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1. Introduction

Takahashi manifolds are closed orientable 3-manifolds introduced in [21] by Dehn
surgery with rational coefficients onS3, along the 2 -component linkL of Fig. 1,
which is a closed chain of 2 unknotted components. These manifolds have been in-
tensively studied in [10], [11], [17] and [19, 20]. In particular, a topological charac-
terization of all Takahashi manifolds as two-fold coverings of S3, branched over the
closure of certain rational 3-string braids, is given in [11] and [19].

A Takahashi manifold is said to beperiodic when the surgery coefficients have the
same cyclic symmetry of order of the linkL , i.e. the coefficients are / = /

and / = / alternately, for = 1. . . . Several important classes of 3-manifolds,
such as (fractional) Fibonacci manifolds [7, 11] and Sieradski manifolds [2], represent
notable examples of periodic Takahashi manifolds. More generally, all cyclic branched
coverings of two-bridge knots of genus one are periodic Takahashi manifolds [10].
A characterization of periodic Takahashi manifolds as -fold cyclic coverings of the
connected sum of two lens spaces, branched over a knot, is given in [17].

In this paper we generalize the family of Takahashi manifolds, as well as peri-
odic Takahashi manifolds, considering surgery along a moregeneral family of links
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Fig. 1. Surgery presentation for Takahashi manifolds.
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Fig. 2. Surgery presentation for generalized Takahashi manifolds.

(see Fig. 2). We obtain a presentation for the fundamental groups (Theorem 1) and
study covering properties of these manifolds. The generalized Takahashi manifolds are
described as 2-fold branched coverings ofS3 (Theorem 3) and the generalized peri-
odic Takahashi manifolds are described as the -fold cyclic branched coverings of the
connected sum of lens spaces (Theorem 6). In particular, we show that the family of
generalized periodic Takahashi manifolds contains all cyclic coverings of two-bridge
knots (Corollary 9), thus obtaining a simple explicit surgery presentation for this im-
portant class of manifolds (Fig. 8). This shows that our generalization of Takahashi
manifolds is, in this sense, really natural. As a further result, we give cyclic presenta-
tions (in the sense of [8]) for the fundamental groups of all cyclic branched coverings
of two-bridge knots (Theorem 10).

2. Construction of the manifolds

In this section we define a family of manifolds which generalizes Takahashi man-
ifolds. For any pair of positive integers and , we consider the link L ⊂ S3

with 2 components presented in Fig. 2. All its components , 1≤ ≤ 2 ,
1 ≤ ≤ , are unknotted circles and they form 2 subfamilies of unlinked cir-
cles , 1≤ ≤ , with a common center. We observe thatL 1 is the link L dis-
cussed above. The linkL has a cyclic symmetry of order which permutes these
2 subfamilies of circles.

Consider the manifold obtained by Dehn surgery onS3, along the linkL ,
such that the surgery coefficients / correspond to the components2 −1 and

/ correspond to the components2 , where 1≤ ≤ and 1 ≤ ≤
(see Fig. 2). Without loss of generality, we can always suppose gcd( ) = 1,
gcd( ) = 1 and ≥ 0.

We will denote the resulting 3-manifold by ( / ; / ). This manifold
will be referred to as ageneralized Takahashi manifold, since for = 1 we get the
Takahashi manifolds introduced in [21].

The following Theorem generalizes the result obtained in [21] for Takahashi man-
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Fig. 3. Generators ofπ1(S3 \ L ).

ifolds.

Theorem 1. The fundamental group of the generalized Takahashi manifold
( / ; / ) has the following balanced presentation with2 generators

= { } 1≤ ≤2 1≤ ≤ and 2 relations:

〈 | −
2 −1 = −1

2 −2
−1 +1

2 −2 +1 · · · −1

2 −2
−
2 · · · − +1

2 +1
−
2

−
2 = +1

2 +1
+1 −1

2 +1 −1 · · · +1 1

2 +1 1
− 1

2 −1 1 · · ·
− −1

2 −1 −1
−
2 −1 ;

1≤ ≤ 1≤ ≤ 〉

Proof. Let = { } 1≤ ≤ 1≤ ≤ and = { } 1≤ ≤ 1≤ ≤ be sets of
Wirtinger generators ofπ1(S3 \ L ), according to Fig. 3.

