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1. Introduction

It has been studied by many authors to give natural conditions under which the
law of the solution to a stochastic differential equation admits a smooth density. There
are many approaches to this problem in the theory of partial differential equations, and
it is well known that the smoothness of the fundamental solution for a parabolic dif-
ferential operator holds under the Hörmander condition which is a condition on the
dimension of the Lie algebra generated by the vector fields associated with the co-
efficients of the differential operator (cf. [8]). In [17] and [18], Malliavin introduced
differential calculus on the Wiener space, and applied it toa probabilistic proof of the
Hörmander theorem. It is well known that the Kusuoka-Stroock-Norris lemma plays an
important role (cf. [3], [9], [14], [19] and [20]).

On the other hand, Bismut discussed the case of jump processes in [4]. He used
the Girsanov transformation, and proved formulas of integration by parts. A gener-
alization to stochastic differential equations with jumpshas been done since Bismut
(cf. [2], [7], [10], [15] and [16]). Picard introduced new calculus on the Poisson space
in [21]. He considered, what is called, the duality formula without using the Girsanov
formula, instead of formulas of integration by parts, and applied his calculus to the
existence of smooth densities. In [12], Komatsu and the present author gave a new
approach to the existence of smooth densities. There the Girsanov transformation is
used, and the formula of integration by parts is considered not on the Poisson space
but on the ćad-ĺag space. It is essential to discuss the integrability of theinverse of the
Malliavin covariance matrix via the Sobolev inequalities. For this problem, certain fun-
damental inequlalities about semimartingales are considered, and the exponential decay
of the Laplace transform for the law of the Malliavin covariance is proved. This in-
equality can be proved by an elementary stochastic calculus. In particular, in the case
of diffusion processes, the fundamental inequality can be showed so easily that a sim-
ple proof of the Ḧormander theorem is obtained ([11]). Moreover using the fundamen-
tal inequality, a generalization of the Hörmander condition is obtained for SDE with
jumps ([12]). In [13], Kunita discussed the case of canonical stochastic differential
equations with jumps by using Picard’s method and certain fundamental inequalities
on semimartingales obtained in [12].
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In this paper, we shall consider the smoothness of the density for the image of the
solution to a stochastic differential equation with jumps through a smooth mapping on
a Euclidean space. The smoothness of the density for image processes is often called
the partial hypoellipticity. In the case of diffusion processes, Bismut-Michel ([5]),
Stroock ([24]), and Taniguchi ([26]) have already studied it by using the Malliavin cal-
culus. Their results are a natural generalization of well-known Hörmander’s theorem.
Taniguchi considered the partially hypoelliptic problem on Riemannian manifolds. Our
main purpose is an attempt to generalize their results for diffusion processes to jump
processes on Euclidean spaces. We shall discuss the partially hypoelliptic problem by
using the Malliavin calculus on the cád-ĺag space, for which we have to investigate
the exponential decay of the Laplace transform for the law ofthe Malliavin covari-
ance stated above. Hence the crucial point is to use certain fundamental inequalities
about some semimartingales considered in [11] and [12]. When we apply the funda-
mental inequalities, we are faced with a difficulty how to treat random variables at a
terminal time of processes included in the Malliavin covariance. In order to overcome
the difficulty, we use time-reversed stochastic differential equations. After all, we need
to consider an estimate similar to the one considered in [11]and [12]. It might be ex-
pected that the partial hypoellipticity for stochastic differential equations with jumps
holds under a condition similar to the one obtained by Bismut-Michel, Stroock, and
Taniguchi. However, we have to give some additional condition to the coefficient of
the jump term in stochastic differential equations. The condition may seem to be tech-
nical, but it remains open to remove the condition. Adding the condition, we obtain
main results on the partially hypoelliptic problem for stochastic differential equations
with jumps. The non-degenerate condition in our main theorem seems to be compli-
cated, but it is essentially a generalization of the one for diffusion processes.

The organization of this paper is as follows: in Section 2, weshall give some
preparation and state main results. In order to understand the result for general pro-
cesses with jumps, we divide into two cases. In Section 3, we shall study time-
reversed stochastic differential equations. In Section 4,we shall give a proof of the
result for diffusion processes. This yields a new proof of Taniguchi’s result ([26]). In
Section 5, we shall finish the proof for general processes with jumps.

2. Preliminaries and main results

Let be the ćad-ĺag space (R+ → R ). For ≥ 0, let be the projection from
to R such that (ω) = ω( ) for ω ∈ . Put σ-fieldsW =

⋂
ε>0 σ[ ; ≤ + ε]

and W =
∨

≥0W as usual. Set = − − and ν( θ) = |θ|− −α θ

for 0< α < 2. We shall consider a probability measure on the measurablespace
( W) such that

( θ) = ♯{ ∈ ; 0 6= ∈ θ}
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is a Poisson random measure onR+×R with the intensityν( θ) , and that process
{ } defined by

= − 0−
∫

0

∫

|θ|≤1
θ ˜( θ)−

∫

0

∫

|θ|>1
θ ( θ)

is a -dimensional (W )-Brownian motion starting at 0∈ R , where

˜( θ) = ( θ)− ν( θ)

We remark that the measurẽ( θ) generates (W )-martingales.
Throughout this paper, ’s denote certain positive absoluteconstants, which may

change every lines. Let{ = ( ) · ∂ } =0 be a family of smooth vector fields onR
such that derivatives of all orders of′ are bounded, where the symbol′ denotes the
derivative with respect to ∈ R , that is,

φ′( ) =
(∂φ
∂

( )
)

1≤ ≤

for any R -valued 1-mapping φ( ) defined onR . Let ( θ) be an R -valued
1-mapping onR ×R such that ( θ) and ∂θ ( θ) are smooth in ∈ R . More-

over, we assume that it satisfies the following conditions:

( 0) = 0 | (0 θ)| ≤ ·
∫

( θ)ν( θ) ≤ (1 + | |2)
∫
{| ( θ)|2 ∧ (1 + | |2)} ν( θ) ≤ (1 + | |2)

‖ ′( θ)‖ ≤ < 1

∥∥∥∥
∫

′( θ) ν( θ)

∥∥∥∥ +
∫ (
‖ ′( θ)‖2 ∧ 1

)
ν( θ) ≤

R ∋ 7−→
∫

′( θ) ν( θ) ∈ R ⊗ R is continuous

‖∂θ (0 θ)‖ + ‖∂θ

(
(θ · ∂θ)

)
( θ)‖ ≤

∂θ
′( θ) is bounded and continuous,

R ∋ 7−→ + ( θ) ∈ R is a homeomorphism

where integrals by the measureν( θ) are defined in the sense of the principal value:
∫
ψ( θ) ν( θ) = lim

ε↓0

∫

|θ|>ε

ψ( θ) ν( θ)

for any R -valued mappingψ( θ) defined onR ×R . Let ( θ) be theR -valued
mapping onR × R satisfying

= + ( θ)⇐⇒ = + ( θ)
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Let 2 = R \{0} and = 2
⋃{0 1 . . . }. Define an operator℘θ (θ ∈ ) by

℘θ

(
≡
(
℘θφ

)
( ) · ∂

)

=





[ θ ] +
1
2

∑

=1

[ [ ]] if θ = 0

[ θ ] if θ ∈ {1 . . . }
{(

+ ′( θ)
)−1

φ
(

+ ( θ)
)
− φ( )

}
· ∂ if θ ∈ 2

for any vector field =φ( ) · ∂ , where [ θ ] = θ − θ.
For 0 ∈ R , we shall consider the following stochastic differential equation

(1) = 0 +
∫

0
0( ) +

∫

0

∑

=1

( ) ◦ +
∫

0

∫
( − θ) ( θ)

where ◦ denotes the stochastic integral in the Stratonovich sense.Here we give a
remark. The precise meaning of the last term of (1) is the following sum:

∫

0

∫

|θ|≤1
( − θ) ˜( θ) +

∫

0

∫

|θ|>1
( − θ) ( θ)

+
∫

0

∫

|θ|≤1
( θ) ν( θ)

From now on, we often make use of such simple representationswithout any com-
ments. Using the stochastic integral in the Ito sense, we canrewrite (1) as follows:

= 0 +
∫

0
˜0( ) +

∫

0

∑

=1

( ) +
∫

0

∫
( − θ) ( θ)

where

˜0( ) = 0( ) +
1
2

∑

=1

′( ) ( )

From the assumption on the coefficients of (1), there exists apathwise unique solution
( 0) = ( 0 ). For ≤ , define

( ) = − ( θ )

where θ is the shift operator on such that (θ ) = + . By a discussion as
in [6], we see that the mapping defines a stochastic flow of diffeomorphisms
on R (cf. [25]).
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Let π = π( ) be an R -valued smooth mapping onR such that all derivatives
of any orders are bounded, where≥ . We shall call{π( )} the image process
of { } by the mappingπ. Our main purpose is to study the partially hypoelliptic
problem for jump processes. The main theorem on the problem may seem strange at
first sight, and its proof also seems to be complicated. However, considering the theo-
rem only for diffusion processes, it will be understood thatthe theorem is essentially a
generalization of well-known Ḧormander’s theorem, and the proof is simple and natu-
ral. So we shall give a proof of the result restricted to the case for diffusion processes
before doing it of the general result. This would make our method of the proof clear
and our main theorem easy to understand.

