for ω1∧ω5−ω2∧ω6−ω3∧ω4 is a exact form. Therefore, we
now see

α(ω0) = dim 2 (g)− dim 4 (g) = 1
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