Applying the Wirtinger algorithm we get the following presentation for
π1(S3 \ L ):

〈 ∪ | · · · −1
−1 · · · −1

−1 −1 · · · −1
−1 · · · −1 =

· · · 1
−1
+1 1 · · · −1

+1 +1 · · · +1 1
−1

1 · · · −1 = ;

1≤ ≤ 1≤ ≤ 〉

For every = 1 . . . and = 1 . . . , let and be the longitudes associated
to the components ofL corresponding to the meridians and respectively
(as usual we consider longitudes which are homologically trivial in the complement of
the relative component). Then we have the relations:

= −1 −1 +1 · · · −1
−1 · · · −1

+1
−1;

and

= +1 +1 −1 · · · +1 1
−1

1 · · · −1
−1

−1
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Introducing ={ } 1≤ ≤ 1≤ ≤ and = { } 1≤ ≤ 1≤ ≤ , we obtain the fol-
lowing new presentation forπ1(S3 \ L ):

〈 ∪ ∪ ∪ | [ ] = 1 = −1 · · · −1
−1 · · · −1

[ ] = 1 = +1 · · · +1 1
−1

1 · · · −1 ;

1≤ ≤ 1≤ ≤ 〉

Therefore, the fundamental group of ( / ; / ) admits the presentation:

〈 ∪ ∪ ∪ | [ ] = 1 = −1 · · · −1
−1 · · · −1

[ ] = 1 = +1 · · · +1 1
−1

1 · · · −1 ;

= 1 = 1 1≤ ≤ 1≤ ≤ 〉

Since gcd( ) = 1 and gcd( ) = 1, there exist certain integers ,
, and such that − = 1 and − = 1.
For = 1 . . . and = 1 . . . we define

2 −1 = 2 =

Since and (resp. and ) commute, we have

2 −1 = ( ) =
−
2 −1 = ( − − ) =

2 = ( ) =
−
2 = ( − − ) =

Using these relations we can eliminate all the generators ofthe previous presentation
of ( / ; / ), replacing them with the set{ } 1≤ ≤2 1≤ ≤ . The first
four types of relations of the above presentation disappearand the statement is ob-
tained.

When the surgery coefficients are -periodic, i.e. = , = , = ,
and = , the resulting manifold ( / ; / ) is said to be ageneralized pe-
riodic ( -periodic) Takahashi manifold.

Corollary 2. The fundamental group of the generalized periodic Takahashi man-
ifold ( / ; / ) admits the presentation

〈 { } 1≤ ≤2 1≤ ≤ | −
2 −1 = 2 −2 · · · 2 −2

−
2 · · · −

2
−
2 = 2 +1 · · · 1

2 +1 1
− 1
2 −1 1 · · ·

−
2 −1 ;

1≤ ≤ 1≤ ≤ 〉
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Fig. 4. The linkK ( / ; / ).

3. Covering properties of generalized Takahashi manifolds

We will define a new family of links inS3. For any pair of integers , > 0
consider two pairs of coprime integers ( ) and ( ), where = 1. . .

and = 1 . . . . Let K ( / ; / ) be the closure of the rational braid
on 2 + 1 strings with rational tangles [1] / and / indicated in Fig. 4.

As a generalization of the results from [11, 19, 21], we get:

Theorem 3. The generalized Takahashi manifold ( / ; / ) is the
2-fold covering ofS3, branched over the linkK ( / ; / ).

Proof. From Fig. 2 we see that the linkL admits a strongly invertible in-
volution τ whose axis (pictured with dashed line) intersects each component of the
link in two points. Thus, in virtue of the Montesinos Theorem [15], the manifold

( / ; / ) can be obtained as the 2-fold covering ofS3, branched over
some link.

Applying the Montesinos algorithm, we get the link depicted in Fig. 5. Obviously,
this branching set is equivalent to the link presented in Fig. 4.