First we shall mention the result about diffusion processes, which yields a new
proof of Taniguchi’s results ([26]) on Euclidean spaces. Let A ( ≥ 0) be families of
vector fields onR defined by

A0 = { 1 . . . }
A =

{
℘ ; ∈ A −1 = 0 1 . . .

}
( ≥ 1)

Theorem 1. Assume that there exist non-negative integer such that

(2) inf
∈ −1

∑

=0

∑

φ( )·∂ ∈A

(
· π′( )φ( )

)2
> 0

for any ∈ R . Then the law of random variableπ( ) admits a smooth density with
respect to the Lebesgue measure onR .

The proof of Theorem 1 will be given in Section 4.

REMARK 1. Condition (2) in Theorem 1 is called the Hörmander condition for the
partially hypoelliptic problem. It is equivalent to the following condition:

(3) dim ( π) L
[
⋃

=0

A
] ∣∣∣∣ =

for any ∈ R , where ( π) denotes the differential of mappingπ at andL[A]|
denotes the linear space generated by a familyA of vector fields at .
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EXAMPLE 1. Let = 3, = 2, = 1 andπ(( 1 2 3)∗) = ( 1 2)∗. We shall
consider the following stochastic differential equation:





1( ) = +
∫

0
2( ) ◦

2( ) =
∫

0
3( ) ◦

3( ) = +
∫

0

(
2( ) + 3( )

)
◦

Since 3( ) = 1( ) + 2( ), it is clear that the law of ( ) doesn’t admit a smooth
density. In this case

0 = (1 0 1)∗ · ∂ 1 = ( 2 3 2 + 3)∗ · ∂
℘0 1 = (0 1 1)∗ · ∂ ℘1℘0 1 = (−1 −1 −2)∗ · ∂

Since the dimension of the linear space spanned by the vectors

(0 1)∗ = π
(
(0 1 1)∗

)
(−1 −1)∗ = π

(
(−1 −1 −2)∗

)

is equal to 2, the law of random variableπ( ( )) admits a smooth density from The-
orem 1 (cf. Remark 1).

It may be expected that adding a certain regularity condition on ( θ), the par-
tial hypoellipticity for SDE with jumps holds under a condition corresponding to
Hörmander’s one. But this conjecture remains open. Here we shall consider the case:
the coefficient ( θ) of the jump term of (1) has the following expression

( 1 2 θ) =

(
1( 1 0 θ)

2( 1 2 θ)

)

where = ( 1 2) ∈ R ×R − , 1( θ) is an R -valued mapping defined onR ×R ,
and 2( θ) is an R − -valued mapping defined onR × R .

We say that anR -valued mapping ( θ) defined onR × R belongs to the
class ∞

ν if the mapping

µγ( θ) = (∂ )µ (θ · ∂θ)γ ( θ)

is bounded and continuous for anyµ ∈ Z+ and anyγ ∈ Z+, and satisfies that

sup

{∣∣∣∣
∫

µγ( θ) ν( θ)

∣∣∣∣
2

+
∫
| µγ( θ)|2 ν( θ)

}
<∞
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where (∂ )µ = (∂ 1)
µ1 · · · (∂ )µ for µ = (µ1 . . . µ ) ∈ Z+ . From now on, we always

assume the following condition.

ASSUMPTION ([ ]). Each component of ′( θ) belongs to the class ∞
ν .

We shall introduce some notations. Chooseρ such that 0< ρ < ((2α) ∧ 1)/4. Set
τ = 2α/(α + 2),

σ(θ) =

{
(1− 4ρ)/4 if θ ∈ {0 1 . . . }
(α− 2ρ)/(α + 2) if θ ∈ 2

and τ (θ1 . . . θ ) = σ(θ1) · · ·σ(θ )τ for θ1 . . . θ ∈ . Define a probability measure
(̄ θ) on as follows:

(̄ θ) =

{
∑

=0

{ ∈ θ} + ν̃( θ) {θ∈ 2}

}

where ν̃( θ) =
(
|θ|2 ∧ 1

)
ν( θ). Let ℘θ(λ) be an operator acting on vector fields on

R such that

℘θ(λ)
(
≡
(
℘θ(λ)φ

)
( ) · ∂

)

=

{
℘θ if θ ∈ {0 1 . . . }
λ1−σ(θ) ℘θ/λ1−σ(θ) if θ ∈ 2

For θ0 ∈ \{0}, and θ1 . . . θ ∈ , let λ
θ0θ1···θ = φλ

θ0θ1···θ ( ) · ∂ be the vector
fields onR defined by

λ
θ0

=

{
θ0 if θ0 ∈ {1 . . . }
˜λ

θ0
if θ0 ∈ 2

λ
θ0θ1···θ = ℘θ

(
λτ (θ1 ... θ −1)

)
· · ·℘θ1

(
λτ
)

λ
θ0

where θ̃( ) = ∂θ ( θ)θ and ˜λ
θ = λ2−τ

θ̃/λ2−τ ( ) · ∂ .

Theorem 2. Assume that there exist non-negative integer and three positive
constantsκ, ε and σ with σ + 5ε < 2ε such that

inf
| |≤λε

inf
∈ −1

∑

=0

∫

θ0 6= 0
(̄ θ0)

∫
(̄ θ1) · · · (̄ θ )(4)

× λ2σ{
(
· π′( )φλ

θ0θ1···θ ( )
)2 ∧ 1 } ≥ λ2κ
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for sufficiently largeλ, where

ε =
τ

2

{(1− 4ρ
4

)
∧
(α− 2ρ
α + 2

)}

Then the law of random variableπ( ) admits a smooth density with respect to the
Lebesgue measure onR .

Let { + } =1 be the vector fields onR defined by

+
(
≡ + ( ) · ∂

)
=
∂

∂θ
( 0) · ∂

Set ℘ + = [ + ] ( = 1 . . . ) for any vector field , and letÃ ( ≥ 0) be a
family of vector fields onR defined by

Ã0 = { 1 . . . +1 . . . 2 }
Ã = {℘ ; = 0 1 . . . + 1 . . . 2 ∈ Ã −1} ( ≥ 1)

Corollary 1. Assume that there exists a non-negative integer such that

(5) inf inf
∈ −1

∑

=0

∑

φ( )·∂ ∈Ã

(
· π′( )φ( )

)2
> 0

Then the assumption ofTheorem 2is satisfied, and the law of random variableπ( )
admits a smooth density with respect to the Lebesgue measureon R .

In Section 5, we will prove Theorem 2 and Corollary 1.

REMARK 2. We remark that condition (5) is a generalization of condition (2)
in Theorem 1 and the conditions obtained by Léandre in [15] and [16].

EXAMPLE 2. Let = 4, = 3, = 1 andπ
(
( 1 2 3 4)∗

)
= ( 1 2 3)∗.

Let δ > 0 be a sufficiently small constant, and setδ1 = 1 + δ. We shall consider the
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following stochastic differential equation:





1( ) = −
∫

0

∫
1(θ) ( θ)

2( ) =
∫

0
4( ) +

∫

0
1( ) ◦

3( ) = −
∫

0

∫
2( −) 3(θ) ( θ)

4( ) =
∫

0

∫ (
− 1( −) 1(θ) + 2−1

1(θ)2− 2( −) 3(θ)
)

( θ)

where 1(θ) and 3(θ) are certain bounded functions onR such that 1(θ) = 2−1|θ|δθ
and 3(θ) = 2−1θ for |θ| ≤ 1.

Since 4( ) = 2−1
1( )2 + 3( ), it is clear that the law of ( ) doesn’t admit a

smooth density. In this case

1 = (0 1 0 0)∗ · ∂
( θ) = 2−1(|θ|δθ 0 θ 2 |θ|δθ 1 + θ 2 + 4−1|θ|2δ+2)∗

˜
θ = θ̃( ) · ∂ = 2−1(δ1|θ|δθ 0 θ 2 δ1|θ|δθ 1 + θ 2 + 2−1δ1|θ|2δ+2)∗ · ∂
2 = ∂θ ( 0) · ∂ = 2−1(0 0 2 2)

∗ · ∂
℘1
˜

θ = 2−1(0 −δ1|θ|δθ θ 1 θ 1)
∗ · ∂

℘η℘1˜θ = 4−1(δ1|θ|δ + |η|δ)θη (0 0 1 1)∗ · ∂

for |θ|, |η| ≤ 1. This example doesn’t satisfy condition (5) in Corollary 1, but satisfies
the assumption in Theorem 2. In fact,

=
∫

θ∈ 2

{(
˜ · φλ

θ ( )
)2 ∧ 1

}
(̄ θ)

+
∫

θ∈ 2

{(
˜ · φλ

θ1( )
)2 ∧ 1

}
(̄ θ)

+
∫

θ∈ 2

∫

η∈ 2

{(
˜ · φλ

θ1η( )
)2 ∧ 1

}
(̄ η) (̄ θ)

≥
∫

|θ|≤1

{
(λ−(2−τ )δδ1|θ|δ 1 + 2 3)

2 ∧ 1
}
|θ|4 ν( θ)

+
∫

|θ|≤1

{
(−λ−(2−τ )δδ1|θ|δ 2 + 1 3)

2 ∧ 1
}
|θ|4 ν( θ)

+
∫

|θ|≤1

∫

|η|≤1

{(
λ−eσδ(δ1|θ|δ + |η|δ) 3

)2 ∧ 1
}
|θ|4|η|4 ν( η) ν( θ)

≥ λ−2(2−τ )δ( 1
2 + 2

2)
∫

|θ|≤1
(δ1|θ|2δ ∧ 1)|θ|4 ν( θ) { 3=0}
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+ λ−2eσδ
3

2
∫

|θ|≤1

∫

|η|≤1

{
(δ1|θ|δ + |η|δ)2 ∧ 1

}
|θ|4|η|4 ν( η) ν( θ) { 3 6= 0}

≥
(

{ 3=0} + 3
2

{ 3 6= 0}
)
λ−2eσδ

where σ̃ = (2− τ ) ∨ {τ (2µ + 2)/(α + 2)}. If 0 < δ < σ/σ̃, condition (4) in Theorem 2
is satisfied. Hence the law of random variableπ( ( )) admits a smooth density.

REMARK 3. Let A ( ≥ 0 0 ≤ ≤ + 1) be a family of vector fields onR
defined by

A0
0 = Ã0 A1

0 = { ˜ λ
θ}

A = {℘ (λτ (θ1 ... θ −1)) ; = 0 1 . . . 2 ♯( ) = ∈ A −1}⋃
{℘θ(λτ (θ1 ... θ −1)) ; θ ∈ 2 ♯( ) = − 1 ∈ A −1

−1} ( ≥ 1)

where ♯( ) = ♯{ ∈ {1 . . . − 1} ; θ ∈ 2}. Then vector field λ
θ0θ1···θ is an el-

ement in
⋃ +1

=0A . Theorem 1 and Corollary 1 corresponds to the case of
⋃

≥0A0.
Theorem 2 says that it is possible to extend Theorem 1 and Corollary 1 to the case of⋃

≥0

⋃ +1
=0A .

Theorem 1

Theorem 2

Corollary 1

A0
0 A1

0

A0
1 A1

1 A2
1

A0
2 A1

2 A2
2 A3

2

A0
3 A1

3 A2
3 A3

3 A4
3

We shall prove Theorem 1, Theorem 2 and Corollary 1 by using the Malli-
avin calculus. The Jacobi matrix = ((∂/∂ 0) 0 ( 0 ))1≤ ≤ of diffeomorphism



THE MALLIAVIN CALCULUS FOR SDE 533

0 ( 0 ) satisfies the following linear SDE:

= +
∫

0

′
0( ) +

∫

0

∑

=1

′( ) ◦(6)

+
∫

0

∫
′( − θ) − ( θ)

where = (δ )1≤ ≤ . Let be the solution to the linear SDE

= −
∫

0

′
0( ) −

∫

0

∑

=1

′( ) ◦(7)

+
∫

0

∫
−{
(

+ ′( − θ)
)−1− } ( θ)

From the Ito formula, we see that

= =

Since ′
0, { ′, ′′} =1 and ′ are bounded, it is a routine work to prove that

(8)

[
sup

0≤ ≤

(
| | + ‖ ‖ + ‖ ‖

)
]
<∞

for all > 1 and ≥ 0 (cf. [25]). For a matrix , we will denote its transpose by
∗. Define an ( × )-matrices valued process = ( ) as follows:

=
∫

0

1

−

{
∑

=1

(
( )
)(

( )
)∗

+
∫ (

−˜θ( −)
)(

−˜θ( −)
)∗

( θ)

}

where = (1+| |2)(1+‖ ‖2) and˜θ( ) = ( + ′( θ))−1∂θ ( θ)θ. Let = ( )
be a non-negative definite, (× )-matrices valued process defined by

= π′( ) [π′( ) ]∗

We call the Malliavin covariance matrixfor the functionalπ( ( )) on .
Finally we shall consider a variation of the process ={ } . First we shall in-

troduce some notations. Set

( ) = −1 ( ) ( ) =
(

1( ) . . . ( )
)
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( θ) = −1 ˜
θ( ) ξ (θ) = exp{ξ · ( θ)}θ

for ξ ∈ R such that|ξ| < 1. Define a perturbed processξ = { ξ} by

ξ = 0 + +
∫

0
( )∗ξ +

∫

0

∫
ξ (θ) ( θ)

Then and the law ξ = ◦( ξ)−1 of the process ξ are mutually absolutely contin-
uous ([23]). We shall denote the conditional expectation ofthe Radon-Nikodym deriva-
tive [ ξ/ | W ] by ξ. Set

ξ = ( 0
ξ) ξ = ( ξ) ξ = ( ξ)

ξ = ( ξ) ξ = ( ξ)

Lemma 2.1. For > 0, if (det )−1 ∈ ⋂ >1 ( ), then the law ofπ( )
admits a smooth density with respect to the Lebesgue measureon R .

Proof. We shall give an outline of the proof. From the absolute continuity be-
tween and ξ, the equality

[ (
π( )

) [(
π′( )

)∗ −1] ](9)

=
[ (

π( ξ )
) [(

π′( ξ ) ξ )∗( ξ )−1
] ξ

]

holds for any test function onR , 1 ≤ ≤ and 1≤ ≤ . By using the same
argument as stated in [12], we see that random variables

∂

∂ξ

{ (
π( ξ )

)[(
π′( ξ ) ξ )∗( ξ )−1

] ξ
}

are integrable by uniformly inξ. Taking the differential of both sides of (9) at
ξ = 0, we see that

[( ∂
∂

)(
π( )

)]
(10)

= −


 (

π( )
)∑

=1

∂

∂ξ

{[(
π′( ξ ) ξ )∗( ξ )−1

] ξ
}∣∣∣

ξ=0




Define operatorsD( ) = (D1( ) . . . D ( )) acting for smooth functionals ( ) on
by

(
D ( )

)
( ) =

∑

=1

∂

∂ξ

{[(
π′( ξ ) ξ )∗( ξ )−1

] ξ ( ξ)
}∣∣∣

ξ=0
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Then equality (10) is expressed as follows:

[( ∂
∂

)(
π( )

)]
=

[ (
π( )

)(
(−D ( ))1

)
( )

]

Set ( ) = (−D ( )1)( ) and ( ) = (∂/∂ ) ( ). By an argument as in [12], we
see that random variables

∂

∂ξ

{ (
π( ξ )

) [(
π′( ξ ) ξ )∗( ξ )−1

]
( ξ) ξ

}

are integrable by uniformly inξ. Hence we have

[( ∂2

∂ ∂

)(
π( )

)]
=

[( ∂
∂

)(
π( )

)]

=
[ (

π( )
)(

(−D ( ))1
)
( )
]

=

[( ∂
∂

)(
π( )

)(
(−D ( ))1

)
( )

]

= [ (π( ))((−D ( ))((−D ( ))1))( )]

We remark ((−D ( ))((−D ( ))1))( ) ∈ ⋂
>1 ( ) by the same method as

stated in [12]. Repeating such arguments, we obtain

[(
∂ µ

)(
π( )

)]
=

[ (
π( )

)(
(−D( ))µ1

)
( )
]

(
(−D( ))µ1

)
( ) ∈

⋂

>1

( )

for any multi-indexµ ∈ Z+. The assertion of the lemma follows from the Sobolev
lemma.