In particular, if the surgery coefficients are -periodic, i.e. = , = ,
= , and = , the linkK ( / ; / ) is also -periodic. Note that

K 1(1;−1) is an alternating link with 2 double-crossings, which is the closure of
a 3-string braid, referred to as a Turk head link in [13]:K2 1(1;−1) is the figure-eight
knot andK3 1(1;−1) are the Borromean rings.
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Corollary 4. The generalized periodic Takahashi manifold ( / ; / ) is
the 2-fold covering ofS3, branched over the periodic linkK ( / ; / ).

In other words, ( / ; / ) is the Z2-covering of the orbifold
S3(K ( / ; / )) whose underlying space isS3 and whose singular set is
K ( / ; / ), with singularity indices 2. Since the singular set of the orbifold
is -periodic, there is a natural action of a cyclic groupZ such that the quo-
tient orbifold is S3(Q ( / ; / )), where the singular set is the link pictured
in Fig. 6 and the indices of singularity are: 2 on the components which are images
of K ( / ; / ) and on the unknotted component. Note that the part of the
singular set having index 2 can be obtained as a connected sumof 2 two-bridge
links corresponding to the rational tangles1/ 1, 1/ 1 . . . / , / .

Therefore we get the following statement.

Corollary 5. The generalized periodic Takahashi manifold ( / ; / ) is
the Z2 ⊕ Z -covering of the orbifoldS3(Q ( / ; / )).

The following theorem extends to generalized periodic Takahashi manifolds the re-
sult given in [17] for periodic Takahashi manifolds.

Theorem 6. The generalized periodic Takahashi manifold ( / ; / ) is
the -fold cyclic covering of the connected sum of2 lens spaces

( 1 1)# ( 1 1)# · · ·# ( )# ( )

branched over a knot which does not depend on .
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Proof. Both the linkL and the surgery coefficients defining the manifold
( / ; / ) (and so, also the manifold) are invariant with respect to anobvious

rotation symmetryρ of order . Denote by〈ρ〉 the cyclic group of order generated
by this rotation. Observe that the fixed-point set of the action of 〈ρ〉 on S3 is a triv-
ial knot disjoint fromL . Therefore, we have an action of〈ρ〉 on ( / ; / ),
with a knot = (ρ) as fixed-point set. The underlying space of the quotient orbifold

( / ; / )/〈ρ〉 is precisely the manifold 1 ( / ; / ), which can be ob-
tained by Dehn surgery onS3, with coefficients / and / , = 1 . . . , along
the 2 -component linkL1 depicted in Fig. 7.

The components ofL1 are unlinked, unknotted, and form a trivial link with 2
components. Therefore the underlying space of the quotientorbifold is homeomorphic
to the connected sum of 2 lens spaces (1 1)# ( 1 1)# · · ·# ( )# ( )
(see [18, p. 260]). Moreover, it is obvious from the action ofρ that the singular set
of the quotient orbifold is a knot which does not depend on .

Denote byO ( / ; / ) = ( / ; / )/〈ρ〉 the orbifold from the
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Fig. 7. The linkL1 .

proof of Theorem 6, whose underlying space is the connected sum of 2 lens spaces
( 1 1)# ( 1 1)# · · ·# ( )# ( ).

Corollary 7. The following commutative diagram holds for each generalized pe-
riodic Takahashi manifold.

( / ; / )

H
H

H
HHj

�
�

�
���

2

S3(K ( / ; / )) O ( / ; / )

H
H

H
HHj

�
�

�
���

2

S3(Q ( / ; / ))

Proof. From Fig. 2 we see thatL admits an invertible involutionτ whose axis
intersects each component in two points and the rotation symmetry ρ of order which
was discussed in Theorem 6. These symmetries induce symmetries (also denoted byτ
and ρ) of the generalized periodic Takahashi manifold = (/ ; / ), such
that 〈τ ρ〉 ∼= 〈τ〉 ⊕ 〈ρ〉 ∼= Z2⊕ Z . As mentioned above,ρ induces the symmetry (also
denoted byρ) of the orbifold /〈τ〉 (whose singular set is given by Corollary 4), and
the covering → ( /〈τ〉)/〈ρ〉 is given by Corollary 5. The covering → /〈ρ〉
is given by Theorem 6. As we see from Fig. 7,τ induces the strongly invertible in-
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volution (also denoted byτ ) of the link L1 . Using the Montesinos algorithm we
see that ( /〈ρ〉)/〈τ〉 = S3(Q ( / ; / )) (note that the part of the singular set
of S3(Q ( / ; / )) having index 2 can be obtained as a connected sum of 2
two-bridge links corresponding to the rational tangles1/ 1 1/ 1 . . . / / ).