3. Time-reversed processes

In this section, we shall give some remarks on time-reversedstochastic differen-
tial equations. Fix 0≤ ≤ . Let ̂ = − − ( − )−. Then {̂ } ∈[0 ] is also a
Lévy process, and the law of{̂ } ∈[0 ] coincides with that of{ } ∈[0 ] . In partic-
ular, {̂ } ∈[0 ] defined bŷ = − − is also a -dimensional Brownian motion
starting at 0∈ R , and ( θ) defined by

(
[0 );

)
=
(
[ − );

) (
∈ [0 ] ∈ B(R )

)

is also a Poisson random measure with the intensityν( θ) (cf. [1], [22]). Put
˜ ( θ) = ( θ)− ν( θ) .
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For ∈ R , let ̂ be the solution to the following SDE:

(11) ̂ = −
∫

0
0(̂ ) −

∫

0

∑

=1

(̂ ) ◦ +
∫

0

∫
(̂ − θ) ( θ)

From the assumption on the coefficients of (11), there existsa pathwise unique solu-
tion ̂ ( ). For any ≤ (≤ ), let

̂ ( ) = ̂ − ( θ )

Then the mappinĝ defines a stochastic flow of diffeomorphisms onR as in [6].
The Jacobi matrix̂ = ((∂/∂ ) 0̂ ( ))1≤ ≤ of the mapping of diffeomorphism
̂ ( ) satisfies the linear SDE:

̂ = −
∫

0

′
0(̂ )̂ −

∫

0

∑

=1

′(̂ )̂ ◦(12)

+
∫

0

∫
′(̂ − θ)̂ − ( θ)

Let ̂ be a solution to the linear SDE:

̂ = +
∫

0

̂ ′
0(̂ ) +

∫

0

∑

=1

̂ ′(̂ ) ◦(13)

+
∫

0

∫
̂ −{( + ′(̂ − θ))−1− } ( θ)

Since ( + ′( θ))−1− = ′( + ( θ) θ), equations (12) and (13) are parallel with
equations (6) and (7). By using the Ito formula, we can easilycheck that

̂ ̂ = ̂ ̂ =

Moreover, the following proposition holds.

Proposition 3.1.

(14) sup
| |≤ζ

[
sup
τ≤
{ |(∂ )µ̂τ ( )| + ‖(∂ )µ ̂τ ( )‖ }

]
≤ ζ

for any > 1, ∈ [0 ], µ ∈ Z+ and ζ > 1.

Proof. The continuity and the differentiability of̂ ( ) with respect to can be
proved by a method as in [6]. From the assumptions for the coefficients of equations,
the assertion of the proposition follows.
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Lemma 3.1. For almost allω, the equality

(15) −( ) = ̂ − ( ( ) ̂ )

holds for any ∈ [0 ] and ∈ R .

Proof. For = 1, 2. . ., define processes ( ) and̂ ( ) by

( ) =

{( + 1 −
) ( )

+
(
−

) ( + 1 )}

̂ ( ) =

{( + 1 −
)
̂
( )

+
(
−

)
̂
( + 1 )}

for ∈ [( )/ {( + 1) }/ ) ( = 0, 1 . . . − 1). It is easy to check that

̂ ( ) = ( )− ( − )

for ∈ [0 ]. We shall consider the following ordnary differential equations:

( ) = +
∫

0

{
0
(

( )
)

+
∑

=1

(
( )
)

( )

}

̂ ( ) = −
∫

0

{
0
(
̂ ( )

)
+
∑

=1

(
̂ ( )

)
( )

}

Denote solutions of the above equations by ( ) and̂( ), respectively.
From the uniqueness of solutions, it is easy to see that for almost allω ∈ ,

(16) ( ) =̂
(
− ( ) ̂

)

for any ∈ [0 ] and ∈ R . Note that when process = ( ) is replaced
by procesŝ = (̂ ), system{ ( ) ( θ) etc.} shall be replaced by system
{̂ (̂ ) ( θ) etc.}.

Let { } be a decreasing sequence of positive numbers such that↓ 0 as →∞.
Secondly we shall consider the following stochastic differential equations:

η ( ) = +
∫

0

{
0
(
η ( )

)
+
∑

=1

(η ( )) ( )

}

+
∫

0

∫

|θ|>

(
η ( −) θ

)
( θ)

η̂ ( ) = −
∫

0

{
0
(
η̂ ( )

)
+
∑

=1

(
η̂ ( )

)
( )

}
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+
∫

0

∫

|θ|>

(
η̂ ( −) θ

)
( θ)

Solutions will be denoted byη ( ) and η̂ ( ), respectively. Then it is easy
to check that for almost allω ∈ ,

(17) η ( − ) = η̂
(
− η ( ) ̂

)

for all ∈ [0 ] and ∈ R .
Thirdly we shall consider the following stochastic differential equations:

( ) = +
∫

0
0
(

( )
)

+
∫

0

∑

=1

(
( )
)
◦

+
∫

0

∫

|θ|>

(
( −) θ

)
( θ)

̂ ( ) = −
∫

0
0
(
̂ ( )

)
−
∫

0

∑

=1

(
̂ ( )

)
◦

+
∫

0

∫

|θ|>

(
̂ ( −) θ

)
( θ)

From the assumptions for the coefficients, there exist unique solutions ( ) and
̂ ( ) in the pathwise sense. For a positive integer , set

ζ( ) = inf
{

> 0 ;
∫

0

∫

|θ|>
( θ) 6= 0

}

By an arguments as in Chapter VI, Section 7 of [9], we can show that for > 0,

sup
| |≤

sup

[
sup

τ≤ ∧ζ( )
|(∂ )µη (τ )− (∂ )µ (τ )|

]
−→ 0

sup
| |≤

sup

[
sup

τ≤ ∧ζ( )
|(∂ )µη̂ (τ )− (∂ )µ̂ (τ )|

]
−→ 0

as → ∞ for any > 1, ∈ [0 ], and µ ∈ Z+ . It follows immediately by the
Sobolev inequality that

sup

[
sup
| |≤

sup
τ≤ ∧ζ( )

|(∂ )µη (τ )− (∂ )µ (τ )|
]
−→ 0

sup

[
sup
| |≤

sup
τ≤ ∧ζ( )

|(∂ )µη̂ (τ )− (∂ )µ̂ (τ )|
]
−→ 0
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as → ∞ for any > 1, ∈ [0 ], and µ ∈ Z+ . By taking the limits in (17), we
can obtain that for almost allω ∈ {ω ; ζ( ) > },

(18) ( − ) = ̂
(
− ( ) ̂

)

for all ∈ [0 ] and ∈ R .
Finally by the same argument as stated above, we can prove that

[
sup

| |≤
sup

τ≤ ∧ζ( )
|(∂ )µ (τ )− (∂ )µ (τ )|

]
−→ 0

[
sup

| |≤
sup

τ≤ ∧ζ( )
|(∂ )µ̂ (τ )− (∂ )µ̂(τ )|

]
−→ 0

as → ∞ for any > 1, ∈ [0 ], and µ ∈ Z+ . By taking the limits in (18), we
can obtain that for almost allω ∈ {ω ; ζ( ) > },

(19) ( − ) = ̂( − ( ) ̂ )

for all ∈ [0 ] and ∈ R . Since [ζ( ) ≤ ] → 0 as → ∞, the assertion of
the lemma holds.

By Lemma 2.1, our goal is to find sufficient conditions under which

(det )−1 ∈
⋂

>1

( )

is satisfied. Since

[
(det )−

]
≤

[(
inf
∈ −1

( · )
)− ]

≤ sup
∈ −1

[
( · )−( +4 −4)

]
+

and

[
( · )−

]
= ( )−1

∫ ∞

0
λ −1

[
exp{−λ( · )}

]
λ

it suffices to find conditions under which

(20) sup
∈ −1

[
exp{−λ( · )}

]
= (λ− ) (λ→∞)

is satisfied for all > 1.
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First we shall give some notations and remarks. Forλ > 1, ∈ −1, ∈ R ,
and a vector field , we shall introduce the following notations:

Q ( λ ) = λ4
∫

0

(
· π′( )̂ ( )φ(̂ ( ))

)2

Q̂ ( λ ) = λ4
∫

0

{(
· π′( )̂ ( )φ(̂ ( ))

)2 ∧ 1
λ2

}

N ( λ ˜ ·) = λ4
∫

0

∫ (
· π′( )̂ −( ) θ̃(̂ −( ))

)2
( θ)

where ˜θ = θ̃( ) · ∂ . Define an ( × )-matrices valued process̃ by

˜ =
(
π′( )

) ∫

0

{
∑

=1

(
( )
)(

( )
)∗

+
∫ (

−˜θ( −)
)(

−˜θ( −)
)∗

( θ)

}
(
π′( )

)∗

Since we see that

− = ̂ −

from Lemma 3.1, we can express as follows:

· ˜ =
∑

=1

Q ( 1 ) +N ( 1 ˜ ·)

In order to give a lower estimate of· ˜ , we shall prove the following lemma.
Though this lemma is elementary, it plays an important role in our argument. For
ζ > 1, define random variables and̃ by

= sup
| |≤ζ

∫

0

∑

=1

∣∣∣∂
(
· π′( )̂ ( ) (̂ ( ))

)2
∣∣∣

˜ = sup
| |≤ζ

∫

0

∫ ∣∣∣∂
(
· π′( )̂ −( ) θ̃(̂ −( ))

)2
∣∣∣ ( θ)

Put (0 ζ) = { ∈ R ; | | ≤ ζ}.
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Lemma 3.2. Let ρ be a positive constant. There exist a positive integer and
points { } =1 in (0 ζ) such that

inf
| |≤ζ

∑

=1

Q ( 1 )≥
∑

=1

Q ( 1 )− ρ

inf
| |≤ζ

N ( 1 ˜ ·) ≥ N ( 1 ˜ ·)− ρ ˜

for some1≤ ≤ , and furthermore that

[ ] + [ ˜ ] ≤ ζ2 +

Proof. Put σ( ′) = + σ( ′ − ) for σ ∈ [0 1], and , ′ ∈ (0 ζ). It is easy
to see that

∣∣∣
∑

=1

{Q ( 1 )−Q ( ′ 1 )}
∣∣∣

≤
∫

0

∫ 1

0

∑

=1

∣∣∣
σ

(
· π′( σ( ′))̂ ( σ( ′)) (̂ ( σ( ′)))

)2
∣∣∣ σ

≤ | − ′|

and
∣∣∣N ( 1 ˜ ·)−N ( ′ 1 ˜ ·)

∣∣∣

≤
∫ 1

0

∫

0

∫ ∣∣∣
σ

(
· π′( σ( ′))̂ −( σ( ′)) θ̃(̂ −( σ( ′)))

)2
∣∣∣ ( θ) σ

≤ ˜ | − ′|

Since (0 ζ) is compact inR , there exist a positive integer with ≤ (ζ/ρ) −1

and points{ } =1 in (0 ζ) such that

(0 ζ) =
⋃

=1

{ ∈ (0 ζ) ; | − | ≤ ρ}

Hence we obtain

∑

=1

Q ( 1 ) ≥
∑

=1

Q ( 1 )− | − |

≥
∑

=1

Q ( 1 )− ρ
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and

N ( 1 ˜ ·) ≥ N ( 1 ˜ ·)− ˜ | − |
≥ N ( 1 ˜ ·)− ρ ˜

for some 1≤ ≤ . Moreover, from Proposition 3.1 and the Sobolev inequality,we
see that for any positive integer

[ ]

≤
[( ∑

|µ|≤
sup
| |≤ζ

∫

0

∑

=1

∣∣∣(∂ )µ+1
(
· π′( )̂ ( ) (̂ ( ))

)2
∣∣∣

) ]

≤
[{ ∑

|µ|≤

(∫

| |≤ζ

{
sup
≤

∑

=1

∣∣∣∣(∂ )µ+1
(
· π′( )̂ ( )

(
̂ ( )

))2
∣∣∣∣
} )1/ } ]

≤
∑

|µ|≤

[ ∫

| |≤ζ

sup
≤

(∑

=1

∣∣∣∣(∂ )µ+1
(
· π′( )̂ ( )

(
̂ ( )

))2
∣∣∣∣
) ]

≤ vol{ ; | | ≤ ζ}

×
∑

|µ|≤
sup
| |≤ζ

[
sup
≤

(∑

=1

∣∣∣∣(∂ )µ+1
(
· π′( )̂ ( )

(
̂ ( )

))2
∣∣∣∣
) ]

≤ ζ2 +

Similarly we can prove that

[ ˜ ] ≤ ζ2 +

The proof is complete.

We shall consider estimate (20). Let 0< ε < (2ε )/5, where we considerε = 2−4

in the case of diffusion processes. At first we see that

:=
[
exp{−λ4+4ε( · )}

]

≤ 1
[
exp{−λ4( · ˜ )}

]
+ [ 1] + [ 2] + [ 3]

= 1 + 2 + 3 + 4

whereγ > 4 + 3ε, 3ε < β < γ − 4, and

1 =

{
ω ; sup

0≤ ≤
(1 + | |2 + ‖ ‖2) > λ2ε

}

2 =
{
ω ; > λβ

}
3 =
{
ω ; ˜ > λβ

}
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1 [ · ] =
[
· ; 1 ∩ 2 ∩ 3

]

From the Chebyshev inequality, (8) and Lemma 3.2 withζ = λε, we see that

2 ≤ λ−2ε

[
sup

0≤ ≤
(1 + | |2 + ‖ ‖2)

]
= (λ−2ε )

3 ≤ λ−β [ ] = (λ− (β−3ε))

4 ≤ λ−β [˜ ] = (λ− (β−3ε))

for any > 1. Moreover, from the Schwarz inequality, inequality (14), and Lemma 3.2
with ζ = λε, ρ = λ−γ , we obtain the estimate

1 ≤ 1

[
exp

{
− inf

| |≤λε

(
∑

=1

Q ( λ ) +N ( λ ˜ ·)

)}]

≤ 1

[
exp

{
− min

1≤ ≤ λ

(
∑

=1

Q ( λ ) +N ( λ ˜ ·)

)
+ 2λ4−γ+β

}]

≤
λ∑

=1

1

[
exp

{
−
(
∑

=1

Q ( λ ) +N ( λ ˜ ·)

)}]

≤
λ∑

=1

1

[
exp

{
−

(
∑

=1

Q ( λ ) +
∫
Q̂ ( λτ ˜λ

θ ) ν( θ)

)}]1/2

≤
λ∑

=1

1

[
exp

{
−

∫

θ0 6= 0
Q̂ ( λτ λ

θ0
) (̄ θ0)

}]1/2

≤
λ∑

=1

{
1̃

[
exp

{
−

∫

θ0 6= 0
Q̂ ( λτ λ

θ0
) (̄ θ0)

}]

+

[
sup
≤

(
1 + |̂ |2 + ‖̂ ‖2

)
> λ4ε

]}1/2

≤
λ∑

=1

{
1̃

[
exp

{
−

∫

θ0 6= 0
Q̂ ( λτ λ

θ0
) (̄ θ0)

}]1/2

+ (λ−ε )

}

where λ is a certain positive constant satisfyingλ ≤ λ(ε+γ)( −1), is a certain
positive integer less than λ, and

1̃ [ · ] = 1

[
· ; sup

≤

(
1 + |̂ |2 + ‖̂ ‖2

)
≤ λ4ε

]

Hence we have the following lemma.
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Lemma 3.3. If there exists a positive integer less thanλ such that

(21) sup
∈ −1

λ∑

=1

1̃

[
exp

{
−
∫

θ0 6= 0
Q̂ ( λτ λ

θ0
) (̄ θ0)

}]
= (λ− )

for any > 1, then estimate(20) holds for any > 1.

4. Proof of Theorem 1

In this section, we shall give the proof of Theorem 1. Forλ > 1, define a subset
(λ) ( = 0 1 . . . ) of by

(λ) =





∅ ( = 0)
⋃

∈A −1

{
∑

=0

(‖℘ ‖2 + ‖℘ ℘0 ‖2) > λ2ε

}
(1≤ ≤ )

where ‖ ‖2 = sup0≤ ≤ |π′( )̂ ( )ψ(̂ ( ))|2 for any vector field =ψ( ) · ∂ . We
shall introduce the fundamental estimate on a certain continuous semimartingale con-
sidered in [11]. The following lemma plays an important rolein our argument.

Lemma 4.1. Let ( ) ≡ ( ω) be a continuous semimartingale such that

( ) = 0( ) +
∑

=1

( ) 0( ) = 00( ) +
∑

=1

0 ( )

Then there exist a positive random variable(λ) with [ (λ)] ≤ 1, and positive con-
stants 0, 1, 2 independent ofλ and (·) such that the inequality

0

∫

0
λ4 ( )2 + λ−1/8 log (λ) ≥ 1

∫

0
λ1/4

∑

=0

( )2 − 2

holds on the complement of the set

{
ω ;

∑

=0

‖ 2 + 0
2‖ > λ1/4

}

for sufficiently largeλ, where‖ ‖ = sup0≤ ≤ | ( )| for any function = ( ).