4. Cyclic branched coverings of 2-bridge knots

In this section we show that generalized periodic Takahashimanifolds contain the
whole class of cyclic branched coverings of two-bridge knots. In the following we use
the Conway notation for two-bridge knots (see [4]).

Theorem 8. The generalized periodic Takahashi manifold (1/ ; 1/ ) is the
-fold cyclic branched covering of the two-bridge knot corresponding to the Conway

parameters[−2 1 2 1 . . . −2 2 ].

Proof. From Theorem 6, (1/ ; 1/ ) is the -fold cyclic covering ofS3,
branched over a knot . Figs. 9–15 shows how to deform to a Conway’s nor-
mal form of a two-bridge knot with Conway parameters [−2 1 2 1 . . . −2 2 ]
by ambient isotopy (from Fig. 9 to Fig. 12) and surgery calculus [18] (from Fig. 13
to Fig. 15).

REMARK. As a consequence of Theorem 8, the generalized periodic Takahashi
manifold (1/ ; 1/ ) is homeomorphic to the Lins-Mandel manifold ( 1)
[12, 16], the Minkus manifold ( ) [14] and the Dunwoody manifold (( −1)/2
0 1 /2 − σ) [5, 6], where > 0 and

(1) = −2 1 +
1

2 1 + · · · + 1/{−2 + 1/(2 )}

Because every 2-bridge knot admits a Conway representationwith an even number
of even parameters (see, Exercise 2.1.14 of [9]), we have thefollowing property.

Corollary 9. The family of generalized periodic Takahashi manifolds contains all
cyclic branched coverings of two-bridge knots.

From Theorem 8 we can easily get the surgery presentation forthe -fold
cyclic branched coverinĝ ( / ) of the two-bridge knot, with Conway parameters
[−2 1 2 1 . . . −2 2 ], depicted in Fig. 8.



714 M. MULAZZANI AND A. VESNIN

...
... ...

m1/s

1/s

m1/s

1/s

m1/s

1/s

1/s

1/q

1/q

1/q

1/q

1/q

1/q

m-1

2

1

2

m-1

m-1

2

1

2

m-1

1/qm 1/s1 1/qm

. . .. . .

Fig. 8. Surgery presentation for̂
(
− 2 1 + 1
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)
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5. Cyclically presented fundamental groups

A cyclic presentation for the fundamental groups of cyclic branched coverings of
two-bridge knots is obtained by J. Minkus (see Theorem 10 of [14]). Corollary 2 and
Theorem 8 allow us to obtain a different cyclic presentationfor such groups. Note that
explicit cyclic presentations different from the above arelisted in the Appendix of [3],
for two-bridge knots up to nine crossings.

Theorem 10. Let ̂ ( / ) be the -fold cyclic branched covering of the two-
bridge knotb( / ), with / given by formula(1). Then its fundamental group has
the following cyclic presentation:

π1

(
̂
( ))

= 〈 1 . . . | / ( . . . + −1) = 1 = 1 . . . 〉

where

/ ( . . . + −1) = −
+1 +1

for = 1 . . . (indices mod ). The right parts of these formulas are defined by the
recurrent rule

= − −1

−1 −1
−1

−1 −1 = −1
−
+1 = 2 . . .

and

1 = 1
1

− 1
+1 1

where = 1, for = 1 . . . .