We shall consider estimate (21) in Lemma 3.3. For the sake of simplicity of no-
tations, put

Q ( λ A0) =
∑

∈A0

Q ( λ ) ζ = 2ε − σ
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where 0< σ < 2ε − 3ε. Then we have

1̃
[
exp{−Q ( λ A0)}

]

≤ 2
[
exp{−Q ( λ A0)}

]
+

[
⋃

=0

(λ)

]
+ [˜ ]

= 1̃ + 2̃ + 3̃

where 2ε < δ < ζ − ε and

˜ =

{
ω ; sup

0≤ ≤λ−2ζ

(
|̂ ( )− | + ‖̂ − ‖

)
> λ−δ

}

2 [ · ] = 1̃

[
· ; ˜ ∩

⋂

=0

(λ)

]

From the Chebyshev inequality, the Burkholder inequality and Proposition 3.1, we ob-
tain estimates

2̃ ≤
∑

=0

∑

∈A
λ−2 ε

[{
∑

=0

(
‖℘ ‖2 + ‖℘ ℘0 ‖2

)
} ]

= (λ−2 (ε −2ε))

and

3̃ ≤ λ δ

[
sup

0≤ ≤λ−2ζ

(
|̂ ( )− | + ‖̂ − ‖

)
]

= (λ−(ζ−δ−ε) )

for all > 1. Finally we shall consider the estimate of1̃. From the Ito formula, we
see that

(
· π′( )̂ b ) =

(
· π′( )̂ (℘0 )b ) +

∑

=1

(
· π′( )̂ (℘ )b )

for = ∈ A . From Lemma 4.1, there exists a positive random variable( λ)

with [ ( λ)] ≤ 1 such that the inequality

(22) Q ( λε −1 A −1) ≥ −λ−2ε log ( λ) + Q ( λε A )−

holds on (λ) . PutA′ =
⋃

=0A . By the iterative application of (22), we have

Q ( λε0 A0) ≥ −λ−2ε1 log (1 λ) + Q ( λε1 A′
1)−

≥ · · · · · ·
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≥ −
∑

=1

λ−2ε log ( λ) + Q ( λε A′)−

on
⋂

=0 (λ) . We remark that if

sup
0≤ ≤

(
1 + |̂ |2 + ‖̂ ‖2

)
≤ λ4ε sup

0≤ ≤λ−2ζ

(|̂ ( )− | + ‖̂ − ‖) ≤ λ−δ

then the inequality

(
· π′( )̂ ( )φ(̂ ( ))

)2
(23)

≥ 1
2

(
· π′( )φ( )

)2− 2‖π′‖2λ4ε−2δ( [φ] + [φ])

holds for any ∈ [0 λ−2ζ ], where for anyR -valued mappingψ on R , [ψ] and
[ψ] denote the best constants satisfying the inequality

|ψ( )|2 ≤ [ψ] (1 + | |2) |ψ( )− ψ( ′)|2 ≤ [ψ] | − ′|2

for , ′ ∈ R . From the Jensen inequality, we see

[
∏

=1

( ( λ))2λ−2ε

]
≤
∏

=1

[( ( λ))2 λ−2ε ]1/

≤ 1

for sufficiently largeλ. Hence from (2) and (23), we have

1̃ ≤ 2

[
∏

=1

(
( λ)
)λ−2ε

exp{− Q ( λε A′)}
]

≤ 2
[
exp{− Q ( λε A′)}

]1/2

≤ 2
[
exp

{
− Q

λ−2ζ ( λε A′)
}]1/2

≤ exp



− λ2σ


 inf

∈ −1

∑

∈A′

( · π′( )φ( ))2 − λ4ε−2δ







= (exp{− λ2κ})

Therefore we obtain the estimate

λ∑

=1

sup
∈ −1

1̃
[
exp{−Q ( λ A0)}

]
= (λ− )

for any > 1. From Lemma 3.3, the law of random variableπ( ) admits a smooth
density.



THE MALLIAVIN CALCULUS FOR SDE 547

5. Proof of Theorem 2 and Corollary 1

In this section, we shall discuss the case of general processes with jumps. At first,
we prepare the following lemma on a certain semimartingale with jumps considered
in [12], which plays an important role in the proof of Theorem2.

Lemma 5.1. Let ( ) ≡ ( ω) be a semimartingale such that

( ) = 0( ) +
∑

=1

( ) +
∫

|θ|≤1
θ( ) ˜ +

∫

|θ|>1
θ( )

0( ) = 00( ) +
∑

=1

0 ( ) +
∫

|θ|≤1
0θ( ) ˜ +

∫

|θ|>1
0θ( )

For 0 < ρ < ((2α) ∧ 1)/4, there exist positive constants, { }3
=0 independent ofλ

and (·), and a positive random variable (λ) with [ (λ)] ≤ 1 such that

λ2
∫

0
(λ ( ))2 ∧ 1 + 0λ

−ρ log (λ) +

≥ 1λ
1−4ρ

∫

0
0( )2 + 2λ

2−2ρ

∫

0

∑

=1

( )2

+ 3λ
−2ρ

∫

0

∫
(λ θ( ))2 ∧ 1 ν( θ)

on the complement of the set

{
ω ;

∑

=0

‖ 2 + 0
2‖ +

∫

|θ|≤1
‖ θ

2 + 0θ
2‖ ν( θ) + sup

|θ|>1
‖ 0θ

2‖ > λ2ρ

}

for sufficiently largeλ, where‖ ‖ = sup0≤ ≤ | ( )| for any function = ( ).

Define a subset (λ ) as follows:

(λρ ) =

{
ω ;

∑

=0

(
‖℘ ‖2 + ‖℘ ℘0 ‖2

)
+ sup

|η|>1
‖℘η℘0 ‖2

+
∫

|η|≤1

(
‖℘η ‖2 + ‖℘η℘0 ‖2

)
ν( η) > λ2ρ

}

where‖ ‖2 = sup0≤ ≤ |π′( )̂ ( )φ(̂ ( ))|2 for any vector field =φ( ) · ∂ . By
using the Ito formula, we see that for = ,

(
· π′( )̂ b ) =

(
· π′( )̂ (℘0 )b )
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+
∑

=1

(
· π′( )̂ (℘ )b )

+
∫ (

· π′( )̂ −(℘η )b−

)
( η)

From Lemma 5.1, there exists a positive random variable (λ ) satisfying
[ (λ )] ≤ 1 such that

Q̂ ( λ ) + λ−ρ log (λ ) +(24)

≥
∫
Q̂ ( λ1(η) ℘η(λ) ) (̄ η)

holds on the complement of (λρ ). Set 0̄(ρ λ ) = ∅ and

¯(ρ λ )

= (λρ ) ∪
−1⋃

=1

⋃

θ1···θ

(
(λ1(θ1 ... θ ))ρ ℘θ (λ1(θ1 ... θ −1)) · · ·℘θ1(λ)

)

for ≥ 1 and any vector field . For≥ 1, define (ρ λ ) by

log (ρ λ )

= λ−ρ log (λ )

+
−1∑

=1

∫
(̄ θ1) · · · (̄ θ )

× (λ1(θ1 ... θ ))−ρ log
(
λ1(θ1 ... θ ) ℘θ (λ1(θ1 ... θ −1)) · · ·℘θ1(λ)

)

From the Jensen inequality, it is easy to see that for any 1< < λρε ,

[ (ρ λ ) ] ≤ 1

for sufficiently largeλ. Hence by iterating (24), the inequality

Q̂ ( λ ) + log (ρ λ ) +(25)

≥ Q̂ ( λ ) +
∑

=1

∫
(̄ θ1) · · · (̄ θ )

× Q̂
(

λ1(θ1 ... θ ) ℘θ (λ1(θ1 ... θ −1)) · · ·℘θ1(λ)
)

holds on the complement of the set̄(ρ λ ) for sufficiently largeλ.
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We shall consider estimate (21) in Lemma 3.3.

1̃
[
exp
{
−

∫

θ0 6= 0
Q̂ ( λτ λ

θ0
) (̄ θ0)

}]

≤ 2
[
exp
{
−

∫

θ0 6= 0
Q̂ ( λτ λ

θ0
) (̄ θ0)

}]
+


 ⋃

θ0 6= 0

¯(ρ λτ λ
θ0

)




= 1̂ + 2̂

where

2 [ · ] = 1̃


 · ;

⋂

θ0 6= 0

¯(ρ λτ λ
θ0

)




Since ′( ) ( = 0, 1 . . . ) are bounded smooth mappings and (θ) satisfies as-
simption [ ], it is a routine work to show the estimate

∑

=0

sup
θ0 6= 0

sup
θ1 ... θ ∈

{
∑

=0

(
‖℘ λ

θ0θ1···θ ‖2 + ‖℘ ℘0
λ
θ0θ1···θ ‖2

)
(26)

+
∫

|η|≤1

(
‖℘η

λ
θ0θ1···θ ‖2 + ‖℘η℘0

λ
θ0θ1···θ ‖2

)
ν( θ)

+ sup
|η|>1

‖℘η℘0
λ
θ0θ1···θ ‖2

}

≤ ¯(1 + | |2)

where ¯ is a constant independent ofλ. From the Chebyshev inequality, Proposi-
tion 3.1 and (26), we can estimatê2 as follows:

2̂ =


 ⋃

θ0 6= 0

¯(ρ λτ λ
θ0

)


 = (λ−2 (ε −2ε))

By using the Jensen inequality and (25), we have

1̂ = 2
[
exp
{
−

∫

θ0 6= 0
Q̂ ( λτ λ

θ0
) (̄ θ0)

}]
(27)

≤ 2

[
exp

{ ∫

θ0 6= 0
log (ρ λτ λ

θ0
) (̄ θ0)

}

× exp

{
−

∑

=0

∫

θ0 6= 0
(̄ θ0)

∫
(̄ θ1) · · · (̄ θ )
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×Q̂ ( λτ (θ1 ... θ ) λ
θ0θ1···θ )

}]

≤ 2

[
exp

{
−

∑

=0

∫

θ0 6= 0
(̄ θ0)

∫
(̄ θ1) · · · (̄ θ )