Proof. From Corollary 2 and Theorem 8, the groupπ1(̂ ( / )) is generated by
the 2 elements{ } =1 ... 2 =1 ... and has relations of two types:

−1
2 −1 =

(
2 −2

+1

2 −2 +1 · · · 2 −2

)
·
(

2
+1

2 +1 · · · 2

)−1



GENERALIZED TAKAHASHI MANIFOLDS 715

−1
2 =

(
2 +1

−1

2 +1 −1 · · · 1
2 +1 1

)
·
(

2 −1
−1

2 −1 −1 · · · 1
2 −1 1

)−1

where = 1 . . . and = 1 . . . , and all the indices are taken mod 2 and
respectively. Denote =2 and = 2 −1 for = 1 . . . and = 1 . . . .
Then we have 2 relations of the two following types:

= +1

+1 · · · −
−1 · · · − +1

−1 +1
−
−1

and

= −1

−1 · · · 1
1

− 1
+1 1 · · ·

− −1

+1 −1
−
+1

Therefore, the defining relations for the group are:

−
−1 = 1 +1 = −

−1 = 1 . . . − 1

and

1 = 1
1

− 1
+1 1 = −1

−
+1 = 2 . . .

for = 1 . . . . Denoting = 1, = 1 . . . , we will eliminate all other
generators in the following order: 1, 2, 2 . . . , according to the
above formulae. At the end of this process we will get relations arising from
−

−1 = 1. That completes the proof.

We will illustrate the obtained result for the cases = 1 and = 2.
If = 1, then / = −2 + 1/(2 ), and ̂ ( / ) = 1(1/ 1/ ). This case, cor-

responding to a Takahashi manifold, was discussed in [10] and [11]. Using notations
= 1 and = 1 for = 1 . . . , we get

π1

(
1

(
1 1

))
=

〈 1 . . . 1 . . . | − = 1 = −
+1 = 1 . . . 〉

Hence

π1

(
1

(
1 1

))
= 〈 1 . . . | ( −

+1)
− ( −1

− ) = 1 = 1 . . . 〉

For example, if =−1 and = 1 then / = 5/2, that corresponds to the figure-
eight knot 41 [1]. So, its -fold cyclic branched covering has the fundamental group
with the cyclic presentation

π1( 1(−1 1)) = 〈 1 . . . | −1
+1

2 −1
−1 = 1 = 1 . . . 〉
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(compare with [3, 10, 11]).
For = 2 we get

π1( 2(1/ 1 1/ 2; 1/ 1 1/ 2)) =

〈 1 1 . . . 1 1 2 . . . 2 1 1 . . . 1 1 2 . . . 2 |
− 2

2 2
2
−1 2 = 1 2 = − 1

1 1
1
−1 1 1 = 1

1
− 1
+1 1

2 = 2
2 1

− 2
+1 2 = 1 . . . 〉

Denote = 1, then 1 = 1
1

− 1
+1 . Therefore

2 = ( 1 − 1
+1 )− 1 ( 1

−1
− 1) 1

and

2 =
[
( 1 − 1

+1 )− 1 ( 1
−1

− 1) 1

]
2

( 1 − 1
+1 )
[
( 1

+1
− 1
+2 )− 1

+1( 1 − 1
+1 ) 1

]− 2

Define

/ ( −2 −1 +1 +2) =
[[

( 1 − 1
+1 )− 1 ( 1

−1
− 1) 1

]
2

1 − 1
+1

[
( 1

+1
− 1
+2 )− 1

+1( 1 − 1
+1 ) 1

]− 2
]− 2

· ( 1 − 1
+1 )− 1 ( 1

−1
− 1) 1

·
[[

( 1
−1

− 1)− 1 −1( 1
−2

− 1
−1) 1

]
2

1
−1

− 1

[
( 1 − 1

+1 )− 1 ( 1
−1

− 1) 1

]− 2
]

2

Therefore, we get the following cyclic presentation for thefundamental group of
the -fold cyclic branched covering of the two-bridge knotb( / ) corresponding to
[−2 1 2 1 −2 2 2 2]:

π1

(
2

(
1

1

1

2
;

1

1

1

2

))
=

〈 1 . . . | / ( −2 −1 +1 +1) = 1 = 1 . . . 〉

where all the indices are mod .
For example, for 1 = 2 = −1 and 1 = 2 = 1 we get / = 29/12, that cor-

responds to the knot 812. So, its -fold cyclic branched covering has the fundamental
group with the following cyclic presentation:

〈 1 . . . | −1
+1

−2
+1 +2

−1
+1

−1
+1

2 −1
−1

−1
+1

· 2 −1
−1

−1
−1 −2

−2
−1

−1
−1

−1
+1

2 −1
−1 = 1 = 1 . . . 〉
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