× Q̂ ( λτ (θ1 ... θ ) λ
θ0θ1···θ )

}]

whereτ (θ1 . . . θ ) = τ for = 0. Therefore it suffices to estimate

(28) sup
∈ −1

λ∑

=1

2
[
exp{−Q̂ ( λγ )}

]

for γ > 2ε − σ + δ and a vector field .
To simplify our argument, we shall considerπ = π( ) as a canonical projection

from R to R . In fact, it suffices to consider a diffeomorphism̃π on R such that
elements of̃π( ) is equal toπ( ), that is,

π̃( ) =

(
π( )
∗

)

Let ¯ , ¯ be the solutions to following linear stochastic differential equations:

¯ = −
∫

0

′
0(̂ ) ¯ −

∫

0

∑

=1

′(̂ ) ¯ ◦

¯ = +
∫

0

¯ ′
0(̂ ) +

∫

0

∑

=1

¯ ′(̂ ) ◦

Then by using the Ito formula, we get

(̂ ¯ ) = − ̂ ′
0(̂ ) ¯ −

∑

=1

̂ ′(̂ ) ¯ ◦

+ ̂ ′
0(̂ ) ¯ +

∑

=1

̂ ′(̂ ) ¯ ◦

+
∫
̂ −{

(
+ ′(̂ − θ)

)−1− } ¯ − ( θ)

=
∫
̂ −{

(
+ ′(̂ − θ)

)−1− } ¯ − ( θ)



THE MALLIAVIN CALCULUS FOR SDE 551

that is,

̂ = ¯ +
∫

0

∫
̂ −{

(
+ ′(̂ − θ)

)−1− } ¯ − ( θ) ¯

Furthermore, since ′
0 and { ′, ′′} =1 are bounded, we see that

(29)

[
sup

0≤ ≤

(
‖ ¯ ‖ + ‖ ¯ ‖

)
]
<∞

for any ∈ [0 ] and > 1.
For any ( × )-matrix , we shall decompose to four elements. Let1 be an

( × )-matrix, 2 an ( × ( − ))-matrix, 3 an (( − ) × )-matrix, and 4 an
(( − )× ( − ))-matrix. Then we shall express as follows:

=

(
1 2

3 4

)

Denote

̂ =

(
̂ 1 ̂ 2

̂ 3 ̂ 4

)
¯ =

( ¯1 ¯2

¯3 ¯4

)
¯ =

( ¯1 ¯2

¯3 ¯4

)

(
+ ′(̂ θ)

)−1− =

(
1(θ) 0
3(θ) 4(θ)

)
˜ = π′( )∗ =

(

0

)

In particular, we can expresŝ2 as follows:

̂ 2 = ¯2 +
∫

0

∫ [
̂ 1

−
1
−(θ)

(
¯1

− ¯2 + ¯2
− ¯4

)

+ ̂ 2
−

3
−(θ)

(
¯1

− ¯2 + ¯2
− ¯4

)

+ ̂ 2
−

4
−(θ)

(
¯3

− ¯2 + ¯4
− ¯4

)]
( θ)

Before giving an upper estimate of the higher order moment of̂ 2, we shall introduce
the following lemma. It can be easily proved by applying the Burkholder inequality, so
we omit the proof (cf. [25]).

Lemma 5.2. Let be a positive integer, and ( θ) a predictable process with

[ ∫

0

∥∥∥
∫

( θ) ν( θ)
∥∥∥

2
]
< ∞

[ ∫

0

∫
‖ ( θ)‖2 ν( θ)

]
< ∞ ( = 1 . . . − 1)
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Then the following estimate holds

[
sup

0≤ ≤

∥∥∥∥
∫

0

∫
( θ) ( θ)

∥∥∥∥
2
]

≤
{ [∫

0

∥∥∥∥
∫

( θ) ν( θ)

∥∥∥∥
2

]

+
∑

=1

[(∫

0

∫
‖ ( θ)‖2 ν( θ)

)2 − ]


where is a positive constant depending on .

By using the above lemma, we obtain the following lemma on an upper estimate
of the higher order moment of̂ 2.

Lemma 5.3. For > 1, there exists a positive constant such that

3

[
sup

0≤ ≤
‖̂ 2‖

]
(30)

≤





2

[
sup

0≤ ≤
‖ ¯2‖

]
+ 3

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖2

]1/2

+ η 2

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖2 sup

0≤ ≤
‖̂ 1‖2

]1/2




η

whereη is a positive constant and

3 [ · ] = 2

[
· ; sup

0≤ ≤
‖ ¯3 ¯2 + ¯4 ¯4‖ ≤ η

]

Proof. In this lemma, we may take = 2 for a positive integer . Under

sup
0≤ ≤

‖ ¯3 ¯2 + ¯4 ¯4‖ ≤ η

we see from the Ḧolder inequality that

3

[
sup

0≤ ≤
‖̂ 2‖

]

≤
{

3

[
sup

0≤ ≤
‖ ¯2‖

]
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+ 3

[
sup

0≤ ≤

∥∥∥∥
∫

0

̂ 1
−

1
−(θ)

(
¯1

− ¯2 + ¯2
− ¯4

)
( θ)

∥∥∥∥

]

+ 3

[
sup

0≤ ≤

∥∥∥∥
∫

0

∫
̂ 2

−
3
−(θ)

(
¯1

− ¯2 + ¯2
− ¯4

)
( θ)

∥∥∥∥

]

+ 3

[
sup

0≤ ≤

∥∥∥∥
∫

0

∫
̂ 2

−
4
−(θ)

(
¯3

− ¯2 + ¯4
− ¯4

)
( θ)

∥∥∥∥

]}

≤
{

3

[
sup

0≤ ≤
‖ ¯2‖

]

+ 3

[∫

0

∥∥∥∥
∫
̂ 1 1(θ)

(
¯1 ¯2 + ¯2 ¯4

)
ν( θ)

∥∥∥∥
]

+ 3

[∫

0

∥∥∥∥
∫
̂ 2 3(θ)

(
¯1 ¯2 + ¯2 ¯4

)
ν( θ)

∥∥∥∥
]

+ 3

[∫

0

∥∥∥∥
∫
̂ 2 4(θ)

(
¯3 ¯2 + ¯4 ¯4

)
ν( θ)

∥∥∥∥
]

+
∑

=1

3

[(∫

0

∫
‖̂ 1 1(θ)

(
¯1 ¯2 + ¯2 ¯4

)
‖2 ν( θ)

)2 − ]

+
∑

=1

3

[(∫

0

∫
‖̂ 2 3(θ)

(
¯1 ¯2 + ¯2 ¯4

)
‖2 ν( θ)

)2 − ]

+
∑

=1

3

[(∫

0

∫
‖̂ 2 4(θ)

(
¯3 ¯2 + ¯4 ¯4

)
‖2 ν( θ)

)2 − ]


≤
{

3

[
sup

0≤ ≤
‖ ¯2‖

]

+ 3

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖

∫

0

∥∥∥∥
∫
̂ 1 1(θ)ν( θ)

∥∥∥∥

]

+ 3

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖

∫

0

∥∥∥̂ 2 3(θ)ν( θ)
∥∥∥

]

+ 3

[
sup

0≤ ≤
‖ ¯3 ¯2 + ¯4 ¯4‖

∫

0

∥∥∥∥
∫
̂ 2 4(θ)ν( θ)

∥∥∥∥

]

+
∑

=1

3

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖

(∫

0

∫
‖̂ 1 1(θ)‖2 ν( θ)

)2 − ]

+
∑

=1

3

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖

(∫

0

∫
‖̂ 2 3(θ)‖2 ν( θ)

)2 − ]
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+
∑

=1

3

[
sup

0≤ ≤
‖ ¯3 ¯2 + ¯4 ¯4‖

(∫

0

∫
‖̂ 2 4(θ)‖2 ν( θ)

)2 − ]


≤
{

3

[
sup

0≤ ≤
‖ ¯2‖

]

+ 3

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖

∫

0
‖̂ 1‖ sup

0≤ ≤

∥∥∥∥
∫

1(θ)ν( θ)

∥∥∥∥

]

+
∑

=1

3

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖

×
∫

0
‖̂ 1‖

{∫

0

(∫
‖ 1(θ)‖2 ν( θ)

)2 /(2 −2 )
}(2 −2 )/2




+ 3

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖

∫

0
‖̂ 2‖ sup

0≤ ≤

∥∥∥∥
∫

3(θ)ν( θ)

∥∥∥∥

]

+
∑

=1

3

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖

×
∫

0
‖̂ 2‖

{∫

0

(∫
‖ 3(θ)‖2 ν( θ)

)2 /(2 −2 )
}(2 −2 )/2




+ 3

[
sup

0≤ ≤
‖ ¯3 ¯2 + ¯4 ¯4‖

∫

0
‖̂ 2‖ sup

0≤ ≤

∥∥∥∥
∫

4(θ)ν( θ)

∥∥∥∥

]

+
∑

=1

3

[
sup

0≤ ≤
‖ ¯3 ¯2 + ¯4 ¯4‖

×
∫

0
‖̂ 2‖

{∫

0

(∫
‖ 4(θ)‖2 ν( θ)

)2 /(2 −2 )
}(2 −2 )/2







≤





3

[
sup

0≤ ≤
‖ ¯2‖

]
+ 3

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖2

]1/2

+ η 3

[
sup

0≤ ≤
‖ ¯1 ¯2 + ¯2 ¯4‖2 sup

0≤ ≤
‖̂ 1‖2

]1/2

+ η 3

[∫

0
‖̂ 2‖

]


From the Gronwall inequality, we obtain inequality (30).



THE MALLIAVIN CALCULUS FOR SDE 555

Let us consider estimate (28). Putζ = 2ε − σ. Then we have

2
[
exp
{
−Q̂ ( λγ )

}]

≤ 2
[
exp
{
−Q̂

λ−2ζ ( λγ )
}]

≤ 4
[
exp
{
−Q̂

λ−2ζ ( λγ )
}]

+ 3[˜1] + [ ˜2]

= 1̄ + 2̄ + 3̄

where 0< β < ζ − 2ε, 2ε < δ < ζ − 3ε, and

˜1 =

{
ω
∣∣∣ sup

0≤ ≤λ−2ζ

‖̂ 2‖ > λ−δ

}

˜2 =

{
ω
∣∣∣ sup

0≤ ≤λ−2ζ

‖ ¯3 ¯2
λ−2ζ + ¯4 ¯4

λ−2ζ‖ > λ−β

}

3 [ · ] = 2
[
· ; ˜2

]
4 [ · ] = 2

[
· ; ˜1 ∩ ˜2

]

By using the Chebyshev inequality and Lemma 5.3, we get

2̄ ≤ λ δ 3

[
sup

0≤ ≤λ−2ζ

‖̂ 2‖
]

≤ λ δ

{
3

[
sup

0≤ ≤λ−2ζ

‖ ¯2‖
]

+ 3

[
sup

0≤ ≤λ−2ζ

‖ ¯1 ¯2
λ−2ζ + ¯2 ¯4

λ−2ζ‖2

]1/2

+ λ−2ζ 3

[
sup

0≤ ≤λ−2ζ

‖ ¯1 ¯2
λ−2ζ + ¯2 ¯4

λ−2ζ‖2

× sup
0≤ ≤λ−2ζ

‖̂ 1‖2

]1/2




λ−(2ζ+β)

= (λ− (ζ−3ε−δ))

By using the Chebyshev inequality, we have

3̄ ≤ λ β

[
sup

0≤ ≤λ−2ζ

‖ ¯3 ¯2
λ−2ζ + ¯4 ¯4

λ−2ζ‖
]

= (λ− (ζ−β−2ε))
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because¯ , ¯ are continuous processes. Finally we shall estimate1̄. Since

inf
0≤ ≤λ−2ζ

|(̂ 1)∗ |2 ≥ − λ−2δ

we have

(
˜ · ̂ ψ(̂ )

)2 ≥ 1
2

(
( ∗ ̂ 1 0)∗ · ψ(̂ )

)2−
(
(0 ∗ ̂ 2)∗ · ψ(̂ )

)2

≥ 1
2

(( ∗ ̂ 1

|(̂ 1)∗ |
0
)∗
· ψ(̂ )

)2
(

inf
0≤ ≤λ−2ζ

|(̂ 1)∗ |2
)

−|ψ(̂ )|2
(

sup
0≤ ≤λ−2ζ

‖̂ 2‖2

)

≥
(( ∗ ̂ 1

|(̂ 1)∗ |
0
)∗
· ψ(̂ )

)2
− 2 [ψ] λ4ε−2δ

under

sup
0≤ ≤

(1 + |̂ |2 + ‖̂ ‖2) ≤ λ4ε sup
0≤ ≤λ−2ζ

‖̂ 2‖ ≤ λ−δ

Hence we see that

1̄ ≤ 4

[
exp

{
−λ2γ

∫ λ−2ζ

0
(˜ · ̂ ψ(̂ ))2 ∧ 1

}]

≤ 4

[
exp

{
− λ2γ

∫ λ−2ζ

0

(
1− exp{−

(
˜ · ̂ ψ(̂ )

)2}
) }]

≤ 4

[
exp

{
− λ2γ

×
∫ λ−2ζ

0

(
1− exp{−

(( ∗ ̂ 1

|(̂ 1)∗ |
0
)∗
· ψ(̂ )

)2}
) }]

≤ 4

[
exp

{
− λ2γ

∫ λ−2ζ

0

(( ∗ ̂ 1

|(̂ 1)∗ |
0
)∗
· ψ(̂ )

)2 ∧ 1

}]

≤ exp

{
− λ2γ−2ζ inf

| |≤λε
inf
∈ −1

(
(˜ · ψ( ))2 ∧ 1

)}

Therefore we obtain the estimate

sup
∈ −1

2
[
exp{−Q̂ ( λγ )}

]
(31)

≤ exp

{
− λ2γ−2ζ inf

| |≤λε
inf
∈ −1

(
(˜ · ψ( ))2 ∧ 1

)}
+ (λ− )
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We now consider estimate (27). From (4) and (31), we have

1̂ ≤ 2

[
exp

{
−

∑

=0

∫

θ0 6= 0
(̄ θ0)

∫
(̄ θ1) · · · (̄ θ )

×Q̂ ( λτ (θ1 ... θ ) λ
θ0θ1···θ )

}]

≤ exp

{
− λ2σ inf

| |≤λε
inf
∈ −1

∑

=0

∫

θ0 6= 0
(̄ θ0)

∫
(̄ θ1) · · · (̄ θ )

×
(
(˜ · φλ

θ0θ1···θ ( ))2 ∧ 1
)}

+ (λ− )

= (λ− )

Hence we get the estimate

sup
∈ −1

λ∑

=1

1̃

[
exp

{
−

∫

θ0 6= 0
Q̂ ( λτ λ

θ0
) (̄ θ0)

}]
= (λ− )

for any > 1. From Lemma 3.3, the law of random variableπ( ) admits a smooth
density.

Proof of Corollary 1. It suffices to check that condition (4) in Theorem 2 is sat-
isfied under (5). Let 0< ε <

(
2ε /5

)
∧ (1 − σ2), and ζ, ζ̄ two constants satisfying

ε < ζ < (ζ̄/2)< 1− σ2, whereσ2 = σ(θ) = (α− 2ρ)/(α + 2) (θ ∈ 2). Put˜ = π′( )∗ ,
and

ϑ[θ ] = {θ= ∈{0 1 ... }} + θ −
{θ∈ 2} { ∈{ +1 ... 2 }} ( = 0 1 . . . 2 )

Let ψ( ) be anR -valued mapping onR . Since ( θ) satisfies assumption [ ], we
see that

˜ ·
(
℘θ(λ)ψ

)
( ) =

2∑

=0

˜ ·
(
℘ ψ

)
( ) ϑ[θ ] + (λ−(1−σ2)) θ ( )̄

for sufficiently largeλ. Hence it is a routine work to check that
∫ {(

˜ ·
(
℘θ(λ)ψ

)
( )
)2 ∧ 1

}
(̄ θ)

≥
∑

=0

{(
˜ · (℘ ψ)( )

)2 ∧ 1
}

+
∫

|θ|≤λ−ζ

(
˜ ·
(
℘θ(λ)

)
( )
)2
ν̃( θ)

≥
∑

=0

{(
˜ · (℘ ψ)( )

)2 ∧ 1
}
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+
∫

|θ|≤λ−ζ

{ 2∑

= +1

(
˜ · (℘ ψ)( )

)
θ −

}2

ν̃( θ) + (λ−ζ(2−α)−2(1−σ2))

=
∑

=0

{(
˜ · (℘ ψ)( )

)2 ∧ 1
}

+
2∑

= +1

(
˜ · (℘ ψ)( )

)2
∫

|θ|≤λ−ζ

|θ − |2 ν̃( θ) + (λ−ζ(2−α)−2(1−σ2))

≥ λ−ζ(4−α)
2∑

=0

{(
˜ · (℘ ψ)( )

)2 ∧ 1
}

Similarly we obtain

∫

θ0 6= 0
(̄ θ0)

∫
(̄ θ1) · · · (̄ θ )

{(
˜ · φλ

θ0θ1···θ ( )
)2 ∧ 1

}

≥ λ−2ε0ζ(4−α)
2∑

0=1

2∑

1 ... =0

{(
˜ · ℘ · · ·℘ 1 0( )

)2 ∧ 1
}

Choosingσ such thatσ >
(
ζ̄(ε0+1)(4−α)/2

)
, we see that condition (4) in Theorem 2

is satisfied under condition (5). The proof is now complete.
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